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On multiframings of 3–manifolds

Tatsuro Shimizu1

Abstract

We investigate multiframings of a closed oriented 3-manifold. We show
that multiframings give a geometric realization of the tensor product of
the homotopy set of framings and Q. Then we give two applications of
multiframings.

1 Introduction

A notion of multisections is a generalization of sections of bundles introduced by
Fukaya and Ono in [2]. In this article we investigate multiframings of a closed
oriented 3-manifold, namely multisections of the framed bundle of the tangent
bundle of the 3-manifold.

The homotopy set of (usual) framings of a closed oriented 3-manifold M is
isomorphic to [M,SO(3)] the homotopy set of maps from M to SO(3) and it is
isomorphic to H3(M ;Z)⊕ torsion. The signature defect (Hirzebruch defect) is
a homotopy invariant of framings and it gives an affine map from the homotopy
set of framings to Z. For many 3-manifolds M , this map may be, however, not
surjective and not injective.

Multiframings give a geometric realization of the tensor product of the homo-
topy set of framings and Q. In fact, we prove that there is an affine isomorphism
between the homotopy set of multiframings and additive group H3(M ;Q) ∼= Q.

We give two applications of multiframings.
The first application is that there exists a unique canonical multiframing

up to homotopy on any closed oriented 3-manifold. A (usual) framing whose
signature defect equal to 0 is called a canonical framing (see [1], [3] for more
deitails). We generalize the notion of signature defect to multiframings. Then a
canonical multiframing is defined to be a multiframing whose signature defect
equal to 0. The generalized signature defect gives an affine isomorphism from
the homotopy set of multiframings to Q.

The second application is on surgeries of framed 3–manifolds. Let M be a
framed 3–manifold and let N ⊂M be a submanifold. When we replace N to a
new manifold N ′ such that ∂N ∼= ∂N ′, we need to extend a framing of TM |∂N
to N ′. The primary obstruction of this extension is in H1(N ′, ∂N ′;Z/2) and
in some cases, this obstruction is alive. For example, Lescop studied in [5],[6]
a handle body replacement of 3–manifold to show that Kontsevich-Kuperberg-
Thurston invariant (defined in [4]) is of finite. There are difficulties in the
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proofs of these surgery formulas occur from the primary obstruction to extend
framings. We show that any framing of TM |∂N is able to extend to N ′ as a
multiframing.

The organization of this aritcle is as follows. In Section 2 we review the
notion of multisections with a modification. In Section 3 we study the homotopy
set of multiframings of a closed oriented 3-manifold. In Section 4 and 5 we give
applications of multiframings.
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2 Review of multisections

Fukaya and Ono in [2] defined a notion of multisections on orbiflolds. In this
section, we review the notion of multisections and partially reformulate it.

Let E →M be a F -bundle over a smooth manifold M where F is a smooth
manifold. Let us denote bySk the k-th symmetric group. Let SPk(F ) = F k/Sk

be the symmetric power of F and denote by q : F k → SPk(F ) the projection.
SPk(E) → M is an SPk(F )-bundle obtained by taking the symmetric power
fiberwise. We denote by q : Ek → SPk(E) the projection induced from the
projection F k → SPk(F ).

Definition 2.1 (k-fold section). Let k be a positive integer. A section s :M →
SPk(E) is said to be a k-fold section if there exists a pair ({Ua}a∈A, {sai }a∈A,i=1,...,k)
such that the following conditions hold.

(1) {Ua}a∈A is an open covering ofM and sa1 , . . . , s
a
k : Ua → E|Ua are smooth

sections of the bundle E|Ua .

(2) s|Ua = q ◦ (sa1 , . . . , sak) for any a ∈ A.

(3) For each a ̸= b ∈ A satisfying Ua ∩ U b ̸= ∅, there exists a permutation
σab ∈ Sk such that

saσab(i)|Ua∩Ub = sbi |Ua∩Ub (i = 1, . . . , k).

Note that the notion of 1-fold section coincides with the notion of section. We
call the pair ({Ua}a∈A, {sai }a,i) or the triple ({Ua}a∈A, {sai }a,i, {σab}a,b) a lo-
cally liftable neighborhood system of s. Sometimes we drop {sai }a,i from the
notation. For each x ∈ M , we call the neighborhood Ua satisfying Ua ∋ x a
locally liftable neighborhood of x.

2



We remark that it is not required the cocycle condition: σxy ◦ σyz = σxz in
the condition (3) on the above definition. For a k-fold section s and a natural
number l, let us denote by s(l) the kl-fold section s(l) = q ◦ (s, . . . , s).

Definition 2.2 (multisection). A multisection is a equivalent class or a repre-
sentative element of the quotient set

{(s, k)|k is a natural number, s is a k-fold section}/ ∼ .

Here the equivalent relation ∼ is defined as:

(s, k) ∼ (t, l) ⇐⇒ s(l) = t(k).

Sometimes a multisection is denoted by s :M → SP∞(E).
A multimap, a multiform, and a multiconnection are defined as a factional

sections of certain fiber bundles.

Definition 2.3 (pull-back). Let s be a multisection of a F -bundle E →M and
let f : N → M be a smooth map between smooth manifolds. Let {Ua} be a
local liftable neighborhood system of s with s|Ua = q ◦ (sa1 , . . . , s

a
k). Then the

multisection f∗s of f∗E is locally defined by the following equation:

f∗s|f−1(Ua) = q ◦ (f∗sa1 , . . . , f∗sak).

We call f∗s the pull-back of s along f .

We can define a pull-back of a form along a multimap in a similar way. We
next define a homotopy between multisections.

Definition 2.4 (homotopy). (1) Let s0, s1 :M → SPk(E) be k-fold sections.
Let p : M × [0, 1] → M denote the projection. A k-fold section S :
M×[0, 1] → SPk(p

∗E) of the bundle p∗E is said to be a homotopy between
s0 and s1 if S|M×{i} = si(i = 0, 1). We denote s0 ≃k s1.

(2) Let s0 and s1 are multisections. s0 and s1 are multisection homotopic if
there exists a natural number k such that s0 ≃k s1. We write s0 ≃ s1.

We next consider fiber bundles equipped with some structures.
Let E be a vector bundle.

Definition 2.5 (average). Let s be a multisection which is locally written by
s|Ua = q(sa1 , . . . , s

a
k) on U

a, where {Ua} is a locally liftable neighborhood system
of s. The average of s is the multisection of E defined by the following equation:

av(s)|Ua =
1

k
(sa1 + . . .+ sak).

Let f :M → N be a multimap between smooth manifolds and let ω ∈ An(N)
be a closed n-form on N . By definition, the n-form av(f∗ω) is closed too.

Let F be a Lie group and the structure group of the bundle E → M be
Aut(F ). We define two kinds of products of multisections.
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Definition 2.6. Let s0, s1 be multisections of the bundle E. Let s0 be rep-
resented by s0 : M → SPk(E) for some integer k and let s1 be represented
by s1 : M → SPl(E) for some integer l. Let s0(x) = q(x01, . . . , x

0
k), s1(x) =

q(x11, . . . , x
1
l ) for each x ∈M . The multisection s0 · s1 is defined by

s0 · s1(x) = q({x0i · x1j}i,j),

for x ∈M .

Definition 2.7. Let s be a multisection represented by s : M → SPk(E) for
some integer k. Set s(x) = q(x1, . . . , xk) for each x ∈ M . For any n ∈ Z, the
multisection ψn(s) is defined by the following equation:

ψn(s)(x) = q(xn1 , . . . , x
n
k ).

We will use the notation s−1 instead of ψ−1(s).

3 Multiframings of a 3-manifold

In this section, we study multiframings of a 3-manifold, namely multisections
of the frame bundle of the tangent bundle of the 3-manifold.

LetM be a closed oriented 3-dimensional manifold. Let V = GL+(Rn) (n ≥
3, n ̸= 4).

Definition 3.1 (homotopy set of multimaps). We define [M,V ]∞ = {f :M →
SP∞(V ),multimap}/ ≃ to be the homotopy set of multimaps.

In this section we show that the homotopy set [M,V ]∞ has a natural group
structure and give the isomorphism between [M,V ]∞ and the additive group
Q:

[M,V ]∞ ∼= Q.

Remark 3.2. If we fix a framing TM ∼= M × R3, the homotopy set of multi-
framings of M is naturally identified with to [M,GL+(R3)]∞.

We first define a map µ : [M,V ]∞ → R.
Since GL+(Rn) is homotopy equivalent to the maximal compact subgroup

SO(n), [M,GL+(Rn)]∞ ∼= [M,SO(n)]∞. Suppose ι : SO(3) → SO(n) is the
embedding induced by the natural embedding R3 ↪→ R3 ⊕ 0 ⊂ Rn. Let ωn ∈
A3(SO(n)) be a closed 3-form satisfying

∫
SO(3)

ι∗ωn = 1. SinceH3(SO(n);R) =
R for n ≥ 3, n ̸= 4, [ωn] generates H

3(SO(n);R). Recall that av(f∗ωn) ∈
A3(M) is a closed form for any multimap f :M → SP∞(SO(n)).

Lemma 3.3. The value
∫
M

av(f∗ωn) ∈ R is independent of the choice of ωn

and the multimap homotopy of f .

Proof. Let ω′
n be the alternative choice. Since ι∗ : H3(SO(n)) → H3(SO(3)) is

injective, there exists a 2-form η ∈ A2(SO(n)) satisfying ω′
n = ωn+dη. Because
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av(f∗dη) = dav(f∗η) ∈ A3(M),
∫
M

av(f∗ω′
n) =

∫
M

av(f∗ωn) +
∫
M
dav(f∗η) =∫

M
av(f∗ωn). From this,

∫
M

av(f∗ωn) is independent of the choice of ω.
Set µn(f) =

∫
M

av(f∗ωn). We assume that f is represented by a k-fold map.

For any l ∈ N, µn(f
(l)) = 1

l (µn(f) + . . . + µn(f)). Hence µn(f) = µn(f
(l)).

According to Stokes’ theorem, f ≃∞ g implies that µn(f) = µn(g).

Definition 3.4. µn(f) =
∫
M

av(f∗ωn) ∈ R．

By abuse of notation, we write µ(f) instead of µn(f).
Now we obtain the map

µn : [M,GL+(Rn)]∞ → R.

Example 3.5. (1) For any 3-manifoldM , there exists a map f :M → SO(3)
satisfying µ(ϕ) = 2. Let B3 ⊂ M be a small ball in M . We take a map
f : (M,M \ B3) → (S3, 1) such that deg f = 1. Suppose π : S3 → SO(3)
is the double covering. Then µ(π ◦ f) = 2 deg(π ◦ f) = 2. Similarly, for
n ≥ 5 we can take a map f : M → SO(n) satisfying µ(ϕ) = 2 by the
composition of π ◦ f and ι : SO(3) → SO(n).

Note that ι∗(1) = 2 for the map ι∗ : H3(SO(n);R) → H3(SO(3);R) for
n ≥ 5. Then [ωn] does not belong to H3(SO(n);Z).

(2) For the identity map id : RP 3 → RP 3 ∼= SO(3)(⊂ GL+(R3)), we have
µ3(id) = 1. On the other hand, there is no map f : M → GL+(R3)
satisfying µ3(f) = 1 for any integral homology 3-sphere M . In fact any
f :M → SO(3) can be lifted to S3 = Spin(3).

The following two lemmas play a fundamental role when we deform an ele-
ment of [M,V ]∞ by homotopy.

Lemma 3.6. Let B3 ⊂M be a small ball in M . Let ϕ : (M,M \B3) → (V, 1)
be a smooth map. Then µ(ϕk) = kµ(ϕ) for any integer k ∈ Z.

Proof. We first assume that k ≥ 0. Let B3
1 , . . . , B

3
k ⊂ B3 be disjoint balls in B3.

There exists a map ϕi :M → V homotopic to ϕ for each i such that ϕi|M\B3
i
≡ 1,

since M \ B3
i is a deformation retract of M \ B3. Since ϕk ≃1 ϕ1 · . . . · ϕk, we

have

µ(ϕk) = µ(ϕ1 · . . . ·ϕk) = kµ(q ◦(ϕ1 · . . . ·ϕk, 1, . . . , 1)) = kµ(ϕ1, . . . , ϕk) = kµ(ϕ).

We next set k < 0. The equation ϕk · ϕ−k ≃∞ 1 implies that µ(ϕ−k) =
−µ(ϕk) = −kµ(ϕ).

In the next lemma we may choose Spin(n) as V .

Lemma 3.7. Let B3 be a ball inM . For any smooth maps f1, . . . , fk : (M,∂B3) →
(V, 1), there exist smooth maps g1, . . . , gk : (M,∂B3) → (V, 1) satisfying the fol-
lowing conditions.

(1) q ◦ (g1, . . . , gk) ≃k q ◦ (f1, . . . , fk).
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(2) For i = 2, 3, . . . , k, gi|B3 ≡ 1.

(3) For i = 1, 2, . . . , k, fi|M\B3 = gi|M\B3 .

Proof. Let B3
1 , . . . , B

3
k ⊂ B3 be disjoint balls in B3. As the proof of the

lemma 3.6, we get a map f ′i :M → V for each i, such that f ′i |B3\B3
i
≡ 1 and there

is a homotopy relative toM \B3 between f ′i and fi. Let g1|B3 = f ′1 ·f ′2 ·. . .·f ′k|B3 ,
g2|B3 = . . . = gk|B3 :≡ 1, gi|M\B3 = fi|M\B3 for i = 1, . . . , k. Since the balls
B3

1 , . . . , B
3
k are disjoint, q ◦ (f1, . . . , fk) ≃k q ◦ (g1, . . . , gk).

We will use the following lemma when we study the structure of the group
[M,V ]∞.

Lemma 3.8. Let V = GL+(Rn) (n ≥ 3, n ̸= 4). Suppose 1 ∈ V is the unit
element of V . Let B3 ⊂ M be a small ball. Let ϕ : (M,M \ B3) → (V, 1) be a
smooth map satisfying µ(ϕ) = 2 (n = 3) or µ(ϕ) = 1 (n ≥ 5). For any multimap
f :M → SP∞(V ), there exists integers l,m ∈ Z such that

f ≃∞ q ◦ (ϕl, 1, . . . , 1).

(The number of letter “1” is m.)

Remark 3.9. The map ϕ satisfying µ(ϕ) = 2 (n = 3) or µ(ϕ) = 1 (n ≥ 5) and
ϕ|M\B3 ≡ 1 is unique up to homotopy. It follows from the obstruction theory.

Proof. Suppose the multimap f is represented by a k-fold map. We will show
that we can take m = 2k − 1.

Let π : Spin(n) → SO(n) be the double covering. Suppose ({Ua}, {σab
0 }, {fai })

be a local liftable neighborhood system (i.e. f |Ua = q ◦ (fa1 , . . . , f
a
k )). Taking

a subdivision of {Ua} if necessary, we may assume that {Ua} is a good cover,
namely any ∩a1,...,ak

Uak is contractible or empty set.
Let fai,+, f

a
i,− be different lifts of fai : Ua → SO(n) along π for i = 1, . . . , k.

Let σab
1 ∈ S2k = Aut({1, . . . , k} × {+,−}) be permutations satisfying the fol-

lowing conditions;
For a point x ∈ Ua ∩ U b,

(1) There is a transposition τabi : {±} → {±} satisfying σab
1 (i,+)

= (σab
0 (i), τabi (+)).

(2) fai,+(x) = f b
σab
1 (i,+)

(x).

We claim that σab
1 is independent of the choice of x. Indeed, σab

1 is uniquely
determined for each x and Ua ∩ U b is arcwise connected. Hence the 2k-fold
map f̃ : M → SP2k(Spin(n)) which has ({Ua}, {σab

1 }) as a locally liftable
neighborhood system is defined by f̃ |Ua = q ◦ (fa1,+, fa1,−, . . . , fak,+, fak,−). By the

construction, π ◦ f̃ = q ◦ (f, f).
We next deform f̃ by multimap homotopy.
Let |M | be a cell decomposition of M satisfying the following condition.
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• For each cell σ of |M |, there is a subscript a such that σ ⊂ Ua.

Write f̃ |σ = q ◦ (f̃σ1 , . . . , f̃σ2k).
We deform f̃ by a multimap homotopy in the following steps. Suppose ε > 0.

Step 0 For each 0-cell σ0, we deform f̃σ
0

i on the ε-neighborhood of σ0 by a ho-
motopy to satisfy f̃ |σ0 = 1(k). It is possible to carry out this deformation
because π0(Spin(n)) = 0. (This operation defines a homotopy of f̃ be-
cause of the definition of multimap. The same thing works on the following
steps.)

Step 1 For each 1-cell σ1, we deform f̃σ
1

i on the ε/2-neighborhood of σ1 by a
homotopy to satisfyf̃ |σ1 = 1(k). It is possible to carry out this deformation
because π1(Spin(n)) = 0.

Step 2 For each 2-cell σ2, we deform f̃σ
2

i on the ε/4-neighborhood of σ2 by a
homotopy to satisfyf̃ |σ2 = 1(k). It is possible to carry out this deformation
because π2(Spin(n)) = 0.

Step 3 Now, f̃ is constant on the 2-skeleton M (2): f̃ |M(2) = 1. Then for each 3-

cell σ3, f̃ |σ3 = q◦(f̃σ3

1 , . . . , f̃σ
3

2k ), f̃
σ3

i : (σ3, ∂σ3) → (Spin(n), 1). We apply

Lemma 3.7 for each 3-cell. Then we obtain a multimap f̃ satisfying f̃ |σ3 =

q ◦ (gσ
3

0 , 1, . . . , 1) where gσ
3

0 : (σ3, ∂σ3) → (Spin(n), 1) is an appropriate

smooth map. According to gσ
3

0 |∂σ3 ≡ 1, there exists a smooth map g :

M → Spin(n) on M satisfying g|σ3 = gσ
3

0 for each 3-cell σ3. By the
construction of g, we have f̃ ≃2k q ◦ (g0, 1, . . . , 1). Since g is constant
on the 2-skeleton M (2), there is an integer l ∈ Z such that g0 ≃1 φl

n,
where φn : (M,M \ B3) → (Spin(n), 1) is a smooth map with (φn)∗ :

π3(M,M \B3) ∼= Z
∼=→ Z ∼= π3(Spin(n)).

We have f̃ ≃2k q ◦ (φl
n, 1, . . . , 1). Then f ∼ q ◦ (f, f) = π ◦ f̃ ≃2k π ◦ q ◦

(φl
n, 1, . . . , 1) = q ◦ ((π ◦ φn)

l, 1, . . . , 1).
Finally, we calculate µ(π ◦ φn : (M,M \B3) → (SO(n), 1)).
When n = 3, µ(π ◦ φ3) = φ∗

3π
∗1 = φ∗

32 = 2. We now turn to the case

n ≥ 5. Let ι : SO(3) ↪→ SO(n) be the map induced by the embedding R3
∼=→

R3 ⊕ 0 ⊂ Rn. The pull-back of the double covering π : Spin(n) → SO(n) along
ι is π : Spin(3) → SO(3). Suppose ι̃ : Spin(3) → Spin(n) is the map induced
by the bundle map ι. Then µ(π ◦ ι̃ ◦ φ3) = µ(ι ◦ π ◦ φ3) =

∫
M
φ∗
3ω3 = 2. Since

ι̃∗(1) = 2 for ι̃∗ : H3(Spin(3);R) → H3(Spin(n);R), we have µ(π ◦ φn) = 1.
Take ϕ = π ◦ φn. We finish the proof.

Proposition 3.10. Let V = GL+(Rn) (n ≥ 3, n ̸= 4). The homotopy set
[M,V ]∞ is a group with · as a product, namely, the followings hold.

(1) If f1 ≃∞ f2 and g1 ≃∞ g2, then f1 · g1 ≃∞ f2 · g2. Hence it is possible to
define [f ] · [g] = [f · g].

(2) [f ] · [f−1] = [c1].
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(3) [f ] · [c1] = [c1] · [f ] = [f ].

Proof. (1) Let F be a multimap homotopy between f1 and f2, and G be a
multimap homotopy between g1 and g2. Then F · G is a multimap homotopy
between f1 · g1 and f2 · g2.

(2) (3)According to Lemma 3.8, we only need to consider the case f =
q ◦ (ϕl, 1, . . . , 1). The rest of the proof is straightforward.

Finally, we obtain the following theorem about the structure of the group
([M,V ]∞, ·).

Theorem 3.11. Let V = GL+(Rn) (n ≥ 3, n ̸= 4). The map µ : ([M,V ]∞, ·) ∼=
(Q,+) is a group isomorphism.

Proof. Let B3 ⊂M be a small ball in M and let ϕ : (M,M \B3) → (V, 1) be a
map such that µ(ϕ) = 2. According to Lemma 3.8, the natural quotient map {q◦
(ϕl, 1, . . . , 1)}(l,k);co-prime → [M,V ]∞ is surjective. Since µ(q ◦ (ϕl, 1, . . . , 1)) =
2l
k ∈ Q, the map µ : {q ◦ (ϕl, 1, . . . , 1)} → H3(M ;Q) is surjective.

We next prove that µ is injective.
Let f be a k-fold map and let g be a l-fold map satisfying µ(f) = µ(g) as

multimap. Thanks to Lemma 3.8, there are integers m,n ∈ Z such that

f ≃∞ q ◦ (ϕm, 1, . . . , 1) (the number of 1 is 2k),

g ≃2l q ◦ (ϕn, 1, . . . , 1) (that of 1 is 2l).

Then
f (l) ≃∞ q ◦ (ϕlm, 1, . . . , 1) (the number of 1 is 2kl),

g(k) ≃∞ q ◦ (ϕkn, 1, . . . , 1) (that of 1 is 2kl).

Then we have µ(f) = 2lm
2kl , µ(g) =

2kn
2kl . Since µ(f) = µ(g), we have lm = kn.

Then
q ◦ (ϕlm, 1, . . . , 1) = q ◦ (ϕkn, 1, . . . , 1).

Then f ≃∞ g. It shows that µ is an injection.

4 Applications of multiframings: (1) Canonical
framing

Atiyah in [1] showed that, for any closed oriented 3–manifold, there is a canonical
2–framing, namely a framing of the double of the tangent bundle such that its
signature defect equal to 0. Note that there may be no canonical (1–)framing or
there are not unique homotopy classes of canonical framings. In this section, we
generalize the notion of the signature defect to multiframings and then we show
that there exists a unique canonical multiframing up to multiframing homotopy.

Let τ be a multiframing of a 3-dimensional manifoldM . We define a rational
number δ(τ) for τ using the Chern-Weil theory. This is a generalization of the
notion of the signature defect of usual framings.
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Let W be a 4-dimensional manifold with ∂W = M . Let E → W be a real
vector-bundle of rank 4. Let ∇ be a multi affine connection on E.

Suppose ∇ is locally written by ∇|U = q ◦ (∇1, . . . ,∇k) on each appropri-
ate open set U ⊂ W where ∇1, . . . ,∇k are connections on U . Let Ri is the
curvature form of ∇i for i = 1, . . . , k. For any invariant polynomial f , f(Ri)
is a closed form on U for each i. Let f(∇) be the multi form locally given as
q ◦ (f(R1), . . . , f(Rk)).

Let p1(∇) be the 1st Pontrjagin form of ∇.

Lemma 4.1. Suppose W is a closed manifold. Let ∇ be a multi connection and
let ∇′ be a usual connection. Then

∫
W

av(p1(∇)) =
∫
W
p1(∇′). In particular,

1
4π2

∫
W

av(p1(∇)) = 3Sign(W ).

Proof. Suppose ∇ is locally written by ∇|Ua = q◦(∇a
1 , · · · ,∇a

k) where {Ua}a∈A

is a locally liftable neighborhood system. We denote by π :W × [0, 1] →W the
projection. Let ∇̃ be the multi connection of π∗E defined as:

∇̃|Ua×{t} = q ◦ (t∇a
1 + (1− t)∇′, · · · , t∇a

k + (1− t)∇′).

Then the 4-form av(p1(∇̃)) ∈ A4(W×[0, 1]) satisfies av(p1(∇̃))|W×{0} = av(p1(∇′)),

av(p1(∇̃))|W×{1} = av(p1(∇)). Thanks to Stokes’ theorem, we have
∫
W

av(p1(∇)) =∫
W
p1(∇′).

Take a 4-dimensional manifoldW such that ∂W =M . The multi connection
on TW |∂W is given by the outward vector of ∂W and the multiframing τ . Let
∇τ be a multi connection on W which is one of the extensions of the above
multi connection. Then we have the 1st Pontrjagin form p1(∇τ ).

Proposition 4.2. The real number δ(τ) = 1
4π2

∫
W

av(p1(∇)) − 3sign(W ) ∈ Q
is independent of the choice of W and ∇τ .

Proof. This follows by the above lemma and Hirzebruch’s signature theorem.

Definition 4.3 (signature defect). We call δ(τ) the signature defect of τ .

When τ is a usual framing, δ(τ) coincides with the usual signature defect by
the definition.

Definition 4.4. A multiframing satisfying δ(τ) = 0 is said to be canonical
multiframing.

Thanks to Theorem 3.11, for any closed oriented 3-manifold, there exists a
canonical multiframing up to multiframing homotopy:

Proposition 4.5. For any closed oriented 3-manifold M , there exist canonical
multiframings of M . Moreover, if both τ0 and τ1 are canonical multiframings of
M then τ0 ≃ τ1.
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5 Applications of multiframings: (2) Surgery

By using the multiframings, we can clarify arguments about surgery of framed
3–manifold. Let N0 ⊂ M be a 3-dimensional submanifold of closed framed
3-manifold M . For example, N0 is solid torus. When we replace N0 to other 3-
manifold N , we often enable to extend given framing ofM \N to new manifold.
We can, however, always extend as a multiframing.

Let N be an oriented 3-dimensional smooth manifold with boundary. Let
f : ∂N → SPk(SO(3)) be a multimap.

Lemma 5.1. There exists a multimap f̃ : N → SP∞(SO(3)) such that f̃ |∂N =
f .

Proof. By a similar argument of the proof of Theorem 3.8 on the boundary ∂N ,
we have f ≃∞ 1. We denote by F = {ft}t∈I the homotopy between f = f0 and
1 = f1. Suppose ∂N × [0, 1] ⊂ N is a collar neighborhood of ∂N . The following
f̃ is a desired multimap.

f̃ =

{
ft (x ∈ ∂N × {t})
f1 = 1 (otherwise)

Corollary 5.2. Any multiframing τ0 of TN |∂N can extend to N .

Proof. TN is trivial, then arguments of multiframings reduce to that of mul-
timaps.
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