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Abstract

In this paper, we develop a certain combinatorial version of the the-
ory of Belyi cuspidalization developed in [AbsTopII]. We also give ap-
plications of these techniques to certain natural closed subgroups of the
Grothendieck-Teichmüller group associated to the field of p-adic numbers
and the maximal abelian extension of the field of rational numbers.
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Introduction

In [AbsTopII], §3 [cf. [AbsTopII], Corollary 3.7], the theory of Belyi cuspi-
dalization was developed and applied to reconstruct the decomposition groups
of the closed points of a hyperbolic orbicurve of strictly Belyi type over a mixed
characteristic local field [cf. [AbsTopII], Definition 3.5; [AbsTopII], Remark
3.7.2].

In the present paper, we develop a certain combinatorial version of the theory
of Belyi cuspidalization developed in [AbsTopII], §3. To begin, let us recall
the Grothendieck-Teichmüller group GT, which may be regarded as a closed
subgroup of the outer automorphism group of the étale fundamental group ΠX

[cf. Notations and Conventions] of X
def
= P1

Q\{0, 1,∞} [cf. [CmbCsp], Definition

1.11, (i); [CmbCsp], Remark 1.11.1], where P1
Q\{0, 1,∞} denotes the projective

line over the field of algebraic numbers Q [cf. Notations and Conventions], minus
the three points “0”, “1”, “∞”. Recall, further, that the natural outer action

of GQ
def
= Gal(Q/Q) on ΠX determines natural inclusions

GQ ⊆ GT ⊆ Out(ΠX),

and that ΠX is topologically finitely generated and slim [cf., e.g., [MT], Remark
1.2.2; [MT], Proposition 1.4]. By pulling-back the exact sequence of profinite
groups

1 −→ ΠX (
∼→ Inn(ΠX)) −→ Aut(ΠX) −→ Out(ΠX) −→ 1

via the natural inclusion GT ⊆ Out(ΠX), we obtain an exact sequence of profi-
nite groups

1 −→ ΠX −→ ΠX

out
⋊ GT −→ GT −→ 1

[cf. Notations and Conventions].

We shall develop a combinatorial version for ΠX

out
⋊ GT — i.e., which we

regard as a sort of group-theoretic version of P1
Q\{0, 1,∞}, where “Q” is re-

placed by “GT”— of the theory of Belyi cuspidalization. We shall refer to this
combinatorial version of the theory of Belyi cuspidalization as the theory of
combinatorial Belyi cuspidalization. We construct combinatorial Belyi cuspi-
dalizations and, in particular, the “GT analogue” of the set (equipped with a

natural action of GT) of decomposition groups of ΠX

out
⋊ GT, by applying the

technique of tripod synchronization developed in [CbTpII], together with the
Grothendieck Conjecture for hyperbolic curves over number fields [cf. [Tama1],
Theorem 0.4; [LocAn], Theorem A].

Let U → X be a connected finite étale covering of X, U ↪→ X an open
immersion. Then the morphisms U → X, U ↪→ X determine, respectively, the
vertical and horizontal arrows in a diagram of outer homomorphisms of profinite
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groups as follows:
ΠU −−−−→ ΠXy
ΠX .

We shall refer to any pair consisting of

• a diagram obtained in this way;

• an open subgroup of ΠX , which, by a slight of abuse of notation, we denote
by ΠU ⊆ ΠX , that belongs to the ΠX -conjugacy class of open subgroups
that arises as the image of the vertical arrow of the diagram

as a Belyi diagram.
Let (Π, G ⊆ Out(Π)) be a pair consisting of

• an abstract topological group Π;

• a closed subgroup G of Out(Π).

If there exists an isomorphism of such pairs

(Π, G ⊆ Out(Π))
∼→ (ΠX ,GT ⊆ Out(ΠX))

[i.e., if there exist isomorphisms Π
∼→ ΠX and G

∼→ GT of topological groups
compatible with the inclusions G ⊆ Out(Π) and GT ⊆ Out(ΠX)], then we shall
refer to the pair (Π, G ⊆ Out(Π)) as a tripodal pair.

Let (Π, G ⊆ Out(Π)) be a tripodal pair; J ⊆ G a closed subgroup of G; Π∗

an open subgroup of Π. Then one verifies easily [cf. Lemma 1.2] that, for any
sufficiently small normal open subgroup M ⊆ J , there exist an outer action of

M on Π∗ and an open injection Π∗ out
⋊ M ↪→ Π

out
⋊ J such that

(a) the outer action of M preserves and induces the identity automorphism
on the set of the conjugacy classes of cuspidal inertia subgroups of Π∗ [cf.
Theorem A, (i)];

(b) the injection Π∗ out
⋊ M ↪→ Π

out
⋊ J is compatible with the inclusions between

respective subgroups Π∗ ⊆ Π and quotients M ⊆ J .

Then our first main result is the following [cf. Theorem 1.3]:

Theorem A (Combinatorial Belyi cuspidalization for a tripod). Fix a
Belyi diagram

ΠU −−−−→ ΠXy
ΠX

that arises from a connected finite étale covering U → X and an open immersion
U ↪→ X [as in the above discussion]. Then:
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(i) Let (Π, G ⊆ Out(Π)) be a tripodal pair. Fix an isomorphism of pairs
α : (Π, G ⊆ Out(Π))

∼→ (ΠX ,GT ⊆ Out(ΠX)). Then the set of sub-
groups of Π determined, via α, by the cuspidal inertia subgroups of ΠX ,
may be reconstructed, in a purely group-theoretic way, from the
pair (Π, G ⊆ Out(Π)). We shall refer to the subgroups of Π constructed
in this way as the cuspidal inertia subgroups of Π. In particular, for
each open subgroup Π∗ ⊆ Π of Π, the pair (Π, G ⊆ Out(Π)) determines
a set I(Π∗) (respectively, Cusp(Π∗)) of cuspidal inertia subgroups of Π∗

(respectively, cusps of Π∗), namely, the set of intersections of Π∗ with cus-
pidal inertia subgroups of Π (respectively, the conjugacy classes of cuspidal
inertia subgroups of Π∗).

(ii) Let N ⊆ GT be a normal open subgroup. Suppose that we are given an

outer action of N on ΠU and an open injection ΠU

out
⋊ N ↪→ ΠX

out
⋊ GT

such that the above conditions (a), (b) in the case of “Π∗ ⊆ Π”, “M ⊆ J”
hold for ΠU ⊆ ΠX , N ⊆ GT. Then the original outer action of N ⊆ GT
on ΠX coincides with the outer action of N on ΠX induced [cf. condition
(a)] by the outer action of N on ΠU and the outer surjection ΠU ↠ ΠX

[i.e., the horizontal arrow in the above Belyi diagram].

(iii) Let

C(Π) = (Π, G ⊆ Out(Π),Π∗, {0, 1,∞} ⊆ Cusp(Π), {0, 1,∞} ⊆ Cusp(Π∗))

be a 5-tuple consisting of the following data:

• a topological group Π;

• a closed subgroup G ⊆ Out(Π) such that the pair (Π, G ⊆ Out(Π)) is
a tripodal pair;

• an open subgroup Π∗ ⊆ Π of Π of genus 0, where we observe that the
genus of an open subgroup of Π may be defined by using the cuspidal
inertia subgroups of the open subgroup [cf. (i)];

• a subset {0, 1,∞} ⊆ Cusp(Π) [cf. (i)] of cardinality 3 [equipped with
labels “0”, “1”, “∞”] of the set Cusp(Π);

• a subset {0, 1,∞} ⊆ Cusp(Π∗) [cf. (i)] of cardinality 3 [equipped with
labels “0”, “1”, “∞”] of the set Cusp(Π∗).

Suppose that the collection of data C(Π) is isomorphic to the collection of
data

C(ΠX) = (ΠX ,GT ⊆ Out(ΠX),ΠU ,

{0, 1,∞} ⊆ Cusp(ΠX), {0, 1,∞} ⊆ Cusp(ΠU ))

determined, in a natural way, by the given Belyi diagram. [Here, we ob-
serve that the horizontal arrow in the given Belyi diagram determines, in
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a natural way, data {0, 1,∞} ⊆ Cusp(ΠU ).] Fix an isomorphism of col-
lections of data C(Π)

∼→ C(ΠX). Thus, the outer surjection ΠU ↠ ΠX

[i.e., the horizontal arrow in the given Belyi diagram], together with the
isomorphism C(Π)

∼→ C(ΠX), determine an outer surjection Π∗ ↠ Π.
Let N ⊆ G be a normal open subgroup such that the conditions (a), (b)
considered above in the case of “M ⊆ J” hold for N ⊆ G. Then the
outer surjection Π∗ ↠ Π may be reconstructed, in a purely group-
theoretic way, from the collection of data C(Π) as the outer surjection

induced by the unique Π-outer surjection Π∗ out
⋊ N ↠ Π

out
⋊ N [i.e., sur-

jection well-defined up to composition with inner automorphisms arising
from elements of Π] that lies over the identity morphism of N such that

• the kernel of this Π-outer surjection Π∗ out
⋊ N ↠ Π

out
⋊ N is topologi-

cally generated by the cuspidal inertia subgroups of Π∗ which are not
associated to 0, 1,∞ ∈ Cusp(Π∗);

• the conjugacy class of cuspidal inertia subgroups of Π∗ associated to
0 (respectively, 1, ∞) ∈ Cusp(Π∗) maps to the conjugacy class of
cuspidal inertia subgroups of Π associated to 0 (respectively, 1, ∞)
∈ Cusp(Π).

Next, let us consider the situation discussed in Theorem A, (ii). Let J be a
closed subgroup of GT. Thus, for each normal open subgroup M of J such that
M ⊆ N ∩ J , we have a diagram

ΠU

out
⋊ M −−−−→ ΠX

out
⋊ My

ΠX

out
⋊ M

of ΠX-outer homomorphisms [i.e., homomorphisms well-defined up to composi-
tion with inner automorphisms arising from elements of ΠX ] of profinite groups.
We shall refer to a diagram obtained in this way as an arithmetic Belyi diagram.

Fix an arithmetic Belyi diagram B⋊ as above. Write

D(B⋊,M, J)

for the set of the images via the natural composite ΠX -outer homomorphism

ΠU

out
⋊ M ↠ ΠX

out
⋊ M ↪→ ΠX

out
⋊ J of the normalizers in ΠU

out
⋊ M of cuspidal

inertia subgroups of ΠU ;

D(B⋊, J)

for the quotient set
(
⊔M⊆JD(B⋊,M, J)

)
/ ∼, whereM ranges over all sufficiently

small normal open subgroups of J , and we write D(B⋊,M, J) ∋ GM ∼ GM† ∈
D(B⋊,M†, J) if GM ∩GM† is open in both GM and GM† .

Write
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D(J)

for the quotient set
(
⊔B⋊D(B⋊, J)

)
/ ∼, where B⋊ ranges over all arithmetic Be-

lyi diagrams, and we write D(†B⋊, J) ∋ G†B⋊ ∼ G‡B⋊ ∈ D(‡B⋊, J) if GM†∩GM‡

is open in both GM† and GM‡ for some representative GM† (respectively, GM‡)
of G†B⋊ (respectively, G‡B⋊). We shall refer to D(J) as the set of decomposition

subgroup-germs of ΠX

out
⋊ J . One verifies immediately that the natural conju-

gation action of ΠX

out
⋊ J on itself induces a natural action of ΠX

out
⋊ J on D(J)

[cf. Corollary 1.6].
Write

D(J)

for the quotient set D(J)/ΠX . Thus, D(J) admits a natural action by J . Here,
we recall that, by the [“usual”] theory of Belyi cuspidalization developed in
[AbsTopII], §3, we have a natural bijection

D(GQ)
∼← Q

[cf. Corollary 1.7].
Next, let J1 and J2 be closed subgroups of GT. If J1 ⊆ J2 ⊆ GT, then

one verifies immediately from the definition of D(J) that the inclusion J1 ⊆ J2

induces, by considering the intersection of subgroups of ΠX

out
⋊ J2 with ΠX

out
⋊ J1,

a natural surjection D(J2) ↠ D(J1) that is equivariant with respect to the
natural actions of J1 (⊆ J2) on the domain and codomain [cf. Corollary 1.6].
Thus, we obtain the following commutative diagram

GT ⊇ GQ
↷ ↷

D(GT) ↠ D(GQ)
∼← Q

[cf. Corollary 1.7]. In particular,

if one could prove that the surjection D(GT)↠ D(GQ) is a bijection,
then it would follow that GT naturally acts on the set Q.

In fact, at the time of writing of the present paper, the author does not know

whether or not the surjection D(GT)↠ D(GQ) is a bijection,

or indeed, more generally,

whether or not GT admits a natural action on the set Q.

On the other hand, we obtain the following result concerning the p-adic
analogue of this sort of issue [cf. Corollary 2.4]:
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Corollary B (Natural surjection from GTtp
p to GQp). Let p be a prime

number; Qp an algebraic closure of Qp [cf. Notations and Conventions]. Write

GTtp
p for the p-adic version of the Grothendieck-Teichmüller group defined in

Definition 2.1 [cf. also Remark 2.1.2]. Then there exists a surjection GTtp
p ↠

GQp

def
= Gal(Qp/Qp) whose restriction to GQp

is the identity automorphism.

The key point of the proof of the above corollary is the following theorem
[cf. Theorem 2.2]:

Theorem C (Determination of moduli of certain types of p-adic hy-
perbolic curves by data arising from geometric tempered fundamental

groups). We maintain the notation of Corollary B. Write X
def
= P1

Cp
\{0, 1,∞},

where Cp denotes the p-adic completion of Qp. Let Y → X be a connected finite
étale covering of X; y, y′ elements of Y (Cp). Write Yy (respectively, Yy′) for
Y \{y} (respectively, Y \{y′}); Πtp

Y (respectively, Πtp
Yy
, Πtp

Yy′ ) for the tempered

fundamental group of Y (respectively, Yy, Yy′). Suppose that there exists an

isomorphism Πtp
Yy

∼→ Πtp
Yy′ that fits into a commutative diagram

Πtp
Yy

∼−−−−→ Πtp
Yy′y y

Πtp
Y Πtp

Y ,

where the vertical arrows are the surjections [determined up to composition with
an inner automorphism] induced by the natural open immersions of hyperbolic
curves. Then y = y′.

Finally, we consider yet another interesting closed subgroup of GT which
acts on the set of algebraic numbers Q. Write Qab ⊆ Q for the maximal

abelian extension of Q. Since GQab
def
= Gal(Q/Qab) is a normal subgroup of

GQ
def
= Gal(Q/Q), the commensurator CGT(GQab) of GQab in GT [cf. Notations

and Conventions] contains GQ as a closed subgroup. As an application of the
theory of combinatorial Belyi cuspidalization developed in §1, we also obtain
the following [cf. Corollary 3.4]:

Corollary D (Natural surjection from the commensurator of the abso-
lute Galois group of the maximal abelian extension of Q to GQ). There
exists a surjection CGT(GQab) ↠ GQ whose restriction to GQ is the identity
automorphism.

The key point of the proof of the above corollary is the injectivity portion of
the section conjecture for hyperbolic curves over maximal cyclotomic extensions
of number fields [cf. Corollary 3.2].

This paper is organized as follows. In §1, we develop the theory of combina-
torial Belyi cuspidalization. In §2, we first show that the moduli of a hyperbolic
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curve over Qp of genus 0 with 4 points removed are completely determined by
the geometric tempered fundamental group of the curve, regarded as an exten-
sion of the geometric tempered fundamental group of the tripod [cf. Notations
and Conventions] over Qp [cf. Theorem C]. This result, together with the theory
of combinatorial Belyi cuspidalization developed in §1, implies that there exists
a surjection GTtp

p ↠ GQp
whose restriction to GQp

is the identity automorphism
[cf. Corollary B]. In §3, we observe that the injectivity portion of the section
conjecture for hyperbolic curves over maximal cyclotomic extensions of number
fields holds [by a well-known argument!] and prove that there exists a surjection
CGT(GQab)↠ GQ whose restriction to GQ is the identity automorphism.

Notations and Conventions

In this paper, we follow the notations and conventions of [CbTpI].

Numbers: The notation Q will be used to denote the field of rational numbers.
The notation C will be used to denote the field of complex numbers. The
notation Q ⊆ C will be used to denote the set or field of algebraic numbers ∈ C.
We shall refer to a finite extension field of Q as a number field. If p is a prime
number, then the notation Qp will be used to denote the p-adic completion of
Q.

Topological groups: Let G be a topological group and H ⊆ G a closed
subgroup of G. Then we shall denote by ZG(H) (respectively, NG(H), CG(H))
the centralizer (respectively, normalizer, commensurator) of H ⊆ G, i.e.,

ZG(H)
def
= {g ∈ G | ghg−1 = h for any h ∈ H}

(respectively, NG(H)
def
= {g ∈ G | g ·H · g−1 = H}

CG(H)
def
= {g ∈ G | H ∩ g ·H · g−1 is of finite index in H and g ·H · g−1}).

We shall say that G is slim if ZG(U) = {1} for any open subgroup U of G.
Let G be a topological group. Then we shall write Aut(G) for the group of

automorphisms of the topological group G, Inn(G) ⊆ Aut(G) for the group of

inner automorphisms of G, and Out(G)
def
= Aut(G)/Inn(G). We shall refer to an

element of Out(G) as an outomorphism of G. Now suppose that G is center-free
[i.e., ZG(G) = {1}]. Then we have a natural exact sequence of groups

1 −→ G (
∼→ Inn(G)) −→ Aut(G) −→ Out(G) −→ 1.

If J is a group, and ρ : J → Out(G) is a homomorphism, then we shall denote
by

G
out
⋊ J

the group obtained by pulling back the above exact sequence of groups via ρ.
Thus, we have a natural exact sequence of groups
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1 −→ G −→ G
out
⋊ J −→ J −→ 1.

Suppose further that G is profinite and topologically finitely generated. Then
one verifies immediately that the topology of G admits a basis of characteristic
open subgroups, which thus induces a profinite topology on the groups Aut(G)
and Out(G) with respect to which the above exact sequence relating Aut(G)
and Out(G) determines an exact sequence of profinite groups. In particular, one
verifies easily that if, moreover, J is profinite, and ρ : J → Out(G) is continuous,

then the above exact sequence involving G
out
⋊ J determines an exact sequence

of profinite groups.

Curves: A smooth hyperbolic curve of genus 0 over a field k with precisely 3
cusps [i.e., points at infinity], all of which are defined over k, will be referred to
as a “tripod”.

Fundamental groups: For a connected Noetherian scheme S, we shall write
ΠS for the étale fundamental group of S, relative to a suitable choice of base-
point.

1 Combinatorial Belyi cuspidalization

In this section, we develop the theory of combinatorial Belyi cuspidalization.
First, we introduce the notion of a Belyi diagram as follows.

Definition 1.1.

(i) Write X for P1
Q\{0, 1,∞}, where P1

Q\{0, 1,∞} denotes the projective line

over the field of algebraic numbers Q [cf. Notations and Conventions],
minus the three points “0”, “1”, “∞”. Let U → X be a connected finite
étale covering of X, U ↪→ X an open immersion. Then the morphisms
U → X, U ↪→ X determine, respectively, the vertical and horizontal
arrows in a diagram of outer homomorphisms of profinite groups as follows:

ΠU −−−−→ ΠXy
ΠX .

We shall refer to any pair consisting of

• a diagram obtained in this way;

• an open subgroup of ΠX , which, by a slight abuse of notation, we
denote by ΠU ⊆ ΠX , that belongs to the ΠX -conjugacy class of
open subgroups that arises as the image of the vertical arrow of the
diagram
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as a Belyi diagram.

(ii) Fix a Belyi diagram
ΠU −−−−→ ΠXy
ΠX

[cf. (i)]. Recall the Grothendieck-Teichmüller group GT, which may be
regarded as a closed subgroup of the outer automorphism group of the
étale fundamental group ΠX [cf. Notations and Conventions] of X =
P1
Q\{0, 1,∞} [cf. [CmbCsp], Definition 1.11, (i); [CmbCsp], Remark 1.11.1].

Let (Π, G ⊆ Out(Π)) be a pair consisting of

• an abstract topological group Π;

• a closed subgroup G of Out(Π).

If there exists an isomorphism of such pairs

(Π, G ⊆ Out(Π))
∼→ (ΠX ,GT ⊆ Out(ΠX))

[i.e., if there exist isomorphisms Π
∼→ ΠX and G

∼→ GT of topological
groups compatible with the inclusions G ⊆ Out(Π) and GT ⊆ Out(ΠX)],
then we shall refer to the pair (Π, G ⊆ Out(Π)) as a tripodal pair.

Lemma 1.2. Let J ⊆ GT be a closed subgroup of GT. Fix a Belyi diagram

ΠU −−−−→ ΠXy
ΠX .

Write ϕU : Aut(ΠU ) ↠ Out(ΠU ), ϕX : Aut(ΠX) ↠ Out(ΠX) for the natural
surjections. Then, for any sufficiently small normal open subgroup M ⊆ J , there

exist an outer action of M on ΠU and an open injection ΠU

out
⋊ M ↪→ ΠX

out
⋊ J

such that

(a) the outer action of M preserves and induces the identity automorphism
on the set of the conjugacy classes of cuspidal inertia subgroups of ΠU ;

(b) the injection ΠU

out
⋊ M ↪→ ΠX

out
⋊ J is compatible with the inclusions ΠU ⊆

ΠX and M ⊆ J .

Proof. First, we recall that ΠX is slim [cf., e.g., [MT], Proposition 1.4]. Write

AutΠU (ΠX) ⊆ Aut(ΠX)
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for the subgroup of Aut(ΠX) consisting of elements that induce automorphisms
of ΠU that fix each of the conjugacy classes of cuspidal inertia subgroups of ΠU ;

InnΠU (ΠX) ⊆ AutΠU (ΠX)

for the image of ΠU by the natural isomorphism ΠX
∼→ Inn(ΠX). It follows

immediately from the slimness of ΠX [cf., e.g., [MT], Proposition 1.4] that the
natural homomorphism AutΠU (ΠX) → Aut(ΠU ) is injective. This injectivity
implies that Ker(AutΠU (ΠX)→ Out(ΠU )) ⊆ InnΠU (ΠX).

Since ΠU is a finite index subgroup of ΠX , and the cardinality of the conju-
gacy classes of cuspidal inertia subgroups of ΠU is finite, there exists a normal
open subgroup MAut of ϕ

−1
X (J) ⊆ Aut(ΠX) satisfying the following conditions:

(i) MAut ∩ Inn(ΠX) ⊆ InnΠU (ΠX);

(ii) MAut ⊆ AutΠU (ΠX).

Write MU ⊆ Out(ΠU ) (respectively, M ⊆ Out(ΠX)) for the image of the

composite MAut ↪→ Aut(ΠU )
ϕU↠ Out(ΠU ) (respectively, by the composite

MAut ↪→ Aut(ΠX)
ϕX↠ Out(ΠX)). Now it follows from condition (ii), together

with the discussion of the preceding paragraph, that we obtain a surjection
MU ↠ M . Finally, it follows immediately from condition (i) that this surjec-
tion is bijective. This completes the proof of Lemma 1.2.

Theorem 1.3 (Combinatorial Belyi cuspidalization for a tripod). Fix
a Belyi diagram

ΠU −−−−→ ΠXy
ΠX

that arises from a connected finite étale covering U → X and an open immersion
U ↪→ X [cf. Definition 1.1, (i)]. Then:

(i) Let (Π, G ⊆ Out(Π)) be a tripodal pair. Fix an isomorphism of pairs
α : (Π, G ⊆ Out(Π))

∼→ (ΠX ,GT ⊆ Out(ΠX)). Then the set of sub-
groups of Π determined, via α, by the cuspidal inertia subgroups of ΠX ,
may be reconstructed, in a purely group-theoretic way, from the
pair (Π, G ⊆ Out(Π)). We shall refer to the subgroups of Π constructed
in this way as the cuspidal inertia subgroups of Π. In particular, for
each open subgroup Π∗ ⊆ Π of Π, the pair (Π, G ⊆ Out(Π)) determines
a set I(Π∗) (respectively, Cusp(Π∗)) of cuspidal inertia subgroups of Π∗

(respectively, cusps of Π∗), namely, the set of intersections of Π∗ with cus-
pidal inertia subgroups of Π (respectively, the conjugacy classes of cuspidal
inertia subgroups of Π∗).
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(ii) Let N ⊆ GT a normal open subgroup. Suppose that we are given an outer

action of N on ΠU and an open injection ΠU

out
⋊ N ↪→ ΠX

out
⋊ GT such

that the conditions (a), (b) in Lemma 1.2 in the case of “M ⊆ J” hold for
N ⊆ GT. Then the original outer action of N ⊆ GT on ΠX coincides
with the outer action of N on ΠX induced [cf. condition (a)] by the outer
action of N on ΠU and the outer surjection ΠU ↠ ΠX [i.e., the horizontal
arrow in the above Belyi diagram].

(iii) Let

C(Π) = (Π, G ⊆ Out(Π),Π∗, {0, 1,∞} ⊆ Cusp(Π), {0, 1,∞} ⊆ Cusp(Π∗))

be a 5-tuple consisting of the following data:

• a topological group Π;

• a closed subgroup G ⊆ Out(Π) such that the pair (Π, G ⊆ Out(Π)) is
a tripodal pair;

• an open subgroup Π∗ ⊆ Π of Π of genus 0, where we observe that the
genus of an open subgroup of Π may be defined by using the cuspidal
inertia subgroups of the open subgroup [cf. (i)];

• a subset {0, 1,∞} ⊆ Cusp(Π) [cf. (i)] of cardinality 3 [equipped with
labels “0”, “1”, “∞”] of the set Cusp(Π);

• a subset {0, 1,∞} ⊆ Cusp(Π∗) [cf. (i)] of cardinality 3 [equipped with
labels “0”, “1”, “∞”] of the set Cusp(Π∗).

Suppose that the collection of data C(Π) is isomorphic to the collection of
data

C(ΠX) = (ΠX ,GT ⊆ Out(ΠX),ΠU ,

{0, 1,∞} ⊆ Cusp(ΠX), {0, 1,∞} ⊆ Cusp(ΠU ))

determined, in a natural way, by the given Belyi diagram. [Here, we ob-
serve that the horizontal arrow in the given Belyi diagram determines, in
a natural way, data {0, 1,∞} ⊆ Cusp(ΠU ).] Fix an isomorphism of col-
lections of data C(Π)

∼→ C(ΠX). Thus, the outer surjection ΠU ↠ ΠX

[i.e., the horizontal arrow in the given Belyi diagram], together with the
isomorphism C(Π)

∼→ C(ΠX), determine an outer surjection Π∗ ↠ Π.
Let N ⊆ G be a normal open subgroup such that similar conditions to
the conditions (a), (b) considered in Lemma 1.2 in the case of “M ⊆ J”
hold for N ⊆ G. Then the outer surjection Π∗ ↠ Π may be recon-
structed, in a purely group-theoretic way, from the collection of data
C(Π) as the outer surjection induced by the unique Π-outer surjection

Π∗ out
⋊ N ↠ Π

out
⋊ N [i.e., surjection well-defined up to composition with in-

ner automorphisms arising from elements of Π] that lies over the identity
morphism of N such that

12



• the kernel of this Π-outer surjection Π∗ out
⋊ N ↠ Π

out
⋊ N is topologi-

cally generated by the cuspidal inertia subgroups of Π∗ which are not
associated to 0, 1,∞ ∈ Cusp(Π∗);

• the conjugacy class of cuspidal inertia subgroups of Π∗ associated to
0 (respectively, 1, ∞) ∈ Cusp(Π∗) maps to the conjugacy class of
cuspidal inertia subgroups of Π associated to 0 (respectively, 1, ∞)
∈ Cusp(Π).

Proof. First, we verify assertion (i). Since the outer action of GT on ΠX deter-
mined by the inclusion GT ⊆ Out(ΠX) is l-cyclotomically full [cf. [CmbGC],
Definition 2.3, (ii)], assertion (i) follows immediately from [CmbGC], Corollary
2.7, (i), and its proof.

Next, we verify assertion (ii). First, we observe that:

Claim 1.3.A: It suffices to prove assertion (ii) for a sufficiently small
normal open subgroup N† ⊆ N .

Indeed, let σ ∈ N . Write

• ρ′ : N → Out(ΠX) for the original outer action;

• ρ′′ : N → Out(ΠX) for the outer action of N on ΠX induced [cf. condition
(a)] by the outer action of N on ΠU and the outer surjection ΠU ↠ ΠX .

Suppose that ρ′|N† = ρ′′|N† . Write ρ
def
= ρ′|N† ; σ′ def

= ρ′(σ); σ′′ def
= ρ′′(σ).

Our goal is to prove that σ′ = σ′′. Since N† is a normal subgroup in N , for
each τ ∈ N†, σ′ρ(τ)(σ′)−1 = ρ′(στσ−1) = ρ′′(στσ−1) = σ′′ρ(τ)(σ′′)−1. Thus,
(σ′′)−1σ′ ∈ ZOut(ΠX)(ρ(N)). By the Grothendieck Conjecture for hyperbolic
curves over number fields [cf. [Tama1], Theorem 0.4], (σ′′)−1σ′ is induced by a
geometric automorphism of X. Since the condition (a) in Lemma 1.2 in the case
of “M ⊆ J” holds for N ⊆ GT, (σ′′)−1σ′ preserves and fixes each conjugacy
class of cuspidal inertia subgroups of ΠX . Thus, we conclude that σ′ = σ′′.
This completes the proof of Claim 1.3.A.

Write

• ΠX3
for the étale fundamental group of the third configuration space X3

of X [cf. [MT], Definition 2.1, (i)];

• pri : ΠX3
↠ ΠX (i = 1, 2, 3) for choices of surjections that induce the

natural outer surjections determined by the natural scheme-theoretic pro-
jections;

• U×3 def
= U × U × U , X×3 def

= X × X × X, ΠU
×3 def

= ΠU × ΠU × ΠU ,

ΠX
×3 def

= ΠX ×ΠX ×ΠX ;

• V3
def
= X3 ×X×3 U×3, where the fiber product is with respect to the open

immersion X3 ↪→ X×3 that arises from the definition of the configuration
space X3 and the finite étale covering U×3 → X×3 determined by the
given connected finite étale covering U → X.

13



Next, we make the following observations:

• the projection V3 → U×3 is an open immersion that factors as the com-
posite of an open immersion V3 ↪→ U3 and the open immersion U3 ↪→ U×3

that arises from the definition of the configuration space U3;

• by choosing a suitable basepoint of V3, we may regard ΠV3 as the open
subgroup ΠV3 ⊆ ΠX3 given by forming the inverse image of the open
subgroup Π×3

U ⊆ Π×3
X (determined by the open subgroup ΠU ⊆ ΠX) via

the surjection ΠX3
↠ Π×3

X determined by pri : ΠX3
↠ ΠX (i = 1, 2, 3);

• the open immersion V3 ↪→ U3 induces a natural outer surjection ΠV3
↠

ΠU3
;

• the open immersion U3 ↪→ X3 determined by the open immersion U ↪→ X
induces a natural outer surjection ΠU3

↠ ΠX3
;

• we have natural inclusions N ⊆ GT ↪→ OutFC(ΠX3
) ↪→ OutFC(ΠX) [cf.

[CmbCsp], Definition 1.11, (i); [CmbCsp], Remark 1.11.1; [CmbCsp], The-
orem 4.1, (i); [CmbCsp], Corollary 4.2, (i), (ii)].

For each σ ∈ N ↪→ OutFC(ΠX3), let σ̃3 ∈ AutFC(ΠX3) be a lifting of the
image σ3 ∈ OutFC(ΠX3

) of σ such that the automorphisms of ΠX induced
by σ̃3 via the surjections pri : ΠX3

↠ ΠX (i = 1, 2, 3) coincide and stabilize
the subgroup ΠU ⊆ ΠX [cf. our hypotheses on N ]. Thus, it follows from the
various observations made above concerning the open subgroup ΠV3

⊆ ΠX3
that

σ̃3 induces an automorphism σ̃V3 of ΠV3 .
Next, we verify the following assertion:

Claim 1.3.B: There exists a normal open subgroup N† of GT such
that N† ⊆ N , and, moreover, the following condition holds:

For each element σ ∈ N†, σ̃V3
∈ Aut(ΠV3

) preserves the
kernel of the outer surjection ΠV3 ↠ ΠU3 (respectively,
ΠV3 ↠ ΠU3 ↠ ΠX3) induced by the open immersion V3 ↪→
U3 (respectively, the composite of open immersions V3 ↪→
U3 ↪→ X3).

In particular, σ̃V3
∈ Aut(ΠV3

) induces outer automorphisms of ΠU3

and ΠX3
compatible with the outer surjections ΠV3

↠ ΠU3
and

ΠU3 ↠ ΠX3 , respectively.

Write

• IX3
for the set of inertia subgroups ⊆ ΠX3

associated to the irreducible
divisors contained in the complement of the interior of the third log con-
figuration space of X [cf. [MT], Definition 2.1, (i)];

• IV3

def
= {I ∩ΠV3

(⊆ ΠX3
) | I ∈ IX3

};
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• IU3 for the set of images of elements of IV3 by the outer surjection ΠV3 ↠
ΠU3 ;

• |IX3
| (respectively, |IV3

|) for the set of ΠX3
- (respectively, ΠV3

-)conjugacy
classes of elements of IX3

(respectively, IV3
).

Next, we make the following observations:

• σ̃3 acts on IX3 and induces the identity automorphism of |IX3 | [cf. condi-
tion (a) in Lemma 1.2; [CmbCsp], Proposition 1.3, (vi)];

• for each σ ∈ N , the action of σ̃3 on IX3
induces a natural action of σ̃V3

on
IV3

, and hence on |IV3
|;

• since, for each σ ∈ N , σ̃3 is completely determined [cf. condition (a)
in Lemma 1.2; the fact that U is of genus 0; the definition of σ̃3] up to
composition with an inner automorphism of ΠX3

arising from ΠV3
, we

conclude that the natural action of σ̃3 on IV3
determines a natural action

of N on |IV3
|;

• |IX3 | and |IV3 | are finite sets.

Thus, it follows immediately from the above observations that, if we take N†

to be a sufficiently small normal open subgroup of GT, then σ̃V3
induces the

identity automorphism of |IV3
| for each σ ∈ N†. Since the kernel of the outer

surjection ΠV3
↠ ΠU3

(respectively, ΠU3
↠ ΠX3

) is topologically normally
generated by a certain collection of elements of IV3

(respectively, IU3
), we obtain

the desired conclusion. This completes the proof of Claim 1.3.B.
By applying Claim 1.3.A and Claim 1.3.B, we may assume [by replacing N

by a suitable normal open subgroup of GT] that, for each element σ ∈ N , σ̃V3
∈

Aut(ΠV3
) induces outer automorphisms σV3

∈ Out(ΠV3
), σU3

∈ Out(ΠU3
), and

σX3
∈ Out(ΠX3

) compatible with the outer surjections ΠV3
↠ ΠU3

and ΠU3
↠

ΠX3
, respectively. Our goal is to prove that

σ3 = σX3
∈ Out(ΠX3

).

Note that σX3
∈ OutF(ΠX3

) by construction. Since OutF(ΠX3
) = OutFC(ΠX3

)
[cf. [CbTpII], Theorem A, (ii)], σX3

∈ OutFC(ΠX3
).

In the following discussion, we fix a surjection ΠV3
↠ ΠU3

(respectively,
ΠU3

↠ ΠX3
) that induces the outer surjection ΠV3

↠ ΠU3
(respectively, ΠU3

↠
ΠX3

) of Claim 1.3.B.
Next, write C for the set of central tripods in ΠX3 [cf, [CbTpII], Definition

3.7, (ii)]; CV for the set of central tripods Πctpd of ΠX3 that satisfy the following
condition:

Πctpd ⊆ ΠV3
; the image of Πctpd (⊆ ΠV3

) by the surjection ΠV3
↠

ΠU3
is a central tripod of ΠU3

.

Then:
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Claim 1.3.C: The natural action of ΠV3 by conjugation on CV is
transitive; moreover,

C ⊇ CV = {Πctpd ∈ C | Πctpd ∩Ker(ΠV3
↠ ΠU3

) = {1}} ̸= ∅.

Write ∆ ⊆ X×3 (respectively, ∆U ⊆ U×3) for the image of X (respectively, U)
under the diagonal embedding X ↪→ X×3 (respectively, U ↪→ U×3). Note that
it follows immediately from the definition of the subgroup ΠV3

⊆ ΠX3
[cf. also

[CbTpII], Definitions 3.3, (ii); 3.7, (ii)] that every Πctpd ∈ C is contained in
ΠV3 , and that any two subgroups ∈ C are ΠX3-conjugate. Moreover, one veri-
fies immediately that the ΠV3

-conjugacy classes of subgroups ∈ C are in natural
bijective correspondence with the irreducible [or, equivalently, connected] com-
ponents of the inverse image of ∆ by the finite étale covering U×3 → X×3.
Thus, by considering the ΠV3

-conjugacy class of subgroups ∈ C correspond-
ing to ∆U , we obtain that CV ̸= ∅. On the other hand, by considering the
scheme-theoretic geometry of tripods that give rise to ΠV3-conjugacy classes of
subgroups ∈ C that do not correspond to ∆U , we conclude that such subgroups
∈ C have nontrivial intersection with the kernel of the surjection ΠV3

↠ ΠU3
.

This completes the proof of Claim 1.3.C.
Let Πctpd ∈ CV . Write Πctpd

U for the image of Πctpd by the surjection

ΠV3
↠ ΠU3

; Πctpd
X for the image of Πctpd

U by the surjection ΠU3
↠ ΠX3

. Thus,

Πctpd
U is a central tripod of ΠU3 , and Πctpd

X is a central tripod of ΠX3 [hence
ΠX3-conjugate to Πctpd].

By the theory of tripod synchronization [cf. [CbTpII], Theorem C, (ii), (iii)]
and the injectivity of OutFC(ΠX3

) ↪→ OutFC(ΠX) [cf. [CmbCsp], Theorem 4.1,
(i)], we obtain injective tripod homomorphisms

T : OutFC(ΠX3
)cusp → Out(Πctpd), TX : OutFC(ΠX3

)cusp → Out(Πctpd
X )

[cf. [CmbCsp], Definition 1.1, (v)], which are related to one another via com-

position with the isomorphism ζ : Out(Πctpd)
∼→ Out(Πctpd

X ) induced by the

geometric outer isomorphism Πctpd ∼→ Πctpd
X [cf. [CbTpII], Definition 3.4, (ii)]

determined by the composite surjection ΠV3
↠ ΠU3

↠ ΠX3
. Since σ̃V3

preserves
the ΠV3

-conjugacy class of Πctpd ⊆ ΠV3
[cf. Claims 1.3.B, 1.3.C; [CbTpII], The-

orem C, (ii)], we conclude that ζ(T (σ3)) = TX(σX3
). This completes the proof

of assertion (ii).
Finally, we verify assertion (iii). The existence of a Π-outer surjection

Π∗ out
⋊ N ↠ Π

out
⋊ N as in the statement of assertion (iii) follows immediately

from assertion (ii) and the various definitions involved. Since GQ ⊆ GT
∼→ G,

the uniqueness of a Π-outer surjection Π∗ out
⋊ N ↠ Π

out
⋊ N as in the statement

of assertion (iii) follows immediately from the Grothendieck Conjecture for hy-
perbolic curves over number fields [cf. [Tama1], Theorem 0.4], applied to the
case of P1

Q\{0, 1,∞}. This completes the proof of assertion (iii), hence also the
proof of Theorem 1.3.
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Definition 1.4. Let J ⊆ GT be a closed subgroup of GT. In the situation of
Theorem 1.3, (ii), for each normal open subgroup M of J satisfying M ⊆ N ∩J ,
we obtain a diagram

ΠU

out
⋊ M −−−−→ ΠX

out
⋊ My

ΠX

out
⋊ M

of ΠX-outer homomorphisms [i.e., homomorphisms well-defined up to composi-
tion with inner automorphisms arising from elements of ΠX ] of profinite groups.
We shall refer to a diagram obtained in this way as an arithmetic Belyi diagram.

Definition 1.5.

(i) Fix an arithmetic Belyi diagram B⋊ as in Definition 1.4. Write

D(B⋊,M, J)

for the set of the images via the natural composite ΠX -outer homomor-

phism ΠU

out
⋊ M ↠ ΠX

out
⋊ M ↪→ ΠX

out
⋊ J of the normalizers in ΠU

out
⋊ M

of cuspidal inertia subgroups of ΠU ;

D(B⋊, J)

for the quotient set
(
⊔M⊆J D(B⋊,M, J)

)
/ ∼, where M ranges over all

sufficiently small normal open subgroups of J , and we write D(B⋊,M, J) ∋
GM ∼ GM† ∈ D(B⋊,M†, J) if GM ∩GM† is open in both GM and GM† .

(ii) Write

D(J)

for the quotient set
(
⊔B⋊ D(B⋊, J)

)
/ ∼, where B⋊ ranges over all arith-

metic Belyi diagrams, and we write D(†B⋊, J) ∋ G†B⋊ ∼ G‡B⋊ ∈ D(‡B⋊, J)
if GM† ∩GM‡ is open in both GM† and GM‡ for some representative GM†

(respectively, GM‡) of G†B⋊ (respectively, G‡B⋊). We shall refer to D(J)
as the set of decomposition subgroup-germs of ΠX

out
⋊ J .

(iii) We shall refer to the technique of constructing decomposition subgroup-

germs of ΠX

out
⋊ J as in (ii) as combinatorial Belyi cuspidalization.

Corollary 1.6. In the situation of Definition 1.5:
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(i) The natural conjugation action of ΠX

out
⋊ J on itself induces a natural

action of ΠX

out
⋊ J on D(J).

(ii) Write

D(J)

for the quotient set D(J)/ΠX . Then D(J) admits a natural action by J .

(iii) Let J1 and J2 be closed subgroups of GT. If J1 ⊆ J2 ⊆ GT, then the
inclusion J1 ⊆ J2 induces, by considering the intersection of subgroups of

ΠX

out
⋊ J2 with ΠX

out
⋊ J1, a natural surjection

D(J2)↠ D(J1)

that is equivariant with respect to the natural actions of J1 (⊆ J2) on the
domain and codomain.

Proof. First, we verify assertion (i). Let σ ∈ ΠX

out
⋊ J (⊆ Aut(ΠX)). Fix an

arithmetic Belyi diagram B⋊

ΠU

out
⋊ M −−−−→ ΠX

out
⋊ My

ΠX

out
⋊ M.

Next, we observe that σ, the inclusion ΠU ⊆ ΠX , and the outer action of M on
ΠU determine

• an open subgroup ΠUσ
def
= σ(ΠU )σ

−1 ⊆ ΠX that belongs to the ΠX -
conjugacy class of open subgroups that arises as the image of the outer
injection ΠUσ ↪→ ΠX determined by some connected finite étale covering
Uσ → X;

• an isomorphism ΠU
∼→ ΠUσ [induced by conjugating by σ] that induces a

bijection of the set of cuspidal inertia subgroups;

• an outer action [induced by conjugating by σ] of M on ΠUσ ;

• a collection of data [induced by conjugating by σ]

C(ΠX)σ
def
= (ΠX ,GT ⊆ Out(ΠX),ΠUσ ,

{0, 1,∞} ⊆ Cusp(ΠX), {0, 1,∞} ⊆ Cusp(ΠUσ ))

[cf. Theorem 1.3, (i), (iii)];

18



• an isomorphism C(ΠX)
∼→ C(ΠX)σ [induced by conjugating by σ].

Since M is a normal subgroup of J , by conjugating by σ, we obtain an automor-

phism σM : ΠX

out
⋊ M

∼→ ΠX

out
⋊ M and an isomorphism σM |ΠU

: ΠU

out
⋊ M

∼→
ΠUσ

out
⋊ M compatible with the natural inclusions ΠU

out
⋊ M ↪→ ΠX

out
⋊ M and

ΠUσ

out
⋊ M ↪→ ΠX

out
⋊ M . Thus, it follows immediately from the above obser-

vations, together with Theorem 1.3, (ii), (iii), that we obtain a commutative
diagram of profinite groups

ΠX

out
⋊ M ←−−−− ΠU

out
⋊ M −−−−→ ΠX

out
⋊ M

σM

y≀ σM |ΠU

y≀ σM

y≀

ΠX

out
⋊ M ←−−−− ΠUσ

out
⋊ M −−−−→ ΠX

out
⋊ M,

where the upper horizontal arrows “←”, “→” are, respectively, the vertical and

horizontal arrows of B⋊; the arrow ΠX

out
⋊M ← ΠUσ

out
⋊M is the natural inclusion

discussed above; the arrow ΠUσ

out
⋊ M → ΠX

out
⋊ M is the ΠX -outer surjection in-

duced [cf. Theorem 1.3, (ii), (iii)] by the outer surjection ΠUσ → ΠX determined
by the open immersion Uσ ↪→ X that maps the cusp 0 (respectively, 1, ∞) of
Uσ to the cusp 0 (respectively, 1, ∞) of X. Thus, by the above observations
and the definition of D(J), we conclude that the natural conjugation action of

ΠX

out
⋊ J on itself induces a natural action of ΠX

out
⋊ J on D(J). This completes

the proof of assertion (i). Assertion (ii) follows immediately from assertion (i).
Assertion (iii) follows immediately from the various definitions involved. This
completes the proof of Corollary 1.6.

Corollary 1.7. In the notation of Corollary 1.6, there exist a natural surjection
D(GT)↠ Q and a natural bijection D(GQ)

∼→ Q.

Proof. The usual theory of Belyi cuspidalization [cf. [AbsTopIII], Theorem 1.9,
(a)] yields a natural bijection D(GQ)

∼→ Q. Next, by applying the natural
inclusion GQ ⊆ GT [cf. the discussion at the beginning of the Introduction], we
obtain a natural surjection D(GT) ↠ D(GQ) [cf. Corollary 1.6, (iii)]. Thus,

by considering the composite D(GT) ↠ D(GQ)
∼→ Q, we obtain a natural

surjection D(GT)↠ Q. This completes the proof of Corollary 1.7.

Remark 1.7.1. The author does not know, at the time of writing, whether or
not the surjection

D(GT)↠ Q

in Corollary 1.7 is bijective.
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2 Construction of an action of GTtp
p on the field

Q
In this section, we construct [cf. Corollary 2.4] a certain natural action of GTtp

p

on the field Q, where GTtp
p denotes [cf. Definition 2.1] a certain subgroup

of GT that contains the p-adic version of the Grothendieck-Teichmüller group
GTp defined by Y. André [cf. [André], Definition 8.6.3] by using the theory
of tempered fundamental groups [cf. [André], §4, for the definition and basic
properties of tempered fundamental groups]. First, we define GTtp

p .

Definition 2.1. Let p be a prime number, Qp an algebraic closure of Qp [cf.
Notations and Conventions]. Write

• X
def
= P1

Cp
\{0, 1,∞}, where Cp denotes the p-adic completion of Qp;

• Πtp
X for the tempered fundamental group of X, relative to a suitable choice

of basepoint.

We shall denote by GTtp
p the intersection of GT and Out(Πtp

X ) in Out(ΠX) [cf.
Remark 2.1.1].

Remark 2.1.1. Observe that [for suitable choices of basepoints] ΠX may be
regarded as the profinite completion of Πtp

X , and Πtp
X may be regarded as a

subgroup of ΠX [cf. [André], §4.5]. Then the operation of passing to the profinite
completion induces a natural homomorphism

Out(Πtp
X )→ Out(ΠX).

It follows immediately from the normal terminality of Πtp
X in ΠX , i.e., NΠX

(Πtp
X ) =

Πtp
X [cf. [André], Corollary 6.2.2; [SemiAn], Lemma 6.1, (ii)], that this natural

homomorphism is injective. Thus, we shall use this natural injection to regard
Out(Πtp

X ) as a subgroup of Out(ΠX).

Remark 2.1.2. Various p-adic versions of the Grothendieck-Teichmüller group
appear in the literature. It follows immediately from [André], Definition 8.6.3;
[CbTpIII], Theorem B, (ii); [CbTpIII], Theorem D, (i); [CbTpIII], Theorem E;
[CbTpIII], Proposition 3.6, (i), (ii); [CbTpIII], Definition 3.7, (i); [CbTpIII],
Remark 3.13.1, (i); [CbTpIII], Remark 3.19.2; [CbTpIII], Remark 3.20.1, that

GQp ⊆ GTM ⊆ GTG ⊆ GT ∩ OutG(ΠX) = GTtp
p

∥ ∥ ∥ ∥
GQp

⊆ GTM ⊆ GTp ⊆ GT ∩ OutG(ΠX) = GTtp
p .
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Remark 2.1.3. It follows immediately from the fact that the subgroup “OutG(Π1)
⊆ Out(Π1)” [cf. [CbTpIII], Proposition 3.6, (i), (ii); [CbTpIII], Definition 3.7,
(i); [CbTpIII], Remark 3.13.1, (i)] is closed [cf. [CbTpIII], Theorem 3.17, (iv)]
that GTtp

p is a closed subgroup of GT.

Next, we construct a natural action of GTtp
p on the set Q. The following

theorem plays a central role in this construction. We prove this theorem by
applying various “resolution of nonsingularities” results [cf. [Tama2], Theorem
0.2, (v); [Lpg], Theorem 2.7], as well as the reconstruction theorem of the dual
semi-graph from the tempered fundamental group of a pointed stable curve [cf.
[SemiAn], Corollary 3.11].

Theorem 2.2. In the notation of Definition 2.1, let ϕ : Y → X be a connected
finite étale covering of X; y, y′ elements of Y (Cp). Write Yy (respectively, Yy′)
for Y \{y} (respectively, Y \{y′}); Πtp

Y (respectively, Πtp
Yy
, Πtp

Yy′ ) for the tempered

fundamental group of Y (respectively, Yy, Yy′), relative to a suitable choice of

basepoint. Suppose that there exists an isomorphism Πtp
Yy

∼→ Πtp
Yy′ that fits into

a commutative diagram
Πtp

Yy

∼−−−−→ Πtp
Yy′y y

Πtp
Y Πtp

Y ,

where the vertical arrows are the surjections [determined up to composition with
an inner automorphism] induced by the natural open immersions Yy ↪→ Y ,
Yy′ ↪→ Y of hyperbolic curves. Then y = y′.

Proof. Suppose that y ̸= y′. Write

• OCp for the ring of integers of Cp;

• Y cpt for the smooth compactification of Y (over Cp);

• S for Y cpt \ Y ;

• Yy,y′ for the stable model over OCp
of the pointed stable curve (Y cpt, S ∪

{y, y′});

• Y for the semi-stable model over OCp
of the pointed stable curve (Y cpt, S)

obtained by forgetting the data of the horizontal divisors of Yy,y′ deter-
mined by y, y′;

• y (respectively, y′) for the closed point of Y determined by y (respectively,
y′).

Let

• Ỹ be a proper normal model of Y cpt over OCp that dominates Y, and
whose special fiber contains an irreducible component ỹ (respectively, ỹ′)
that maps to y (respectively, y′) in Y;
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• ŷ (respectively, ŷ′) the valuation of the function field of Y determined by
ỹ (respectively, ỹ′).

Then, by applying [Lpg], Theorem 2.7 [cf. also the discussion at the begin-
ning of [Lpg], §1; the discussion immediately preceding [Lpg], Definition 2.1; the
discussion immediately preceding [Lpg], Corollary 2.9], to Y , we conclude that
there exists a finite étale Galois covering

ϕ : Z → Y

such that, if we write

• Y an
(2) for the set of type 2 points of the Berkovich space Y an associated to

Y [so that, by a slight abuse of notation, we may regard ŷ, ŷ′ as points of
Y an
(2) ];

• V (Y) for the set of type 2 points of Y an corresponding to the irreducible
components of the special fiber of Y;

• Zcpt for the smooth compactification of Z (over Cp);

• Z for the stable model of the pointed stable curve (Zcpt, ϕ−1(S));

• V (Z) for the set of type 2 points of the Berkovich space Zan associated to
Z corresponding to the irreducible components of the special fiber of Z;

• Im(V (Z)) ⊆ Y an
(2) for the image of V (Z) by the natural map Zan → Y an

induced by ϕ,

then
{ŷ, ŷ′} ∪ V (Y) ⊆ Im(V (Z)) ⊆ Y an

(2) .

Since Y is normal, it follows immediately, via a well-known argument [involving
the closure in Z×OCp

Y of the graph of ϕ], from Zariski’s Main Theorem, together
with the first inclusion of the above display, that ϕ determines a morphism
f : Z → Y such that

• the morphism f induces ϕ on the generic fiber;

• the image in the special fiber of Y of the vertical components of the special
fiber of Z [i.e., the irreducible components of this special fiber that map
to a point in the special fiber of Y] contains y and y′.

Fix a vertical component v in the special fiber of Z such that f(v) = y.
Write Ỹ for the normalization of Y in the function field of Z; f̃ : Z → Ỹ for
the morphism induced by the universal property of the normalization morphism
h : Ỹ → Y. Since h is finite, f̃(v) is a closed point of Ỹ. By Zariski’s Main
Theorem, f̃−1(f̃(v)) is connected. In particular, every irreducible component
of f̃−1(f̃(v)) is of dimension 1. Let z ∈ Z(Cp) be such that

• f(z) = y;
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• z ∈ f̃−1(f̃(v)), where z denotes the closed point of Z determined by z.

Observe that the set Cz of irreducible components of the special fiber of Z that

contain z is nonempty and of cardinality ≤ 2. Write Cz
def
= {vz, wz}, where

we note that it may or may not be the case that vz = wz. Without loss of
generality, we may assume that z ∈ vz ⊆ f̃−1(f̃(v)).

By [SemiAn], Corollary 3.11, any isomorphism of tempered fundamental
groups preserves cuspidal inertia subgroups. Thus, the given commutative dia-
gram of tempered fundamental groups

Πtp
Yy

∼−−−−→ Πtp
Yy′y y

Πtp
Y Πtp

Y ,

implies the existence of a Cp-valued point z′ of Z such that ϕ(z′) = y′, together
with a commutative diagram of tempered fundamental groups

Πtp
Zz

∼−−−−→ Πtp
Zz′y y

Πtp
Z Πtp

Z ,

where Zz
def
= Z \ {z}; Zz′

def
= Z \ {z′}; Πtp

Z (respectively, Πtp
Zz

, Πtp
Zz′

) denotes

the tempered fundamental group of Z (respectively, Zz, Zz′), relative to a suit-
able choice of basepoint; the vertical arrows are the surjections [determined
up to composition with an inner automorphism] induced by the natural open
immersions Zz ↪→ Z and Zz′ ↪→ Z of hyperbolic curves.

Write

• z′ for the closed point of Z determined by z′;

• Zz for the stable model of the pointed stable curve (Zcpt, ϕ−1(S) ∪ {z});

• Zz′ for the stable model of the pointed stable curve (Zcpt, ϕ−1(S)∪{z′});

• v∗z (respectively, w∗
z) for the unique irreducible component of the special

fiber of Zz that maps surjectively [via the natural morphism Zz → Z]
onto vz (respectively, wz);

• Γ for the dual semi-graph of the special fiber of Z;

• Γz for the dual semi-graph of the special fiber of Zz;

• Γz′ for the dual semi-graph of the special fiber of Zz′ .

Since, by [SemiAn], Corollary 3.11 [and its proof], the isomorphism Πtp
Zz

∼→
Πtp

Zz′
induces an isomorphism between the dual semi-graphs of special fibers of
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the respective stable models, the preceding commutative diagram of tempered
fundamental groups induces a commutative diagram of ”generalized morphisms”
of dual semi-graphs

Γz
∼−−−−→ Γz′y y

Γ Γ,

where the term ”generalized morphism” refers to a functor between the re-
spective categories “Cat(−)” associated to the semi-graphs in the domain and
codomain [cf. the discussion immediately preceding [SemiAn], Definition 2.11].

Write

• v∗z′ (respectively, w∗
z′) for the irreducible component of the special fiber of

Zz′ corresponding to v∗z (respectively, w∗
z) via the isomorphism Γz

∼→ Γz′ ;

• vz′ (respectively, wz′) for the irreducible component of the special fiber
of Z obtained by mapping v∗z′ (respectively, w∗

z′) via the generalized mor-
phism Γz′ → Γ.

Then the commutativity of the above diagram of generalized morphisms of dual
semi-graphs implies that {vz, wz} = {vz′ , wz′}. On the other hand, it follows
from the definitions of the various objects involved that z ∈ vz∩wz = vz′∩wz′ ∋
z′. Thus, [if, by a slight abuse of notation, we regard closed points as closed
subschemes, then] we conclude that

f̃(z′) ⊆ f̃(vz′ ∩ wz′) = f̃(vz ∩ wz) ⊆ f̃(vz) = f̃(v),

hence that
y′ = f(z′) = h(f̃(z′)) = h(f̃(v)) = f(v) = y.

However, this contradicts our assumption that y ̸= y′. This completes the proof
of Theorem 2.2.

Our goal in this section is to prove the following corollaries of Theorem 2.2.

Corollary 2.3. GTtp
p acts naturally on the set of algebraic numbers Q.

Proof. Write X
def
= P1

Q\{0, 1,∞}, where we think of “Q” as the subfield of Cp

consisting of the elements algebraic over Q. [Thus, we have a natural embedding
Q ↪→ Cp.] In the following discussion, we shall identify X(Q) with Q \ {0, 1}.
We take the “natural action” in the statement of Corollary 2.3 on {0, 1} ⊆ Q to
be the trivial action. Let x ∈ X(Q) = Q \ {0, 1}; σ ∈ GTtp

p ; B a Belyi diagram

ΠU −−−−→ ΠXy
ΠX
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such that x /∈ U(Q), where we identify U with the image scheme of the open
immersion U ↪→ X. Thus, we obtain an element xB ∈ D(GT) [cf. Definitions
1.4, 1.5; Corollary 1.6, (ii)]. Write (xB)

σ ∈ Q for the image of the composite

D(GT)
∼→ D(GT)↠ Q,

where the first arrow denotes the bijection induced by σ [cf. Corollary 1.6,
(ii), in the case where J = GT]; the second arrow denotes the surjection in
Corollary 1.7. Thus, to complete the proof of Corollary 2.3, it suffices to show
that (xB)

σ = (xB†)σ ∈ Q for any Belyi diagram B†

ΠU ′ −−−−→ ΠXy
ΠX

such that x /∈ U ′(Q), where we identify U ′ with the image scheme of the open
immersion U ′ ↪→ X. Write

• Xx
def
= P1

Q\{0, 1, x,∞};

• X(xB)σ
def
= P1

Q\{0, 1, (xB)
σ,∞};

• X(xB† )
σ

def
= P1

Q\{0, 1, (xB†)σ,∞}.

By recalling the [right-hand square in the final display of the] proof of Corollary
1.6, (i), in the case where J = GT, we obtain a commutative diagram of outer
homomorphisms

ΠX(xB)σ

∼←−−−− ΠXx

∼−−−−→ ΠX(xB† )σy y y
ΠX

∼←−−−−
σ

ΠX
∼−−−−→
σ

ΠX ,

where the vertical arrows are the outer surjections induced by the natural open
immersions Xx ↪→ X, X(xB)σ ↪→ X, X(xB† )

σ ↪→ X of hyperbolic curves; the

horizontal arrows are outer isomorphisms of topological groups. Since σ ∈ GTtp
p ,

by recalling the [construction of the diagram in the final display of the] proof
of Corollary 1.6, (i), in the case where J = GT, we conclude that the above
commutative diagram is induced by the following tempered version of the above
commutative diagram

Πtp
X(xB)σ

∼←−−−− Πtp
Xx

∼−−−−→ Πtp
X(xB† )σy y y

Πtp
X

∼←−−−−
σ

Πtp
X

∼−−−−→
σ

Πtp
X ,
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where Πtp
X (respectively, Πtp

X(xB)σ
, Πtp

X(xB† )σ
) denotes the tempered fundamen-

tal group of the base extension of Xx (respectively, X(xB)σ , X(xB† )
σ ) by the

embedding Q ↪→ Cp; the vertical arrows are the outer surjections induced by
the natural open immersions Xx ↪→ X, X(xB)σ ↪→ X, X(xB† )

σ ↪→ X of hyper-
bolic curves; the horizontal arrows are outer isomorphisms of topological groups.
Note, moreover, that it follows from the surjectivity of the vertical arrows in the
diagram of the preceding display that the inner automorphism indeterminacies
in this diagram may be eliminated in a consistent fashion. Thus, by apply-
ing Theorem 2.2 [in the case where “ϕ” is taken to be the identity morphism],
we conclude that (xB)

σ = (xB†)σ ∈ Q. This completes the proof of Corollary
2.3.

Corollary 2.4. There exists a surjection GTtp
p ↠ GQp

whose restriction to
GQp

[cf. Remark 2.1.2] is the identity automorphism.

Proof. We continue to use the notation X = P1
Q\{0, 1,∞}, Q ↪→ Cp of the proof

of Corollary 2.3. Write Y
def
= P1

Q. [Thus, X ⊆ Y is an open subscheme of Y .]

It suffices to show that the action of GTtp
p on the set Q (⊆ Q ∪ {∞} = Y (Q))

[cf. Corollary 2.3] is compatible with the field structure of Q and the p-adic
topology of Q induced by the embedding Q ↪→ Cp. Fix σ ∈ GTtp

p ⊆ GT.

First, we verify the compatibility with the field structure of Q. We begin by
verifying the following assertion:

Claim 2.4.A: The action of GTtp
p on the set Y (Q) = Q∪{∞} induced

by the action of GTtp
p on the set Q commutes with the natural action

of AutQ(X) [i.e., the group of scheme-theoretic automorphisms of X

over Q] on the set Y (Q) = Q ∪ {∞}.

Recall that every element of GTtp
p commutes with the outomorphisms of ΠX

induced by elements of AutQ(X) [cf. [CmbCsp], Definition 1.11, (i); [CmbCsp],
Remark 1.11.1]. Thus, Claim 2.4.A follows immediately from the definition of
the action of GTtp

p on Q in the proof of Corollary 2.3 via the action discussed
in the proof of Corollary 1.6, (i), (ii) [cf., especially, the right-hand vertical
isomorphism in the final display of the proof of Corollary 1.6, (i)].

Next, we verify the following assertion:

Claim 2.4.B: Suppose that

(∗) the action of GTtp
p on the set Q× def

= Q\{0} is compatible with

the multiplicative group structure of Q×
.

Then the action of GTtp
p on the set Q is compatible with the field

structure of Q.
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Indeed, suppose that (∗) holds. Since −1 ∈ Q may be characterized as the
unique element x ∈ Q \ {1} such that x2 = 1, we conclude that σ preserves

−1 ∈ Q. Let a, b ∈ Q×
. Then a+ b = a · (1− ((−1) · a−1 · b)). Since the action

of σ commutes with the action of the automorphism of X over Q given [relative
to the standard coordinate “t” on Y = P1

Q] by t 7→ 1 − t [cf. Claim 2.4.A], we

obtain the desired conclusion. This completes the proof of Claim 2.4.B.

Thus, by Claim 2.4.B, it suffices to show that (∗) holds. Let x, y ∈ Q× \{1};
B⋊ an arithmetic Belyi diagram [in the case where N is a normal open subgroup
of J = GT]

ΠU

out
⋊ N −−−−→ ΠX

out
⋊ Ny

ΠX

out
⋊ N

such that x−1, y /∈ U(Q), where we identify U with the image scheme of the
open immersion U ↪→ X. Write

Ux ⊆ P1
Q\{0, 1, x,∞} ⊆ P1

Q\{0, x,∞}

for the image scheme of the composite of the open immersion U ↪→ X with
the isomorphism X

∼→ P1
Q\{0, x,∞} induced by multiplication by x. Thus, we

obtain an arithmetic Belyi diagram B⋊
x

ΠUx

out
⋊ N −−−−→ ΠX

out
⋊ Ny

ΠX

out
⋊ N,

where the horizontal arrow ΠUx

out
⋊ N → ΠX

out
⋊ N denotes the ΠX -outer homo-

morphism induced by the composite of inclusions

Ux ⊆ P1
Q\{0, 1, x,∞} ⊆ P1

Q\{0, 1,∞} = X;

the vertical arrow ΠUx

out
⋊ N → ΠX

out
⋊ N denotes the composite of the vertical

arrow

ΠU

out
⋊ N → ΠX

out
⋊ N

in the arithmetic Belyi diagram B⋊ with an isomorphism

µx−1 : ΠUx

out
⋊ N

∼→ ΠU

out
⋊ N

over N induced by the natural scheme-theoretic isomorphism Ux
∼→ U .

Next, by recalling the right-hand square in the final display of the proof of
Corollary 1.6, (i), in the case where N = M ⊆ J = GT, we obtain commutative
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diagrams of outer homomorphisms of profinite groups

ΠU

out
⋊ N −−−−→ ΠX

out
⋊ N

σ

y≀ σ

y≀

ΠUσ

out
⋊ N −−−−→ ΠX

out
⋊ N,

ΠUx

out
⋊ N −−−−→ ΠX

out
⋊ N

σ

y≀ σ

y≀

Π(Ux)σ
out
⋊ N −−−−→ ΠX

out
⋊ N.

Write
(Ux)

σ
(xσ)−1 ⊆ P1

Q\{0, 1, (x
σ)−1,∞} ⊆ P1

Q\{0, (x
σ)−1,∞}

for the image scheme of the composite of the open immersion (Ux)
σ ↪→ X [cf.

the proof of Corollary 1.6, (i)] with the isomorphism X
∼→ P1

Q\{0, (x
σ)−1,∞}

induced by multiplication by (xσ)−1. Note that there exists a natural Π(Ux)σ -
outer isomorphism

µxσ : Π(Ux)σ
(xσ)−1

out
⋊ N

∼→ Π(Ux)σ
out
⋊ N

over N induced by the natural scheme-theoretic isomorphism (Ux)
σ
(xσ)−1

∼→
(Ux)

σ.
Thus, by taking the composite of the Π(−)-outer isomorphisms

• µxσ : Π(Ux)σ
(xσ)−1

out
⋊ N

∼→ Π(Ux)σ
out
⋊ N ,

• the inverse of ΠUx

out
⋊ N

∼→ Π(Ux)σ
out
⋊ N [cf. the second of the above two

commutative diagrams],

• µx−1 : ΠUx

out
⋊ N

∼→ ΠU

out
⋊ N , and

• ΠU

out
⋊ N

∼→ ΠUσ

out
⋊ N [cf. the first of the above two commutative dia-

grams],

we obtain a ΠUσ -outer isomorphism

Π(Ux)σ
(xσ)−1

out
⋊ N

∼→ ΠUσ

out
⋊ N

overN . Note that the conjugacy class of cuspidal inertia subgroups of Π(Ux)σ
(xσ)−1

associated to

0 (respectively, 1, (xσ)−1, (xσ)−1(xy)σ, ∞)
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maps, via the above composite of Π(−)-outer isomorphisms, to the conjugacy
classes of cuspidal inertia subgroups of Π(−) given as follows:

⇝ 0 (respectively, xσ, 1, (xy)σ, ∞)

⇝ 0 (respectively, x, 1, xy, ∞)

⇝ 0 (respectively, 1, x−1, y, ∞)

⇝ 0 (respectively, 1, (x−1)σ, yσ, ∞).

Thus, by restricting to GQ ⊆ GT = J [cf. Corollary 1.7], we conclude that

(xσ)−1(xy)σ = yσ (⇔ (xy)σ = xσyσ).

This completes the proof of (∗) and hence of the compatibility of the action of
σ with the field structure of Q.

Next, we verify the compatibility with the p-adic topology of Q. Write

• Xx (respectively,Xxσ ) for P1
Cp
\{0, 1, x,∞} (respectively, P1

Cp
\{0, 1, xσ,∞});

• Πtp
Xx

(respectively, Πtp
Xxσ

) for the tempered fundamental group of Xx (re-
spectively, Xxσ ), relative to a suitable choice of basepoint;

• Γx (respectively, Γxσ ) for the dual semi-graph of the special fiber of the
stable model of Xx (respectively, Xxσ );

• Vx(y) (respectively, Vxσ (y)) for the vertex of Γx (respectively, Γxσ ) to
which the open edge determined by a cusp y of Xx (respectively, Xxσ )
abuts;

• vp : Q× → Q for the p-adic valuation normalized so that vp(p) = 1.

Recall [cf. the upper horizontal isomorphisms in the final display of the proof
of Corollary 2.3] that there exists an isomorphism of topological groups

Πtp
Xx

∼→ Πtp
Xxσ

such that the conjugacy class of cuspidal inertia subgroups associated to 0 (re-
spectively, 1, x, ∞) maps to the conjugacy class of cuspidal inertia subgroups
associated to 0 (respectively, 1, xσ, ∞). Thus, by applying [SemiAn], Corol-
lary 3.11, we conclude that the isomorphism of topological groups of the above
display induces an isomorphism of semi-graphs Γx

∼→ Γxσ , and hence that

vp(x) > 0⇔ Vx(x) = Vx(0) ̸= Vx(1)

⇔ Vxσ (xσ) = Vxσ (0) ̸= Vxσ (1)

⇔ vp(x
σ) > 0.

This completes the proof of the compatibility of the action of σ with the p-adic
topology of Q and hence of Corollary 2.4.
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3 Construction of an action of CGT(GQab) on the
field Q

Write Qab ⊆ Q [cf. Notations and Conventions] for the maximal abelian exten-
sion field of Q, i.e., the subfield generated by the roots of unity ∈ Q. In this
section, we construct [cf. Corollary 3.4] a natural action of CGT(GQab) [cf. No-
tations and Conventions] on the field of algebraic numbers. This construction is
obtained as a consequence of the injectivity portion of the Section Conjecture
for abelian varieties over the finite extensions of Qab [cf. Theorem 3.1].

Theorem 3.1. Let K ⊆ Q be a number field, i.e., a finite extension of Q; A
an abelian variety over K. Write Kcycl = K · Qab; A(Kcycl) for the group of
Kcycl-valued points of A; AKcycl (respectively, AQ) for the base extension of A

to Kcycl (respectively, Q). Then the natural map

A(Kcycl)→ H1(GKcycl ,ΠAQ
)

— i.e., obtained by taking the difference between the two sections [each of which
is well-defined up to composition with an inner automorphism induced by an
element of ΠAQ

] of ΠA
Kcycl

↠ GKcycl induced by an element of A(Kcycl) and
the origin — is injective.

Proof. By considering the Kummer exact sequence for A(Kcycl), we obtain nat-
ural maps

A(Kcycl)→ lim←−
n

A(Kcycl)/A[n](Kcycl) ↪→ H1(GKcycl ,ΠAQ
),

where A[n](Kcycl) denotes the group of n-torsion points of A(Kcycl); the first
map is the natural homomorphism; the second map is injective; the inverse limit
is indexed by the positive integers, regarded multiplicatively. By a well-known
general nonsense argument [cf., e.g., the proof of [Cusp], Proposition 2.2, (i)], it
follows that the composite map of the above display coincides with the natural
map in the statement of Theorem 3.1. Thus, it suffices to show that A(Kcycl)
has no divisible elements. But this follows immediately from [KLR], Appendix,
Theorem 1, and [Moon], Proposition 7. This completes the proof of Theorem
3.1.

Corollary 3.2. Let K ⊆ Q be a number field, i.e., a finite extension of Q;
Y a hyperbolic curve over K. Write Kcycl = K · Qab; Y (Kcycl) for the set of
Kcycl-valued points of Y ; YQ for the base extension of Y to Q. Suppose that

Y (Kcycl) ̸= ∅. Fix a Kcycl-valued point y ∈ Y (Kcycl). Then the natural map

Y (Kcycl)→ H1(GKcycl ,ΠYQ
)
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— i.e., obtained by taking the difference between the two sections [each of which
is well-defined up to composition with an inner automorphism induced by an
element of ΠYQ

] of ΠY
Kcycl

↠ GKcycl induced by an element of Y (Kcycl) and

y ∈ Y (Kcycl) — is injective.

Proof. One verifies immediately that, by replacing Y by a suitable finite étale
covering of Y , we may assume without loss of generality Y is of genus ≥ 1. Then
the desired injectivity follows immediately from Theorem 3.1 by considering the
Albanese embedding of Y .

Corollary 3.3. CGT(GQab) acts naturally on the set of algebraic numbers Q.

Proof. In the following discussion, we shall identify X(Q) with Q \ {0, 1}. We
take the “natural action” in the statement of Corollary 3.3 on {0, 1} ⊆ Q to
be the trivial action. Let x ∈ X(Q) = Q \ {0, 1}; σ ∈ CGT(GQab); B a Belyi
diagram

ΠU −−−−→ ΠXy
ΠX

such that x /∈ U(Q), where we identify U with the image scheme of the open
immersion U ↪→ X. Thus, we obtain an element xB ∈ D(GT) [cf. Definitions
1.4, 1.5; Corollary 1.6, (ii)]. Write (xB)

σ ∈ Q for the image of the composite

D(GT)
∼→ D(GT)↠ Q,

where the first arrow denotes the bijection induced by σ [cf. Corollary 1.6,
(ii), in the case where J = GT]; the second arrow denotes the surjection in
Corollary 1.7. Thus, to complete the proof of Corollary 3.3, it suffices to show
that (xB)

σ = (xB†)σ ∈ Q for any Belyi diagram B†

ΠU ′ −−−−→ ΠXy
ΠX

such that x /∈ U ′(Q), where we identify U ′ with the image scheme of the open

immersion U ′ ↪→ X. For any finite extension L ⊆ Q of Qab, write GL
def
=

Gal(Q/L) ⊆ GQab . Since σ ∈ CGT(GQab), there exists a finite extension K ⊆ Q
of Qab(x) such that we have inclusions

σGKσ−1 ⊆ GQab((xB)σ) ∩GQab((xB† )
σ) ⊆ GQab

of open subgroups of GQab . Fix such a finite extension K.
Write
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• Kσ ⊆ Q for the finite extension of Qab such that GKσ = σGKσ−1 ⊆ GQab ;

• Xx
def
= P1

Q\{0, 1, x,∞};

• X(xB)σ
def
= P1

Q\{0, 1, (xB)
σ,∞};

• X(xB† )
σ

def
= P1

Q\{0, 1, (xB†)σ,∞}.

Thus, it follows from our choice of K that x ∈ K and (xB)
σ, (xB†)σ ∈ Kσ.

By recalling the [right-hand square in the final display of the] proof of Corol-
lary 1.6, (i), in the case where J = GT, and possibly replacing K by a finite
extension of K if necessary, we obtain a commutative diagram of outer homo-
morphisms

ΠX(xB)σ

out
⋊ GKσ

∼←−−−− ΠXx

out
⋊ GK

∼−−−−→ ΠX(xB† )σ

out
⋊ GKσy y y

ΠX

out
⋊ GKσ

∼←−−−−
σ

ΠX

out
⋊ GK

∼−−−−→
σ

ΠX

out
⋊ GKσ ,

where the vertical arrows are the ΠX -outer surjections induced by the natural
open immersions Xx ↪→ X, X(xB)σ ↪→ X, X(xB† )

σ ↪→ X of hyperbolic curves;
the horizontal arrows are outer isomorphisms of topological groups.

Thus, by applying Corollary 3.2 in the case where Y = P1
Kσ\{0, 1,∞}, we

conclude that (xB)
σ = (xB†)σ ∈ Q. This completes the proof Corollary 3.3.

Corollary 3.4. There exists a surjection CGT(GQab) ↠ GQ whose restriction
to GQ is the identity automorphism.

Proof. It suffices to show that the natural action of CGT(GQab) on the set Q [cf.

Corollary 3.3] is compatible with the field structure of Q. This compatibility
with the field structure follows from a similar argument to the argument given
in the proof of Corollary 2.4. This completes the proof of Corollary 3.4.
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