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Abstract

In the present paper, we study the generalized Hasse-Witt invariants of cyclic
coverings of curves in positive characteristic. Let X*® = (X, Dx) be a pointed stable
curve of topological type (gx,nx) over an algebraically closed field of character-
istic p > 0. We prove that, if X*® is component-generic, then the first generalized
Hasse-Witt invariant of each prime-to-p cyclic admissible coverings of X*® attains the
maximum under certain assumptions. This result generalizes a result of S. Nakajima
concerning the ordinariness of prime-to-p cyclic étale coverings of smooth projective
generic curves to the case of (possibly ramified) admissible coverings of (possibly
singular) pointed stable curves. Moreover, without any assumptions, we prove that
there exists a prime-to-p cyclic admissible covering of X*® such that the first gener-
alized Hasse-Witt invariant of the cyclic admissible covering attains the maximum.
This result can be regarded as an analogue of a result of M. Raynaud concerning the
new-ordinariness of prime-to-p cyclic étale coverings of arbitrary smooth projective
curves in the case of generalized Hasse-Witt invariants of prime-to-p cyclic admis-
sible coverings of arbitrary pointed stable curves. As an application, we obtain
a group-theoretical formula for (gx,nyx). This formula generalizes a result of A.
Tamagawa concerning a group-theoretical formula for topological types of smooth
pointed stable curves to the case of arbitrary pointed stable curves.
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1 Introduction

In the present paper, we study the generalized Hasse-Witt invariants of coverings of curves
in positive characteristic. Let

X* = (X,D)

be a pointed stable curve of topological type or type, for short, (gx,nx) over an alge-
braically closed field k, where X denotes the underlying curve, Dy denotes the set of
marked points, gx denotes the genus of X, and nx denotes the cardinality #Dx of Dx.
Moreover, by choosing a suitable base point of X*, we have the admissible fundamental

group
ITxe

of X* (cf. Definition 2.2). In particular, if X*® is smooth over k, then IIx. is naturally
(outer) isomorphic to the tame fundamental group 7% (X \ Dx).

Suppose that the characteristic char(k) of k is 0. Then the structure of IIx. is well-
known, which is isomorphic to the profinite completion of the following free group (cf. [V,
Théoreme 2.2 (c)])

9x nx
(a1, ... a05,b1,. . bgy,C1,ye oo Cny | H[ai,bi] ch =1).
i=1 j=1

In particular, [Ixe is a free profinite group with 2gx + nx — 1 generators if ny > 0. Let
X7, 1 €{1,2}, be a pointed stable curve of type (gx,,nx,) over k and IIxs the admissible
fundamental group of X;?. Suppose that nx, > 0,4 € {1,2}. Then we see that ILys = IIx,
if and only if 2¢gx, + nx, — 1 = 2gx, + nx, — 1. Thus, we see that (gx,nx) cannot be
determined group-theoretically from the isomorphism class of Ilye.

On the other hand, when char(k) = p > 0, the situation is quite different from that
in characteristic 0, and the structure of Ilye is no longer known. In the remainder of
the introduction, we assume that char(k) = p > 0. The admissible fundamental group
[Ty« is very mysterious. In fact, some developments of F. Pop-M. Saidi, M. Raynaud, A.
Tamagawa, and the author (cf. [PS], [R2], [T1], [T2], [T3], [Y1], [Y2]) showed evidence for
very strong anabelian phenomena for curves over algebraically closed fields of characteristic
p > 0. In this situation, the Galois group of the base field is trivial, and the étale (or
tame) fundamental group coincides with the geometric fundamental group, thus in a
total absence of a Galois action of the base field. This kind of anabelian phenomena
go beyond Grothendieck’s anabelian geometry, and shows that the admissible (or tame)
fundamental group of a smooth pointed stable curve over an algebraically closed field



must encode“moduli” of the curve. This is the reason that we do not have an explicit
description of the admissible (or tame) fundamental group of any pointed stable curve in
positive characteristic. Note that since all the admissible coverings (cf. Definition 2.2)
in positive characteristic can be lifted to characteristic 0 (cf. [V, Théoreme 2.2 (c)]), we
obtain that Ilx. is topologically finitely generated. Then the isomorphism class of Il x. is
determined by the set of finite quotients of Iy. (cf. [FJ, Proposition 16.10.6]).

Furthermore, the theory developed in [T2] and [Y2] implies that the isomorphism class
of X* as a scheme can possibly be determined by not only the isomorphism class of IIxe
as a profinite group but also the isomorphism class of the maximal pro-solvable quotient
of Ilxe. Then we may ask the following question:

Which finite solvable group can appear as a quotient of I1ye?

Let H C IIx. be an arbitrary open normal subgroup and X3, = (Xg, Dy, ) the pointed
stable curve of type (gx,,nx,) over k corresponding to H. We have an important in-
variant associated to Xy, (or H) called p-rank (or Hasse-Witt invariant, see Definition
2.3). Roughly speaking, oxs controls the finite quotients of IIy. which are extensions
of the group I y./H by p-groups. Since the structures of maximal prime-to-p quotients
of admissible fundamental groups have been known, in order to solve the question men-
tioned above, we need compute the p-rank oxs when IIxe/H is abelian. If [Ix./H is
a p-group, then oxs can be computed by applying the Deuring-Shafarevich formula (cf.
[C]). If IIx« /H is not a p-group, the situation of oys is very complicated, and the Deuring-
Shafarevich formula implies that, to compute oy , we only need to assume that ILye /H
is a prime-to-p group.

First, let us consider the case of generic curves. Suppose that nx = 0, and that X*
is smooth over k. If X*® is a curve corresponding to a geometric generic point of moduli
space (i.e., a geometric generic curve), S. Nakajima (cf. [N]) proved that, if IIx./H
is a cyclic group with a prime-to-p order, then o(X73,) attains the maximum gy, (i.e.,
X3§ is ordinary). Moreover, B. Zhang (cf. [Z]) extended Nakajima’s result to the case
where IIxe /H is an arbitrary abelian group. Recently, E. Ozman and R. Pries (cf. [OP])
generalized Nakajima’s result to the case where Ilxe./H is a cyclic group with a prime
order distinct from p, and where X*® is a curve corresponding to a geometric point of
p-rank stratas of moduli space. Let m € N be an arbitrary positive natural number prime
to p. In other words, the results of Nakajima, Zhang, and Ozman-Pries say that, for
each Galois étale covering of X* with Galois group Z/mZ, the generalized Hasse- Witt
invariants (cf. [N]) associated to non-trivial characters of Z/mZ attain the maximum
gx — 1 except for the eigenspaces associated with eigenvalue 1. The first main result of
the present paper is as follows (see Theorem 3.11 for more precisely):

Theorem 1.1. Let X* be a component-generic pointed stable curve (cf. Section 2.1 for
the definition). Then the “first” generalized Hasse-Witt invariant (cf. Section 2.2 for
the definition) of each prime-to-p cyclic admissible covering of X* attains the maximum
under certain assumptions.

If ny =0 and X* is smooth over k, then Theorem 1.1 is equivalent to [N, Proposition
4]. Thus, Theorem 1.1 generalizes [N, Proposition 4] to the case of (possibly ramified)
admissible coverings of (possibly singular) pointed stable curves. Moreover, by applying
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this result, we generalize [N, Theorem 2] to the case of tame coverings (cf. Corollary
3.13).

Next, let us consider the general case. If X*® is not geometric generic, oxs cannot
be computed explicitly in general. Suppose that X*® is smooth over k, and that ny = 0.
Raynaud (cf. [R1]) developed his theory of theta divisors and proved that, if £ >> 0 is a
prime number distinct from p, then there exists a Galois étale coverings of X*® with Galois
group Z/¢Z such that the generalized Hasse-Witt invariants associated to non-trivial
characters of Z/¢Z attain the maximum gy — 1 except for the eigenspaces associated
with eigenvalue 1 (i.e., the étale covering is new-ordinary). Moreover, as a consequence,
Raynaud obtained that Ilxe is not a prime-to-p profinite group. This is the first deep
result concerning the global structures of étale fundamental groups of projective curves
over algebraically closed fields of characteristic p > 0.

Suppose that X*® is smooth over k, and that nx > 0. The computations of generalized
Hasse-invariants of admissible coverings of X*® (i.e., tame coverings of X \ Dy) are much
more difficult than the case where nxy = 0. In the remainder of the introduction, let

t be an arbitrary positive natural number and n & p' — 1. Tamagawa observed that
Raynaud’s theory of theta divisors can be generalized to the case of tame coverings,
and established a tamely ramified version of the theory of Raynaud’s theta divisors. By
applying the theory of theta divisors, under certain assumptions, Tamagawa proved that,
if n >> 0 and nxy > 1, then the “first” generalized Hasse-Witt invariants of almost
all of the Galois admissible coverings of X*® with Galois group Z/nZ are equal to gx.
Furthermore, he introduced a kind of group-theoretical invariant Avr,(Ilys) associated to
IIx. (i.e., depends only on the isomorphism class of IIxs) called the limit of p-averages
(cf. Remark 5.4.1), and proved a highly non-trivial result as follows (cf. [T1, Theorem
0.5)):

gx — 1, ifny <1,
Avry(Ilxe) = { Jx if ny > 2.

By applying the formula for Avr,(IIx.), the following group-theoretical formula for (gx, nx)
was essentially obtained by Tamagawa. In particular, we obtain that gx and nx are
group-theoretical invariants associated to Ilxe. This result is the main goal of the theory
developed in [T2] (cf. [T2, Theorem 0.1]).

Theorem 1.2. Let II be an abstract profinite group such that I1 = Ilxe. as profinite groups.
Suppose that X*® is smooth over k. Then we have (see Section 5 for the definitions of
group-theoretical invariants bi, b, and crp associated to 11)

gx = Avr,(I) + er1, nx = bf; — 2Avr,(I1) — 2 — b + 1.
In particular, gx and nx are group-theoretical invariants associated to I1.

Remark 1.2.1. Before Tamagawa proved Theorem 1.2, he also obtained an étale funda-
mental group version formula for (gx,nx) in a completely different way (by using wildly
ramified coverings) which is much simpler than the case of tame fundamental groups
(cf. [T1, §1]). Note that, for any smooth pointed stable curve over an algebraically
closed field of positive characteristic, since the tame fundamental group can be recovered
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group-theoretically from the étale fundamental group (cf. [T1, Corollary 1.10]), the tame
fundamental group version is stronger than the étale fundamental group version.

Remark 1.2.2. The formulas for Avr,(Ilx.) and (gx,nx) are key results in the theory
of tame anabelian geometry of curves over algebraically closed fields of characteristic
p > 0 (cf. [T2], [Y2]). On the other hand, if W* is a smooth pointed stable curve
of type (gw,nw) over an arithmetic field (e.g. number field, p-adic field, finite field),
then a group-theoretical formula for (gy,ny ) can be deduced immediately by computing
“weight” (e.g. by applying the weight monodromy conjecture or p-adic Hodge theory).

Let us return to the case where X* is an arbitrary pointed stable curve over k. Here
our main question of the present paper is the following:

Does there exist a group-theoretical formula for (gx,nx) when X*® is an arbi-
trary pointed stable curve over k?

We want to mention that the approach to finding a group-theoretical formula for (gx,nx)
by applying Avr,(Ily.) explained above cannot be generalized to the case where X* is an
arbitrary pointed stable curve. The reason is that the formula for Avr,(Ilxs) is very
complicated in general when X* is not smooth over k, and Avr,(Ily.) depends not only
on the type (gx,nx) but also on the structure of the dual semi-graph of X* (cf. [Y3,
Theorem 1.3 and Theorem 1.4]).

In the present paper, we solve the problem mentioned above by considering the max-
imum generalized Hasse-Witt invariants. Let Fp be an arbitrary algebraic closure of [F),
IT an abstract profinite group such that II = Ily. as profinite groups, and

max def max{~y, (Hom(Tl,, Z/pZ)) | x € Hom(H,?:) such that y # 1},

where II, C II denotes the kernel of x. Since the prime number p is a group-theoretical
invariant associated to I (cf. Lemma 5.2 (ii)), we see that 4{1** is also a group-theoretical
invariant associated to II. Then the main theorem of the present paper is as follows (see
also Theorem 5.4):

Theorem 1.3. Let X* be an arbitrary pointed stable curve of type (gx,nx) over an
algebraically closed field k of characteristic p > 0 and I1 an abstract profinite group such
that 11 = Il xe as profinite groups. Then we have

max

gx = by — W™ — 1, nx = 29{{™ — by, — bf; + 3.
In particular, gx and nx are group-theoretical invariants associated to 11.

Note that * is equal to the maximum of generalized Hasse-Witt invariants vy¥e* of
prime-to-p cyclic admissible coverings (cf. Definition 3.2). Then the main theorem follows
from the following key observation (see Theorem 4.5 for more precisely):

Theorem 1.4. We maintain the notation introduced above. Then there exist a natural
number m € N prime to p and a Galois admissible covering of X*® over k with Galois
group Z/mZ such that the “first” generalized Hasse- Witt invariant of the Galois admissible
covering attains the mazimum

max __ 9x — ]-a anX - Oa
Txe = gx+TLX_2, zan#O
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Theorem 1.4 can be regarded as an analogue of [R1, Théoreme 4.3.1] in the case of
generalized Hasse-Witt invariants of prime-to-p cyclic admissible coverings of pointed
stable curves.

The present paper is organized as follows. In Section 2, we recall some definitions and
properties of admissible coverings, admissible fundamental groups, generalized Hasse-Witt
invariants, and Raynaud-Tamagawa theta divisors. In Section 3, we study the maximum
generalized Hasse-Witt invariants when X*® is a component-generic pointed stable curve.
In Section 4, we study the maximum generalized Hasse-Witt invariants when X°® is an
arbitrary pointed stable curve, and prove Theorem 1.4. In Section 5, by applying Theorem
1.4, we prove Theorem 1.3.
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2 Preliminaries

2.1 Admissible coverings and admissible fundamental groups

In this subsection, we recall some definitions and results which will be used in the present
paper.

Definition 2.1. Let G & (v(G),e®(G) U e (G), {¢F }eceor(c)ueci(c)) be a semi-graph (cf,
[M3, Section 1]). Here, v(G), ¢®(G), e?(G), and {(F}cccor(@)uec(c) denote the set of
vertices of G, the set of closed edges of G, the set of open edges of G, and the set of
coincidence maps of G, respectively. Note that, for each e € e?(G) U e?(G), e & {b}, b2}
is a set of cardinality 2. Then e is a closed edge if (%(e) C v(G), and e is an open edge if
CE(e) = {¢¢(e) Nv(G), {v(G)}}. We denote by e(G) C e(G) the subset of closed edges
such that #¢®(e) = 1 for each e € €?(G) (i.e., a closed edge which abuts to a unique
vertex of G). For each e € e°P(G) U e (G), we denote by v®(e) C v(G) the set of vertices
of G to which e abuts. For each v € v(G), we denote by €®(v) C e°P(G) U e?(G) the set
of edges of G to which v is abutted. Moreover, we shall say that G is a tree if the Betti
number dimg(H'(G,Q)) of G is equal to 0.

In the present paper, let
X*=(X,D)

be a pointed stable curve over an algebraically closed field k of characteristic p > 0, where
X denotes the underlying curve, Dx denotes the set of marked points, gx denotes the
genus of X, and ny denotes the cardinality #Dx of Dx. We shall say that (gx,ny) is the
topological type (or type for short) of X*. Write I'ys for the dual semi-graph of X* and

ry & dimg(H'(T'x«,Q)) for the Betti number of the semi-graph I'ye. Let v € v(I'x+) and
e € eP([xe) U e (Ixe). We write X, for the irreducible component of X corresponding
to v, write z. for the node of X corresponding to e if ¢ € e?(I'xs), and write x, for
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the marked point of X corresponding to e if e € e°?(I'y.). Moreover, write X, for the
normalization of X, and norm, : X, — X, for the normalization morphism. We define a
smooth pointed stable curve of type (g,,n,) over k to be

Xz = (X, Dg, * nom; (X, N X*") U (Dx N X,))).

We shall say that X°® is a component-generic pointed stable curve over k if )Af;, v E
v(I'xs), is a geometric generic pointed stable curve of type (g,,n,) over k (i.e., a curve
corresponding to a geometric generic point of the moduli space).

Definition 2.2. Let Y* = (Y, Dy) be a pointed stable curve over k, f*: Y*®* — X* a
morphism of pointed stable curves over k, and f : Y — X the morphism of underlying
curves induced by f°.

We shall say f* a Galois admissible covering over k (or Galois admissible covering for
short) if the following conditions are satisfied: (i) There exists a finite group G C Aut,(Y*)
such that Y*/G = X*, and f* is equal to the quotient morphism Y* — Y*/G. (ii) For
each y € Y* \ Dy, f is étale at y, where (=) denotes the smooth locus of (—). (iii)
For any y € Y*"8_ the image f(y) is contained in X®"¢ where (—)*"® denotes the set of
singular points of (—). (iv) For each y € Y*"8 the local morphism between two nodes
induced by f may be described as follows:

Ox. s = klJu, o) Juv = Oy, = k[[s, 1]}/ st
U — s"
v — t",

where (n, char(k)) = 1 if char(k) > 0. Moreover, if we write D,, C G for the decomposition
group of y and #D, for the cardinality of D,, then 7(s) = (4p,s and 7(t) = Q#}jyt for
each 7 € D,, where (xp, is a primitive #D,-th root of unit, and #(—) denotes the
cardinality of (—). (v) The local morphism between two marked points induced by f may
be described as follows:

Ox. s 2 k[[a]] — Oy, = K[[b]]
a — b,

where (m, char(k)) = 1 if char(k) > 0 (i.e., a tamely ramified extension).

Moreover, we shall say f® an admissible covering if there exists a morphism of pointed
stable curves (f*) : (Y*) — Y*® over k such that the composite morphism f*® o (f*) :
(Y*) — X* is a Galois admissible covering over k. One can check easily that the definition
of admissible covering coincides with the definition of [M1, §3.9 Definition] when the base
scheme is k. We shall say an admissible covering f*® étale if f is an étale morphism.

Let Z*° be a disjoint union of finitely many pointed stable curves over k. We shall say
a morphism f5. : Z* — X*® over k multi-admissible covering if the restriction of f5. to
each connected component of Z* is admissible. For any category %, we write Ob(%’) for
the class of objects of ¥, and write Hom(%’) for the class of morphisms of ¥’. We denote
by

Cov®™ (X*) & (Ob(Cov®™(X*)), Hom(Cov®¥™ (X *)))
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the category which consists of the following data: (i) Ob(Cov*™(X*)) consists of an
empty object and all the pairs (Z°, f5. : Z°* — X°), where Z*® is a disjoint union of
finitely many pointed stable curves over k, and f7. is a multi-admissible covering over k;

(i) for any (Z°, fg.), (Y*, fy.) € Ob(Cov*™™(X*)), we define

Hom((Z*, f2.), (Y*, f3+)) < {g" € Homy(Z*,Y*) | ffa 09" = f3.},

where Homy(Z*®,Y®) denotes the set of k-morphisms of pointed stable curves. By applying
[M1, §3.11 Proposition] and the theory of Kummer log étale coverings, we may see that
Cov*™(X*) is a Galois category. Thus, by choosing a base point z € X* \ Dy, we
obtain a fundamental group w39 (X*, z) which is called the admissible fundamental group
of X*. For simplicity of notation, we omit the base point and denote the admissible
fundamental group by ITye. Write II¢. for the étale fundamental group of the underlying
curve X of X* and Ht)?? for the profinite completion of the topological fundamental group
of I'ys. Note that we have the following natural continuous surjective homomorphisms
(for suitable choices of base points)

6 t
HX. — Hgg. — H)?I.).

For each v € v(T'xe), we denote by
Iz,

the admissible fundamental group of )?; Then we have a natural (outer) injective homo-
morphism [T, < IIxe.

For more details on the theory of admissible coverings and admissible fundamental
groups for pointed stable curves, see [M1], [M2].

Remark 2.2.1. Let M, .,z be the moduli stack of pointed stable curves of type

(9x,nx) over SpecZ and M, .,z the open substack of M, . 7 parametrizing smooth

pointed stable curves. Write M;ﬁnx z for the log stack obtained by equipping /Vgx nx,Z
with the natural log structure associated to the divisor with normal crossings M, ny 7z \
My nyz C Mgy nyz relative to SpecZ.

The pointed stable curve X* over k induces a morphism Speck — M, .y z. Write
sl)(gg for the log scheme whose underlying scheme is Spec k, and whose log structure is the
pulling-back log structure induced by the morphism Speck — ﬂgx,nx,z. We obtain a

natural morphism sl)?g — ﬂlog , induced by the morphism Speck — M 7 and

9x,mx, gx,mx,

log def _log 17108
a stable log curve X'°¢ = 5° X0 M e,

MgX,nX,Z
is X. Let Y& — X! bhe an arbitrary Kummer log étale covering. One can prove
that there exists a Kummer log étale covering t* — s'v¥ such that Y% x jox £'9% —

X

Xlog X os tl)‘}g is a log admissible covering (cf. [M1, §3.5 Definition]|) over tl)?g. Then the

admissible fundamental group of X*® does not depend on the log structure of X'°¢ and [M1,
§3.11 Proposition| implies that the admissible fundamental group IIx. of X*® is naturally
isomorphic to the geometric log étale fundamental group of X' (i.e., ker(m (X'8) —

mi(sy%)).

1 .
7z over sy whose underlying scheme



Remark 2.2.2. Suppose that X* is smooth over k. By the definition of admissible
fundamental groups, the admissible fundamental group of X*® is naturally isomorphic to
the tame fundamental group of X \ Dy.

In the remainder of the present paper, we suppose that the characteristic of k is p > 0.

Definition 2.3. We define the p-rank (or Hasse- Witt invariant) of X*® to be
oxe & dimg, (HA (X, F,)) = dimg, (3% @ F,),

where (—)2" denotes the abelianization of (—).

Remark 2.3.1. The definition of p-rank implies that oy« = ox. Moreover, it is easy to
see that
Oxe = Z O%e +rxy =0x = Z 0%, +rx.

vev(Txeo) vev(Tye)

2.2 Generalized Hasse-Witt invariants of cyclic admissible cov-
erings

In this subsection, we recall some notation concerning generalized Hasse-Witt invariants
of cyclic admissible coverings.

We maintain the notation introduced in Section 2.1, and let X* = (X, Dx) be a
pointed stable curve of type (gx,nx) over k, and Ily. the admissible fundamental group
of X*. Let n be an arbitrary positive natural number prime to p and u,, C k™ the group
of nth roots of unity. Fix a primitive nth root ¢, we may identify p, with Z/nZ via
the map ¢* — i. Let a € Hom(II3%,Z/nZ). We denote by X2 = (X,, Dy, ) the Galois
multi-admissible covering with Galois group Z/nZ corresponding to a. Write Flx_ for the
absolute Frobenius morphism on X,. Then there exists a decomposition (cf. [S, Section

9)
Hl(Xom OX) - HI(XOM OX)St ¥ Hl(XOm OX)ni7

where Fy_ is a bijection on H'(X,, Ox)** and is nilpotent on H'(X,, Ox)™. Moreover,
we have

HY(X,, Ox)" = H (X, Ox)" ™ @p, k,

where (—)Xo denotes the subspace of (—) on which F,_ acts trivially. Then Artin-Schreier
theory implies that we may identify

def

Hy = Hgt(Xm]Fp> ®F, k

with the largest subspace of H'(X,, Ox) on which Fy, is a bijection.
The finite dimensional k-vector spaces H, is a finitely generated k[u,,]-module induced
by the natural action of p,, on X,. We have the following canonical decomposition

Ha: @ Ha,ia

1€L/nL



where ¢ € p, acts on H,; as the (*-multiplication. We define

Yoi = dimy(Ha,), i € Z/n.
These invariants are called generalized Hasse- Witt invariants (cf. [N]). Moreover, we shall
say that 74,1 is the first generalized Hasse-Witt invariant of the Galois multi-admissible
covering X3 — X°*. Note that the decomposition above implies that

In particular, if X, is connected, then dimy(H,) = ox,.
We write Z[Dx] for the group of divisors whose supports are contained in Dy. Note
that Z[Dx] is a free Z-module with basis Dx. We define

¢ Z/nZ[Dx] ¥ Z[Dx] ® Z/nZ — Z/nZ, D mod n s deg(D) mod n.
Then ker(c/,) can be regarded as a subset of (Z/nZ)~[Dx]|, where (Z/nZ)~ denotes the set
{0,1,...,n—1}, and (Z/nZ)~[Dx]| denotes the subset of Z[Dx]| consisting of the elements
whose coefficients are contained in (Z/nZ)~. We denote by Z/nZ[Dx]° the kernel of ¢/,
and by (Z/nZ)~[Dx]° the subset of (Z/nZ)~[Dx] corresponding to Z/nZ[Dx|° under the
natural bijection (Z/nZ)~[Dx] = Z/nZ|[Dx]. Note that, for each D € (Z/nZ)~[Dx]°,
we have n|deg(D). Then
deg(D) = s(D)n

for some integer s(D) such that

0, lfTLX S 1,

<
OSS(D)—{nX—L if ny > 2.

Let X** = (X*, Dx+) — X* be a universal admissible covering corresponding to Il xe.
For each e € e?(I'ye)UeP(I'xs), write x, for the marked point corresponding to e, and let
T« be a point of the inverse image of . in Dx-. Write [~ C IIx. for the inertia subgroup
of z.-. Note that I, is isomorphic to Z(1)?', where (=) denotes the maximal prime-to-p
quotient of (—). Suppose that z. is contained in X,. Then we have an injection

¢e* . Ie* — Haj(b-

induced by the composition of (outer) injective homomorphisms I — Ilg, < Ilx.,
where Ilg, denotes the admissible fundamental group of )?; Since the image of @
depends only on e, we may write [, for the image ¢« (I.«). Moreover, the specialization
theorem of the maximal prime-to-p quotients of admissible fundamental groups of pointed
stable curves (cf. [V, Théoréme 2.2 (c)]) implies that, there exists a generator [s.] of I,

for each e € €°P(I"x.) such that the following holds

Z [Se] =0

e€e’P(I'xe)
in T135.
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Definition 2.4. We maintain the notation introduced above.
(i) We put
D= > a(fs])we, o € Hom(I§h, Z/nZ).

ece’P(xe)

Note that we have D,, € (Z/nZ)~[Dx]°. On the other hand, for each D € (Z/nZ)~[Dx]°,
we denote by
Revid™(X*)

the subset of Hom (I3, Z/nZ) such that D, = D for each a € Revis™(X*). Moreover,

we put
def
Y(e,D) = Ya,1-

(ii) Let t € N be an arbitrary positive natural number and n o pt — 1. Let
t—1
u= Zuij, u e {0,...,n},
=0

be the p-adic expansion with u; € {0,...,p — 1}. We identify {0,...,¢ — 1} with Z/tZ
naturally, and put

t—1
U(Z) déf Zuiﬂpj, 1€ {0, ce ,t - 1}
=0
Let D € (Z/nZ)~[Dx|°. We put
DD N (ord, (D), i € {0,1,...,t — 1},
z€Dx
which is an effective divisor on X.

In the remainder of the present paper, we may assume that

ndéfpt—l

for some positive natural number ¢ € N.

2.3 Raynaud-Tamagawa theta divisors

In this subsection, we recall some notation and results concerning theta divisors defined
by Raynaud and Tamagawa (see also [T2, Section 2]).

We maintain the notation introduced in Section 2.2. Moreover, in the present subsec-
tion, we suppose that X* is smooth over k. The generalized Hasse-Witt invariants can
be also described in terms of line bundles and divisors. We denote by Pic(X) the Picard
group of X. Consider the following complex of abelian groups:

Z[Dx] 3 Pic(X) @ Z[Dx] 2 Pic(X),

11



where a,(D) = ([Ox(—D)],nD), b,(([£], D)) = [L" @ Ox(—D)]. We denote by

Pxen o ker(b,,)/Im(a,)

the homology group of the complex. Moreover, we have the following exact sequence
0 = Pic(X)[n] % Pxe, B 2/nZDx) & Z/nZ,
where [n] means the n-torsion subgroup, and

a, ([£]) = ([£],0) mod Im(a,),

b, (([£], D)) mod Im(a,)) = D mod n,
¢ (D mod n) = deg(D) mod n.

We shall define .

l@X',n
to be the inverse image of (Z/nZ)~[Dx|° C (Z/nZ)~[Dx] C Z|Dx] under the projection
ker(b,) — Z[Dx]. It is easy to see that Px. ,, and égxom are free Z/nZ-groups with rank
2g9x + nx — 1 if nx # 0 and with rank 2¢gx if nxy = 0. Moreover, [T2, Proposition 3.5]
implies that

ﬁX‘,n = Pxen = Hom (113, Z/nZ).

Then every element of é’TX.,n induces a Galois multi-admissible covering of X*® over k
with Galois group Z/nZ.

Let ([£],D) € ﬁx-m. We fix an isomorphism £" = Ox(—D). Note that D is an
effective divisor on X. We have the following composition of morphisms of line bundles

LU L =80 L% Ox(—D) & L s L.

The composite morphism induces a morphism ¢z py : H'(X, £) — H'(X, £). We denote
by
def . r
Yic,0) = dlmk(ﬂ Im(9(12),)))-
r>1

Write oy € Hom(I18%,Z/nZ) for the element corresponding to ([£], D) and Fyx for the
absolute Frobenius morphism on X. Then [S, Section 9] implies that 7,,1 is equal to
the dimension over k of the largest subspace of H'(X, L) on which Fx is a bijection.
Moreover, we have

Va1 = dimy(H'(X, L) @p k),

where (—)fX denotes the subspace of (—) on which Fx acts trivially. It is easy to check
that

Hl(X, ,C)FX ®]Fp k = ﬂ Im(QSZ[E}’D))

r>1

Then we obtain that ~(z),p) = 7Ya,,1. Moreover, we observer that D,, = D. Then we
obtain that

Y(£),D) = Yar,1 = V(az,D)-

12



Lemma 2.5. We maintain the notation introduced above. Suppose that X*® is smooth k.
Then we have

g9x, Zf([LLD) = ([OX]70)7
Vag.0y < dimp(HH(X, L)) = gx — 1, if s(D) =0,
gx +5(D) 1, ifs(D) > 1

Proof. The first inequality follows from the definition of generalized Hasse-Witt invariants.
The Riemann-Roch theorem implies that

dimg(H' (X, L)) = gx — 1 — deg(L) + dim,(H°(X, £))

1
—gy—1+ Edeg(D) + dimg (H(X, £)) = gx — 1 + s(D) + dim(H°(X, £)).
This completes the proof of the lemma. O

Next, let us explain the Raynaud-Tamagawa theta divisors. Let F} be the absolute

Frobenius morphism on Speck and Fx/, the relative Frobenius morphism X — X def

X Xp,p, k over k. We define
X € X %k,

and define a morphism
Fi X = X

over k to be FX/k dof Fx, koo Fx mo Fx.

Let ([£], D) € @X',n and L; the pull-back of £ by the natural morphism X; — X.
Note that £ and L£; are line bundles of degree —s(D). We put

B, = (Fi ). (0x(D))/Ox,, &p = By @ L.
Write rk(Ep) for the rank of £p. Then we have
X(Ep) = deg(det(Ep)) — (9x — 1)rk(Ep).

Moreover, x(€p) = 0 (cf. [T2, Lemma 2.3 (ii)]). In [R1], Raynaud investigated the
following property of the vector bundle £p on X.

Condition 2.6. We shall say that £p satisfies (%) if there exists a line bundle £} of degree
0 on X; such that

0 = min{dimy (H°(X;,Ep @ L})), dimy (H' (X4, Ep @ L))}
Let Jx, be the Jacobian variety of X;, and £; a universal line bundle on X; x Jx,. Let

pry, : Xy X Jx, = X; and PIy,, X x Jx, — Jx, be the natural projections. We denote
by F the coherent Ox,-module pry, (£p) ® L;, and by

v dim (HO(X, i k(y), F © k(y)) — dimg(H'(X, x k(y), F © k(y)))
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for each y € Jx,, where k(y) denotes the residue field of y. Note that since pr Iy, is flat,
XF is independent of y € Jx,. Write (—xx)" for max{0, —x#}. We denote by

Of, C Jx,
the closed subscheme of Jyx, defined by the (—yz)*-th Fitting ideal
Fitt e (R (bt )-(pr, (60) @ £1).

The definition of ©¢, is independent of the choice of £;. Moreover, for each line bundle
L" of degree 0 on X;, we have that [L"] € O, if and only if

0 = min{dimy, (H°(X;, Ep @ L"), dim,(H (X, Ep @ L))},

where [£”] denotes the point of Jx, corresponding to £L” (cf. [T2, Proposition 2.2 (i) (ii)]).

Suppose that £p satisfies (x). [R1, Proposition 1.8.1] implies that O, is algebraically
equivalent to rk(£p)0O, where © is the classical theta divisor (i.e., the image of X/* " in
Jx,). Then we have the following definition.

Definition 2.7. We shall say ©¢, C Jx, the Raynaud-Tamagawa theta divisor associated
to &p if Ep satisfies (x).

Remark 2.7.1. The definition of £p implies that the following natural exact sequence
holds
0= Ly = (Fx)«(Ox(D)) @ Ly = Ep — 0.

Let Z be a line bundle of degree 0 on X. Write Z; for the pull-back of Z by the natural
morphism X; — X. we obtain the following exact sequence

o HY(X, Ep O T) = H'(X, L@ T) 5™ H'(X,, (Fi ). (Ox (D) @ £ @ T)

— HY X, Ep QL) — ...
Note that we have that

HY X, L, T,) =2 H (X, LR T),
and that
HY(Xy, (F5)«(Ox (D)) @ L © 1) = H'(X,0x(D) @ (Fx)* (L @ I))
=~ HY(X,0x(D)® (LR T)®") = HY(X, LR T).

Moreover, it is easy to see that the homomorphism
HY(X,L®TI) = H(X,LRT)
induced by ¢,,e7, coincides with ¢(cen,py if [Z] € Pic(X)[n]. Thus, we obtain that if
V(ieez.oy = dimy (H'(X, L ® T))

for some line bundle [Z] € Pic(X)[n], then the Raynaud-Tamagawa theta divisor Og¢,
associated to &p exists (i.e., [Z;] € O¢,).

14



Let N be an arbitrary non-negative integer. We put

det | 0, if N =0,
) = { 3N-INLif N 0.

Then we have the following proposition.

Proposition 2.8. We maintain the notation introduced above. Suppose that the Raynaud-
Tamagawa theta divisor associated to Ep exists, and that

n=p' —1>C(gx)+ 1.

Then there exists a line bundle T of degree 0 on X such that [Z] # [Ox], that [Z%"] = [Ox],
and that y((ce1),py) = dimg(H (X, L ® 1)) (i.e., [T] & O, ).

Proof. By applying similar arguments to the arguments given in the proof of [T2, Corol-
lary 3.10], the proposition follows immediately from Remark 2.7.1. O]

The following fundamental theorem of theta divisors was proved by Raynaud and
Tamagawa.

Theorem 2.9. Suppose that s(D) € {0,1}. Then the Raynaud-Tamagawa theta divisor
associated to Ep exists (i.e., Ep satisfies (x)).

Remark 2.9.1. Theorem 2.9 was proved by Raynaud if s(D) = 0 (cf. [R1, Théoreme
4.1.1]), and by Tamagawa if s(D) < 1 (cf. [T2, Theorem 2.5]).

We may ask whether or not the Raynaud-Tamagawa theta divisor O¢,, exists in general
when X* is smooth over k.

Suppose that s(D) > 2. Does the Raynaud-Tamagawa theta divisor Og,, exist?

Note that since the existence of O¢, implies that £p is a semi-stable bundle, we obtain
that deg(D®) > deg(D) holds for each i € {0,1,...,t—1} (cf. [T2, Lemma 2.15]). Then
we may consider the following problem:

Suppose that X* is smooth over k, that s(D) > 2, and that deg(D™) > deg(D)
holds for eachi € {0,1,...,t—1}. Does the Raynaud-Tamagawa theta divisor
Og¢,, exist?

In fact, the Raynaud-Tamagawa theta divisor O, associated to £&p does not exist in
general. Here, we have an example as follows. Suppose that p = 3. Let X = P},
Dx ={0,1,00, A}, where w ¢ {0, 1}, and

Then we have s(D) = 2. Let ([£], D) be an arbitrary element of ﬁxoyn. We see immedi-
ately that &p satisfies (x) if and only if the elliptic curve defined by the equation

v =x(r—1)(z— )

is ordinary. Thus, we cannot expect that O¢, exists in general. On the other hand, we
have the following open problem posed by Tamagawa (cf. [T2, Question 2.20]).
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Problem 2.10. Suppose that X* is a geometric generic pointed stable curve of type

(9x,nx) over k. Let ([L],D) be an arbitrary element of Pxe,,. Moreover, suppose that
deg(D®) > deg(D) holds for each i € {0,1,...,t — 1}. Does the Raynaud-Tamagawa
theta divisor Og,, associated to Ep exist?

In the next section, we solve Problem 2.10 under the assumption s(D) = ny — 1 (cf.
Corollary 3.10 below).

3 Maximum generalized Hasse-Witt invariants of cyclic
admissible coverings of component-generic pointed
stable curves

In this section, we discuss the maximum generalized Hasse-Witt invariants of cyclic ad-
missible coverings of a component-generic pointed stable curve. We maintain the notation
introduced in Section 2.2.

Lemma 3.1. Let D € (Z/nZ)~[Dx]° and o € Reviy™(X*) such that o # 0. Write
fY* = (Y, Dy) > X*

for the Galois multi-admissible covering over k with Galois group Z/nZ induced by «. For
each v € v(I'xe), f* induces a Galois multi-admissible covering

v X
over k with Galois group Z./nZ. Write &, for an element of Hom(II2,, Z /nZ) induced by

Xy
f;. Then we have

Viep) = max{y,p) | &' € Revp(X*®), o # 0}

_ { gx — 1, if Supp(D) = 0,
gx +s(D)—1, if Supp(D) # 0
if and only if
v, Zf a’u - O,
Y(@v,Dg,) = g — 1, if # 0, Supp(D&u)

9o +5(Dg,) =1, if &, #0, Supp(Dg,) #
where Supp(—) denotes the support of (—).

Proof. We will prove the lemma by induction on the cardinality #v(I'xe) of v(I'xe).
Suppose that #v(I'ys) = 1 (i.e., X* is irreducible, and X, is the normalization of X).
Then we have that Dy, | py = normy (D) and

normy * (
go = gx — #X.
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Moreover, since X* is smooth over k, we write ([Cs,], Ds,) € @}5;7” for the pair induced
by a,. First, we suppose that #Supp(D) < 1. Then the structures of maximal prime-to-p
quotients of admissible fundamental groups (cf. [V, Théoréme 2.2 (c¢)]) implies that f is
étale over Supp(D) if #Supp(D) < 1. Write A¢* C X8 for the subset of nodes over
which f is ramified and A" C X sing for the subset of nodes over which f is étale. Then
we have s(Dgz,) = s(D) + #A3.

On the other hand, we see immediately that

. v, if av =0,
dimy, (H'(X,, L&,)) = ¢ 90— 1, if &, # 0, Supp(Dz,) = 0,
g+ s(Dg,) — 1, if &, #0, Supp(Dgz,) # 0,

Write I'y. for the dual semi-graph of Y*. The natural k[u,]-submodule
H'(Tye,F,) ® k C H(Y,F,) @k
admits the following canonical decomposition
H'(Tg, Fp) @k = @ My, ().
JEZ/NT

Moreover, we observer that dim(Mr,..(1)) = #.45". Then we obtain that

| . | —1 if Supp(D) =
dimy.(H'(X,, La,)) + dimg(Mp,, (1)) = { ii + s&D) —1, ;f giigEDg £ g))

Since Ya,p) = V(i£a,),0s,) + dimg(Mp,, (1)) and #X50E = H AT + # 4", we have that

C(gx—1, if Supp(D) = 0,

if and only if v@,,ps,) = V(cs,1.05,) = dimy(H 1()?1}, Lz,)). This completes the proof of
the lemma when #v(I'y) = 1.

Suppose m < #u(Tyxe) > 2. Let vy € v(I'yxe) be a vertex such that T'ye \ {vg, e"x* (vo)}
is connected (note that it is easy to see that such vy exists). Write X for the topological
closure of X \ X,, in X and X, for X,,. Note that X, is connected. We define a pointed

stable curve
Xz. = ()(,“_D)(Z déf (XZ M DX) U (Xl N XQ))7 Z € {172}7

over k. Then f* induces a Galois multi-admissible covering
[Py = X7, e {l1,2],
over k with Galois group Z/nZ. Moreover, we denote by
a; € Hom(Hf}”E_.,Z/nZ), i€ {1,2},

an element induced by f?, where IIxs denotes the admissible fundamental group of X;.
Write A%y, € X1 N X, for the subset of nodes over which f is ramified and A5y, C
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X1 N X, for the subset of nodes over which f is étale. Note that # Ay, + # A5 x, =
#(X1 N X,). By induction, we obtain that, for each i € {1, 2},

9x;, if Q; = Oa
VonDay) <4 9x; — 1, if a; # 0, Supp(D.,) = 0,
9x; t S<Da¢) -1, if o 7& 0, Supp<Dai) 7& @7

where gx, denotes the genus of X;. Note that the definition of admissible coverings implies
that s(Dq,) + 5(Da,) = s(D) + # A%,

On the other hand, the natural k[u,]-modules H'(T'y+,F,) ® k and H'(I'ys,F,) ® k,
i € {1,2}, admit the following canonical decomposition

H'(Tys,F)®k= € Mr,.(j)
JEL/NL

and
Hl(F)/i-,IFp)@k: @ MFYi'(j)’ 26{172}7

JEZ/NL
respectively, where I'ye denotes the dual semi-graph of Y;*. We put

dimg(Mr, o, (1)) < dimy(Mr,.o (1)) = dime(Mr,.,) = dimy (M, ).

Then we see immediately that dimy(Mry ., (1)) = #A5 nx,, and that
V(@.D) = V(a1,Day) T Va2, Day) + dimg(Mry . (1))

< { 9x, +gX2 +#(X1 mXZ) _2:gX - 17 if Supp(D) =
gx, +3<D0¢1> +gX2 +S(Da2) + # )glth2 —2= gx + S<D) - 17 if Supp(D) 7é

Thus, we have that

_fax-1L, if Supp(D) =
T@b) = gy +s(D) — 1, if Supp(D) #

if and only if, for each i € {1, 2},

0.
0

9x;, if a; =0,
’Y(ai,Dai) = ax; — 17 if Q; 7é 0 Supp( ) -
gXi+S(Dai)_17 if O{Z%O Supp( ) 7é
m

By induction, the lemma follows from the lemma when #v(I'xs) = m —1 and #v(['x.) =
1. This completes the proof of the lemma. m

0,
0.

Definition 3.2. We put
Txo =4 max;en{Y(a,n.) | @ € Hom(II4%, Z/nZ) and o # 0}

= MAXmeN st (mp)=11V (Do) | @ € Hom (I3, Z/mZ) and « # 0}.

We shall say 753* the mazimum of generalized Hasse- Witt invariant of prime-to-p cyclic
admissible coverings of X°.
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Remark 3.2.1. Note that Lemma 3.1 implies that

max - gX_17 ian:()v
X0 = gy +nyx —2, ifny £0.

Lemma 3.3. Let D € (Z/nZ)~[Dx]° and
t—1
OI‘dx(D) = de7jpj, S DX
=0

the p-adic expansion. Suppose that s(D) = nx — 1 (i.e., deg(D) = (nx — 1)n). Then
deg(DW) > deg(D) holds for each i € {0,1,...,t — 1} if and only if

Y dey=(nx-1)(p—1), j€{0,... .t —1}.

z€Dx

Proof. The “if” part of the lemma is trivial. We only prove the “only if” part of the lemma.
Let ord,(D) © 4, x € Dy. Since deg(D®) > deg(D) holds for each i € {0,...,t — 1}
and n|deg(D®), we have

deg(DW) = Y~ (ord, (D)@ = > dl) = (nx — 1)n,

z€Dx z€Dx

where d%) & (ord,(D))®. Moreover, for each i € {0,...,t — 1}, we have

Y —d,; 1. p—1 1.
T Qi g P2y, = —a® 4+ L,
p p p p

A = d,p" " +

Thus, we obtain that

(nx—1n = 3 A =2 3 a2 Y g

€D, z€Dx z€D,

1

p xEDz

This means that

Y dyi=(nx-1)(p-1), i€{0,....t—1}.

x€Dx

We complete the proof of the lemma. Il

Remark 3.3.1. Note that there exists D € (Z/nZ)~[Dx]° such that s(D) = (nx — 1)n
if and only if n > nx — 1. Lemma 3.3 implies that, if n > nx — 1, then there exists
a € Hom(I13, Z/nZ) such that a # 0, that s(D,) = nx — 1, and that

deg(DY) > deg(D,), i € {0,1,...,t —1}.
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Lemma 3.4. We maintain the notation introduced in Lemma 3.3. We put Dx o
{z1,..., 20y } and put
!

nx
ap 141 déf [ Z da?r] bl J+1 dﬁf [Z d:r:r]a e {2a ceesNx — 2}7

r=l+1 r=1

where [(—)] denotes the integer which is equal to the image of (=) in Z/nZ when we
identify {0, ...,n — 1} with Z/nZ naturally. Then, for each i € {0,...,t — 1}, we have

d’)—i—d’)—l—aQé—Qn

bfgg 2nx—1 + d:an 1 + de”X = 2”7
b +dD  +all) ., =2n, 1€ {2, nx — 2},

and

al(l+1+bll+1 n,l€{2,7nx_2}

Proof. Let 1 € {2,...,nx —2} and i € {0,...,t — 1}. The fourth equality follows imme-
diately from the definitions of a;;1; and b;;+1. Let us treat the third equality.
Let

-1

t—1 t—1
def i ; §) def i)
ll+1 = Z l+1,]p] bz d+1 = Zbl(,l)+1,jp]7 and dgc) = Zd;,)jp]? z € Dx,

§=0
be the p-adic expansions of agil) 15 bz( ‘l) 41, and dx , * € Dx, respectively. Lemma 3.3 implies
immediately that

nx l

al(l)Jrl,J - [ Z dfczm] bl(,zl)Jrl,j = [Z dffr),j]a JE€ {07 st — 1}~

r=I+1 r=1

Moreover, we have
bl(l)+1j + dle)_,_lj + al(—gll—l—Q,] - 2(]9 - 1)7 j € {07 s >t - 1}

This means that

+ al(21,1+2 = 2n.

By applying similar arguments to the arguments given in the proof above, the first
and the second equality hold. This completes the proof of the lemma.

Lemma 3.5. Let D € (Z/nZ)~[Dx]° and a € Revi™(X*®) such that a # 0, that s(D) =
nx — 1 if nx # 0, and that

deg(D®W) > deg(D), i € {0,1,...,t —1}.

(2)
by + dS)

Ti+1

Moreover, suppose that X® = (X, Dy o {1,..., 20 }) s a component-generic pointed

stable curve over k, and that X* is smooth over k, and that (gx,nx) = (0,3). Then the
Raynaud-Tamagawa theta divisor Og, associated to Ep exists. Moreover, we have

Y(e.p) = dimy(H' (X, £))
for each pair ([L], D) € ﬁxm
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Proof. This follows immediately from [B, Corollary 6.8]. O
Remark 3.5.1. Note that, if nx = 3, then we have s(D) € {0, 1, 2}.

Let R be a discrete valuation ring with algebraically closed residue field kg, Kr the
quotient field of R, and K g an algebraic closure of K. Suppose that k C Kg. Let

X* = (X, Dx ¥ {er,... en})

be a pointed stable curve of type (gx,nx) over R. We shall write Xy = (&, Dx, o

def def
{ents-- s ennx}), X = (X, Dy, = {€5.1,-- ., e5ny}), Xe = (Xs, D, = {€s1,-- s €smy})

for the generic fiber X* xz Kg of X*, the geometric generic fiber X* x Kz of X*, and
the special fiber X* X kr of X'®, respectively. Write H;%o and IIye for the admissible
fundamental groups of A7 and X7, respectively. Since the admissible fundamental groups
do not depend on the base fields, H/\%- is naturally isomorphic to IIx.. Moreover, we
shall say that X*® admits a (DEG) if the following conditions hold, where “(DEG)” means
“degeneration”:

(i) The geometric generic fiber A of A is K p-isomorphic to X*® x, K. Then
without loss of generality, we may identify e;,, r € {1,...,nx}, with z, x; K i via this
isomorphism.

(ii) A is a component-generic pointed stable curve over kg.

(iii) If ny < 1 and #X5"8 = 0 (i.e., X* is smooth over kr), we have X* — Spec R is

isotrivial (i.e., the image of the natural morphism Spec R — M — M de-
-— def = —

. . : . lef
termined by X'* — Spec R is a point, where Mg, o kp = Mgy nyz ¥Xp, kr and Mgy o kp

gx,mx,kr gxmx,kr

denotes the coarse moduli space of My .y kp)-
(iv) If (9x,nx) = (1,1) and #X*"8 = 1, we have that X* — Spec R is isotrivial.
(v) If nx <1 and #X578 > 2 hold, we have

X =(Jnuc

TeT

such that the following conditions hold: (a) .7 is a set of singular pointed stable curves
of type (1,0) over kg such that #.7 = #X*"8. (b) C is an empty set when nx = 0,
#Xsme — 2 and gx = #.7; otherwise, C is a geometric generic pointed stable curve
of type (gx — #7,0) over kg. (c) If C is empty, we have T o {T1,T>} such that
#(T'NTy) = 1. (d) If C is not empty, we have that 7" NT" # () if and only if 77 = T”
for each 7", 7" € 7, that #(T'NC) =1 for each T' € .7, and that Dy, C C.
(vi) If nx = 2, we have
X =(Jnucur
TeT

such that the following conditions hold: (a) .7 is a set of singular pointed stable curves
of type (1,0) over kg such that, for each 7,7 € 7, T NT' # ) if and only if T = T",
and that #.7 = #X518_ (b) C is either an empty set when gx — #.7 = 0 or a geometric
generic pointed stable curve of type (gx — #7,0) over kg when gx — #7 > 1. (¢) P is
kg-isomorphic to P . (d) If C'is empty, we have #(PNT) = 1 for each T' € .7. (e) If
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C' is not empty, we have that #(C' NT) = 1, that #(C N P) =1, and that PNT = for
eachT € 7. (f) Dy, C P.

(vii) If nx > 3, we have

X =(J T)uclu(nXU_ P,)
TeT v=2

such that the following conditions hold: (a) .7 is a set of singular pointed stable curves
of type (1,0) over kg such that, for each T,7" € 7, TNT" # () if and only if "= T", and
that #£.7 = #X8. (b) (] is either an empty set when gx — #.7 = 0 or a geometric
generic pointed stable curve of type (9x — #7,0) over kg when gx — #7 > 1. (¢) P,,
v € {2,...,nx — 1}, is kg-isomorphic to P} . (d) If Cy is empty, we have #(P, NT) =1
and P,NT = () for each T' € 7 and each v € {3,...,nx — 1}. (e) If C} is not empty,
we have #(C1NT) =1, #(Ci1 N P) = 1, and P,NT = ) for each T € 7 and each
ve{2,...,nx —1}. (f) Foreachv € {2,...,nx — 2}, #(P,NP,41) =1l and P,N P, =)
when v & {v — 1L,v,v+1}. (g) If nx = 3, we have Dy, N P» = {es1,€59,€53}. (i)
If ny =4, we have Dy, N Py = {es51,€52} and Dy, N Py = {es3,€54}. (j) If nx > 5,
we have Dy, N Py = {es1.€s52}, Da, N Poy—1 = {€sny—1:€smy > and Dy, N P, = {5},
v E {3,...,nx—2}.

Proposition 3.6. Let D € (Z/nZ)~[Dx]° and o € Reviy™(X*®) such that a # 0, that
s(D)=nx —1 if nx #0, and that

deg(D®W) > deg(D), i € {0,1,...,t —1}.
Moreover, suppose that X® = (X, Dx def {z1,..., 20y }) is a component-generic pointed
stable curve over k, and that X* is irreducible. Then we have that y,p) attains the
maximum

,ymax _ gx — 17 Zf nx = Oa
Xe gx+nx—2, z’an;éO.

Proof. Let f*:Y* = (Y, Dy) — X* be the Galois multi-admissible covering over k with
Galois group Z/nZ induced by «. We note that, to verify the proposition, we only need
to prove the proposition in the case where Y* is connected. Then we may assume that Y*
is connected.

Since X* is a component-generic pointed stable curve, X* admits a (DEG). Further-
more, we write Q5 (resp. Q) for the effective divisor on A% (resp. &) induced by D and

adm

a7 € Rev (A7) for the element induced by . Then we have

V(e,D) = V(e Qm)-

Suppose that X* satisfies (DEG)-(iii). If nx < 1 and gx = 1, then the proposition
is trivial. If nxy < 1 and gx > 2, then the proposition follows immediately from [N,
Proposition 4] (or [Z, Théoreme 3.1]).

Suppose that X* satisfies (DEG)-(iv). Then we see immediately that Y is a pointed
stable curve of type (1,n) such that one of the following conditions holds: (1) #Y®"¢ =1
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and the normalization of Y is a rational curve; (2) #Y*" = n and the normalization of
each irreducible component of Y is a rational curve. Thus, we obtain vy, p) = 1.

Suppose that X* satisfies (DEG)-(vii). Moreover, we suppose that C; # (), and that
ny > 5. For each v € {2,...,nx — 2}, we write

Yvw+1 and Zyv+1

for the inverse image of P, N P,,; of the natural closed immersion P, — X and the
inverse image of P, N P, of the natural closed immersion P,,; — X, respectively. We
define

P} = (P, Dp, o {es1, €52, 923} U (C1 N P)),

o _ def
nx—1 — (PnX*]-’ DPnX—l - {ZnX*ZnX*l’ Csmnx—1; es,nx})’

and .

PU. = (Pm DPv d:e {val,va es,myv,v+1})> (NS {37 cee,Nx — 2}7
to be smooth pointed stable curves of types (0,4), (0,3), and (0, 3) over kg, respectively.
Moreover, we define

Ci = (01, Do, & (CinP)U (| T)n )
TeT

and

T =(T,Dr € {TNnC}), Te T,

to be smooth pointed stable curves of types (gx,1+#.7) and (1, 1) over kg, respectively.
Note that Ucf =00, — 9x- Let

fﬁ. déf * XkKR : yﬁ. = (yﬁ,D%) déf Y* XkKR — Xﬁ.

be the Galois admissible covering over K p with Galois group Z/nZ induced by f*, and
Hy% C1II pe the admissible fundamental group of yg. By the specialization theorem of
maximal prime-to-p quotients of admissible fundamental groups (cf. [V, Théoreme 2.2
(¢)]), we have

sp’j;; : Hf\;ﬁ. = Hgés.,
where (—)P" denotes the maximal prime-to-p quotient of (—). Then we obtain a normal
open subgroup I} ,5. o spg(ﬂg;%) - H’;és.. Write Ilye C Ilys for the inverse image of 11§ ,5.

of the natural surjection IIys — Hgé.. Then IIye determines a Galois admissible covering

fe Ve = Vs, Dy,) = &S

adm

over kg with Galois group Z/nZ. Write a, € Revy™(A?) for an element induced by fs.
The structure of the maximal prime-to-p quotients of admissible fundamental groups

implies that f is étale over ((Jrc, 1) NC1. Then we obtain that f; is étale over C1 N Ps.
Thus, fs is étale over D¢, . Let Y, o Y P, ve{2,...,nx —1}. We put
o def def ,_
Y= (Y, Dy, = f71(Dp,)), ved{2,...,nx — 1}
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Then f? induces a Galois multi-admissible covering
fo:Yr =P ved{2,...,nx — 1},

over kr with Galois group Z/nZ. We maintain the notation introduced in Lemma 3.4
and define the following effective divisors

def
Q2 = dy €51 + dyy€59 + 2,392 3,
def
an—l = an—2,nx—12nX—2,nX—1 + dan_1€s,nX—1 + dxnx €snxs
and
def
Qv = bvfl,vz'ufl,v + dxves,v + Ay pt1Yvot+1, U E {37 e, — 2}7
on Py, P, _1,and P,, v € {3,...,nx — 2}, respectively. Since f; is étale over C; N Py, we

see immediately that f2, v € {2,...,nx—1}, induces a pair ([£,], Q) € ﬁpﬂ-,n. Moreover,
the kg[u,]-module HE (Y,,F,) ® kr admits the following canonical decomposition

Hy (Y, F) @ ke = @ My, (),

JEZ/NZ

where ¢ € p, acts on My, (j) as the ¢/-multiplication. Lemma 3.4 implies that deg(Qq(f)) =
deg(@,) =2n,i € {0,...,t —1}. Then Lemma 3.5 implies that

V(eo),0u) = dimy, (My, (1)) = dimy,, (H'(P,, £,)) = 1.

Let 7, & f ~H(C)) and 7o(Z,) the set of connected components of Z;. Then f? induces

S
a Galois étale covering (not necessarily connected)

def

fél : Zl. = (Zl7DZ1 = fs_l(Dol)) — Cl.

over kg with Galois group Z/nZ. Moreover, f¢ induces an element ac, € Revi™(C?).
Suppose that #m(Z1) # n. Then we have ag, # 0. The kg[u,]-module HZ (Z,F,) ® kg
admits the following canonical decomposition

H(Z1,Fy) @ kp = @D Mz ()),

JEZ/NZ

where ¢ € p,, acts on My, (j) as the ¢?-multiplication. [N, Proposition 4] (or [Z, Théoréme
3.1]) implies that

Yiae,0) = dimg, (Mz,(1)) = gx —#7 —1=gc, — 1,

where g¢, denotes the genus of C. Suppose that #mo(Z;) = n. Then we have ag, = 0.
Since (] is ordinary, we obtain immediately that

Vac, 0 = 0(C1) = gx — #T = gc, -
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Let Vp & f7YT), T € 7, and normy : T — T the normalization morphism. Then
f$ induces a Galois multi-admissible covering

def

f1: Ve = (Vp, Dy, = f7H(Dr)) = T*

over kr with Galois group Z/nZ. Since f; is étale over Dy, we have that the normalization
of each irreducible component of V7 is a rational curve over kr. We put

T (T, Dz o normy'(Dr)).
Then f7 induces a Galois multi-admissible covering
fo:VE= (Vs Dy) = T

over kg, where Vz is the normalization of V7. Write az € Revy (f‘) for an element induced
by f% Then we obtain that v 0 = 1 if V7 is not connected, and that y(, 0 = 0 if Vr
is connected. Thus, Lemma 3.1 implies that

V(es,Qs) — 9X +nx — 2.

On the other hand, the kg[u,]-modules H}, (Y7, F,) ® kg and HE (Y5, F,) ® kr admit
the following canonical decompositions

HY (V. Fy) @ kr= €5 My, (j)

JEZ/NZ

and

Hgt(ySan) ® kp = @ Mys(j)7

JEZ/NZ
respectively. Moreover, we have an injection as kg[u,]-modules

Hélt(y&Fp) ® kR — Hélt(yﬁ’ Fp) ® kR

induced by the specialization map Hy% —» Ilye. Thus, we have
gx +nx —2< V(es,Qs) = dimk‘R(Mys(l)) < Vewm,Qn) = dimkR<Myﬁ(1))‘

We write ./'?ﬁ for the normalization of A7 and norm : ./'?ﬁ — A5 for the normalization
morphism. We define

.5(%' = ()?ﬁ, Dz, o norm ™' (Dyx,))

to be a pointed stable curve of type (g95,nx) over Kg, where g5z = gx — #Xﬁsing. Let
@ﬁ def norm*(Qy) and a5 € Hom(l‘[}b,, Z/nZ) the element induced by « via the natural
nm

(outer) injection II PR ITxs. Note that a7 € Rev%c;m()?ﬁ‘). Then we have
’Y(aﬁ7éﬁ) S g)? + nx — 2.
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Since Y(ay.qq) = Vg om + HX5M8 we obtain that V(og@y) < gx +nx — 2. Then we obtain
that
VowQq) = gx +nx — 2.

This completes the proof of the proposition when X* satisfies (DEG)-(vii), C; # ), and
nx > 5. By applying similar arguments to the arguments given in the proof above, one
can prove the proposition immediately when X* satisfies (DEG)-(vii) and either Cy = {)
or nxy < 4 holds.

Moreover, similar arguments to the arguments given in the proof above imply the
proposition holds when X* satisfies either (DEG)-(v) or (DEG)-(vi). We complete the
proof of the proposition. O

Definition 3.7. Let W* = (W, Dy/) be a pointed stable curve of type (gw,nw) over k

and I'ye the dual semi-graph of W*.

(i) Let T o (v(T), eP(T) U e(T), {¢] }eceor(ryueciry) be a connected semi-graph such

that the following conditions hold: (a) T\ e®(T) is a tree. (b) v(I') € v(I'we.). (c)
e?(T') C e (Tyy) and eP(T) C e®(T'xs). Moreover, we have (' (e) = (I'w*(e) if e € ().
(d) e°P(Ty) C e°(T'). Moreover, we have ! (e)Nv(T) = CIw* (e)Nv(Tys) if e € eP(Tyye).
(e) Let e € €°P(I") \ e°?(I'yys ). Then e satisfies one of the following conditions:

(1) There exists ¢ € e (I'ye) \ eP(Twe) such that v'we(e’) No(T) # 0,
oI () N (v(Tye) \ v(T)) # 0, and v" () Nw(T) = v'w* (') Nv(T"). Moreover,
we have (!'(e) = {v"(e) Nv(T), {v(T)}}.

(2) There exists €/ € e (') \ e (Tyye) such that v'we* (e/) C v(T') and v''(e)N
vfwe (e’) # 0. Moreover, we have (! (e) = {v"(e) Nv'w*(e), {v(T)}}.

By the definition of I', we obtain a natural morphism of semi-graphs
¢r: I — Dye

defined as follows: v — v,v € v(T), e e,e € e ([) UeP(Tye), e — €',e € eP(T) \
e°P(T'w+). We shall say that I is a quasi-tree associated Dy if the map of €' (v) — el'w* (v),
v € v(I'), induced by ¢r is a surjection.

Let E; C e(Twe.), 7 € {1,2}, be the subset of closed edges whose elements are
the images of open edges of I" satisfied condition (e)-(j) above. We define a semi-graph

Im as follows: (a) v(I'™) € o(I); (b) e(I'™) € gp(e(I)) U Ey; (c) eP(I'™) < By

(d) () = (T(¢r'(e) Nu(T) for each e € e(T™); (e) ¢I™(e) = {¢F(or'(e)) N
v(D), {v(I™)}} for each e € eP(I"™). We shall say that I"™ is the image of the morphism
¢r. Then we obtain a sub-semi-stable curve Wpim of W whose irreducible components
are the irreducible components corresponding to v(I'), and whose set of nodes are the set
of nodes corresponding to ¢r(e(T")) U E,. Moreover, we obtain a set of marked points
D) of Wrin whose elements are the closed points of the inverse images of E; via the
natural closed immersion Wpim < W. Then we define a pointed stable curve associated
to '™ over k to be
WF.im - (Wl'*im, DW im)‘

r

We see immediately that the dual semi-graph of W2, is isomorphic to I'"™. Let normp :
Wr — Wrim be the morphism which is an isomorphism over Wrim \ {we}eep, and is a
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normalization over {w, }cecp,, where w, denotes the closed point of W corresponding to e.
We define a pointed stable curve over k associated to I' to be

W2 = (Xr, Dx, et 1r1orm;1(DWFim U {We}eer,))-

Then we see immediately that the dual semi-graph of W} is isomorphic to I'.
(ii) We shall say that
I'p

w

is a minimal quasi-tree associated to Dy, if the following conditions hold: (a) I'p,, is a
quasi-tree associated to Dy . (b) Let I' be an arbitrary quasi-tree associated to Dy, such
that I' C I'p,,; then I' = I'p,,,. Note that the definition of I'p,, implies that I'p,, = 0 if

Lemma 3.8. Let W* = (W, Dy) be a pointed stable curve of type (gw,nw) over k.
Suppose that ny # 0. Then the set of minimal quasi-trees associated to Dy, is not empty.

Proof. The lemma follows immediately from the definition of minimal quasi-trees associ-
ated to Dy . O

Proposition 3.9. (i) Let D € (Z/nZ)~[Dx]° and o € Reviy™(X*) such that a # 0, that
s(D) =nx —1ifnx # 0, and that

deg(DW) > deg(D), i € {0,1,...,t —1}.

Moreover, suppose that X* = (X, Dx) is a component-generic pointed stable curve over
k, and that either I'xe. \elp(FX.) 18 a tree when nx = 0 or I'xe is a minimal quasi-tree
associated to Dx when nx # 0. Then we have that v(,,py attains the mazimum

max __ gx — ]-7 anX - Oa
,YX. o gX—I—nX—Z, anx%o

(ii) Let D € (Z/nZ)~[Dx]° such that s(D) =nx — 1 if nx # 0, and that
deg(DW) > deg(D), i € {0,1,...,t —1}.

Moreover, suppose that X* = (X, Dx) is a component-generic pointed stable curve over k.
Then there exists an element 3 € Revis™(X®) such that 3 # 0, and that the generalized
Hasse- Witt invariant -y p) attains the mazimum

max __ gX_]-a ian:Oa
TX0 T gx +nx -2, if nx # 0.

Proof. (i) Let f*:Y* = (Y, Dy) — X* be a Galois multi-admissible covering over k with
Galois group Z/nZ induced by «. To verify (i), we only need to prove (i) in the case
where Y* is connected. Then we may assume that Y*® is connected.

Suppose that nx = 0. We see immediately that f is étale over X*™8\ {z.}ccetn(rya)-
Then (i) follows from Lemma 3.1 and Proposition 3.6.
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Suppose that ny > 0. Let v € v(I'ys) and 7o(X \ X,) the set of connected components
of X \ X,, where X \ X, denotes the topological closure of X \ X, in X. We put

D, = (DxnX,)u( |J (CnX,).
Cewo(m)

Note that since we assume that I"x. is a quasi-tree associated to Dy, we have #(C'NX,) =

1 for each C' € mo(X \ X,). Let z¢ “on Xy, C € mp(X \ X,), be the unique closed

point and Q, € (Z/nZ)~[D,]° an effective divisor on X, defined as follows:

ord,(Q,) o ord,(D), x € Dx N X,,

ord, (Q.) o [ Z ord.(D)], C € m(X \ X,),

ceDxNC

where [(—)] denotes the integer which is equal to the image of (—) in Z/nZ when we iden-
tify {0,...,n—1} with Z/nZ naturally. By applying similar arguments to the arguments
given in the proof of Lemma 3.4, we see immediately that

deg(Q,) = (#D, — 1)n and deg(QY) > deg(Q,), i € {0,...,t —1}.
On the other hand, let

X; = (X,, Dy, def D,), v € v(l'xs),

be a pointed stable curve of type (gx,,nx,) over k. Then f* induces a Galois multi-
admissible covering
£ Y — X5, vev(lye),

over k with Galois group Z/nZ. Write «, € Revzim(X; ) for the element induced by f3.
If a, = 0, since X*® is component-generic, we have v,.0,) = gx,- Then Proposition 3.6
implies that

9x,, if Q,y = O,
’Y(QU:QU) - 9x, — 17 if Ay 7é 07 SUPP(Qv) = @7
gx, + S(Qv) - 2: if Qy 7é O’ Supp(@v) ?é @

Thus, Lemma 3.1 implies that

_ _max __ gX_17 ian:O’
NeD) =X = gy +ny —2, if ny £ 0.

This completes the proof of (i).

(ii) Suppose that ny < 1. Then D = 0. Let 8 € Revi™(X*) such that 3 # 0 and
the Galois multi-admissible covering induced by § is étale. By applying [N, Proposition
4] (or [Z, Théoréme 3.1]), we have

Y(B,0) = Vxe = gx — L.
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Then we may assume that nyxy > 2.

Let T T Dy be a minimal quasi-tree associated to Dx, I'™ the image of the natural

morphism ¢r : [' = I'xe, and
X7 = (Xr, Dxp.), Xfim = (Xpim, DXFim)

the pointed stable curves over k associated to I', I'™, respectively. Note that D is also
an effective divisor on Xpim.

Write Dr for normj(D) (cf. Definition 3.7 for the definition of normr). Let ar €
Revi™(X}) be an arbitrary element such that ar # 0. Then (i) implies that Y(a,,py) =
7??" = gx, +nx — 2, where gy, denotes the genus of Xr. We denote by

gr: Zp — X7

the Galois multi-admissible covering over k with Galois group Z/nZ induced by ar. By
gluing Zp along gr' (Dx,. \norm;l(DXFim)) that is compatible with the gluing of X} that
gives rise to X, we obtain a pointed stable curve Zf;, over k. Moreover, gp induces a
Galois multi-admissible covering

. . ° .
gFim . Z]_“lm — Xl“im

over k with Galois group Z/nZ. Write 11 Xen for the admissible fundamental group of X2,

and arin for an element of Hom(II§. ,Z/nZ) induced by gf... We put Drin “p
l"lm

Qpim *

Then Lemma 3.1 implies that

max

’y(al—‘im 7Dpim) = ’YX(

Tim

= gXFim +nx — 2a

where gx . denotes the genus of Xpim.

On the other hand, we write my(X \ Xpim) for the set of connected components of
X \ Xpim, where X \ Xpim denotes the topological closure of X \ Xpim in X. We define
the following pointed stable curve

C* = (C, D¢ dof CﬂXFim>, Ce WO(X\Xpim),

over k. Note that since X*® is component-generic, we have that C* is also component-
generic. Then o¢ce is equal to the genus of C*°.
Let C' € mo(X \ Xrim). We put

2z ] o

1€EZ/nL
where C? is a copy of C'*. Then we obtain a Galois multi-admissible covering
9o Lo — C*

over k with Galois group Z/nZ, where the restriction morphism g¢&|c, is an identity,
and the Galois action is j(C;) = Cyy; for each i,j € Z/nZ. By gluing 27, and
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{Zé}Cewo(ix\Xrim) along g (Xpim N <UCG7T0(X\XFim) C)) and {gg"(Xpum N C)}Cem(ix\Xrim)
that is compatible with the gluing of { X} U {C"}Cem(m) that gives rise to X*, we
obtain a Galois multi-admissible covering

g:7°—=X*
over k with Galois group Z/nZ. Moreover, we write 3 € Reviy™(X*) for an element
induced by ¢g*. By applying Lemma 3.1, we see immediately that
Y.0) = Vxe =9gx +nx —2.
Then we complete the proof of (ii). O

Remark 3.9.1. Proposition 3.9 (i) does not hold in general. For example, we suppose
that p >> 0, that ny = 0, and that there exist vy, vo € v(I'ys) such that #(X,,NX,,) > 3.
Then one can construct a Galois admissible covering with Galois group Z/nZ such that
(i) of the theorem does not hold.

Corollary 3.10. Let D € (Z/nZ)~[Dx]|® such that s(D) =nx — 1 if nx # 0, and that

deg(D®) > deg(D), i € {0,1,...,t — 1}.
Moreover, suppose that X*® = (X, Dy def {z1,..., 20y }) is a component-generic pointed
stable curve over k, and that X* is smooth over k. Then the Raynaud-Tamagawa theta
divisor O, associated to Ep exists.

Proof. Since X*® is smooth over k, the corollary follows immediately from Proposition 3.9
and Remark 2.7.1. O

The main result of the present section is as follows.

Theorem 3.11. Let m € N be an arbitrary positive natural number prime to p and
D € (Z/mZ)~[Dx]°. Lett € N be a positive natural number such that p* = 1 in (Z/mZ)*.
Write D' for the divisor m'D € (Z/nZ)~[Dx|® when we identify Z/mZ with the unique
subgroup of Z/nZ of order m, where n o pt — 1 and m’ o n/m. Suppose that X® =
(X, Dx) is a component-generic pointed stable curve over k.

(i) Let o € Revis™(X*®) be an arbitrary element such that o # 0. Suppose that either
Cxe \ elp(FX-) 18 a tree when nxy = 0 or I'xe is a minimal quasi-tree associated to Dx
when nx # 0. Then we have that v, p) attains the mazimum

max __ gX_]-u Z'an:O,
Txe = gx +nx —2, ifnx #0

if and only iof

|0, if nxy =0,
S(D)_{nx—l, ifni;é()

and deg((D)9) > deg(D’), i € {0,1,...,t —1}.
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(ii) There exists an element B € Reviy™(X*®) such that 8 # 0, and that the generalized
Hasse-Witt invariant -y p) attains the mazimum

max __ gX_l, ian:O,
TXC T gxAnx —2, ifng #£0

if and only if

o O, anX :O,
S(D) - { nx — 1, Zf?’LX 7£ O,

and deg((D")9) > deg(D"), i € {0,1,...,t —1}.

Proof. (i) Write o/ € Reviy™(X*) for the element induced by a. Then we see immediately
that v(a,p) = Y(«,p). The “only if” part of (i) follows immediately from Lemma 3.1 and
[T2, Lemma 2.15]. Moreover, the “if” part of (i) follows immediately from Proposition
3.9 (i).

(ii) Write 8 € Revis™(X*®) for the element induced by 3. Then we see immediately
that v(.,p) = Y(s,p). The “only if” part of (ii) follows immediately from Lemma 3.1 and
[T2, Lemma 2.15]. Moreover, the proof of Proposition 3.9 (ii) implies that the “if” part
of (ii) holds. O

Definition 3.12. Let W* = (W, Dy) be a pointed stable curve of type (gw,nw) over
an algebraically closed field of characteristic p > 0. Let m € N be an arbitrary positive
natural number prime to p. We shall say that W* is (m,ny)-ordinary if, for each Q €
(Z/mZ)~[Dw]°, the following conditions hold: (i) @ = 0 if ny = 0, and deg(Q) =
(nw — 1)m if ny # 0. (ii) There exists a positive natural number d € N such that p? = 1
in (Z/mZ)*. (iii) Write Q' for the divisor m'Q € (Z/(p* — 1)Z)~[Dw]® when we identify
Z/mZ with the unique subgroup of Z/(p? — 1)Z of order m, where m/’ = (p? —1)/m.
(iv) deg((Q)W) > deg(Q’"), i € {0,1,...,d—1}. (v) For each w € Rev%dm(W‘) such that
w # 0, we have that v, ¢ attains the maximum

max __ aw — 17 if nw = 07
Twe = gw+nw—2, 1an7é0

Note that, if ny = 0, then the definition of (m, ny )-ordinary coincides with the definition
of m-ordinary defined by Nakajima (cf. [N, §4]).

Corollary 3.13. Let F, be an algebraic closure of F, and Mg, . (resp. My, ny) the

. . - def —— o def
coarse moduli space of the moduli stack Mgy ny = Mgy nyz Xw, Fy (resp. Mgy ny =

ng,nX,Z XFp FP)
(i) Let m be a positive natural number prime to p. We denote by

U(m,nx) g M

gx,mx

the subset of M

agx,nx
stable curves. Then

consisting of all points which correspond to (m,ny)-ordinary pointed

U(m,nx) N M,

gx,mx
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15 a non-empty open subset.
(i1) Suppose that nx < 1. We have that

Mg(,nx N ( ﬂ (U(mvnx) A ngmx)) =0,

meN s.t. (m,p)=1

where Mg denotes the set of closed points of Mgy .

(#ii) Let q € ngmx be an arbitrary point. We denote by I1, the admissible fundamen-
tal group of a pointed stable curve corresponding to a geometric point over q. Note that the
isomorphism class of 11, as a profinite group does not depend on the choices of geometric
points over q. Suppose that nxy < 1. Let U C Mg, », be an arbitrary non-empty open
subset. Then there exist closed points qi,qs € MS such that 11, 2 11,,.

gx,mx

Proof. (i) By applying similar arguments to the arguments given in the proof of [N,
Theorem 2], (i) follows immediately from Theorem 3.11.

(ii) We maintain the notation introduced in Section 2.2. Suppose that k = Fp, and
that X* is a smooth pointed stable curve of type (gx,nx) over k. To verify (ii), we
only need to prove that, if nxy <1, X* is not (m,ny)-ordinary for some positive natural
number m € N prime to p.

Since nx < 1, we have that (Z/mZ)~[Dx|® = {0}. We denote by ©x the Raynaud-
Tamagawa divisor associated to By and by ©' an arbitrary irreducible component of O x.
Write J3 for the pull-back of the Jacobian Jx of X by the Frobenius Fy. If X* is (m, nx)-
ordinary for every positive natural number m prime to p, then we have

Jx{p't N Ox (k) € {01},

where 0 JL denotes the zero point of J¥, and Ji{p'} denotes the set of prime-to-p torsion
points of J% (k). Since dim(©’) > 0, we have

O'{pt E TP N O/ (k) C JX{p'} NOx(k)

is not dense in ©'.

On the other hand, since ©' is defined over k = FF,,, by applying a result of Anderson-
Indik (cf. [T3, §5]), we have that ©’ is a subvariety of a translate of a proper sub-abelian
varietry of Jk. But this contradict to a result of Raynaud (cf. [R2, Proposition 1.2.1])
which says that there exists an irreducible component ©' of ©x such that ©" is not
contained in a translate of a proper sub-abelian variety of J%. This completes the proof
of (ii).

(iii) Suppose that (iii) does not hold. Then there exists a closed point ¢’ € U such that
Ilgeen = I1,. Let ¢ be an arbitrary closed point of U and ¢%" the generic point of M, ;. .
Then there exist a discrete valuation ring R and a morphism cg : Spec R — M, ,,, such
that cr(ng) = ¢%" and cr(sg) = ¢, where ng is the generic point of Spec R and sg is
the closed point of Spec R. By replacing R by a finite extension of R, we have a smooth

pointed stable curve
X.
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of type (gx,nx) over Spec R determined by cg. Moreover, we obtain a specialization map
SPR - Hqgen — Hq.

On the other hand, (ii) implies that there exist a positive integer m prime to p and
a connected Galois étale covering ) — X over R with Galois group Z/nZ such that the
geometric generic fiber of ) is ordinary and the geometric special fiber of ) is not ordinary.
This means that spg is not an isomorphism. This is a contradiction. We complete the
proof of (iii). O

Remark 3.13.1. If ny < 1, then Corollary 3.13 (i) was proved by Nakajima (cf. Theorem
2). Then Corollary 3.13 (i) is a generalized version of [N, Theorem 2] to the case of
admissible coverings of smooth pointed stable curves. Moreover, Nakajima asked whether
or not

m (U(mynx) N MQXJIX)

meN s.t. (m,p)=1
is a non-empty open subset of M, . (cf. [N, §4 Remark]). Then Corollary 3.13 (ii) gives

an answer of Nakajima’s question. Furthermore, we may ask the following question:

Does

MO 0C () Wnma " Mgyny)) =0

meN s.t. (m,p)=1

hold for each non-negative integer nx?

Remark 3.13.2. Corollary 3.13 (iii) gives an answer of a question of D. Harbater (cf. [H,
4.2]) which was first solved by F. Pop and M. Saidi (cf. [PS, Corollary]). In [PS], Pop and
Saidi proved a result which says that the specialization map of geometric étale fundamental
groups of smooth projective curves in positive characteristic is not an isomorphism under
certain assumptions. Then together with a result of C-L. Chai-F. Oort, and a result of
J-P. Serre, they obtained Corollary 3.13 (iii).

4 Maximum generalized Hasse-Witt invariants of cyclic
admissible coverings of pointed stable curves

In the present section, we discuss the maximum generalized Hasse-Witt invariants of cyclic
admissible coverings of an arbitrary pointed stable curve. Let us return to the case where
X* is an arbitrary pointed stable curve over k, and we maintain the notation introduced
in Section 2.2. First, by applying Theorem 2.9, we have the following lemma (cf. [T2,
Corollary 2.6 and Lemma 2.12 (ii)]).

Lemma 4.1. (i) Let Q € Z|Dx]| be an effective divisor on X of degree deg(Q) = s(Q)n,
Lo a line bundle on X such that Eg" = Ox(—Q), and Lg, the pull-back of Lg by the
natural morphism X, — X . Suppose that X*® is smooth over k, and that

#{r e X | ord,(Q) =n} > s(Q) — 1.
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Then the Raynaud-Tamagawa theta divisor associated to By ® Lg,; eists.

(ii) Let t;, i € {1,2}, be an arbitrary positive natural number and n; ef pti — 1. Let
Qi € Z|Dx] be an effective divisor on X of degree deg(Q;) = s(Qi)ni, Lo, a line bundle

on X such that ES:” = Ox(—Q:), and Lg, 1, the pull-back of Lg, by the natural morphism

X, — X. Suppose that s o s(Q1) = s(Q2). Lett df ty+ta, n et ny + p'ing,

Q= o Q1+ p" Q2 € Z[Dx]

an effective divisor on X of degree deg(Q)) = sn, Lg a line bundle on X such that ES" =
Ox(—Q), and Lg; the pull-back of Ly by the natural morphism X, — X. Suppose that
X* is smooth over k. Then the Raynaud-Tamagawa theta divisor associated to Bty @ Lo,

exists if and only if the Raynaud-Tamagawa theta divisor associated to 822 ® Lo, t; erists
for each i € {1,2}.

Lemma 4.1 implies the following proposition.

Proposition 4.2. Suppose that X*® is irreducible. Then there exist a positive natural

number n < pt — 1 € N, an effective divisor D € (Z/nZ)~[Dx]°, and an element o €
Rev¥™(X*) such that a # 0, and that the generalized Hasse- Witt invariant Y(a,p) Gltains
the maximum

max __ gX—la ian:Oa
X L gx +nx —2, ifnx #0.

Proof. We write X for the normalization of X and norm : X — X for the normalization
morphism. We define

X* = (X, D¢ “ norm ' (Dy U X*8))

to be a pointed stable curve of type (g9g,nx) over k. Note that gz = gx — #X*"8.
Moreover, we put Dy © horm™ 1(Dx). By applying Lemma 3.1, to Verify the proposition,

it is sufficient to prove that there exist a positive natural number n p — 1€ N, an

effective (Weil) divisor D € (Z/nZ)~[Dx]°, and an element & € Revadm(X *) such that
a # 0, and that the generalized Hasse-Witt invariant Y@,b) attains the maximum
max __ 9% — ]-7 if nx = 07
TXe T\ gg+nx—2, ifny £0.

Suppose that nxy < 2. Then 3(15) < 1 for each D € (Z/nZ)N[EX]O. Thus, the

proposition follows immediately from Proposition 2.8 and Theorem 2.9.
Suppose that nx > 3. Let Dy o {Z1,. . @ny by o pli—1foreachie {l,... ,nx—
1} such that n; > max{C(gx) + 1, # (e (Cxs)Ue®(T'x+))}, and 0 < a;1, a; 2 < n; for each

ie{l,...,nx — 1} such that a;; + a;2 = n;. We put

def .
D; = ajqx; + a; 22541 + E nix, i € {1,...,nx — 1},

xeﬁx\{xi,xi+l}
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which is an effective divisor on X with degree deg(D;) = (nx — 1)n;. Moreover, we put

nx—1

~ i—1
D déf E p ;’:O tj D’L
i=1

and
nx—1

n déf pZ?iifl tj _ 1 = Z ng;%)tj (ptz _ 1)7
=1

where to % 0. We see immediately that deg(D) = (nx—1)n, and that D € (Z/nZ)~[Dx]°.
Let L5 a line bundle on X such that E%" = Ox(—D), and L, the pull-back of L5 by

the natural morphism X, — X. Then Lemma 4.1 implies the Raynaud-Tamagawa theta
divisor associated to B% ® L, exists. Moreover, Proposition 2.8 implies that there exists

a line bundle Z of degree 0 on X such that [Z] # (O], that 757 = (O], and that

o Jgg 1 ifny =0,

TepeDD) T ge 4+ nx —2, if ny #0.
Let a € Rev%dm(;(') be the element corresponding to the pair ([L5 ® 7],D) € ﬁf(',n'
This completes the proof of the proposition. Il
Remark 4.2.1. We maintain the notation introduced in the proof of Proposition 4.2.
By choosing a suitable a; 2 and a; 5 for each i € {1,...,nx — 1}, we may obtain that the

Galois multi-admissible covering induced by « is connected.

In the remainder of this section, we will generalizes Proposition 4.2 to the case where
X* is an arbitrary pointed stable curve over k.

Definition 4.3. Let G be a connected semi-graph and v € v(G) an arbitrary vertex.
Moreover, we suppose that G is a tree. For each v/ € v(G), there exists a path p,
connecting v and v’ in G. We define

1eng<pv,v’) « #{pv,v’ N U(G)} -1

to be the length of the path p, .. Moreover, since G is a tree, there exists a unique path
connecting v and v" whose length is equal to min{leng(p, )}, ., We shall write

p(G, v, v')

for this unique path connecting v and v' in G, and say that p(G, v, v") is the minimal path
connecting v and v" in G.

Lemma 4.4. Let T % I'p, be a minimal quasi-tree associated to Dy,

Xp = (Xr, Dx;)

the pointed stable curve of type (gx.,nx.) associated to I', and Ixs the admissible fun-

damental group of Xp. Suppose that nx > 2. Then there exist a positive natural number
n® pt—1 €N, an effectiv divisor Dy € (Z/nZ)~[Dx]°, and an element ar € Reviy™(XP)
such that ar # 0, and that the generalized Hasse- Witt invariant

'Y(ap,Dp) - gXp + nx — 2
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Proof. Since I' is a minimal quasi-tree associated to Dy, we obtain that I" % T \ eP(T) is
a tree. Then we have v(I') = v(I'"). Note that Dx C Dx,.. Let v € v(I') be an arbitrary
vertex and ng = p'® — 1 € N a positive natural number such that

ng > max{C(gx) + 1, #(e?(I'xs) Ue®®(T'xe))}.

We put

DY DynX,, m, € 4D, and D, < {xy1, ... 2pm,} if my # 0.

Moreover, we put
def

D, = D,uU(X,NnXr\ X,),
where X1\ X, denotes the topological closure of X1\ X, in Xr. Note that since nxy > 0,
we have #D, > 0. Let w € v(I") be an arbitrary vertex distinct from v. Since I is a tree,
there exists a unique node
Loy

such that the closed edge of I corresponding to z,,, is contained in the minimal path
p(I', v, w) connecting v and w in [". On the other hand, we define a set of nodes to be

Node:;w def { XN Xy, w' €v) | leng(p(T”,v,w")) = leng(p(I", v,w)) + 1}.

Note that Node,,, may possibly be an empty set, and that D, = {z,,} UNode , U D,,.
First, we define two sets of effective divisors

Divirst Divfjt

v Y

associated to v as follows, where “st” means that “standard”, and “irr” means that

“irreducible components”. Let ¢ € {1,...,m, — 1} and 0 < a,1,a,,2 < ng such that
Ay;1 + Qyi2 = ng. Suppose that m, < 1. Then we put

. def . def
Divi' = 0, Div¥' =

Suppose that m, > 2. We define

def ,
Qv,v,i = Qy;1%v,i + Qy,i,2L v, i+1 + E nox -+ E nox
2’ €DI\{Ty i, i1} x€Dy,\D),

to be an effective divisor on X, whose support is D,, and whose degree is equal to

(#D, — 1)ng. We define

Qu.wi def Z nox, w € v(I)\ {v},

€D \{Zy,w}

to be an effective divisor on X,, whose support is D,, \ {x,,}, and whose degree is equal
to (#D,, — 1)ng. Moreover, we define

def
v
Q] = Qyi1Tyi + QyiaTyit1 + E nox,

mGDX\{mv,i:xv,i+1}
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to be an effective divisor on X1 whose support is Dx, and whose degree is (nx — 1)ng
Then we put

my—1 my—1

Div 1rrst def U {Qvuz} Div 1rrst def U ]:)Vurrst7 Divit déf U {Q;}}
=1

uev(T")
Next, we define two sets of effective divisors

s irr-md :..md
Div, ™, Div,

associated to v as follows, where “md” means that “modification”. Let z € Dy \ D! and
0 <by.1,by.2 <mngsuch that b, .1 + b, .2 = ng. Suppose that m, = 0. Then we put

Dlvlrr md def Q) Div md def
v

Suppose that m, # 0. Let w, be the vertex such that the irreducible component X,
corresponding to w, contains z (i.e., z € D;, ), p(I", v, w.) the minimal path connecting v
and w, in IV, and w € v(I") an arbitrary vertex distinct from w, such that w C p(I', v, w,).
Since I" is a tree, we have that #(Node, ,, Np(I",v,w.)) = 1. We put

xt difNode » (T v,w,).

v, w

We define
def 4
Qv,v,z = bv,z,lxv,mv + bv,z,va’v + E nox
wEDv\{xv,mv,m;}hv}

and
def —
Qv,wz,z - bv,z,lxuwz + bv,z,ZZ + E nox

2€Dw, \{Tv,w. 2}

to be effective divisors on X, and X,,, whose supports are D, and D,,,, and whose degrees
are equal to (#D, — 1)ng and (#D,,. — 1)ng, respectively. Let w € v(T") \ {v,w,} be an
arbitrary vertex such that w C p(I', v, w,). Then we define

def — +
Qv,w,z = bv,z,ll'uw + bv,z,va,w + E nox
xEDw\{x;w,:{:;w}

to be an effective divisor on X,, whose support is D,,, and whose degree is equal to
(#D,, — 1)ng. Let w' € v(I') be an arbitrary vertex such that v’ € p(I',v,w,). Then we

define
def
Qv,w’,z = E nox
‘IEDw’\{z;w/}

to be an effective divisor on X, whose support is D, \ {x;w,}, and whose degree is equal
to (#D, — 1)ng. Moreover, we define

def
v E :
Qz - bv,z,lxv,mv + b'u,z,QZ + nox
(EEDx\{va,mU,Z}

37



to be an effective divisor on Xr whose support is Dx, and whose degree is equal to
(nx — 1)ng. Then we put

Div irr- md def U {Qv 3 z} Div irr-md def U Dlvlrr rnd Div md def U {QZ}

uEv(F) ZEDx\D/ ZEDx\D{}

We put
Divy o U (Divi™st U Divirmd)
veu(T)
and
Divy & U (Divs" U Div™).
vew(T)
We denote by Divi¥(X,), u € v(T), the subset of Divly whose elements are effective
divisors on X,. Note that d % #Di V¥ (Xy,) = #Divi (X,,) = #Divx for each uy,uy €
v(I"). Moreover, let
Divi (X,) € {Pur,. .., Pua}, u€n(D),

be an order of Divi{(X,) such that, for each uy,uy € v(I') and each j € {1,...,d}, one
of the followmg conditions is satisfied: (i) if P, ; € Dwmr ** for some v € v(I') and some

ied{l,.. — 1}, then P,,; € Divi7™; (i) if P, ; € Dlvm md for some v € v(I'") and
some 2z € DX \ D!, then P, ; € Dlvlrr md Then, by the constructlon of Divy, the order
of Divi¥(X,), u € U(F), induces an order of Divyx. We may put

Divy © {P,,..., P}

Let t < dty and n & Z?:l pU=Dlo(pto — 1) = p* — 1. We define

Z Do p, € (Z/nZ)~[D,), u € v(l),

and ;
def i— ~
Pe 3" gV p; € (2/nZ) [Dx]°
j=1
to be effective divisors on X, and Xr, respectively. We see immediately that the support

of P,, u € v(I"), is D,, that the support of Pr is Dy, that deg(P,) = (#D, — 1)n, and
that deg(Pr) = (nx — 1)n.
Let u € v(I') be an arbitrary vertex and P, o norm’(P,) an effective divisor on X,,.

By applying similar arguments to the arguments given in the proof of Proposition 4.2,
there exists @, € Revadm(X *) such that

V(@u,Py) = Ju +#D, — 2.

We define
Xq: = (XuaDXu = DU)
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to be a pointed stable curve over k. Then Lemma 3.1 implies that the element «, €
Rev3™(X?) induced by &, such that 7, p,) attains the maximum

7§§X = gx, T #Du -2,
where gy, denotes the genus of X,,. Write
fo: Y2 — X2

for the Galois multi-admissible covering over k with Galois group Z/nZ induced by a,.
By gluing {V,®}ueor) along {f,'(Dy \ D)) }ueur) that is compatible with the gluing of
{ X3 buew() that gives rise to X7, we obtain a Galois multi-admissible covering

Yy = X7

over k with Galois group Z/nZ. Note that the construction of f2 implies that f2 is étale
over Dy, \ Dx. We denote by ar € Hom(H%}’E, Z/nZ) an element induced by f2. We put

Dr def Pr. By the construction of Dr, we see immediately that

ar € Reviy™(X7).
Moreover, Lemma 3.1 implies that
Yar,Dr) = 9xp T Nx — 2.
We complete the proof of the lemma. n
Next, we prove the main result of the present section.

Theorem 4.5. There exist a positive natural number n o pt —1 €N, an effective divisor
D € (Z/nZ)~[Dx]°, and an element a € Revs™(X*®) such that o # 0, and that the
generalized Hasse-Witt invariant 7y, p)y attains the mazimum

max __ gX_17 Z.an:()a
X T U gx+nx —2, ifnx £0.

Proof. Let t € N be an arbitrary positive natural number and n o p' — 1 such that
n > max{C(gx) + 1, #(e(Tx+) Ue(Ixe))}.

First, we suppose that nx < 1. We denote by v(I'x+)>® C v(I'x.) the set of vertices
such that g, > 0 for each v € v(I'x+)”%. Suppose that v(I'y+)” = . Then ny < 1 implies
that ['xe is not a tree. This means that TI'%% is not trivial. Let o/ : IT'%*" — Z/nZ be a
surjection and

o 113 — Z/nZ

the composite morphism I13% —» H'}??’ab .y /nZ. Then the theorem follows immediately
from Lemma 3.1.
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Suppose that v(Txe)”® # 0. Let v € v(I'x+)”%. Then Proposition 2.8 and Theorem
2.9 imply that there exists an element &, € Revi¥™(X?) such that &, : H;‘%’; — Z/nZ is a
surjective, and that

Y@.0 = gv — 1.
Write ]7; : 171)' — )?; for the connected Galois étale covering with Galois group Z/nZ
induced by a,. Let

X\ J X

vEV(T xe)>0
e)>0 X,and C € 7T0<X \ Uvev (T'xe)>0 X )7
o) X,in X. We

be the set of connected components of X \ |

where X \ |
define

vev(Ty

j=0 X, denotes the topological closure of X \ |J

UEv v€v

C*=(C.Dc= (Cn( |J X)U(Dxn0))
vev(T xe)>0

to be a pointed stable curve over k. Note that the normalization of each irreducible
component of C'is a rational curve over k. Let

.def H

1E€EZ/nZ
where C? is a copy of C'*. Then we obtain a Galois multi-admissible covering
feYS—=>C*

over k with Galois group Z/nZ, where the restriction morphism f&|¢, is an identity, and
the Galois action is j(C;) = Cy4; for each i, j € Z/nZ. By gluing

{}/Uo}vev(]__‘x.)>0 and {YC.}CGWO(X\UUEU(FX.)>O Xv)

along { Dz, }veu(rye)>0 and {DO}CGWO(X\UUGIJ(FX.)>O x,) that is compatible with the gluing

of {X';}’UE’U(FX.)>O U {C.}CET(()(X\U
(étale) admissible covering

o) that gives rise to X*®, we obtain a Galois

vev(T ye)>
oY - X°
over k with Galois group Z/nZ. Then theorem follows immediately from Lemma 3.1.

Next, we suppose that nxy > 2. Let I’ e Dy be a minimal quasi-tree associated to

Dy, '™ the image of the natural morphism ¢r : I' = I'ye, and

XE = (XF7 DXr)y Xl“lm - (XFlm, DX

pim )

the pointed stable curves over k associated to I', "™, respectively.

Lemma 4.4 implies that there exist a natural number n o pt —1 € N, an effective
divisor D ¥ Dr € (Z/nZ)~|Dx]® on Xr whose degree is (nx — 1)n, and an element
ar € Revis™(X?®) such that

Y(ar,D) = 9xr T Nx — 2,

40



where gy, denotes the genus of Xp. We denote by
ff:Zf = Xp

the Galois multi-admissible covering over k with Galois group Z/nZ induced by ar. Note
that fp is étale over Dy, \ Dx. By gluing Zp along fr'(Dx, \ (Dx U {xe}eeqs;l(eopmm))))
that is compatible with the gluing of X} that gives rise to X7, we obtain a pointed

Fim’
stable curve Z7, over k. Moreover, ft induces a Galois multi-admissible covering

. . . .
f]_“im . Z]_"lrn — X]_"lm

over k with Galois group Z/nZ. Write 11 Xon for the admissible fundamental group of
Xl:im
Dq ., = D. Then Lemma 3.1 implies that Y(a,,.,0) = 9x4. T7x —2, where gx . denotes
the genus of Xpim.

On the other hand, we write 7y(X \ Xpim) for the set of connected components of

X \ Xpim. We define the following pointed stable curve

and apim for an element of Hom(IT4. ,Z/nZ) induced by f... Note that we have
1"1]'1')

E*=(E,Dp ¥ EN Xpm), E € mo(X \ Xpm),

over k. We denote by mo(X \ Xpim )0 the set of curves of mo(X \ Xpim) such that the
genus of curves are > 0.

Let £ € mo(X \ Xpm )~ Similar arguments to the arguments given in the proof of the
case where ny < 1 and v(I'ys) # () above imply that there exists a Galois étale covering

fé : ZZ? = (ZE;DZE) — E*
over k with Galois group Z/nZ such that

Yap0) = 9E — 1,

where gg denotes the genus of E, and ap € Revi™(E*®) is an element induced by f3.
Let F € mo(X \ Xpim) \ mo(X \ Xpim )~ We put

zp= 1 B
1E€EZ/NZ
where E? is a copy of E®. Then we obtain a Galois multi-admissible covering
2y, > E°

over k with Galois group Z/nZ, where the restriction morphism fp|g, is an identity, and
the Galois action is j(E;) = E;4; for each i,j € Z/nZ.
We may glue Z°, and {ZE}EEWO(M) along fr ! (Xpim N (UEEWO(M) E)) and
_1 . . . . . .
{f& (Xl"immE)}Eeﬂ_o(m) that is compatible with the gluing of { X 2., JU{E }EGWO(M)
that gives rise to X*®, then we obtain a Galois multi-admissible covering

ozt X
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over k with Galois group Z/nZ. Moreover, we write
o € Hom(IT3%, Z/n7Z)

for an element induced by f*. We see immediately that a € Revs™(X*). By applying
Lemma 3.1, we obtain that

Y(a,0) = gx +nx — 2.

This completes the proof of the theorem.
O

5 A group-theoretical formula for topological types
of pointed stable curves

In this section, by using Theorem 4.5, we prove a group-theoretical formula for the topo-
logical type of an arbitrary pointed stable curve over an algebraically closed field of char-
acteristic p > 0.

Definition 5.1. (i) Let A be an arbitrary profinite group and m, N € N positive natural
numbers. We define the closed normal subgroup

Dn(A)
of A to be the topological closure of [A, A]JAY, where [A, A] denotes the commutator
subgroup of A. Moreover, we define the closed normal subgroup

DYV(A)

of A inductively by DY(A) ¥ Dy(A) and DETYV(A) € DO(A), i e {1,...,m — 1}

Note that #(A/ DE\T)(A)) < oo when A is topologically finitely generated.
(i) Let ¢ be a prime number and r,m € N natural numbers. We denote by
Ff
the finite group F, / Dém)(ﬁ), where F, denotes the free profinite group of rank r.

Let X* = (X,Dy) be an arbitrary pointed stable curve of type (gx,nx) over an
algebraically closed field k£ of characteristic p > 0 and IIxe the admissible fundamental
group of X*. In this section, let

I1

be an abstract profinite group which is isomorphic to Ilx. as profinite groups. Moreover,
we denote by m4(II) be the set of finite quotients of II. We put

bi; o max{r | there exists a prime number ¢ such that (Z/(Z)*" € 74(I1)}

and
p2 def 0, Ffl , € ma(II) for some prime number £,
= 1
1 1, otherwise.

Note that by, i € {1,2}, is a group-theoretical invariant associated to II (i.e., depends
only on the isomorphism class of II). First, we have the following lemma.
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Lemma 5.2. (i) We have that
b2 — L, Zf nx =0,
I O, ’Lf nx 7& 0.

and

(ii) There exists a unique prime number py such that (Z/puZ)®n & wa(I1). In par-
ticular, we have p = pyy.

Proof. (i) Let o dimg, (I1*" @ Fy), where ¢ an arbitrary prime number Brimes \ {p},
and Primes denotes the set of prime numbers. Then the structures of maximal prime-to-p
quotients of admissible fundamental groups imply that

e =zox < [z
LePrimes\{p}

Since X* is a pointed stable curve, we have that
Oxe < TI.

This implies that bj; = ri. Moreover, we have

bl { QgXa if nx = 0,

T 29x +ny — 1, if ny #0.

Suppose that nx > 0. Let ¢; € Primes \ {p}. The specialization theorem of maximal
pro-fs quotients of admissible fundamental groups (cf. [V, Théoréme 2.2 (c)]) implies that
the maximal pro-¢; quotient IT of II is a free pro-f; profinite group of rank bf. Then we
obtain immediately that

¢
Fb};? € ma(Il).

Thus, we obtain that % = 0 if nx > 0.
Conversely, we assume that Flff , € Ta(Il) for some prime number ¢,. Then we have
I°
l5 # p. Note that we have the following natural exact sequence

bt g1 1
1 — (Z/0,72)®%" tn—D+1 FfﬁQ — (Z)0,7)% — 1.

Let ¢ : 1T — Fff , be a surjection. We denote by X} the pointed stable curve over k
I
corresponding to the kernel of the natural surjection

e 3105 B, - (Z/62)%
and by II,, C II the kernel of the surjection II % Flff g (Z)0,Z)%"1. Then we have
11’

bl
(Z)0,7)®%" Ch=D+1 ¢ 7 (11,,).
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Thus, bllh2 > e’;ﬁ(bh — 1)+ 1. If nx = 0, the Riemann-Hurwitz formula implies that

bl
gXZQ = éQH(gX - 1) + 1a

where gy, denotes the genus of X7 . Then we have

bh,, =206 (gx — 1) +1) = G (b} —2) + 2.

On the other hand,
(b —2) +2 < &by — 1) + 1.

1
This contradicts to the fact that bll% > 6;“(6111 — 1) 4+ 1. Then we obtain that ny > 0 if
b% = 0. Moreover, we see immediately that

bl = 2g9x +nx — 1+ b,

(ii) This follows immediately from the structure of II1*". We complete the proof of the
lemma. ]

Let E,H be an arbitrary algebraic closure of IF,,,. Let x € Hom(II, F:H). We denote by
II,, C II the kernel of . Moreover, we put

Hom(IL,, Z/pnZ)[x] € {r € Hom(Il,, Z/puZ) @x, Foy | 7(7) = x(r)7
for all 7 € 11},

and put v, (Hom(Il,, Z/pnZ)) o dimg, (Hom(I1,, Z/puZ)[x]). We define a group-theoretical
invariant associated to II as follows:

7 % max{y(Hom(Il, Z/pnZ)) | x € Hom(ILF,,) and x # 1}.

Then we have the following lemma.

Lemma 5.3. Let v be the mazimum of generalized Hasse- Witt invariant of prime-to-p

cyclic admissible coverings of X*® defined in Section 3. Then we have ™ = Y. In
particular, we have

M= gx +nx =2+ by
Proof. The first part of lemma follows immediately from the definitions of generalized
Hasse-Witt invariants and ~§3*. The “in particular” part of the lemma follows immedi-
ately from Theorem 4.5 and Lemma 5.2 (i). O

The main theorem of the present paper is as follows.

Theorem 5.4. Let X* be an arbitrary pointed stable curve of type (gx,nx) over an
algebraically closed field k of characteristic p > 0, Ilxe the admissible fundamental group
of X*, and 11 an abstract profinite group such that I1 = Ilxe. as profinite groups. Then we
have that

max

gx = by — ™ — 1, nx = 297™ — by — bf + 3.

In particular, gx and nx are group-theoretical invariants associated to I1.
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Proof. The theorem follows immediately from Lemma 5.2 and Lemma 5.3. O

Remark 5.4.1. We maintain the notation introduced above. Moreover, suppose that X*

is smooth over k. In this remark, we discuss a formula for (gx,ny) which was essentially

obtained by Tamagawa. Let n o pt — 1 and K, the kernel of the natural surjection

II — [I** ® Z/nZ. In [T2], Tamagawa defined the limit of p-averages associated to II to

be
dlmF (Kab ® ]F )
Avr, (1) € i Pt
Vrp( ) tl{go #(Hab ® Z/TLZ)
Note that since p = py (cf. Lemma 5.2 (ii)), we have that Avr,(II) is a group-theoretical
invariant associated to II. Then the main theorem of [T2] (i.e., Tamagawa’s p-average

theorem, see [T2, Theorem 0.5]) says that

o gx—l, 1an§1,
Avn(I) = { 9x, if ny > 2.

Let ¢ € Primes \ {pn = p} be an arbitrary prime number distinct from pr;. Write
Nomy (IT) for the set of normal subgroups of Il such that #(II/II(¢")) = ¢ for each
I1(¢) € Nomy(IT). Suppose that b3 = 0 (i.e., nxy # 0). By applying Riemann-Hurwitz
formula, we see immediately that

Avr,(II(€)) — 1 = ¢(Avr,(11))

holds for each ¢ € Primes \ {pn} and each I1(¢) € Nom,(II) if and only if ny = 1. We
define a group-theoretical invariant associated to II as follows:

1, ifby =1,
e {1, i 63 =0, Avr,(I(0)) — 1 = ¢(Avr,(IT)), £ € Primes \ {pu}, I(¢) € Nom,(II),

0, otherwise.
Then the p-average theorem above implies immediately the following formula
gx = Avr,(I) + erp, ny = biy — 2Avr, (1) — 2cy — by + 1.

In particular, gx and ny are group-theoretical invariants associated to II (cf. [T2, Theo-
rem 0.1]). This result is the main goal of the theory developed in [T2], which plays a key
role in the theory of tame anabelian geometry of curves over algebraically closed fields of
characteristic p > 0 (cf. [T2], [Y2]).

On the other hand, the approach to finding a group-theoretical formula for (gx,nx)
by applying the limit of p-averages associated to Il explained above cannot be generalized
to the case where X* is an arbitrary (possibly singular) pointed stable curve. The reason
is as follows. In [Y3], the author generalized Tamagawa’s p-average theorem to the case of
pointed stable curves (cf. [Y3, Theorem 1.3 and Theorem 1.4]). The generalized formula
concerning the limit of p-averages associated to II is very complicated in general when
X* is not smooth over k, and Avr,(II) depends not only on the topological type (gx,nx)
but also on the structure of dual semi-graph I'xe.
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