RIMS-1898

A Note on an Anabelian Open Basis for a Smooth Variety

By

Yuichiro HOSHI

January 2019

京都大学 数理解析研究所

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan

A NOTE ON AN ANABELIAN OPEN BASIS FOR A SMOOTH VARIETY

Yuichiro Hoshi

JANUARY 2019

ABSTRACT. — Schmidt and Stix proved that every smooth variety over a field finitely generated over the field of rational numbers has an open basis for the Zariski topology consisting of "anabelian" varieties. This was predicted by Grothendieck in his letter to Faltings. In the present paper, we generalize this result to smooth varieties over generalized sub-p-adic fields. Moreover, we also discuss an absolute version of this result.

CONTENTS

INTRODUCTION		1
$\S1.$	Hyperbolic Polycurves of Strictly Decreasing Type	3
$\S2.$	Some Anabelian Results for Hyperbolic Polycurves	8
§3.	EXISTENCE OF AN ANABELIAN OPEN BASIS	12
REF	ERENCES	. 14

INTRODUCTION

Schmidt and Stix proved that every smooth variety over a field finitely generated over \mathbb{Q} has an open basis for the Zariski topology consisting of "anabelian" varieties [cf. [9], Corollary 1.7]. This was predicted by Grothendieck in his letter to Faltings [cf. [1]]. In the present paper, we generalize this result to a smooth variety over a generalized sub-p-adic field — i.e., a field isomorphic to a subfield of a field finitely generated over the p-adic completion of a maximal unramified extension of \mathbb{Q}_p — by means of some techniques of [2].

Let k be a perfect field and \overline{k} an algebraic closure of k. Write $G_k \stackrel{\text{def}}{=} \operatorname{Gal}(\overline{k}/k)$. We shall say that a smooth variety over k has a *relatively anabelian open basis* [cf. Definition 3.3] if there exists an open basis for the Zariski topology of the variety such that, for arbitrary members U and V of the open basis, the natural map

 $\operatorname{Isom}_k(U, V) \longrightarrow \operatorname{Isom}_{G_k}(\Pi_U, \Pi_V) / \operatorname{Inn}(\Delta_{V/k})$

²⁰¹⁰ MATHEMATICS SUBJECT CLASSIFICATION. — Primary 14H30; Secondary 14H10, 14H25. KEY WORDS AND PHRASES. — anabelian open basis, generalized sub-*p*-adic field, hyperbolic polycurve, hyperbolic polycurve of strictly decreasing type.

is bijective — where we write " $\Pi_{(-)}$ " for the étale fundamental group [relative to an appropriate choice of basepoint] of "(-)" [cf. Definition 2.1, (i)] and " $\Delta_{(-)/k}$ " for the kernel of the outer surjection " $\Pi_{(-)} \rightarrow G_k$ " induced by the structure morphism of "(-)" [cf. Definition 2.1, (ii)].

One main result of the present paper — that may be regarded as a *substantial refinement* of the above prediction by Grothendieck — is as follows [cf. Corollary 3.4, (i)].

THEOREM A. — Every smooth variety over a generalized sub-p-adic field, for some prime number p, has a relatively anabelian open basis.

In [9], Corollary 1.7, Schmidt and Stix proved Theorem A in the case where the base field is finitely generated over \mathbb{Q} . The proof of Theorem A gives an *alternative proof* of [9], Corollary 1.7.

Each of [9], Corollary 1.7, and Theorem A of the present paper is proved as a consequence of an *anabelian property of a certain hyperbolic polycurve*. Let us recall that we shall say that a smooth variety X over k is a *hyperbolic polycurve* [cf. Definition 1.9] if there exists a factorization of the structure morphism of X

$$X = X_d \longrightarrow X_{d-1} \longrightarrow \cdots \longrightarrow X_2 \longrightarrow X_1 \longrightarrow \operatorname{Spec}(k) = X_0$$

such that, for each $i \in \{1, \ldots, d\}$, the morphism $X_i \to X_{i-1}$ is a hyperbolic curve. In [9], Schmidt and Stix discussed an anabelian property of a *strongly hyperbolic Artin* neighborhood [cf. [9], Definition 6.1], i.e., a hyperbolic polycurve X over k whose structure morphism has a factorization $X = X_d \to X_{d-1} \to \ldots \to X_2 \to X_1 \to \text{Spec}(k) = X_0$ such that, for each $i \in \{1, \ldots, d\}$,

- the morphism $X_i \to X_{i-1}$ is a hyperbolic curve,
- the morphism $X_i \to X_{i-1}$ is not proper, and

• the smooth variety X_i may be embedded into the product of finitely many hyperbolic curves over k.

Schmidt and Stix proved that if k is finitely generated over \mathbb{Q} , and X and Y are strongly hyperbolic Artin neighborhoods over k, then the natural map $\operatorname{Isom}_k(X,Y) \to \operatorname{Isom}_{G_k}(\Pi_X, \Pi_Y)/\operatorname{Inn}(\Delta_{Y/k})$ is *bijective* [cf. [9], Theorem 1.6].

In [2], the author of the present paper discussed an anabelian property of a hyperbolic polycurve of lower dimension. The author of the present paper proved that if k is subp-adic — i.e., a field isomorphic to a subfield of a field finitely generated over \mathbb{Q}_p — for some prime number p, and X and Y are hyperbolic polycurves over k, then the natural map $\operatorname{Isom}_k(X,Y) \to \operatorname{Isom}_{G_k}(\Pi_X,\Pi_Y)/\operatorname{Inn}(\Delta_{Y/k})$ is bijective whenever either X or Y is of dimension ≤ 4 [cf. [2], Theorem B].

In the present paper, in order to prove Theorem A, we discuss an anabelian property of a hyperbolic polycurve of strictly decreasing type [cf. Definition 1.10, (ii)], i.e., a hyperbolic polycurve X over k whose structure morphism has a factorization $X = X_d \rightarrow X_{d-1} \rightarrow \dots \rightarrow X_2 \rightarrow X_1 \rightarrow \text{Spec}(k) = X_0$ such that,

• for each $i \in \{1, \ldots, d\}$, the morphism $X_i \to X_{i-1}$ is a hyperbolic curve of type (g_i, r_i) , and,

• for each $i \in \{2, \ldots, d\}$, the inequality $2g_{i-1} + \max\{0, r_{i-1} - 1\} > 2g_i + \max\{0, r_i - 1\}$ holds.

The main ingredient of the proof of Theorem A is the following anabelian result [cf. Theorem 2.4], which was essentially proved in [2], §4 [cf., e.g., [2], Theorem 4.3].

THEOREM B. — Suppose that k is generalized sub-p-adic, for some prime number p. Let X and Y be hyperbolic polycurves of strictly decreasing type over k. Then the natural map

$$\operatorname{Isom}_k(X,Y) \longrightarrow \operatorname{Isom}_{G_k}(\Pi_X,\Pi_Y)/\operatorname{Inn}(\Delta_{Y/k})$$

is bijective.

In the present paper, we also discuss an *absolute version* of an anabelian open basis for a smooth variety. We shall say that a smooth variety over k has an *absolutely anabelian open basis* [cf. Definition 3.3] if there exists an open basis for the Zariski topology of the variety such that, for arbitrary members U and V of the open basis, the natural map

$$\operatorname{Isom}(U, V) \longrightarrow \operatorname{Isom}(\Pi_U, \Pi_V) / \operatorname{Inn}(\Pi_V)$$

is bijective. In [9], Schmidt and Stix essentially proved that every smooth variety over a field finitely generated over \mathbb{Q} has an absolutely anabelian open basis [cf. Corollary 3.4, (ii); also Remark 3.4.1, (i)]. In the present paper, we prove the following result concerning an absolutely anabelian open basis for a smooth variety by means of some results obtained in the study of *absolute anabelian geometry*, i.e., in [5] and [6] [cf. Corollary 3.4, (iii)].

THEOREM C. — Every smooth variety of positive dimension over a finite extension of \mathbb{Q}_p , for some prime number p, has an absolutely anabelian open basis.

Acknowledgments

This research was supported by JSPS KAKENHI Grant Number 18K03239 and by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

1. Hyperbolic Polycurves of Strictly Decreasing Type

In the present §1, we introduce and discuss the notion of *hyperbolic polycurves* [cf. Definition 1.9 below] of strictly decreasing type [cf. Definition 1.10, (ii), below]. In particular, we prove that every smooth variety of positive dimension over an infinite perfect field has an open basis for the Zariski topology such that each member of the open basis has a tripodal unit [cf. Definition 1.3 below] and a structure of hyperbolic polycurve of strictly decreasing type [cf. Lemma 1.12 below].

In the present $\S1$, let k be a perfect field.

DEFINITION 1.1.

(i) We shall say that k is a *mixed-characteristic local field* if k is isomorphic to a finite extension of \mathbb{Q}_p , for some prime number p.

(ii) Let p be a prime number. Then we shall say that k is generalized sub-p-adic if k is isomorphic to a subfield of a field finitely generated over the p-adic completion of a maximal unramified extension of \mathbb{Q}_p [cf. [3], Definition 4.11].

DEFINITION 1.2. — We shall say that a scheme X over k is a normal (respectively, smooth) variety over k if X is geometrically normal (respectively, smooth), of finite type, separated, and geometrically connected over k.

REMARK 1.2.1. — Let X be a normal (respectively, smooth) variety over k.

(i) One verifies immediately that an arbitrary nonempty open subscheme of X is a normal (respectively, smooth) variety over k.

(ii) Let $Y \to X$ be a connected finite étale covering of X. Then one verifies immediately that Y is a normal (respectively, smooth) variety over the [necessarily finite] extension of k obtained by forming the algebraic closure of k in the function field of Y.

DEFINITION 1.3. — Let X be a normal variety over k. Then we shall say that a regular function f on X is a *tripodal unit* if f is nonconstant [i.e., $\notin k$], and, moreover, both f and 1 - f are invertible.

LEMMA 1.4. — Let X be a normal variety over k. Then the following hold:

(i) Let $x \in X$ be a point of X. Then there exists an open neighborhood $U \subseteq X$ of $x \in X$ such that U has a **tripodal unit**.

(ii) Let Y be a normal variety over k and $Y \to X$ a dominant morphism over k. Suppose that X has a tripodal unit. Then Y has a tripodal unit.

PROOF. — These assertions follow immediately from the various definitions involved. \Box

DEFINITION 1.5. — Let S be a scheme. Then we shall say that a scheme X over S is a smooth curve [of type (g, r)] over S if there exist

• a pair of nonnegative integers (g, r),

 \bullet a scheme $X^{\rm cpt}$ over S that is smooth, proper, geometrically connected, and of relative dimension one over S, and

• a [possibly empty] closed subscheme $D \subseteq X^{cpt}$ of X^{cpt} that is finite and étale over S such that

• each geometric fiber of X^{cpt} over S is [a necessarily smooth proper curve] of genus g,

• the finite étale covering of S obtained by forming the composite $D \hookrightarrow X^{\text{cpt}} \to S$ is of degree r, and

• the scheme X is isomorphic to $X^{\text{cpt}} \setminus D$ over S.

REMARK 1.5.1. — It is immediate that a smooth curve over k is a smooth variety over k.

DEFINITION 1.6. — Let *n* be an integer and *S* a scheme. Then we shall say that a smooth curve *X* over *S* is of rank *n* if *X* is of type (g, r), and, moreover, the equality $n = 2g + \max\{0, r-1\}$ holds.

DEFINITION 1.7. — Let S be a scheme. Then we shall say that a smooth curve X over S is a hyperbolic curve over S if the following condition is satisfied: The smooth curve X over S is of type (g, r), and, moreover, the inequality 2g-2+r > 0 holds [or, alternatively, the smooth curve X over S is of rank > 1].

LEMMA 1.8. — Let n_0 be an integer, S a normal variety over k, X a smooth curve over S, and $x \in X$ a closed point of X. Then there exist an open subscheme $U_S \subseteq S$ of S and a closed subscheme $E \subseteq U_X \stackrel{\text{def}}{=} X \times_S U_S$ of U_X such that

• the point $x \in X$ is contained in the open subscheme $U_X \setminus E \subseteq X$ of X, and, moreover,

• the composite $E \hookrightarrow U_X \to U_S$ is a finite étale covering of degree $> n_0$ — which thus implies that the composite $U_X \setminus E \hookrightarrow U_X \to U_S$ is a smooth curve of rank $\geq n_0$.

PROOF. — Let X^{cpt} and D be as in Definition 1.5. Let us first observe that, by applying induction on n_0 , we may assume without loss of generality that $n_0 = 0$. Write $s \in S$ for the closed point obtained by forming the image of $x \in X$ in S; $X_s^{\text{cpt}} \subseteq X^{\text{cpt}}$ for the closed subscheme of X^{cpt} obtained by forming the fiber of $X^{\text{cpt}} \to S$ at $s \in S$; $\eta \in S$ for the generic point of S; X_{η}^{cpt} for the fiber of $X^{\text{cpt}} \to S$ at $\eta \in S$. Then since X^{cpt} is *smooth, proper*, and *of relative dimension one* over S, there exist an open neighborhood $V \subseteq X^{\text{cpt}}$ of $x \in X \subseteq X^{\text{cpt}}$ and a morphism $f: V \to \mathbb{P}^1_S$ over S such that f is étale at $x \in X \subseteq X^{\text{cpt}}$ and restricts to a finite flat morphism $f_{\eta}: X_{\eta}^{\text{cpt}} \to \mathbb{P}^1_{\eta}$ over η .

 $x \in X \subseteq X^{\text{cpt}}$ and restricts to a finite flat morphism $f_\eta \colon X_\eta^{\text{cpt}} \to \mathbb{P}^1_\eta$ over η . For each closed point $a \in \mathbb{P}^1_k$ of \mathbb{P}^1_k , write $E_a \subseteq X^{\text{cpt}}$ for the scheme-theoretic closure in X^{cpt} of the closed subscheme of X_η^{cpt} obtained by pulling back the *reduced* closed subscheme of \mathbb{P}^1_k whose support consists of $a \in \mathbb{P}^1_k$ by the composite of $f_\eta \colon X_\eta^{\text{cpt}} \to \mathbb{P}^1_\eta$ and the natural projection $\mathbb{P}^1_\eta \to \mathbb{P}^1_k$. Now let us observe that since X^{cpt} is proper over S,

(a) the composite $E_a \hookrightarrow X^{\text{cpt}} \to S$ is finite.

Next, let us observe that since f is *étale* at $x \in X \subseteq X^{\text{cpt}}$, one verifies immediately that there exists a closed point $a_0 \in \mathbb{P}^1_k$ of \mathbb{P}^1_k such that

- (b) both $\{x\} \cap E_{a_0}$ and $X_s^{cpt} \cap D \cap E_{a_0}$ are *empty*, and, moreover,
- (c) the intersection $X_s^{\text{cpt}} \cap E_{a_0} \subseteq X^{\text{cpt}}$ is contained in the *étale locus* of f.

Thus, since the intersection $X_s^{\text{cpt}} \cap E_{a_0} \subseteq X^{\text{cpt}}$ is contained in $V \subseteq X^{\text{cpt}}$ [cf. (c)], we may assume without loss of generality, by replacing S by a suitable open neighborhood of $s \in S$, that

(d) the closed subscheme $E_{a_0} \subseteq X^{\text{cpt}}$ coincides with the closed subscheme of X^{cpt} obtained by pulling back the *reduced* closed subscheme of \mathbb{P}^1_k whose support consists of $a_0 \in \mathbb{P}^1_k$ by the composite of $f: V \to \mathbb{P}^1_S$ and the natural projection $\mathbb{P}^1_S \to \mathbb{P}^1_k$.

In particular, since k is *perfect*, it follows from (c) and (d) that we may assume without loss of generality, by replacing S by a suitable open neighborhood of $s \in S$, that

(e) the composite $E_{a_0} \hookrightarrow X^{\text{cpt}} \to S$ is étale.

Write $U_S \subseteq S$ for the open subscheme of S obtained by forming the complement in S of the image of the intersection $D \cap E_{a_0} \subseteq X^{\text{cpt}}$ in S. Then it follows from (a), (b), (e) that

- the subscheme $E \stackrel{\text{def}}{=} E_{a_0} \times_S U_S \subseteq U_X \stackrel{\text{def}}{=} X \times_S U_S$ of U_X is closed and nonempty,
- the point $x \in X$ is contained in $U_X \subseteq X$ but is not contained in $E \subseteq U_X$, and
- the composite $E \hookrightarrow U_X \to U_S$ is finite and étale,

as desired. This completes the proof of Lemma 1.8.

DEFINITION 1.9. — Let S be a scheme. Then we shall say that a scheme X over S is a *hyperbolic polycurve* over S if there exist a positive integer d and a [not necessarily unique] factorization of the structure morphism $X \to S$ of X

$$X = X_d \longrightarrow X_{d-1} \longrightarrow \cdots \longrightarrow X_2 \longrightarrow X_1 \longrightarrow S = X_0$$

such that, for each $i \in \{1, \ldots, d\}$, the morphism $X_i \to X_{i-1}$ is a hyperbolic curve. We shall refer to a factorization of $X \to S$ as above as a sequence of parametrizing morphisms for X over S.

REMARK 1.9.1. — It is immediate that a hyperbolic polycurve over k is a smooth variety over k.

DEFINITION 1.10. — Let S be a scheme and X a hyperbolic polycurve over S.

(i) We shall say that a sequence $X = X_d \to X_{d-1} \to \ldots \to X_2 \to X_1 \to S = X_0$ of parametrizing morphisms for X over S is of strictly decreasing type if the following condition is satisfied: If, for each $i \in \{1, \ldots, d\}$, the hyperbolic curve $X_i \to X_{i-1}$ is of rank n_i , then $n_1 > n_2 > \cdots > n_{d-1} > n_d$.

(ii) We shall say that the hyperbolic polycurve X over S is of strictly decreasing type if there exists a sequence of parametrizing morphisms for X over S of strictly decreasing type.

LEMMA 1.11. — Let n_0 be an integer, X a smooth variety over k, and $x \in X$ a point of X. Suppose that k is **infinite**, and that X is **of positive dimension**. Then there exists an open neighborhood $U \subseteq X$ of $x \in X$ that satisfies the following three conditions:

- (1) The smooth variety U has a tripodal unit.
- (2) The smooth variety U has a structure of hyperbolic polycurve over k.

(3) There exists a sequence $U = U_d \rightarrow U_{d-1} \rightarrow \ldots \rightarrow U_2 \rightarrow U_1 \rightarrow \text{Spec}(k) = U_0$ of parametrizing morphisms for U over k [cf. (2)] such that this sequence is of strictly decreasing type, and, moreover, the hyperbolic curve U over U_{d-1} is of rank $\geq n_0$.

PROOF. — We prove Lemma 1.11 by induction on the dimension of X. If X is of dimension one, then Lemma 1.11 follows from Lemma 1.4, (i), (ii), and Lemma 1.8. In the remainder of the proof of Lemma 1.11, suppose that X is of dimension ≥ 2 , and that the induction hypothesis is in force.

Next, let us observe that we may assume without loss of generality, by replacing $x \in X$ by a closed point of the closure of $\{x\} \subseteq X$ in X, that $x \in X$ is a *closed* point of X. Moreover, it follows from Lemma 1.4, (i), that we may assume without loss of generality, by replacing X by a suitable open neighborhood of $x \in X$, that

(a) the smooth variety X [hence also an arbitrary nonempty open subscheme of X — cf. Lemma 1.4, (ii)] has a *tripodal unit*.

Next, it follows from a similar argument to the argument applied in the proof of [10], Exposé XI, Proposition 3.3 [i.e., as in the proof of [9], Lemma 6.3], that we may assume without loss of generality, by replacing X by a suitable open neighborhood of $x \in X$, that there exists a smooth variety S over k such that X has a structure of smooth curve over S, by means of which let us regard X as a scheme over S. Thus, it follows from Lemma 1.8 that we may assume without loss of generality, by replacing X by a suitable open neighborhood of $x \in X$, that

(b) the smooth curve X over S is of rank $\geq \max\{2, n_0\}$, hence also a hyperbolic curve over S.

Write $n^X (\geq n_0)$ for the rank of the hyperbolic curve X over S [cf. (b)]. Then since S is of dimension dim(X) - 1, it follows from the induction hypothesis that we may assume without loss of generality, by replacing S by a suitable open neighborhood of the image of $x \in X$ in S, that

(c) the smooth variety S has a structure of hyperbolic polycurve over k, and

(d) there exists a sequence $S = S_{d-1} \to S_{d-2} \to \ldots \to S_2 \to S_1 \to \text{Spec}(k) = S_0$ of parametrizing morphisms for S over k [cf. (c)] such that this sequence is of strictly decreasing type, and, moreover, the hyperbolic curve S over S_{d-2} is of rank $> n^X$.

Now let us observe that it follows from (a) that X satisfies condition (1). Moreover, it follows from (b), (c), (d) that X satisfies conditions (2), (3). This completes the proof of Lemma 1.11. \Box

LEMMA 1.12. — Let X be a smooth variety over k. Suppose that k is infinite, and that X is of positive dimension. Then there exists an open basis for the Zariski topology

of X such that each member of the open basis has a tripodal unit and a structure of hyperbolic polycurve of strictly decreasing type over k.

PROOF. — This assertion follows from Lemma 1.11.

2. Some Anabelian Results for Hyperbolic Polycurves

In the present §2, we prove some anabelian results for *hyperbolic polycurves of strictly* decreasing type [cf. Theorem 2.4, Theorem 2.6 below]. Moreover, we also prove an anabelian result for *hyperbolic curves of pseudo-Belyi type* [cf. Definition 2.7, Theorem 2.8 below].

In the present §2, let k be a field of characteristic zero and \overline{k} an algebraic closure of k. Write $G_k \stackrel{\text{def}}{=} \text{Gal}(\overline{k}/k)$.

DEFINITION 2.1. — Let X be a connected locally noetherian scheme.

(i) We shall write

 Π_X

for the *étale fundamental group* [relative to an appropriate choice of basepoint] of X.

(ii) Let Y be a connected locally noetherian scheme and $f: X \to Y$ a morphism of schemes. Then we shall write

$$\Delta_f = \Delta_{X/Y} \subseteq \Pi_X$$

for the kernel of the outer homomorphism $\Pi_X \to \Pi_Y$ induced by f.

LEMMA 2.2. — Let n be an integer, S a normal variety over k, and X a hyperbolic curve over S. Then the following two conditions are equivalent:

(1) The hyperbolic curve X over S is of rank n.

(2) The abelianization of the profinite group $\Delta_{X/S}$ is a free $\widehat{\mathbb{Z}}$ -module of rank n.

PROOF. — This assertion follows from [2], Proposition 2.4, (v).

LEMMA 2.3. — Let X (respectively, Y) be a hyperbolic polycurve over k, $X = X_{d_X} \rightarrow X_{d_X-1} \rightarrow \ldots \rightarrow X_2 \rightarrow X_1 \rightarrow \text{Spec}(k) = X_0$ (respectively, $Y = Y_{d_Y} \rightarrow Y_{d_Y-1} \rightarrow \ldots \rightarrow Y_2 \rightarrow Y_1 \rightarrow \text{Spec}(k) = Y_0$) a sequence of parametrizing morphisms for X (respectively, Y) over k of strictly decreasing type, and

$$\alpha \colon \Pi_X \xrightarrow{\sim} \Pi_Y$$

an isomorphism of profinite groups. Suppose that $k = \overline{k}$. Then the following hold:

(i) Suppose that the inclusion $\alpha(\Delta_{X/X_{d_X-1}}) \subseteq \Delta_{Y/Y_{d_Y-1}}$ holds. Then the equality $\alpha(\Delta_{X/X_{d_X-1}}) = \Delta_{Y/Y_{d_Y-1}}$ holds.

(ii) Suppose that either X or Y is of dimension one. Then both X and Y are of dimension one.

- (iii) The isomorphism α restricts to an isomorphism $\Delta_{X/X_{d_X-1}} \xrightarrow{\sim} \Delta_{Y/Y_{d_Y-1}}$.
- (iv) The equality $d_X = d_Y$ holds.

PROOF. — First, we verify assertion (i). Since the inclusion $\alpha(\Delta_{X/X_{d_X-1}}) \subseteq \Delta_{Y/Y_{d_Y-1}}$ holds, it follows from [2], Proposition 2.4, (iii), (iv), that the [necessarily normal] closed subgroup $\alpha(\Delta_{X/X_{d_X-1}}) \subseteq \Delta_{Y/Y_{d_Y-1}}$ of $\Delta_{Y/Y_{d_Y-1}}$ is open, which thus implies that the closed subgroup $\Delta_{Y/Y_{d_Y-1}}/\alpha(\Delta_{X/X_{d_X-1}}) \subseteq \Pi_Y/\alpha(\Delta_{X/X_{d_X-1}})$ of $\Pi_Y/\alpha(\Delta_{X/X_{d_X-1}})$ is finite. Thus, since $\Pi_Y/\alpha(\Delta_{X/X_{d_X-1}})$ is isomorphic to $\Pi_{X_{d_X-1}}$ [cf. [2], Proposition 2.4, (i)], which is torsion-free [cf. [2], Proposition 2.4, (iii)], we conclude that $\alpha(\Delta_{X/X_{d_X-1}}) = \Delta_{Y/Y_{d_Y-1}}$, as desired. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that we may assume without loss of generality, by replacing (X, Y) by (Y, X) if necessary, that Y is of dimension one. Then since $\alpha(\Delta_{X/X_{d_X-1}}) \subseteq \Pi_Y = \Delta_{Y/Y_{d_Y-1}}$, it follows from assertion (i) that the restriction of α to the closed subgroup $\Delta_{X/X_{d_X-1}} \subseteq \Pi_X$ of Π_X is surjective. Thus, since α is an isomorphism, it follows that $\Delta_{X/X_{d_X-1}} = \Pi_X$. In particular, it follows immediately from [2], Proposition 2.4, (i), (iii), that X is of dimension one, as desired. This completes the proof of assertion (ii).

Next, we verify assertion (iii). Let us first observe that if either X or Y is of dimension one, which thus implies [cf. assertion (ii)] that both X and Y are of dimension one, then assertion (iii) is immediate. Thus, we may assume without loss of generality that both X and Y are of dimension ≥ 2 .

Write $n_{d_X}^X$ (respectively, $n_{d_X-1}^X$; $n_{d_Y}^Y$; $n_{d_{Y-1}}^Y$) for the rank of the hyperbolic curve $X \to X_{d_X-1}$ (respectively, $X_{d_X-1} \to X_{d_X-2}$; $Y \to Y_{d_Y-1}$; $Y_{d_Y-1} \to Y_{d_Y-2}$). Thus, since $n_{d_X-1}^X > n_{d_X}^X$ and $n_{d_Y-1}^Y > n_{d_Y}^Y$, we may assume without loss of generality, by replacing (X, Y) by (Y, X) if necessary, that $n_{d_X}^X < n_{d_Y-1}^Y$. Then since the given sequence $Y = Y_{d_Y} \to Y_{d_Y-1} \to \ldots \to Y_2 \to Y_1 \to \text{Spec}(k) = Y_0$ of parametrizing morphisms for Y over k is of strictly decreasing type, by applying a similar argument to the argument in the proof of Claim 4.2.B.1 in the proof of [2], Lemma 4.2, (ii) [cf. also Lemma 2.2 of the present paper], we conclude that $\alpha(\Delta_{X/X_{d_X-1}}) \subseteq \Delta_{Y/Y_{d_Y-1}}$. Thus, it follows from assertion (i) that $\alpha(\Delta_{X/X_{d_X-1}}) = \Delta_{Y/Y_{d_Y-1}}$, as desired. This completes the proof of assertion (ii).

Finally, we verify assertion (iv). Let us first observe that we may assume without loss of generality, by replacing (X, Y) by (Y, X) if necessary, that $d_X \leq d_Y$. Next, it follows immediately from assertion (iii) and [2], Proposition 2.4, (i), that we may assume without loss of generality — by replacing Π_X , Π_Y by $\Pi_{X_1} = \Pi_X / \Delta_{X/X_1}$, $\Pi_{Y_{d_Y-d_X+1}} =$ $\Pi_Y / \Delta_{Y/Y_{d_Y-d_X+1}} = \Pi_Y / \alpha(\Delta_{X/X_1})$, respectively — that X is of dimension one. Then assertion (iv) follows from assertion (ii). This completes the proof of assertion (iv), hence also of Lemma 2.3.

The first main anabelian result of the present paper is as follows.

THEOREM 2.4. — Let X and Y be hyperbolic polycurves of strictly decreasing type over k and

$$\alpha \colon \Pi_X \xrightarrow{\sim} \Pi_Y$$

an isomorphism of profinite groups over G_k . Suppose that k is generalized sub-p-adic, for some prime number p. Then there exists a unique isomorphism $X \xrightarrow{\sim} Y$ over k from which α arises.

PROOF. — This assertion follows immediately — in light of Lemma 2.3, (iii), (iv), and [3], Theorem 4.12 — from [2], Proposition 3.2, (i), and a similar argument to the argument applied in the proof of [2], Lemma 4.2, (iii).

REMARK 2.4.1. — Let Π be a profinite group over G_k . Suppose that k is generalized sub-p-adic, for some prime number p. Then one immediate consequence of Theorem 2.4 is that the set of k-isomorphism classes of hyperbolic polycurves of strictly decreasing type over k whose étale fundamental group is isomorphic to Π over G_k is of cardinality ≤ 1 . On the other hand, in [8], Sawada proved that the set of k-isomorphism classes of hyperbolic polycurves over k whose étale fundamental group is isomorphic to Π over G_k is finite [cf. the main result of [8]].

Next, let us recall the following important consequence of some results of [5] and [6].

LEMMA 2.5. — Let X (respectively, Y) be a normal variety over a mixed-characteristic local field k_X (respectively, k_Y) and \overline{k}_X (respectively, \overline{k}_Y) an algebraic closure of k_X (respectively, k_Y). Write $G_{k_X} \stackrel{\text{def}}{=} \operatorname{Gal}(\overline{k}_X/k_X)$ and $G_{k_Y} \stackrel{\text{def}}{=} \operatorname{Gal}(\overline{k}_Y/k_Y)$. Let

$$\alpha \colon \Pi_X \longrightarrow \Pi_Y$$

be an **open** homomorphism of profinite groups. Suppose that α restricts to an **open** homomorphism $\Delta_{X/k_X} \to \Delta_{Y/k_Y}$, which thus implies that α induces a [necessarily **open**] homomorphism of profinite groups

$$\alpha_G \colon G_{k_X} \longrightarrow G_{k_Y}.$$

Suppose, moreover, that there exists a connected finite étale covering $Y' \to Y$ of Y such that Y' has a **tripodal unit**. Then there exists a **unique isomorphism of fields** $\overline{k}_Y \xrightarrow{\sim} \overline{k}_X$ which restricts to a finite [necessarily injective] homomorphism $k_Y \hookrightarrow k_X$ and from which the open homomorphism $\alpha_G \colon G_{k_X} \to G_{k_Y}$ arises.

PROOF. — Let us first observe that it follows from our assumption that we may assume without loss of generality, by replacing Π_Y by a suitable open subgroup of Π_Y , that Yhas a tripodal unit. Next, let us observe that a tripodal unit of Y determines a dominant morphism from Y to a tripod T over k_Y , i.e., a hyperbolic curve over k_Y of type (0,3). Thus, we may assume without loss of generality, by replacing α by the composite of α and a [necessarily open] homomorphism $\Pi_Y \to \Pi_T$ that arises from a dominant morphism $Y \to T$ over k, that Y is a tripod over k_Y . Then Lemma 2.5 follows from a similar argument to the argument applied in the proof of [5], Theorem 3.5, (iii), together with the assertion (*^{A-qLT}) of [5], Remark 3.8.1, whose proof was given in [6], Appendix. This completes the proof of Lemma 2.5.

The second main anabelian result of the present paper is as follows.

THEOREM 2.6. — Let X (respectively, Y) be a hyperbolic polycurve of strictly decreasing type over a field k_X (respectively, k_Y) and

$$\alpha \colon \Pi_X \xrightarrow{\sim} \Pi_Y$$

an isomorphism of profinite groups. Suppose that one of the following two conditions is satisfied:

(1) Both k_X and k_Y are finitely generated over \mathbb{Q} .

(2) Both k_X and k_Y are mixed-characteristic local fields, and, moreover, either X or Y has a connected finite étale covering that has a tripodal unit.

Then there exists a unique isomorphism $X \xrightarrow{\sim} Y$ from which α arises.

PROOF. — Suppose that condition (1) (respectively, (2)) is satisfied. Let us first observe that it follows from a similar argument to the argument applied in the proof of [2], Corollary 3.20, (i) (respectively, from [5], Corollary 2.8, (ii)), that α restricts to an isomorphism $\Delta_{X/k_X} \xrightarrow{\sim} \Delta_{Y/k_Y}$. Moreover, it follows immediately from [2], Proposition 3.19, (ii) [i.e., the main result of [7]] (respectively, Lemma 2.5), that we may assume without loss of generality that $k_X = k_Y$, and that the isomorphism α lies over the *identity automorphism* of the absolute Galois group of $k_X = k_Y$. Thus, it follows from Theorem 2.4 that there exists a *unique isomorphism* $X \xrightarrow{\sim} Y$ from which α arises, as desired. This completes the proof of Theorem 2.6.

In the remainder of the present $\S2$, let us consider a *refinement* of Theorem 2.6 in the case where condition (2) is satisfied, and, moreover, Y is of dimension one.

DEFINITION 2.7. — We shall say that a hyperbolic curve X over k is of pseudo-Belyi type if there exists a connected finite étale covering $Y \to X$ of X such that Y has a tripodal unit.

REMARK 2.7.1. — Let X be a hyperbolic curve over a *mixed-characteristic local field*. Then it is immediate that the following two conditions are equivalent:

(1) The hyperbolic curve X is of pseudo-Belyi type and defined over a finite extension of \mathbb{Q} .

(2) The hyperbolic curve X is of quasi-Belyi type [cf. [4], Definition 2.3, (iii)].

REMARK 2.7.2. — Let X be a hyperbolic curve over k. Then it follows from Lemma 1.4 that the following assertions hold:

(i) Let $x \in X$ be a point of X. Then there exists an open neighborhood $U \subseteq X$ of $x \in X$ such that U is a hyperbolic curve over k of pseudo-Belyi type.

(ii) Let Y be a hyperbolic curve over k and $Y \to X$ a dominant morphism over k. Suppose that X is of pseudo-Belyi type. Then Y is of pseudo-Belyi type. **REMARK 2.7.3.** — One verifies easily that every hyperbolic curve of genus ≤ 1 over k is of pseudo-Belyi type.

THEOREM 2.8. — Let X be a normal variety over a mixed-characteristic local field k_X , Y a hyperbolic curve over a mixed-characteristic local field k_Y , and

 $\alpha \colon \Pi_X \longrightarrow \Pi_Y$

an **open** homomorphism of profinite groups. Suppose that the following two conditions are satisfied:

(1) The open homomorphism α restricts to an **open** homomorphism $\Delta_{X/k_X} \to \Delta_{Y/k_Y}$ [which is the case if, for instance, the open homomorphism α is an **isomorphism** — cf. [5], Corollary 2.8, (ii)].

(2) The hyperbolic curve Y is of pseudo-Belyi type [which is the case if, for instance, the hyperbolic curve Y is of genus $\leq 1 - cf$. Remark 2.7.3].

Then there exists a unique dominant morphism $X \to Y$ from which α arises.

PROOF. — Let us first observe that it follows from condition (2) — together with [5], Remark 3.8.1, and [6], Appendix [cf. also the proof of Lemma 2.5 of the present paper] — that the extension Π_Y [i.e., of the absolute Galois group of k_Y] is of A-qLT-type [cf. [5], Definition 3.1, (v)]. Thus, Theorem 2.8 follows from [2], Proposition 3.2, (i), and [2], Corollary 3.20, (iii), i.e., in the case where conditions (1) and (iii-c) are satisfied [i.e., a partial generalization — to the case where the "domain" is the étale fundamental group of a normal variety — of [5], Corollary 3.8, in the case where the condition (g) is satisfied]. This completes the proof of Theorem 2.8.

3. Existence of an Anabelian Open Basis

In the present §3, we prove that every smooth variety over a generalized sub-p-adic field, for some prime number p, has an open basis for the Zariski topology consisting of "anabelian" varieties [cf. Corollary 3.4, (i), below]. Moreover, we also discuss an absolute version of this result [cf. Corollary 3.4, (ii), (iii), below].

In the present §3, let k be a perfect field and \overline{k} an algebraic closure of k. Write $G_k \stackrel{\text{def}}{=} \operatorname{Gal}(\overline{k}/k)$.

DEFINITION 3.1.

(i) We shall say that a class C of smooth varieties over k is *relatively anabelian* over k if, for smooth varieties X, Y that belong to C, the natural map

$$\operatorname{Isom}_k(X,Y) \longrightarrow \operatorname{Isom}_{G_k}(\Pi_X,\Pi_Y)/\operatorname{Inn}(\Delta_{Y/k})$$

is bijective.

(ii) We shall say that a class \mathcal{C} of smooth varieties over fields is *absolutely anabelian* if, for smooth varieties X, Y that belong to \mathcal{C} , the natural map

 $\operatorname{Isom}(X,Y) \longrightarrow \operatorname{Isom}(\Pi_X,\Pi_Y)/\operatorname{Inn}(\Pi_Y)$

is bijective.

COROLLARY 3.2. — The following hold:

(i) Let k be a generalized sub-p-adic field, for some prime number p. Then the class consisting of hyperbolic polycurves of strictly decreasing type over k is relatively anabelian over k.

(ii) The class consisting of hyperbolic polycurves of strictly decreasing type over fields finitely generated over \mathbb{Q} is absolutely anabelian.

(iii) The class consisting of hyperbolic polycurves of strictly decreasing type over mixed-characteristic local fields that have tripodal units is absolutely anabelian.

PROOF. — Assertion (i) follows from Theorem 2.4. Assertions (ii), (iii) follow from Theorem 2.6. This completes the proof of Corollary 3.2. \Box

DEFINITION 3.3. — We shall say that a smooth variety X over k has a relatively anabelian open basis (respectively, an absolutely anabelian open basis) if there exist an open basis for the Zariski topology of X and a class C of smooth varieties over k (respectively, over fields) such that C is relatively anabelian over k (respectively, absolutely anabelian), and, moreover, each member of the open basis belongs to C.

COROLLARY 3.4. — The following hold:

(i) Every smooth variety over a generalized sub-*p*-adic field, for some prime number *p*, has a relatively anabelian open basis.

(ii) Every smooth variety over a field finitely generated over \mathbb{Q} has an absolutely anabelian open basis.

(iii) Every smooth variety of positive dimension over a mixed-characteristic local field has an absolutely anabelian open basis.

PROOF. — Assertion (i) follows from Lemma 1.12 and Corollary 3.2, (i). Assertion (ii) in the case where the smooth variety is of dimension zero follows from [2], Proposition 3.19, (ii) [i.e., the main result of [7]]. Assertion (ii) in the case where the smooth variety is of positive dimension follows from Lemma 1.12 and Corollary 3.2, (ii). Assertion (iii) follows from Lemma 1.12 and Corollary 3.2, (ii). This completes the proof of Corollary 3.4. \Box

REMARK 3.4.1.

(i) In [9], Corollary 1.7, *Schmidt* and *Stix* proved the assertion that, in the terminology of the present paper,

(*) if k is a field finitely generated over \mathbb{Q} , then every smooth variety over k has a relatively anabelian open basis,

that may be regarded as an assertion weaker than Corollary 3.4, (ii). On the other hand, let us observe that one verifies immediately that Corollary 3.4, (ii), may also be easily derived from [9], Corollary 1.7, and [2], Proposition 3.19, (ii) [i.e., the main result of [7]].

(ii) The assertion (*) of (i) was predicted by *Grothendieck* in his letter to Faltings [cf. [1]]. Here, let us observe that Corollary 3.4, (i), may be regarded as a *substantial* refinement of this prediction (*) of (i).

References

- A. Grothendieck, Brief an G. Faltings. With an English translation on pp. 285–293. London Math. Soc. Lecture Note Ser., 242, *Geometric Galois actions*, 1, 49–58, Cambridge Univ. Press, Cambridge, 1997.
- [2] Y. Hoshi, The Grothendieck conjecture for hyperbolic polycurves of lower dimension. J. Math. Sci. Univ. Tokyo 21 (2014), no. 2, 153–219.
- [3] S. Mochizuki, Topics surrounding the anabelian geometry of hyperbolic curves. Galois groups and fundamental groups, 119–165, Math. Sci. Res. Inst. Publ., 41, Cambridge Univ. Press, Cambridge, 2003.
- [4] S. Mochizuki, Absolute anabelian cuspidalizations of proper hyperbolic curves. J. Math. Kyoto Univ. 47 (2007), no. 3, 451–539.
- [5] S. Mochizuki, Topics in absolute anabelian geometry I: generalities. J. Math. Sci. Univ. Tokyo 19 (2012), no. 2, 139–242.
- [6] S. Mochizuki, Topics in absolute anabelian geometry III: global reconstruction algorithms. J. Math. Sci. Univ. Tokyo 22 (2015), no. 4, 939–1156.
- [7] F. Pop, On Grothendieck's conjecture of anabelian birational geometry II. Heidelberg-Mannheim Preprint Reihe Arithmetik II, No. 16, Heidelberg 1995.
- [8] K. Sawada, Finiteness of isomorphism classes of hyperbolic polycurves with prescribed fundamental groups. RIMS Preprint 1893 (September 2018).
- [9] A. Schmidt and J. Stix, Anabelian geometry with étale homotopy types. Ann. of Math. (2) 184 (2016), no. 3, 817–868.
- [10] Théorie des topos et cohomologie étale des schémas. Tome 3. Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. Lecture Notes in Mathematics, Vol. 305. Springer-Verlag, Berlin-New York, 1973.

(Yuichiro Hoshi) RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KY-OTO 606-8502, JAPAN

E-mail address: yuichiro@kurims.kyoto-u.ac.jp