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Abstract. — Schmidt and Stix proved that every smooth variety over a field finitely gener-
ated over the field of rational numbers has an open basis for the Zariski topology consisting
of “anabelian” varieties. This was predicted by Grothendieck in his letter to Faltings. In the
present paper, we generalize this result to smooth varieties over generalized sub-p-adic fields.
Moreover, we also discuss an absolute version of this result.
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Introduction

Schmidt and Stix proved that every smooth variety over a field finitely generated over
Q has an open basis for the Zariski topology consisting of “anabelian” varieties [cf. [9],
Corollary 1.7]. This was predicted by Grothendieck in his letter to Faltings [cf. [1]]. In the
present paper, we generalize this result to a smooth variety over a generalized sub-p-adic
field — i.e., a field isomorphic to a subfield of a field finitely generated over the p-adic
completion of a maximal unramified extension of Qp — by means of some techniques of
[2].

Let k be a perfect field and k an algebraic closure of k. Write Gk
def
= Gal(k/k). We shall

say that a smooth variety over k has a relatively anabelian open basis [cf. Definition 3.3] if
there exists an open basis for the Zariski topology of the variety such that, for arbitrary
members U and V of the open basis, the natural map

Isomk(U, V ) // IsomGk
(ΠU , ΠV )/Inn(∆V/k)
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hyperbolic polycurve of strictly decreasing type.
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is bijective — where we write “Π(−)” for the étale fundamental group [relative to an
appropriate choice of basepoint] of “(−)” [cf. Definition 2.1, (i)] and “∆(−)/k” for the
kernel of the outer surjection “Π(−) � Gk” induced by the structure morphism of “(−)”
[cf. Definition 2.1, (ii)].

One main result of the present paper — that may be regarded as a substantial refine-
ment of the above prediction by Grothendieck — is as follows [cf. Corollary 3.4, (i)].

THEOREM A. — Every smooth variety over a generalized sub-p-adic field, for some
prime number p, has a relatively anabelian open basis.

In [9], Corollary 1.7, Schmidt and Stix proved Theorem A in the case where the base
field is finitely generated over Q. The proof of Theorem A gives an alternative proof of
[9], Corollary 1.7.

Each of [9], Corollary 1.7, and Theorem A of the present paper is proved as a conse-
quence of an anabelian property of a certain hyperbolic polycurve. Let us recall that we
shall say that a smooth variety X over k is a hyperbolic polycurve [cf. Definition 1.9] if
there exists a factorization of the structure morphism of X

X = Xd
// Xd−1

// . . . // X2
// X1

// Spec(k) = X0

such that, for each i ∈ {1, . . . , d}, the morphism Xi → Xi−1 is a hyperbolic curve.
In [9], Schmidt and Stix discussed an anabelian property of a strongly hyperbolic Artin
neighborhood [cf. [9], Definition 6.1], i.e., a hyperbolic polycurve X over k whose structure
morphism has a factorization X = Xd → Xd−1 → . . . → X2 → X1 → Spec(k) = X0 such
that, for each i ∈ {1, . . . , d},
• the morphism Xi → Xi−1 is a hyperbolic curve,

• the morphism Xi → Xi−1 is not proper, and

• the smooth variety Xi may be embedded into the product of finitely many hyperbolic
curves over k.

Schmidt and Stix proved that if k is finitely generated over Q, and X and Y are
strongly hyperbolic Artin neighborhoods over k, then the natural map Isomk(X, Y ) →
IsomGk

(ΠX , ΠY )/Inn(∆Y/k) is bijective [cf. [9], Theorem 1.6].
In [2], the author of the present paper discussed an anabelian property of a hyperbolic

polycurve of lower dimension. The author of the present paper proved that if k is sub-
p-adic — i.e., a field isomorphic to a subfield of a field finitely generated over Qp — for
some prime number p, and X and Y are hyperbolic polycurves over k, then the natural
map Isomk(X, Y ) → IsomGk

(ΠX , ΠY )/Inn(∆Y/k) is bijective whenever either X or Y is
of dimension ≤ 4 [cf. [2], Theorem B].

In the present paper, in order to prove Theorem A, we discuss an anabelian property of
a hyperbolic polycurve of strictly decreasing type [cf. Definition 1.10, (ii)], i.e., a hyperbolic
polycurve X over k whose structure morphism has a factorization X = Xd → Xd−1 →
. . . → X2 → X1 → Spec(k) = X0 such that,

• for each i ∈ {1, . . . , d}, the morphism Xi → Xi−1 is a hyperbolic curve of type (gi, ri),
and,
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• for each i ∈ {2, . . . , d}, the inequality 2gi−1 +max{0, ri−1−1} > 2gi +max{0, ri−1}
holds.

The main ingredient of the proof of Theorem A is the following anabelian result [cf.
Theorem 2.4], which was essentially proved in [2], §4 [cf., e.g., [2], Theorem 4.3].

THEOREM B. — Suppose that k is generalized sub-p-adic, for some prime number p.
Let X and Y be hyperbolic polycurves of strictly decreasing type over k. Then
the natural map

Isomk(X, Y ) // IsomGk
(ΠX , ΠY )/Inn(∆Y/k)

is bijective.

In the present paper, we also discuss an absolute version of an anabelian open basis for
a smooth variety. We shall say that a smooth variety over k has an absolutely anabelian
open basis [cf. Definition 3.3] if there exists an open basis for the Zariski topology of the
variety such that, for arbitrary members U and V of the open basis, the natural map

Isom(U, V ) // Isom(ΠU , ΠV )/Inn(ΠV )

is bijective. In [9], Schmidt and Stix essentially proved that every smooth variety over a
field finitely generated over Q has an absolutely anabelian open basis [cf. Corollary 3.4,
(ii); also Remark 3.4.1, (i)]. In the present paper, we prove the following result concerning
an absolutely anabelian open basis for a smooth variety by means of some results obtained
in the study of absolute anabelian geometry, i.e., in [5] and [6] [cf. Corollary 3.4, (iii)].

THEOREM C. — Every smooth variety of positive dimension over a finite extension
of Qp, for some prime number p, has an absolutely anabelian open basis.
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1. Hyperbolic Polycurves of Strictly Decreasing Type

In the present §1, we introduce and discuss the notion of hyperbolic polycurves [cf. Def-
inition 1.9 below] of strictly decreasing type [cf. Definition 1.10, (ii), below]. In particular,
we prove that every smooth variety of positive dimension over an infinite perfect field has
an open basis for the Zariski topology such that each member of the open basis has a
tripodal unit [cf. Definition 1.3 below] and a structure of hyperbolic polycurve of strictly
decreasing type [cf. Lemma 1.12 below].

In the present §1, let k be a perfect field.
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DEFINITION 1.1.

(i) We shall say that k is a mixed-characteristic local field if k is isomorphic to a finite
extension of Qp, for some prime number p.

(ii) Let p be a prime number. Then we shall say that k is generalized sub-p-adic if
k is isomorphic to a subfield of a field finitely generated over the p-adic completion of a
maximal unramified extension of Qp [cf. [3], Definition 4.11].

DEFINITION 1.2. — We shall say that a scheme X over k is a normal (respectively,
smooth) variety over k if X is geometrically normal (respectively, smooth), of finite type,
separated, and geometrically connected over k.

REMARK 1.2.1. — Let X be a normal (respectively, smooth) variety over k.

(i) One verifies immediately that an arbitrary nonempty open subscheme of X is a
normal (respectively, smooth) variety over k.

(ii) Let Y → X be a connected finite étale covering of X. Then one verifies im-
mediately that Y is a normal (respectively, smooth) variety over the [necessarily finite]
extension of k obtained by forming the algebraic closure of k in the function field of Y .

DEFINITION 1.3. — Let X be a normal variety over k. Then we shall say that a regular
function f on X is a tripodal unit if f is nonconstant [i.e., 6∈ k], and, moreover, both f
and 1− f are invertible.

LEMMA 1.4. — Let X be a normal variety over k. Then the following hold:

(i) Let x ∈ X be a point of X. Then there exists an open neighborhood U ⊆ X of
x ∈ X such that U has a tripodal unit.

(ii) Let Y be a normal variety over k and Y → X a dominant morphism over k.
Suppose that X has a tripodal unit. Then Y has a tripodal unit.

Proof. — These assertions follow immediately from the various definitions involved. �

DEFINITION 1.5. — Let S be a scheme. Then we shall say that a scheme X over S is a
smooth curve [of type (g, r)] over S if there exist

• a pair of nonnegative integers (g, r),

• a scheme Xcpt over S that is smooth, proper, geometrically connected, and of relative
dimension one over S, and

• a [possibly empty] closed subscheme D ⊆ Xcpt of Xcpt that is finite and étale over S

such that

• each geometric fiber of Xcpt over S is [a necessarily smooth proper curve] of genus g,
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• the finite étale covering of S obtained by forming the composite D ↪→ Xcpt → S is
of degree r, and

• the scheme X is isomorphic to Xcpt \D over S.

REMARK 1.5.1. — It is immediate that a smooth curve over k is a smooth variety over
k.

DEFINITION 1.6. — Let n be an integer and S a scheme. Then we shall say that a
smooth curve X over S is of rank n if X is of type (g, r), and, moreover, the equality
n = 2g + max{0, r − 1} holds.

DEFINITION 1.7. — Let S be a scheme. Then we shall say that a smooth curve X over
S is a hyperbolic curve over S if the following condition is satisfied: The smooth curve X
over S is of type (g, r), and, moreover, the inequality 2g−2+r > 0 holds [or, alternatively,
the smooth curve X over S is of rank > 1].

LEMMA 1.8. — Let n0 be an integer, S a normal variety over k, X a smooth curve over
S, and x ∈ X a closed point of X. Then there exist an open subscheme US ⊆ S of S and

a closed subscheme E ⊆ UX
def
= X ×S US of UX such that

• the point x ∈ X is contained in the open subscheme UX\E ⊆ X of X, and, moreover,

• the composite E ↪→ UX → US is a finite étale covering of degree > n0 — which
thus implies that the composite UX \E ↪→ UX → US is a smooth curve of rank ≥ n0.

Proof. — Let Xcpt and D be as in Definition 1.5. Let us first observe that, by applying
induction on n0, we may assume without loss of generality that n0 = 0. Write s ∈ S
for the closed point obtained by forming the image of x ∈ X in S; Xcpt

s ⊆ Xcpt for the
closed subscheme of Xcpt obtained by forming the fiber of Xcpt → S at s ∈ S; η ∈ S
for the generic point of S; Xcpt

η for the fiber of Xcpt → S at η ∈ S. Then since Xcpt is
smooth, proper, and of relative dimension one over S, there exist an open neighborhood
V ⊆ Xcpt of x ∈ X ⊆ Xcpt and a morphism f : V → P1

S over S such that f is étale at
x ∈ X ⊆ Xcpt and restricts to a finite flat morphism fη : Xcpt

η → P1
η over η.

For each closed point a ∈ P1
k of P1

k, write Ea ⊆ Xcpt for the scheme-theoretic closure
in Xcpt of the closed subscheme of Xcpt

η obtained by pulling back the reduced closed

subscheme of P1
k whose support consists of a ∈ P1

k by the composite of fη : Xcpt
η → P1

η

and the natural projection P1
η → P1

k. Now let us observe that since Xcpt is proper over S,

(a) the composite Ea ↪→ Xcpt → S is finite.

Next, let us observe that since f is étale at x ∈ X ⊆ Xcpt, one verifies immediately
that there exists a closed point a0 ∈ P1

k of P1
k such that

(b) both {x} ∩ Ea0 and Xcpt
s ∩D ∩ Ea0 are empty, and, moreover,

(c) the intersection Xcpt
s ∩ Ea0 ⊆ Xcpt is contained in the étale locus of f .
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Thus, since the intersection Xcpt
s ∩ Ea0 ⊆ Xcpt is contained in V ⊆ Xcpt [cf. (c)], we

may assume without loss of generality, by replacing S by a suitable open neighborhood
of s ∈ S, that

(d) the closed subscheme Ea0 ⊆ Xcpt coincides with the closed subscheme of Xcpt

obtained by pulling back the reduced closed subscheme of P1
k whose support consists of

a0 ∈ P1
k by the composite of f : V → P1

S and the natural projection P1
S → P1

k.

In particular, since k is perfect, it follows from (c) and (d) that we may assume without
loss of generality, by replacing S by a suitable open neighborhood of s ∈ S, that

(e) the composite Ea0 ↪→ Xcpt → S is étale.

Write US ⊆ S for the open subscheme of S obtained by forming the complement in S of
the image of the intersection D∩Ea0 ⊆ Xcpt in S. Then it follows from (a), (b), (e) that

• the subscheme E
def
= Ea0 ×S US ⊆ UX

def
= X ×S US of UX is closed and nonempty,

• the point x ∈ X is contained in UX ⊆ X but is not contained in E ⊆ UX , and

• the composite E ↪→ UX → US is finite and étale,

as desired. This completes the proof of Lemma 1.8. �

DEFINITION 1.9. — Let S be a scheme. Then we shall say that a scheme X over S is
a hyperbolic polycurve over S if there exist a positive integer d and a [not necessarily
unique] factorization of the structure morphism X → S of X

X = Xd
// Xd−1

// . . . // X2
// X1

// S = X0

such that, for each i ∈ {1, . . . , d}, the morphism Xi → Xi−1 is a hyperbolic curve. We
shall refer to a factorization of X → S as above as a sequence of parametrizing morphisms
for X over S.

REMARK 1.9.1. — It is immediate that a hyperbolic polycurve over k is a smooth variety
over k.

DEFINITION 1.10. — Let S be a scheme and X a hyperbolic polycurve over S.

(i) We shall say that a sequence X = Xd → Xd−1 → . . . → X2 → X1 → S = X0

of parametrizing morphisms for X over S is of strictly decreasing type if the following
condition is satisfied: If, for each i ∈ {1, . . . , d}, the hyperbolic curve Xi → Xi−1 is of
rank ni, then n1 > n2 > · · · > nd−1 > nd.

(ii) We shall say that the hyperbolic polycurve X over S is of strictly decreasing type
if there exists a sequence of parametrizing morphisms for X over S of strictly decreasing
type.
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LEMMA 1.11. — Let n0 be an integer, X a smooth variety over k, and x ∈ X a point of
X. Suppose that k is infinite, and that X is of positive dimension. Then there exists
an open neighborhood U ⊆ X of x ∈ X that satisfies the following three conditions:

(1) The smooth variety U has a tripodal unit.

(2) The smooth variety U has a structure of hyperbolic polycurve over k.

(3) There exists a sequence U = Ud → Ud−1 → . . . → U2 → U1 → Spec(k) = U0

of parametrizing morphisms for U over k [cf. (2)] such that this sequence is of strictly
decreasing type, and, moreover, the hyperbolic curve U over Ud−1 is of rank ≥ n0.

Proof. — We prove Lemma 1.11 by induction on the dimension of X. If X is of
dimension one, then Lemma 1.11 follows from Lemma 1.4, (i), (ii), and Lemma 1.8. In
the remainder of the proof of Lemma 1.11, suppose that X is of dimension ≥ 2, and that
the induction hypothesis is in force.

Next, let us observe that we may assume without loss of generality, by replacing x ∈ X
by a closed point of the closure of {x} ⊆ X in X, that x ∈ X is a closed point of X.
Moreover, it follows from Lemma 1.4, (i), that we may assume without loss of generality,
by replacing X by a suitable open neighborhood of x ∈ X, that

(a) the smooth variety X [hence also an arbitrary nonempty open subscheme of X —
cf. Lemma 1.4, (ii)] has a tripodal unit.

Next, it follows from a similar argument to the argument applied in the proof of [10],
Exposé XI, Proposition 3.3 [i.e., as in the proof of [9], Lemma 6.3], that we may assume
without loss of generality, by replacing X by a suitable open neighborhood of x ∈ X,
that there exists a smooth variety S over k such that X has a structure of smooth curve
over S, by means of which let us regard X as a scheme over S. Thus, it follows from
Lemma 1.8 that we may assume without loss of generality, by replacing X by a suitable
open neighborhood of x ∈ X, that

(b) the smooth curve X over S is of rank ≥ max{2, n0}, hence also a hyperbolic curve
over S.

Write nX (≥ n0) for the rank of the hyperbolic curve X over S [cf. (b)]. Then since S is
of dimension dim(X)− 1, it follows from the induction hypothesis that we may assume
without loss of generality, by replacing S by a suitable open neighborhood of the image
of x ∈ X in S, that

(c) the smooth variety S has a structure of hyperbolic polycurve over k, and

(d) there exists a sequence S = Sd−1 → Sd−2 → . . . → S2 → S1 → Spec(k) = S0

of parametrizing morphisms for S over k [cf. (c)] such that this sequence is of strictly
decreasing type, and, moreover, the hyperbolic curve S over Sd−2 is of rank > nX .

Now let us observe that it follows from (a) that X satisfies condition (1). Moreover, it
follows from (b), (c), (d) that X satisfies conditions (2), (3). This completes the proof of
Lemma 1.11. �

LEMMA 1.12. — Let X be a smooth variety over k. Suppose that k is infinite, and that
X is of positive dimension. Then there exists an open basis for the Zariski topology
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of X such that each member of the open basis has a tripodal unit and a structure of
hyperbolic polycurve of strictly decreasing type over k.

Proof. — This assertion follows from Lemma 1.11. �

2. Some Anabelian Results for Hyperbolic Polycurves

In the present §2, we prove some anabelian results for hyperbolic polycurves of strictly
decreasing type [cf. Theorem 2.4, Theorem 2.6 below]. Moreover, we also prove an an-
abelian result for hyperbolic curves of pseudo-Belyi type [cf. Definition 2.7, Theorem 2.8
below].

In the present §2, let k be a field of characteristic zero and k an algebraic closure of k.

Write Gk
def
= Gal(k/k).

DEFINITION 2.1. — Let X be a connected locally noetherian scheme.

(i) We shall write

ΠX

for the étale fundamental group [relative to an appropriate choice of basepoint] of X.

(ii) Let Y be a connected locally noetherian scheme and f : X → Y a morphism of
schemes. Then we shall write

∆f = ∆X/Y ⊆ ΠX

for the kernel of the outer homomorphism ΠX → ΠY induced by f .

LEMMA 2.2. — Let n be an integer, S a normal variety over k, and X a hyperbolic curve
over S. Then the following two conditions are equivalent:

(1) The hyperbolic curve X over S is of rank n.

(2) The abelianization of the profinite group ∆X/S is a free Ẑ-module of rank n.

Proof. — This assertion follows from [2], Proposition 2.4, (v). �

LEMMA 2.3. — Let X (respectively, Y ) be a hyperbolic polycurve over k, X = XdX
→

XdX−1 → . . . → X2 → X1 → Spec(k) = X0 (respectively, Y = YdY
→ YdY −1 → . . . →

Y2 → Y1 → Spec(k) = Y0) a sequence of parametrizing morphisms for X (respectively,
Y ) over k of strictly decreasing type, and

α : ΠX
∼ // ΠY

an isomorphism of profinite groups. Suppose that k = k. Then the following hold:

(i) Suppose that the inclusion α(∆X/XdX−1
) ⊆ ∆Y/YdY −1

holds. Then the equality

α(∆X/XdX−1
) = ∆Y/YdY −1

holds.

(ii) Suppose that either X or Y is of dimension one. Then both X and Y are of
dimension one.
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(iii) The isomorphism α restricts to an isomorphism ∆X/XdX−1

∼→ ∆Y/YdY −1
.

(iv) The equality dX = dY holds.

Proof. — First, we verify assertion (i). Since the inclusion α(∆X/XdX−1
) ⊆ ∆Y/YdY −1

holds, it follows from [2], Proposition 2.4, (iii), (iv), that the [necessarily normal] closed
subgroup α(∆X/XdX−1

) ⊆ ∆Y/YdY −1
of ∆Y/YdY −1

is open, which thus implies that the closed

subgroup ∆Y/YdY −1
/α(∆X/XdX−1

) ⊆ ΠY /α(∆X/XdX−1
) of ΠY /α(∆X/XdX−1

) is finite. Thus,

since ΠY /α(∆X/XdX−1
) is isomorphic to ΠXdX−1

[cf. [2], Proposition 2.4, (i)], which is

torsion-free [cf. [2], Proposition 2.4, (iii)], we conclude that α(∆X/XdX−1
) = ∆Y/YdY −1

, as

desired. This completes the proof of assertion (i).
Next, we verify assertion (ii). Let us first observe that we may assume without loss of

generality, by replacing (X, Y ) by (Y,X) if necessary, that Y is of dimension one. Then
since α(∆X/XdX−1

) ⊆ ΠY = ∆Y/YdY −1
, it follows from assertion (i) that the restriction

of α to the closed subgroup ∆X/XdX−1
⊆ ΠX of ΠX is surjective. Thus, since α is an

isomorphism, it follows that ∆X/XdX−1
= ΠX . In particular, it follows immediately from

[2], Proposition 2.4, (i), (iii), that X is of dimension one, as desired. This completes the
proof of assertion (ii).

Next, we verify assertion (iii). Let us first observe that if either X or Y is of dimension
one, which thus implies [cf. assertion (ii)] that both X and Y are of dimension one, then
assertion (iii) is immediate. Thus, we may assume without loss of generality that both
X and Y are of dimension ≥ 2.

Write nX
dX

(respectively, nX
dX−1; nY

dY
; nY

dY −1) for the rank of the hyperbolic curve X →
XdX−1 (respectively, XdX−1 → XdX−2; Y → YdY −1; YdY −1 → YdY −2). Thus, since nX

dX−1 >

nX
dX

and nY
dY −1 > nY

dY
, we may assume without loss of generality, by replacing (X, Y ) by

(Y,X) if necessary, that nX
dX

< nY
dY −1. Then since the given sequence Y = YdY

→
YdY −1 → . . . → Y2 → Y1 → Spec(k) = Y0 of parametrizing morphisms for Y over k is
of strictly decreasing type, by applying a similar argument to the argument in the proof
of Claim 4.2.B.1 in the proof of [2], Lemma 4.2, (ii) [cf. also Lemma 2.2 of the present
paper], we conclude that α(∆X/XdX−1

) ⊆ ∆Y/YdY −1
. Thus, it follows from assertion (i)

that α(∆X/XdX−1
) = ∆Y/YdY −1

, as desired. This completes the proof of assertion (iii).

Finally, we verify assertion (iv). Let us first observe that we may assume without
loss of generality, by replacing (X, Y ) by (Y,X) if necessary, that dX ≤ dY . Next, it
follows immediately from assertion (iii) and [2], Proposition 2.4, (i), that we may assume
without loss of generality — by replacing ΠX , ΠY by ΠX1 = ΠX/∆X/X1 , ΠYdY −dX+1

=

ΠY /∆Y/YdY −dX+1
= ΠY /α(∆X/X1), respectively — that X is of dimension one. Then

assertion (iv) follows from assertion (ii). This completes the proof of assertion (iv), hence
also of Lemma 2.3. �

The first main anabelian result of the present paper is as follows.

THEOREM 2.4. — Let X and Y be hyperbolic polycurves of strictly decreasing
type over k and

α : ΠX
∼ // ΠY
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an isomorphism of profinite groups over Gk. Suppose that k is generalized sub-p-adic,
for some prime number p. Then there exists a unique isomorphism X

∼→ Y over k
from which α arises.

Proof. — This assertion follows immediately — in light of Lemma 2.3, (iii), (iv), and
[3], Theorem 4.12 — from [2], Proposition 3.2, (i), and a similar argument to the argument
applied in the proof of [2], Lemma 4,2, (iii). �

REMARK 2.4.1. — Let Π be a profinite group over Gk. Suppose that k is generalized
sub-p-adic, for some prime number p. Then one immediate consequence of Theorem 2.4
is that the set of k-isomorphism classes of hyperbolic polycurves of strictly decreasing type
over k whose étale fundamental group is isomorphic to Π over Gk is of cardinality ≤ 1. On
the other hand, in [8], Sawada proved that the set of k-isomorphism classes of hyperbolic
polycurves over k whose étale fundamental group is isomorphic to Π over Gk is finite [cf.
the main result of [8]].

Next, let us recall the following important consequence of some results of [5] and [6].

LEMMA 2.5. — Let X (respectively, Y ) be a normal variety over a mixed-characteristic
local field kX (respectively, kY ) and kX (respectively, kY ) an algebraic closure of kX

(respectively, kY ). Write GkX

def
= Gal(kX/kX) and GkY

def
= Gal(kY /kY ). Let

α : ΠX
// ΠY

be an open homomorphism of profinite groups. Suppose that α restricts to an open
homomorphism ∆X/kX

→ ∆Y/kY
, which thus implies that α induces a [necessarily open]

homomorphism of profinite groups

αG : GkX
// GkY

.

Suppose, moreover, that there exists a connected finite étale covering Y ′ → Y of Y such
that Y ′ has a tripodal unit. Then there exists a unique isomorphism of fields
kY

∼→ kX which restricts to a finite [necessarily injective] homomorphism kY ↪→ kX and
from which the open homomorphism αG : GkX

→ GkY
arises.

Proof. — Let us first observe that it follows from our assumption that we may assume
without loss of generality, by replacing ΠY by a suitable open subgroup of ΠY , that Y
has a tripodal unit. Next, let us observe that a tripodal unit of Y determines a dominant
morphism from Y to a tripod T over kY , i.e., a hyperbolic curve over kY of type (0, 3).
Thus, we may assume without loss of generality, by replacing α by the composite of α
and a [necessarily open] homomorphism ΠY → ΠT that arises from a dominant morphism
Y → T over k, that Y is a tripod over kY . Then Lemma 2.5 follows from a similar
argument to the argument applied in the proof of [5], Theorem 3.5, (iii), together with
the assertion (∗A-qLT) of [5], Remark 3.8.1, whose proof was given in [6], Appendix. This
completes the proof of Lemma 2.5. �

The second main anabelian result of the present paper is as follows.
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THEOREM 2.6. — Let X (respectively, Y ) be a hyperbolic polycurve of strictly
decreasing type over a field kX (respectively, kY ) and

α : ΠX
∼ // ΠY

an isomorphism of profinite groups. Suppose that one of the following two conditions is
satisfied:

(1) Both kX and kY are finitely generated over Q.

(2) Both kX and kY are mixed-characteristic local fields, and, moreover, either
X or Y has a connected finite étale covering that has a tripodal unit.

Then there exists a unique isomorphism X
∼→ Y from which α arises.

Proof. — Suppose that condition (1) (respectively, (2)) is satisfied. Let us first observe
that it follows from a similar argument to the argument applied in the proof of [2],
Corollary 3.20, (i) (respectively, from [5], Corollary 2.8, (ii)), that α restricts to an

isomorphism ∆X/kX

∼→ ∆Y/kY
. Moreover, it follows immediately from [2], Proposition

3.19, (ii) [i.e., the main result of [7]] (respectively, Lemma 2.5), that we may assume
without loss of generality that kX = kY , and that the isomorphism α lies over the identity
automorphism of the absolute Galois group of kX = kY . Thus, it follows from Theorem 2.4
that there exists a unique isomorphism X

∼→ Y from which α arises, as desired. This
completes the proof of Theorem 2.6. �

In the remainder of the present §2, let us consider a refinement of Theorem 2.6 in the
case where condition (2) is satisfied, and, moreover, Y is of dimension one.

DEFINITION 2.7. — We shall say that a hyperbolic curve X over k is of pseudo-Belyi type
if there exists a connected finite étale covering Y → X of X such that Y has a tripodal
unit.

REMARK 2.7.1. — Let X be a hyperbolic curve over a mixed-characteristic local field.
Then it is immediate that the following two conditions are equivalent:

(1) The hyperbolic curve X is of pseudo-Belyi type and defined over a finite extension
of Q.

(2) The hyperbolic curve X is of quasi-Belyi type [cf. [4], Definition 2.3, (iii)].

REMARK 2.7.2. — Let X be a hyperbolic curve over k. Then it follows from Lemma 1.4
that the following assertions hold:

(i) Let x ∈ X be a point of X. Then there exists an open neighborhood U ⊆ X of
x ∈ X such that U is a hyperbolic curve over k of pseudo-Belyi type.

(ii) Let Y be a hyperbolic curve over k and Y → X a dominant morphism over k.
Suppose that X is of pseudo-Belyi type. Then Y is of pseudo-Belyi type.
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REMARK 2.7.3. — One verifies easily that every hyperbolic curve of genus ≤ 1 over k is
of pseudo-Belyi type.

THEOREM 2.8. — Let X be a normal variety over a mixed-characteristic local field
kX , Y a hyperbolic curve over a mixed-characteristic local field kY , and

α : ΠX
// ΠY

an open homomorphism of profinite groups. Suppose that the following two conditions
are satisfied:

(1) The open homomorphism α restricts to an open homomorphism ∆X/kX
→ ∆Y/kY

[which is the case if, for instance, the open homomorphism α is an isomorphism — cf.
[5], Corollary 2.8, (ii)].

(2) The hyperbolic curve Y is of pseudo-Belyi type [which is the case if, for instance,
the hyperbolic curve Y is of genus ≤ 1 — cf. Remark 2.7.3].

Then there exists a unique dominant morphism X → Y from which α arises.

Proof. — Let us first observe that it follows from condition (2) — together with [5],
Remark 3.8.1, and [6], Appendix [cf. also the proof of Lemma 2.5 of the present paper]
— that the extension ΠY [i.e., of the absolute Galois group of kY ] is of A-qLT-type [cf.
[5], Definition 3.1, (v)]. Thus, Theorem 2.8 follows from [2], Proposition 3.2, (i), and [2],
Corollary 3.20, (iii), i.e., in the case where conditions (1) and (iii-c) are satisfied [i.e., a
partial generalization — to the case where the “domain” is the étale fundamental group
of a normal variety — of [5], Corollary 3.8, in the case where the condition (g) is satisfied].
This completes the proof of Theorem 2.8. �

3. Existence of an Anabelian Open Basis

In the present §3, we prove that every smooth variety over a generalized sub-p-adic
field, for some prime number p, has an open basis for the Zariski topology consisting of
“anabelian” varieties [cf. Corollary 3.4, (i), below]. Moreover, we also discuss an absolute
version of this result [cf. Corollary 3.4, (ii), (iii), below].

In the present §3, let k be a perfect field and k an algebraic closure of k. Write

Gk
def
= Gal(k/k).

DEFINITION 3.1.

(i) We shall say that a class C of smooth varieties over k is relatively anabelian over k
if, for smooth varieties X, Y that belong to C, the natural map

Isomk(X, Y ) // IsomGk
(ΠX , ΠY )/Inn(∆Y/k)

is bijective.

(ii) We shall say that a class C of smooth varieties over fields is absolutely anabelian
if, for smooth varieties X, Y that belong to C, the natural map

Isom(X, Y ) // Isom(ΠX , ΠY )/Inn(ΠY )
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is bijective.

COROLLARY 3.2. — The following hold:

(i) Let k be a generalized sub-p-adic field, for some prime number p. Then the
class consisting of hyperbolic polycurves of strictly decreasing type over k is
relatively anabelian over k.

(ii) The class consisting of hyperbolic polycurves of strictly decreasing type
over fields finitely generated over Q is absolutely anabelian.

(iii) The class consisting of hyperbolic polycurves of strictly decreasing type
over mixed-characteristic local fields that have tripodal units is absolutely an-
abelian.

Proof. — Assertion (i) follows from Theorem 2.4. Assertions (ii), (iii) follow from
Theorem 2.6. This completes the proof of Corollary 3.2. �

DEFINITION 3.3. — We shall say that a smooth variety X over k has a relatively anabelian
open basis (respectively, an absolutely anabelian open basis) if there exist an open basis
for the Zariski topology of X and a class C of smooth varieties over k (respectively, over
fields) such that C is relatively anabelian over k (respectively, absolutely anabelian), and,
moreover, each member of the open basis belongs to C.

COROLLARY 3.4. — The following hold:

(i) Every smooth variety over a generalized sub-p-adic field, for some prime num-
ber p, has a relatively anabelian open basis.

(ii) Every smooth variety over a field finitely generated over Q has an absolutely
anabelian open basis.

(iii) Every smooth variety of positive dimension over a mixed-characteristic
local field has an absolutely anabelian open basis.

Proof. — Assertion (i) follows from Lemma 1.12 and Corollary 3.2, (i). Assertion (ii) in
the case where the smooth variety is of dimension zero follows from [2], Proposition 3.19,
(ii) [i.e., the main result of [7]]. Assertion (ii) in the case where the smooth variety is of
positive dimension follows from Lemma 1.12 and Corollary 3.2, (ii). Assertion (iii) follows
from Lemma 1.12 and Corollary 3.2, (iii). This completes the proof of Corollary 3.4. �

REMARK 3.4.1.

(i) In [9], Corollary 1.7, Schmidt and Stix proved the assertion that, in the terminology
of the present paper,

(∗) if k is a field finitely generated over Q, then every smooth variety over
k has a relatively anabelian open basis,
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that may be regarded as an assertion weaker than Corollary 3.4, (ii). On the other hand,
let us observe that one verifies immediately that Corollary 3.4, (ii), may also be easily
derived from [9], Corollary 1.7, and [2], Proposition 3.19, (ii) [i.e., the main result of [7]].

(ii) The assertion (∗) of (i) was predicted by Grothendieck in his letter to Faltings
[cf. [1]]. Here, let us observe that Corollary 3.4, (i), may be regarded as a substantial
refinement of this prediction (∗) of (i).
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