
RIMS-1902

Integrable Connections I:

Two Fundamental Correspondences

By

Yuichiro HOSHI

July 2019

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES

KYOTO UNIVERSITY, Kyoto, Japan



Integrable Connections I: Two Fundamental
Correspondences

Yuichiro Hoshi

July 2019

———————————–

Abstract. — The purpose of the present paper is to establish a certain abstract theory
related to the notion of an integrable connection. More concretely, to establish certain two
bijections related to the notion of an integrable connection is the main purpose of the present
paper.
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Introduction

The purpose of the present paper is to establish a certain abstract theory related to the
notion of an integrable connection. More concretely, to establish certain two bijections
[cf. the respective discussions following Theorem A and Theorem B below] related to the
notion of an integrable connection is the main purpose of the present paper.

In the present Introduction, let us fix a scheme S. Write SchS for the category of
schemes over S and morphisms of schemes over S [cf. Definition 1.6, (i)]. Let us also fix
a scheme X which is smooth and separated over S and a category F → SchS fibered in

groupoids over SchS. Write X(2) def
= X ×SX for the fiber product of two copies of X over

S [cf. Definition 2.1, (i)] and Xpr
(2)
i : X(2) → X for the projection onto the i-th factor

[where i ∈ {1, 2}] [cf. Definition 2.1, (iii)].

2010 Mathematics Subject Classification. — 14D15.
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One main object of the present paper is a stratification structure [cf. Definition 2.5].
We shall refer to a collection of data

S =
(
(SP n)n≥0, (

Sιn : SP n → SP n+1)n≥0,

(Sσn : SP n → X(2))n≥0, (
Sδn1,n2 : SP n1,n2 → SP n1+n2)n1, n2≥0

)
consisting of

• a scheme SP n over S for each nonnegative integer n,

• a morphism Sιn : SP n → SP n+1 over S for each nonnegative integer n,

• a morphism Sσn : SP n → X(2) over S for each nonnegative integer n, and

• a morphism Sδn1,n2 : SP n1,n2 → SP n1+n2 over S for each nonnegative integers n1, n2

— where we write SP n1,n2 for the fiber product of the composite SP n1
Sσn1

→ X(2)
Xpr

(2)
2→ X

and the composite SP n2
Sσn2

→ X(2)
Xpr

(2)
1→ X [cf. Definition 2.4, (i)]

that satisfies certain conditions as a stratification structure on X/S.
An example of a stratification structure on X/S is given as follows [cf. Remark 2.5.1]:

Let Y be a separated scheme over S and X → Y an affine morphism over S. Write P
def
=

X ×Y X; q1, q2 : P → X for the projections onto the first, second factors, respectively;
q1,3 : X ×Y X ×Y X → P for the projection onto the first and third factors. Let

P 0 ⊆ P 1 ⊆ . . . ⊆ P n ⊆ P n+1 ⊆ . . . ⊆ P

be a sequence of closed subschemes of P . Suppose that the following two conditions are
satisfied:

• The natural closed immersion P 0 ↪→ P determines an isomorphism of P 0 with the
diagonal closed subscheme X ⊆ P of P .

• For each nonnegative integers n1, n2, if we write P n1,n2
def
= P n1 ×X P n2 for the fiber

product of the composite P n1 ↪→ P
q2→ X and the composite P n2 ↪→ P

q1→ X, then the
composite

P n1,n2 �
� // X ×Y X ×Y X

q1,3 // P

factors through the closed subscheme P n1+n2 ⊆ P of P . Write

δn1,n2 : P n1,n2 // P n1+n2

for the resulting morphism.

For each nonnegative integer n, write ιn : P n ↪→ P n+1 for the natural closed immersion
and σn : P n → X(2) for the composite of the natural closed immersion P n ↪→ P and the
closed immersion P ↪→ X(2) induced by the morphism Y → S. Then the collection of
data(
(P n)n≥0, (ι

n : P n ↪→ P n+1)n≥0, (σ
n : P n → X(2))n≥0, (δ

n1,n2 : P n1,n2 → P n1+n2)n1, n2≥0

)
gives an example of a stratification structure on X/S.
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Let us fix a stratification structure on X/S

S =
(
(SP n)n≥0, (

Sιn : SP n → SP n+1)n≥0,

(Sσn : SP n → X(2))n≥0, (
Sδn1,n2 : SP n1,n2 → SP n1+n2)n1, n2≥0

)
.

Note that one condition imposed on a stratification structure is that the morphism
Sσ0 : SP 0 → X(2) determines an isomorphism of SP 0 with the diagonal closed subscheme
X ⊆ X(2) ofX(2) [cf. condition (2) of Definition 2.2]. In the remainder of the present Intro-
duction, let us identify SP 0 with X by means of the isomorphism determined by the mor-
phism Sσ0. For each nonnegative integer n, write Sι0n : X = SP 0 → SP n for the morphism
over S obtained by forming the composite of the morphisms Sι0, . . . , Sιn−1 [cf. Defini-
tion 2.3, (i)]; Sprni :

SP n → X for the morphism over S obtained by forming the composite

of the morphism Sσn : SP n → X(2) and the morphism Xpr
(2)
i : X(2) → X [where i ∈ {1, 2}]

[cf. Definition 2.3, (ii)]. Note, moreover, that the composite X = SP 0
Sι0n→ SP n

Sprni→ X
coincides with the identity automorphism of X [cf. Remark 2.3.1].

Other main objects of the present paper are connections and stratifications. Let us fix
an object ξ of F over X. Then we shall refer to an isomorphism

(Sprn2 )
∗ξ

∼ // (Sprn1 )
∗ξ

in F over the identity automorphism of SP n whose pull-back by Sι0n is the identity auto-
morphism of ξ = (Sι0n)

∗(Sprn2 )
∗ξ = (Sι0n)

∗(Sprn1 )
∗ξ and which satisfies a certain “cocycle

condition” as an n-S-connection on ξ [cf. Definition 4.4]; moreover, we shall refer to a
1-S-connection as an S-connection [cf. Definition 4.1, (iii); Remark 4.1.1]. Write

SCnnn(ξ)

for the set of n-S-connections on ξ [cf. Definition 4.4]. Then one may prove that the
pull-back of an (n + 1)-S-connection by Sιn is an n-S-connection, which thus implies
that one obtains a map SCnnn+1(ξ)→ SCnnn(ξ) [cf. Lemma 4.5]. Write

SStrt(ξ)
def
= lim←−

n≥0

SCnnn(ξ)

and refer to an element of the set SStrt(ξ) as an S-stratification on ξ [cf. Definition 4.6].
Now let us observe that, in the situation of the above example of a stratification structure
on X/S, if there exists a nonnegative integer n0 such that the closed immersion Pn0 ↪→ P
is an isomorphism, then one verifies easily that the notion of a stratification on ξ [i.e.,
with respect to the above stratification structure] is the same as the notion of a descent
datum on ξ with respect to the morphism X → Y [cf. Remark 4.6.2].

In the present paper, we give the definition of the notion of the S-curvature of an
S-connection [cf. Definition 4.7, (i)]. The S-curvature of an S-connection on ξ is defined
to be an automorphism of the pull-back of ξ to a certain scheme over S. Moreover, we
shall say that an S-connection is S-integrable if the S-curvature of the S-connection is
the identity automorphism [cf. Definition 4.7, (ii)]. Write

SIntCnn(ξ) ⊆ SCnn1(ξ)
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for the set of S-integrable S-connections on ξ [cf. Definition 4.7, (ii)]. Note that one
may prove that if n ≥ 2, then the map SCnnn(ξ) → SCnn1(ξ) discussed above factors
through the subset SIntCnn(ξ) ⊆ SCnn1(ξ) [cf. Lemma 4.8].

We are now ready to state the first main result of the present paper. Roughly speaking,
the first main result of the present paper asserts that if the stratification structure S and
the category F fibered in groupoids over SchS have certain “good” properties, then we
have a natural bijection between the set of S-stratifications and the set of S-integrable
S-connections. The first main result of the present paper is as follows [cf. Theorem 5.6].

THEOREM A. — Let S be a scheme, X a scheme which is smooth and separated over
S,

S =
(
(SP n)n≥0, (Sιn : SP n → SP n+1)n≥0,

(Sσn : SP n → X(2))n≥0, (Sδn1,n2 : SP n1,n2 → SP n1+n2)n1, n2≥0

)
a stratification structure on X/S [cf. Definition 2.5],

F // SchS

a category fibered in groupoids over SchS, and ξ an object of F over X. Suppose that the
following two conditions are satisfied:

(1) The stratification structure S is integrable [cf. Definition 3.2] (respectively,
strictly integrable [cf. Definition 3.3]).

(2) The category F fibered in groupoids over SchS is integrable [cf. Definition 1.7]
(respectively, weakly integrable [cf. Definition 1.8]).

Then, for each integer n ≥ 2, the natural maps

SStrt(ξ) // SCnnn(ξ) // SIntCnn(ξ)

[cf. Definition 4.4; Definition 4.6; Definition 4.7, (ii); Lemma 4.8] are bijective.

In the situation of Theorem A, we shall refer to the bijection obtained by Theorem A

SStrt(ξ)
∼ // SIntCnn(ξ)

as the first fundamental correspondence [cf. Definition 5.7]. In a sequel to the present
paper, we will observe that this first fundamental correspondence may be regarded as a
generalization of a well-known bijection related to integrable connections.
Next, to explain the second main result of the present paper, let us introduce the

notion of a morphism of stratification structures [cf. Definition 2.8]. Let us fix another
stratification structure on X/S

T =
(
(TP n)n≥0, (

Tιn : TP n → TP n+1)n≥0,

(Tσn : TP n → X(2))n≥0, (
Tδn1,n2 : TP n1,n2 → TP n1+n2)n1, n2≥0

)
.

Then we shall refer to a collection of data

Φ = (Φn)n≥0
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consisting of a morphism Φn : SP n → TP n over S for each nonnegative integer n that
satisfies certain conditions as a morphism of stratification structures.
Let us fix a morphism of stratification structures

Φ = (Φn)n≥0 : S // T.

Then one may prove that the pull-back of an n-T-connection by Φn is an n-S-connection,
which thus implies that one obtains a map TCnnn(ξ) → SCnnn(ξ), hence also a map
TStrt(ξ)→ SStrt(ξ) [cf. Lemma 4.12, (i)].

In the present paper, for a nonnegative integer n, we give the definition of the notion of
the (Φ, n)-curvature of an S-stratification [cf. Definition 4.13, (i)]. The (Φ, n)-curvature
of an S-stratification on ξ is defined to be an automorphism of the pull-back of ξ to
a certain scheme over S. We shall say that an S-stratification is (Φ, n)-dormant if the
(Φ, n)-curvature of the S-stratification is the identity automorphism [cf. Definition 4.7,
(ii)]. Moreover, we shall say that an S-connection is (Φ, n)-dormant if the S-connection
extends to a (Φ, n)-dormant S-stratification [cf. Definition 4.7, (iii)]. Write

Φ,nDrmStrt(ξ) ⊆ SStrt(ξ), Φ,nDrmCnn(ξ) ⊆ SIntCnn(ξ)

for the sets of (Φ, n)-dormant S-stratifications, (Φ, n)-dormant S-connections on ξ,
respectively [cf. Definition 4.13, (ii), (iii)]. Note that one may prove that the map
TStrt(ξ)→ SStrt(ξ) discussed above factors through the subset Φ,nDrmStrt(ξ) ⊆ SStrt(ξ)
[cf. Lemma 4.14].

We are now ready to state the second main result of the present paper. Roughly
speaking, the second main result of the present paper asserts that if the morphism Φ
and the category F fibered in groupoids over SchS have certain “good” properties, then
we have a natural bijection between the set of T-stratifications and the set of (Φ, n)-
dormant S-connections. The second main result of the present paper is as follows [cf.
Theorem 6.6].

THEOREM B. — Let S be a scheme; X a scheme which is smooth and separated over
S;

S =
(
(SP n)n≥0, (Sιn : SP n → SP n+1)n≥0,

(Sσn : SP n → X(2))n≥0, (Sδn1,n2 : SP n1,n2 → SP n1+n2)n1, n2≥0

)
,

T =
(
(TP n)n≥0, (Tιn : TP n → TP n+1)n≥0,

(Tσn : TP n → X(2))n≥0, (Tδn1,n2 : TP n1,n2 → TP n1+n2)n1, n2≥0

)
stratification structures on X/S [cf. Definition 2.5];

Φ = (Φn)n≥0 : S // T

a morphism of stratification structures [cf. Definition 2.8];

F // SchS

a category fibered in groupoids over SchS; ξ an object of F over X; r a nonnegative
integer. Suppose that the following two conditions are satisfied:
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(1) The morphism Φ is r-integrable [cf. Definition 3.8] (respectively, strictly r-
integrable [cf. Definition 3.9]).

(2) The category F fibered in groupoids over SchS is integrable [cf. Definition 1.7]
(respectively, weakly integrable [cf. Definition 1.8]).

Then the natural maps

TStrt(ξ)
Φ∗

// Φ,rDrmStrt(ξ) // Φ,rDrmCnn(ξ)

[cf. Definition 4.6; Definition 4.13, (ii), (iii); Lemma 4.14] are bijective.

In the situation of Theorem B, we shall refer to the bijection obtained by Theorem B

TStrt(ξ)
∼ // Φ,rDrmCnn(ξ)

as the second fundamental correspondence [cf. Definition 6.7]. In a sequel to the present
paper, we will observe that this second fundamental correspondence may be regarded as
a generalization of a well-known bijection related to dormant connections, i.e., integrable
connections of p-curvature zero.
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1. Integrable Categories Fibered in Groupoids

In the present §1, we introduce certain properties of a category fibered in groupoids
over categories of schemes [cf. Definition 1.7 and Definition 1.8 below].

LEMMA 1.1. — Let f : X → Y be a morphism of schemes. Suppose that f is a homeo-
morphism. Then f is affine.

Proof. — To verify Lemma 1.1, we may assume without loss of generality, by replacing
Y by an affine open subscheme of Y , that Y is affine. Let y ∈ Y be a point of Y and
U ⊆ X an affine open subscheme of X such that y ∈ f(U). Then since f(U) ⊆ Y is an
open neighborhood of y ∈ Y , there exists a section s ∈ Γ(Y,OY ) such that y ∈ D(s) ⊆
f(U) — where we write “D(−)” for the maximal [necessarily affine] open subscheme
on which “(−)” is invertible. Then since f is a homeomorphism, and D(s) is contained
in f(U), one verifies easily that the [necessarily affine] open subscheme D(f−1s) ⊆ U
of the affine scheme U determined by the section f−1s ∈ Γ(U,OX) satisfies the equality
D(f−1s) = f−1(D(s)). Thus, one obtains an affine open neighborhoodD(s) ⊆ Y of y ∈ Y
whose pull-back by f is affine, as desired. This completes the proof of Lemma 1.1. □
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DEFINITION 1.2. — Let X, Y be schemes; f : X → Y a morphism of schemes.

(i) We shall say that a closed subscheme of the scheme X is square-nilpotent if the
square of the quasi-coherent ideal of OX that defines the closed subscheme is zero.

(ii) Suppose that f is a closed immersion. Then we shall say that the closed immersion
f is square-nilpotent if the closed subscheme of Y determined by f is square-nilpotent.

(iii) We shall say that the morphism f is quasi-nil-retraction-like if f induces an

isomorphism Xred
∼→ Yred, where we write “(−)red” for the closed subscheme of “(−)”

defined by the quasi-coherent ideal of “O(−)” consisting of nilpotent local sections.

(iv) We shall say that the morphism f is nil-retraction-like if f is quasi-nil-retraction-
like, and, moreover, the homomorphism OY → f∗OX determined by f is injective.

REMARK 1.2.1. — One verifies easily from Lemma 1.1, together with the various defini-
tions involved, that we have the following implications:

nil-retraction-like morphism

��
square-nilpotent closed immersion +3 quasi-nil-retraction-like morphism

��
universal homeomorphism

��
affine morphism.

DEFINITION 1.3. — Let X, Y , Y be schemes; Y ↪→ Y a square-nilpotent closed immer-

sion; f : X → Y a morphism of schemes. Write X
def
= X ×Y Y ↪→ X for the [necessarily

square-nilpotent] closed immersion obtained by forming the base-change of the closed
immersion Y ↪→ Y by f ; IX , IY for the conormal sheaves of the square-nilpotent closed
immersions X ↪→ X, Y ↪→ Y , respectively [i.e., the quasi-coherent ideals of OX , OY that
define the closed subschemes of X, Y determined by the closed immersions X ↪→ X,
Y ↪→ Y , respectively]. Then we shall say that the morphism f is conormally strict with
respect to Y ↪→ Y if

(1) the morphism f is quasi-nil-retraction-like [hence also affine — cf. Remark 1.2.1],
and

(2) the homomorphism of OY -modules

IY // f∗IX

induced by the homomorphism OY → f∗OX determined by f is injective,

and, moreover, there exist schemes X, Y and closed immersions iX : X ↪→ X, iY : Y ↪→ Y
such that
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(3) the natural homomorphisms

IX // (iX)∗i
∗
XIX , IY // (iY )∗i

∗
Y IY

are isomorphisms [or, alternatively, the quasi-coherent ideals IX , IY of OX , OY are anni-
hilated by the quasi-coherent ideals that define the closed subschemes of X, Y determined
by the closed immersions iX : X ↪→ X, iY : Y ↪→ Y , respectively], and

(4) the morphism f : X → Y induces [relative to iX , iY ] an isomorphism of schemes

f : X
∼ // Y .

REMARK 1.3.1. — In the situation of Definition 1.3, it is immediate from Remark 1.2.1
that if f is nil-retraction-like, then conditions (1), (2) are always satisfied.

LEMMA 1.4. — In the situation of Definition 1.3, suppose that the morphism f is conor-
mally strict with respect to Y ↪→ Y , i.e., satisfies the four conditions of Definition 1.3.
Then the homomorphism of OY -module

i∗Y IY // f ∗i
∗
XIX

determined by f is an isomorphism.

Proof. — Since f is affine [cf. condition (1) of Definition 1.3], we may assume without
loss of generality, by replacing Y by an affine open subscheme of Y , that both X and Y

are affine. Write B
def
= Γ(X,OX), A

def
= Γ(Y,OY ), and IB ⊆ B (respectively, JB ⊆ B;

IA ⊆ A; JA ⊆ A) for the ideal that defines the closed subscheme determined by the closed
immersion X ↪→ X (respectively, X ↪→ X; Y ↪→ Y ; Y ↪→ Y ). Now observe that, to
complete the verification of Lemma 1.4, it suffices to verify that the homomorphism IA
(
∼→ IA⊗A(A/JA) — cf. condition (3) of Definition 1.3)→ IB = IAB (

∼→ (IAB)⊗B (B/JB)
— cf. condition (3) of Definition 1.3) induced by the homomorphism A→ B determined
by f is an isomorphism. On the other hand, it follows from condition (2) of Definition 1.3
that the homomorphism IA → IAB is injective. Moreover, since the homomorphism
A → B induces an isomorphism A/JA

∼→ B/JB [cf. condition (4) of Definition 1.3], the
homomorphism IA⊗A (A/JA)→ (IAB)⊗B (B/JB) is surjective. This completes the proof
of Lemma 1.4. □

DEFINITION 1.5. — Let
X

a //

b
��

Y

c

��
Z

d
// W

be a commutative diagram of schemes. Then we shall say that the diagram is strictly
cocartesian if the following two conditions are satisfied:

(1) The morphisms a, b, c, and d are nil-retraction-like [hence also affine — cf. Re-
mark 1.2.1].
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(2) The affine open subschemes UW ⊆ W of W that satisfy the following condition
form an open basis of W : If one regards the rings Γ(c−1(UW ),OY ), Γ(d

−1(UW ),OZ),
Γ(UW ,OW ) as subrings of Γ(a−1(c−1(UW )),OX) = Γ(b−1(d−1(UW )),OX) by the relevant
injective [cf. (1)] homomorphisms, then the equality

Γ(UW ,OW ) = Γ(c−1(UW ),OY ) ∩ Γ(d−1(UW ),OZ)

in Γ(a−1(c−1(UW )),OX) = Γ(b−1(d−1(UW )),OX) holds.

REMARK 1.5.1. —One verifies immediately that a strictly cocartesian diagram of schemes
is cocartesian in the category of schemes.

DEFINITION 1.6. — Let S be a scheme.

(i) We shall write

SchS

for the category of schemes over S and morphisms of schemes over S.

(ii) Let

F // SchS

be a category fibered in groupoids over SchS and X a scheme over S. Then we shall write

F|X

for the groupoid of objects of F over X and isomorphisms in F over the identity auto-
morphism of X.

(iii) Let f : X → Y be a morphism in SchS; ξ1, ξ2 objects of F over Y ; φ : f ∗ξ1
∼→ f ∗ξ2

an isomorphism in F|X . Then we shall write

Liftf (ξ1, ξ2;φ) ⊆ IsomF|Y (ξ1, ξ2)

for the set of isomorphisms ψ : ξ1
∼→ ξ2 in F|Y such that the equality f ∗ψ = φ holds.

DEFINITION 1.7. — Let S be a scheme and

F // SchS

a category fibered in groupoids over SchS. Then we shall say that the category F fibered
in groupoids over SchS is integrable if the following three conditions are satisfied:

(1) Let

X
f

//
� _

jX
��

Y � _
jY
��

X
f

// Y
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be a cartesian diagram in SchS such that the morphism jY is a square-nilpotent closed
immersion, and, moreover, the morphism f is conormally strict with respect to the square-
nilpotent closed immersion jY ; ξ1, ξ2 objects of F over Y ; φ : j∗Y ξ1

∼→ j∗Y ξ2 an isomorphism
in F|Y . Then the map induced by f

LiftjY (ξ1, ξ2;φ)
// LiftjX (f

∗ξ1, f
∗ξ2; f

∗φ)

is bijective.

(2) Let

X
a //

b
��

Y

c

��
Z

d
// W

be a commutative diagram in SchS which is strictly cocartesian; V a scheme over S;

V
e // X, W

f1
))

f2

55 V

quasi-nil-retraction-like morphisms over S such that

f1 ◦ c ◦ a ◦ e = (f1 ◦ d ◦ b ◦ e =) f2 ◦ c ◦ a ◦ e = (f2 ◦ d ◦ b ◦ e =) idV ;

ξ an object of F over V ; φ : c∗f ∗
1 ξ

∼→ c∗f ∗
2 ξ an isomorphism in F|Y such that the pull-back

e∗a∗φ is the identity automorphism of ξ = e∗a∗c∗f ∗
1 ξ = e∗a∗c∗f ∗

2 ξ. Then the map induced
by d

Liftc(f
∗
1 ξ, f

∗
2 ξ;φ) // Liftb(d

∗f ∗
1 ξ, d

∗f ∗
2 ξ; a

∗φ)

is bijective.

(3) Let f : X → Y be a nil-retraction-like morphism over S and ξ an object of F over
Y . Then the homomorphism of groups induced by f

AutF|Y (ξ)
// AutF|X (f

∗ξ)

is injective.

REMARK 1.7.1. — In sequels to the present paper, we give some examples of integrable
categories fibered in groupoids over SchS.

DEFINITION 1.8. — Let S be a scheme and

F // SchS

a category fibered in groupoids over SchS. Then we shall say that the category F fibered
in groupoids over SchS is weakly integrable if the following three conditions are satisfied:
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(1) Let

X
f

//
� _

jX
��

Y � _
jY
��

X
f

// Y

be a cartesian diagram in SchS such that the morphism jY is a square-nilpotent closed
immersion, and, moreover, the morphism f is conormally strict with respect to the square-
nilpotent closed immersion jY ; V a scheme over S;

V
g // X, Y

h1
))

h2

55 V

quasi-nil-retraction-like morphisms over S such that

h1 ◦ jY ◦ f ◦ g = (h1 ◦ f ◦ jX ◦ g =)h2 ◦ jY ◦ f ◦ g = (h2 ◦ f ◦ jX ◦ g =) idV ,

and, moreover, the morphisms

h1 ◦ jY ◦ f, h2 ◦ jY ◦ f, h1 ◦ jY , h2 ◦ jY ,

h1 ◦ f, h2 ◦ f, h1, h2

are finite and flat; ξ an object of F over V ; φ : j∗Y h
∗
1ξ

∼→ j∗Y h
∗
2ξ an isomorphism in F|Y such

that the pull-back g∗f ∗φ is the identity automorphism of ξ = g∗f ∗j∗Y h
∗
1ξ = g∗f ∗j∗Y h

∗
2ξ.

Then the map induced by f

LiftjY (h
∗
1ξ, h

∗
2ξ;φ) // LiftjX (f

∗h∗1ξ, f
∗h∗2ξ; f

∗φ)

is bijective.

(2) Let

X
a //

b
��

Y

c

��
Z

d
// W

be a commutative diagram in SchS which is strictly cocartesian; V a scheme over S;

V
e // X, W

f1
))

f2

55 V

quasi-nil-retraction-like morphisms over S such that

f1 ◦ c ◦ a ◦ e = (f1 ◦ d ◦ b ◦ e =) f2 ◦ c ◦ a ◦ e = (f2 ◦ d ◦ b ◦ e =) idV ,

and, moreover, the morphisms

f1 ◦ c ◦ a, f2 ◦ c ◦ a, f1 ◦ c, f2 ◦ c,

f1 ◦ d, f2 ◦ d, f1, f2
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are finite and flat; ξ an object of F over V ; φ : c∗f ∗
1 ξ

∼→ c∗f ∗
2 ξ an isomorphism in F|Y

such that the pull-back e∗a∗φ is the identity automorphism of ξ = e∗a∗c∗f ∗
1 ξ = e∗a∗c∗f ∗

2 ξ.
Then the map induced by d

Liftc(f
∗
1 ξ, f

∗
2 ξ;φ) // Liftb(d

∗f ∗
1 ξ, d

∗f ∗
2 ξ; a

∗φ)

is bijective.

(3) Condition (3) of Definition 1.7 is satisfied.

REMARK 1.8.1. — One verifies easily that an integrable category fibered in groupoids
over SchS is weakly integrable.

2. Stratification Structures

In the present §2, we introduce and discuss the notion of a stratification structure on a
smooth scheme [cf. Definition 2.5 below]. In the present §2, let S be a scheme and X a
scheme which is smooth and separated over S.

DEFINITION 2.1. — Let n be a positive integer.

(i) We shall write

X(n) def
=

n︷ ︸︸ ︷
X ×S · · · ×S X

for the fiber product of n copies of X over S.

(ii) Let I ⊆ {1, . . . , n} be a nonempty subset of {1, . . . , n}. Then we shall write

Xpr
(n)
I : X(n) // X(♯I)

for the projection onto the factors labeled by the elements of I, i.e., the morphism given
by “(x1, . . . , xn) 7→ (xi1 , . . . , xi♯I )”, where I = {i1, . . . , i♯I} and i1 < · · · < i♯I .

(iii) Let i be an element of {1, . . . , n}. Then we shall write

Xpr
(n)
i

def
= Xpr

(n)
{i} : X

(n) // X(1) = X.

DEFINITION 2.2. — We shall refer to a collection of data

S =
(
(SP n)n≥0, (

Sιn : SP n → SP n+1)n≥0, (
Sσn : SP n → X(2))n≥0

)
consisting of

• a scheme SP n over S for each nonnegative integer n,

• an affine morphism Sιn : SP n → SP n+1 over S for each nonnegative integer n, and

• an affine morphism Sσn : SP n → X(2) over S for each nonnegative integer n

as a pre-stratification structure on X/S if the following two conditions are satisfied:
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(1) Let n be a nonnegative integer. Then the diagram of schemes over S

SP n
Sιn

//

Sσn ""D
DD

DD
DD

D
SP n+1

Sσn+1{{ww
ww
ww
ww

X(2)

is commutative.

(2) The morphism Sσ0 : SP 0 → X(2) determines an isomorphism of SP 0 with the
diagonal closed subscheme X ⊆ X(2) of X(2).
Let us identify SP 0 with X by means of the isomorphism determined by the morphism

Sσ0:
SP 0 = X.

DEFINITION 2.3. — Let

S =
(
(SP n)n≥0, (

Sιn)n≥0, (
Sσn)n≥0

)
be a pre-stratification structure on X/S and n a nonnegative integer.

(i) Let m be a nonnegative integer such that m < n. Then we shall write

Sιmn : SPm // SP n

for the morphism over S obtained by forming the composite of the morphisms Sιm, . . . , Sιn−1.
Moreover, we shall write

Sιnn
def
= idSPn .

(ii) Let i be an element of {1, 2}. Then we shall write

Sprni :
SP n // X

for the morphism over S obtained by forming the composite of the morphism Sσn : SP n →
X(2) and the morphism Xpr

(2)
i : X(2) → X.

REMARK 2.3.1. — In the situation of Definition 2.3, it follows from conditions (1), (2) of
Definition 2.2 that, for each nonnegative integer n and i ∈ {1, 2}, the diagram of schemes
over S

X = SP 0
Sι0n //

III
III

III
I

III
III

III
I

SP n

Sprni}}{{
{{
{{
{{

X

is commutative. In particular, the morphism Sι0n : X = SP 0 → SP n is a closed immersion.
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DEFINITION 2.4. — Let

S =
(
(SP n)n≥0, (

Sιn)n≥0, (
Sσn)n≥0

)
be a pre-stratification structure on X/S; r a positive integer; n1, . . . , nr nonnegative
integers.

(i) We shall write

SP n1,...,nr def
= SP n1 ×X · · · ×X

SP nr

—where, for each i ∈ {1, . . . , r−1}, the morphism SP ni → X (respectively, SP ni+1 → X)
implicit in the i-th “×X” is the morphism Sprni

2 (respectively, Spr
ni+1

1 ).

(ii) Let m1, . . . ,mr be nonnegative integers such that mi ≤ ni for each i ∈ {1, . . . , r}.
Then we shall write

Sιm1,...,mr
n1,...,nr

: SPm1,...,mr // SP n1,...,nr

for the morphism over S determined [cf. condition (1) of Definition 2.2] by the morphisms
Sιm1

n1
, . . . , Sιmr

nr
.

(iii) We shall write
Sσn1,...,nr : SP n1,...,nr // X(r+1)

for the morphism over S determined [cf. condition (1) of Definition 2.2] by the morphisms
Sσn1 , . . . , Sσnr .

(iv) Let i be an element of {1, . . . , r + 1}. Then we shall write

Sprn1,...,nr

i : SP n1,...,nr // X

for the morphism over S obtained by forming the composite of the

morphism Sσn1,...,nr : SP n1,...,nr → X(r+1) and the morphism Xpr
(r+1)
i : X(r+1) → X.

(v) Let i be an element of {1, . . . , r}. Then we shall write

Sprn1,...,nr

{i,i+1} : SP n1,...,nr // SP ni

for the projection onto the i-th factor.

(vi) We shall write

SP×r, Sσ×r : SP×r // X(r+1),

Spr×r
i : SP×r // X, Spr×r

{i,i+1} :
SP×r // SP 1

for the “SP n1,...,nr”, “Sσn1,...,nr”, “Sprn1,...,nr

i ”, “Sprn1,...,nr

{i,i+1} ” in the case where we take the

“(n1, . . . , nr)” to be (1, . . . , 1).

REMARK 2.4.1. — In the situation of Definition 2.4:

(i) It follows from condition (2) of Definition 2.2 that the morphism Sσ0,...,0 : X =
SP 0,...,0 → X(r+1) determines an isomorphism of X = SP 0,...,0 with the diagonal closed
subscheme X ⊆ X(r+1) of X(r+1).
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(ii) It follows from Remark 2.3.1 that the diagram of schemes over S

X = SP 0,...,0
Sι0,...,0n1,...,nr //

KKK
KKK

KKK
KK

KKK
KKK

KKK
KK

SP n1,...,nr

Spr
n1,...,nr
izzuuu

uuu
uuu

u

X

is commutative, and the morphism Sι0,...,0n1,...,nr
: X = SP 0,...,0 → SP n1,...,nr is a closed im-

mersion.

DEFINITION 2.5. — We shall refer to a collection of data

S =
(
(SP n)n≥0, (

Sιn : SP n → SP n+1)n≥0,

(Sσn : SP n → X(2))n≥0, (
Sδn1,n2 : SP n1,n2 → SP n1+n2)n1, n2≥0

)
consisting of

• a pre-stratification structure on X/S(
(SP n)n≥0, (

Sιn : SP n → SP n+1)n≥0, (
Sσn : SP n → X(2))n≥0

)
and

• an affine morphism Sδn1,n2 : SP n1,n2 → SP n1+n2 over S for each nonnegative integers
n1, n2

as a stratification structure on X/S if the following four conditions are satisfied:

(1) Let n1, n2 be nonnegative integers. Then the diagram of schemes over S

SP n1,n2
Sδn1,n2

//

Sσn1,n2

��

SP n1+n2

Sσn1+n2

��

X(3)

Xpr
(3)
{1,3}

// X(2)

is commutative.

(2) Let n1, n2, n3 be nonnegative integers. Then the diagram of schemes over S

SP n1,n2,n3

(Sδn1,n2 , idSPn3 )
//

(idSPn1 ,
Sδn2,n3 )

��

SP n1+n2,n3

Sδn1+n2,n3

��
SP n1,n2+n3

Sδn1,n2+n3

// SP n1+n2+n3

[cf. (1)] is commutative.

(3) Let n be a nonnegative integer. Then the morphisms Sδ0,n, Sδn,0 coincide —
relative to the identification of SP 0 with X [cf. condition (2) of Definition 2.2] — with
the identity automorphisms of SP 0,n, SP n,0, respectively.
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(4) Let n1, n2 be nonnegative integers. Then the diagrams of schemes over S

SP n1,n2
Sδn1,n2

//

Sι
n1,n2
n1+1,n2

��

SP n1+n2

Sιn1+n2

��

SP n1,n2
Sδn1,n2

//

Sι
n1,n2
n1,n2+1

��

SP n1+n2

Sιn1+n2

��
SP n1+1,n2

Sδn1+1,n2

// SP n1+n2+1 SP n1,n2+1
Sδn1,n2+1

// SP n1+n2+1

are commutative.

REMARK 2.5.1. — An example of a stratification structure on X/S is given as follows:

Let Y be a separated scheme over S and X → Y an affine morphism over S. Write P
def
=

X ×Y X; q1, q2 : P → X for the projections onto the first, second factors, respectively;
q1,3 : X ×Y X ×Y X → P for the projection onto the first and third factors. Let

P 0 ⊆ P 1 ⊆ . . . ⊆ P n ⊆ P n+1 ⊆ . . . ⊆ P

be a sequence of closed subschemes of P . Suppose that the following two conditions are
satisfied:

• The natural closed immersion P 0 ↪→ P determines an isomorphism of P 0 with the
diagonal closed subscheme X ⊆ P of P .

• For each nonnegative integers n1, n2, if we write P n1,n2
def
= P n1 ×X P n2 (⊆ X ×Y

X ×Y X) for the fiber product of the composite P n1 ↪→ P
q2→ X and the composite

P n2 ↪→ P
q1→ X, then the composite

P n1,n2 �
� // X ×Y X ×Y X

q1,3 // P

factors through the closed subscheme P n1+n2 ⊆ P of P . Write

δn1,n2 : P n1,n2 // P n1+n2

for the resulting morphism.

For each nonnegative integer n, write ιn : P n ↪→ P n+1 for the natural closed immersion
and σn : P n → X(2) for the composite of the natural closed immersion P n ↪→ P and the
closed immersion P ↪→ X(2) induced by the morphism Y → S. Then one verifies easily
that the collection of data(
(P n)n≥0, (ι

n : P n ↪→ P n+1)n≥0, (σ
n : P n → X(2))n≥0, (δ

n1,n2 : P n1,n2 → P n1+n2)n1, n2≥0

)
gives an example of a stratification structure on X/S.

DEFINITION 2.6. — Let

S =
(
(SP n)n≥0, (

Sιn)n≥0, (
Sσn)n≥0, (

Sδn1,n2)n1, n2≥0

)
be a stratification structure on X/S; r a positive integer; n1, . . . , nr nonnegative integers.

Write n
def
=

∑r
i=1 ni. Then it follows from conditions (1), (2) of Definition 2.5 that the
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various Sδm1,m2 ’s determine a commutative diagram of schemes over S

SP×n //

##F
FF

FF
FF

F
SP n1,...,nr

zzttt
tt
tt
tt

SP n.

We shall write

Sδ×n
n1,...,nr

: SP×n // SP n1,...,nr , Sδ×n : SP×n // SP n,

Sδn1,...,nr : SP n1,...,nr // SP n

for the top horizontal, left-hand lower, right-hand lower arrows of this diagram, respec-
tively.

REMARK 2.6.1. — In the situation of Definition 2.6, it follows from condition (1) of
Definition 2.5 that the diagrams of schemes over S

SP n1,...,nr
Sδn1,...,nr

//

Spr
n1,...,nr
1 $$I

II
II

II
II

I
SP n

Sprn1}}{{
{{
{{
{{

SP n1,...,nr
Sδn1,...,nr

//

Spr
n1,...,nr
r+1 $$I

II
II

II
II

I
SP n

Sprn2}}{{
{{
{{
{{

X, X,

SP×n
Sδ×n

n1,...,nr //

Spr×n
1 ""E

EE
EE

EE
E

SP n1,...,nr

Spr
n1,...,nr
1zzuuu

uu
uu
uu
u

SP×n
Sδ×n

n1,...,nr //

Spr×n
n+1 !!D

DD
DD

DD
DD

SP n1,...,nr

Spr
n1,...,nr
r+1zzvvv

vv
vv
vv
v

X, X

are commutative.

DEFINITION 2.7. — Let

S =
(
(SP n)n≥0, (

Sιn)n≥0, (
Sσn)n≥0, (

Sδn1,n2)n1, n2≥0

)
be a stratification structure on X/S; r a positive integer; n1, . . . , nr nonnegative integers.

Write n
def
=

∑r
i=1 ni. Suppose that n ≥ 1.

(i) We shall write

SP n1,...,nr def
= SP n1,...,nr ×SPn

SP n−1

for the fiber product of the morphism Sδn1,...,nr : SP n1,...,nr → SP n and the morphism
Sιn−1 : SP n−1 → SP n.

(ii) We shall write

Sιn1,...,nr : SP n1,...,nr // SP n1,...,nr , Sδn1,...,nr : SP n1,...,nr // SP n−1
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for the first, second projections, respectively, Thus, we have a cartesian diagram of
schemes over S

SP n1,...,nr
Sδn1,...,nr

//

Sιn1,...,nr

��

SP n−1

Sιn−1

��
SP n1,...,nr

Sδn1,...,nr

// SP n.

(iii) Let i be an element of {1, . . . , r + 1}. Then we shall write

Sprn1,...,nr

i : SP n1,...,nr // X

for the morphism over S obtained by forming the composite of the morphism
Sιn1,...,nr : SP n1,...,nr → SP n1,...,nr and the morphism Sprn1,...,nr

i : SP n1,...,nr → X.

(iv) It follows from conditions (3), (4) of Definition 2.5 that the diagram of schemes
over S

X = SP 0 = SP 0,...,0
Sι0n−1 //

Sι0,...,0n1,...,nr
��

SP n−1

Sιn−1

��
SP n1,...,nr

Sδn1,...,nr

// SP n

is commutative. We shall write

Sι0n1,...,nr
: X // SP n1,...,nr

for the morphism over S determined by this commutative diagram and the cartesian
diagram of (ii).

(v) We shall write

SP×r, Sι×r : SP×r // SP×r, Sδ×r : SP×r // SP r−1,

Spr×r
i : SP×r // X, Sι0×r : X // SP×r

for “SP n1,...,nr”, “Sιn1,...,nr”, “Sδn1,...,nr”, “Sprn1,...,nr

i ”, “Sι0n1,...,nr
” in the case where we

take the “(n1, . . . , nr)” to be (1, . . . , 1).

REMARK 2.7.1. — In the situation of Definition 2.7:

(i) It follows from Remark 2.4.1, (ii), that the diagram of schemes over S

X
Sι0n1,...,nr //

??
??

??
??

??
??

??
??

SP n1,...,nr

Spr
n1,...,nr
izzuuu

uuu
uuu

u

X

is commutative, and the morphism Sι0n1,...,nr
: X → SP n1,...,nr is a closed immersion.
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(ii) It follows from condition (1) of Definition 2.2 and Remark 2.6.1 that the diagrams
of schemes over S

SP n1,...,nr
Sδn1,...,nr

//

Spr
n1,...,nr
1 $$I

II
II

II
II

I
SP n−1

Sprn−1
1||xx

xx
xx
xx
x

SP n1,...,nr
Sδn1,...,nr

//

Spr
n1,...,nr
r+1 $$H

HH
HH

HH
HH

H
SP n−1

Sprn−1
2||yy

yy
yy
yy
y

X, X

are commutative.

DEFINITION 2.8. — Let

S =
(
(SP n)n≥0, (

Sιn)n≥0, (
Sσn)n≥0, (

Sδn1,n2)n1, n2≥0

)
,

T =
(
(TP n)n≥0, (

Tιn)n≥0, (
Tσn)n≥0, (

Tδn1,n2)n1, n2≥0

)
be stratification structures on X/S. Then we shall define a morphism of stratification
structures

S // T

to be a collection of data

Φ = (Φn)n≥0

consisting of an affine morphism Φn : SP n → TP n over S for each nonnegative integer n
that satisfies the following three conditions:

(1) Let n be a nonnegative integer. Then the diagram of schemes over S

SP n Φn
//

Sιn

� �

TP n

Tιn

��
SP n+1

Φn+1
// TP n+1

is commutative.

(2) Let n be a nonnegative integer. Then the diagram of schemes over S

SP n Φn
//

Sσn ""D
DD

DD
DD

D
TP n

Tσn}}zz
zz
zz
zz

X(2)

is commutative.

(3) Let n1, n2 be nonnegative integers. Then the diagram of schemes over S

SP n1,n2 //

Sδn1,n2

��

TP n1,n2

Tδn1,n2

��
SP n1+n2

Φn1+n2

// TP n1+n2
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— where the upper horizontal arrow is the morphism over S determined [cf. (2)] by the
morphisms Φn1 , Φn2 — is commutative.

REMARK 2.8.1. — In the situation of Definition 2.8, it follows from condition (2) of
Definition 2.2 and condition (2) of Definition 2.8 that the morphism Φ0 : X = SP 0 →
TP 0 = X coincides with the identity automorphism of X.

DEFINITION 2.9. — Let

S =
(
(SP n)n≥0, (

Sιn)n≥0, (
Sσn)n≥0, (

Sδn1,n2)n1, n2≥0

)
,

T =
(
(TP n)n≥0, (

Tιn)n≥0, (
Tσn)n≥0, (

Tδn1,n2)n1, n2≥0

)
be stratification structures on X/S;

Φ = (Φn)n≥0 : S // T

a morphism of stratification structures; r a positive integer; n1, . . . , nr nonnegative inte-
gers. Then we shall write

Φn1,...,nr : SP n1,...,nr // TP n1,...,nr

for the morphism over S determined [cf. condition (2) of Definition 2.8] by the morphisms
Φn1 , . . . ,Φnr . [So the upper horizontal arrow of the diagram of Definition 2.8, (3), is the
morphism Φn1,n2 .]

DEFINITION 2.10. — Let

S =
(
(SP n)n≥0, (

Sιn)n≥0, (
Sσn)n≥0, (

Sδn1,n2)n1, n2≥0

)
,

T =
(
(TP n)n≥0, (

Tιn)n≥0, (
Tσn)n≥0, (

Tδn1,n2)n1, n2≥0

)
be stratification structures on X/S;

Φ = (Φn)n≥0 : S // T

a morphism of stratification structures; m ≤ n nonnegative integers.

(i) We shall write

ΦP n|m def
= SP n ×TPn

TPm

for the fiber product of the morphism Φn : SP n → TP n and the morphism Tιmn : TPm →
TP n. [So ΦP n|n = SP n.]

(ii) We shall write

Φιn|m : ΦP n|m // SP n, Φn|m : ΦP n|m // TPm
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for the first, second projections, respectively, Thus, we have a cartesian diagram of
schemes over S

ΦP n|m Φn|m
//

Φ ιn|m

��

TPm

Tιmn
��

SP n

Φn
// TP n.

(iii) Let m′ ≤ m be a nonnegative integer. Then we shall write

Φι
n|m′

n|m : ΦP n|m′ // ΦP n|m

for the morphism over S determined by the morphism Tιm
′

m : TPm′ → TPm.

(iv) Let i be an element of {1, 2}. Then we shall write

Φpr
n|m
i : ΦP n|m // X

for the morphism over S obtained by forming the composite of the morphism Φιn|m : ΦP n|m →
SP n and the morphism Sprni :

SP n → X.

(v) It follows from condition (1) of Definition 2.8 and Remark 2.8.1 that the diagram
of schemes over S

X = SP 0 = TP 0
Tι0m //

Sι0n
��

TPm

Tιmn
��

SP n

Φn
// TP n

is commutative. We shall write

Φι0n|m : X // ΦP n|m

for the morphism over S determined by this commutative diagram and the cartesian
diagram of (ii).

REMARK 2.10.1. — In the situation of Definition 2.10:

(i) It follows from Remark 2.3.1 that the diagram of schemes over S

X
Φ ι0

n|m //

??
??

??
??

??
??

??
??

ΦP n|m

Φpr
n|m
i| |yy

yy
yy
yy
y

X

is commutative, and the morphism Φι0n|m : X → ΦP n|m is a closed immersion.
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(ii) It follows from condition (1) of Definition 2.2 and condition (2) of Definition 2.8
that the diagram of schemes over S

ΦP n|m Φn|m
//

Φpr
n|m
i ""E

EE
EE

EE
EE

SPm

Sprmi} }{{
{{
{{
{{

X

is commutative.

(iii) It follows from (ii) and Remark 2.3.1 that the equalities

Φn|0 = Φpr
n|0
1 = Φpr

n|0
2 : ΦP n|0 // SP 0 = X

hold.

3. Integrable Stratification Structures

In the present §3, we introduce the notion of an integrable stratification structure on
a smooth scheme [cf. Definition 3.2 below] and the notion of an integrable morphism of
stratification structures [cf. Definition 3.8 below]. In the present §3, let S be a scheme,
X a scheme which is smooth and separated over S, and

S =
(
(SP n)n≥0, (

Sιn : SP n → SP n+1)n≥0,

(Sσn : SP n → X(2))n≥0, (
Sδn1,n2 : SP n1,n2 → SP n1+n2)n1, n2≥0

)
a stratification structure on X/S.

DEFINITION 3.1.

(i) We shall say that the stratification structure S is ι-quasi-nil-retraction-like if, for
each nonnegative integer n, the morphism Sιn : SP n → SP n+1 is quasi-nil-retraction-like.

(ii) We shall say that the stratification structure S is pr-finite flat if, for each non-
negative integer n and i ∈ {1, 2}, the morphism Sprni :

SP n → X is finite and flat.

(iii) We shall say that the stratification structure S is δ-nil-retraction-like if the
following condition is satisfied: Let r be a positive integer; n1, . . . , nr nonnegative integers.

Write n
def
=

∑r
i=1 ni. Then the morphisms in the commutative diagram of Definition 2.6

SP×n
Sδ×n

n1,...,nr //

Sδ×n ""F
FF

FF
FF

F
SP n1,...,nr

Sδn1,...,nrzzuuu
uuu

uuu
u

SP n

are nil-retraction-like.
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(iv) Let r be a positive integer. Then we shall say that the stratification structure S
is δ-strictly cocartesian of level ≥ r if, for each integer n ≥ r, the commutative diagram
of schemes over S

SP×n
Sδ×n

1,n−1 //

Sδ×n
n−1,1

��

SP 1,n−1

Sδ1,n−1

��
SP n−1,1

Sδn−1,1

// SP n

is strictly cocartesian.

REMARK 3.1.1. — Suppose that the stratification structure S is ι-quasi-nil-retraction-
like.

(i) In the situation of Definition 2.3, (ii), it follows from Remark 2.3.1 that the
morphism Sprni :

SP n → X is quasi-nil-retraction-like.

(ii) In the situation of Definition 2.4, (ii), it follows from (i) that the morphism
Sιm1,...,m2

n1,...,n2
: SPm1,...,m2 → SP n1,...,n2 is quasi-nil-retraction-like.

(iii) In the situation of Definition 2.6, it follows from (ii) and conditions (3), (4) of
Definition 2.5 that the morphisms in the commutative diagram

SP×n
Sδ×n

n1,...,nr //

Sδ×n ""F
FF

FF
FF

F
SP n1,...,nr

Sδn1,...,nrzzuuu
uuu

uuu
u

SP n

are quasi-nil-retraction-like.

REMARK 3.1.2. — Suppose that the stratification structure S is pr-finite flat. Then,
in the situation of Definition 2.4, (iv), one verifies immediately that the morphism
Sprn1,...,nr

i : SP n1,...,nr → X is finite and flat.

DEFINITION 3.2. — We shall say that the stratification structure S is integrable if the
following four conditions are satisfied:

(1) The stratification structure S is ι-quasi-nil-retraction-like and δ-nil-retraction-like.

(2) The stratification structure S is δ-strictly cocartesian of level ≥ 3.

(3) The morphism Sι1 : SP 1 → SP 2 is a square-nilpotent closed immersion.

(4) The morphism Sδ×2 : SP×2 → SP 2 is conormally strict with respect to the square-
nilpotent closed immersion Sι1 : SP 1 ↪→ SP 2 [cf. (3)].
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REMARK 3.2.1. — Suppose that the stratification structure S is integrable.

(i) It follows from condition (3) of Definition 3.2 that the morphism Sι×2 : SP×2 →
SP×2 is a square-nilpotent closed immersion, hence also [cf. Remark 1.2.1] quasi-nil-
retraction-like.

(ii) It follows from Remark 3.1.1, (ii), and condition (1) of Definition 3.2 that the
morphism Sι0,01,1 : X = SP 0,0 → SP×2 is quasi-nil-retraction-like. Thus, it follows from (i)

that the morphism Sι0×2 : X → SP×2 is quasi-nil-retraction-like.

REMARK 3.2.2. — Let us recall from Definition 2.7, (ii), that the diagram

SP×2
Sδ×2

//

Sι×2

��

SP 1

Sι1

��
SP×2

Sδ×2

// SP 2

is cartesian. Now suppose that the stratification structure S is integrable. Then it follows
from conditions (3), (4) of Definition 3.2 that the right-hand vertical arrow of this diagram
is a square-nilpotent closed immersion, and the lower horizontal arrow of this diagram is
conormally strict with respect to the right-hand vertical arrow.

REMARK 3.2.3. — Suppose that the stratification structure S is integrable. Let n ≥ 3
be an integer. Let us recall the diagram of schemes over S

X = SP 0,...,0
Sι0,...,01,...,1 // SP×n

Sδ×n
1,n−1 //

Sδ×n
n−1,1

��

SP 1,n−1

Sδ1,n−1

��
SP n−1,1

Sδn−1,1

// SP n

Sprn1
,,

Sprn2

22 X.

(i) It follows from condition (2) of Definition 3.2 that the diagram

SP×n
Sδ×n

1,n−1 //

Sδ×n
n−1,1

��

SP 1,n−1

Sδ1,n−1

��
SP n−1,1

Sδn−1,1

// SP n

is [commutative and] strictly cocartesian.

(ii) It follows from Remark 3.1.1, (ii), and condition (1) of Definition 3.2 that the
morphism

X = SP 0,...,0
Sι0,...,01,...,1 // SP×n

is quasi-nil-retraction-like.



Integrable Connections I 25

(iii) It follows from Remark 3.1.1, (i), and condition (1) of Definition 3.2 that the
morphisms

SP n

Sprn1
**

Sprn2

44 X

are quasi-nil-retraction-like.

(iv) It follows from Remark 2.4.1, (ii), and Remark 2.6.1 that the equalities

Sprn1 ◦ Sδ1,n−1 ◦ Sδ×n
1,n−1 ◦ Sι0,...,01,...,1 =

Sprn2 ◦ Sδ1,n−1 ◦ Sδ×n
1,n−1 ◦ Sι0,...,01,...,1 = idX

hold.

DEFINITION 3.3. — We shall say that the stratification structure S is strictly integrable
if the following three conditions are satisfied:

(1) The stratification structure S is integrable.

(2) The stratification structure S is pr-finite flat.

(3) Let i be an element of {1, 3}. Then the morphism Spr×2
i : SP×2 → X is finite and

flat.

REMARK 3.3.1. — Suppose that the stratification structure S is strictly integrable. Let
us recall the diagram of schemes over S

X
Sι0×2 // SP×2

Sδ×2

//

Sι×2

��

SP 1

Sι1

��
SP×2

Sδ×2

// SP 2

Spr21
++

Spr22

33 X.

(i) It follows from Remark 3.2.1, (ii), and condition (1) of Definition 3.3 that the
morphism

Sι0×2 : X // SP×2

is quasi-nil-retraction-like.

(ii) It follows from Remark 3.1.1, (i), condition (1) of Definition 3.2, and condition
(1) of Definition 3.3 that the morphisms

SP 2

Spr21
**

Spr22

44 X

are quasi-nil-retraction-like.

(iii) It follows from Remark 2.4.1, (ii), and Remark 2.6.1 that the equalities

Spr21 ◦ Sι1 ◦ Sδ×2 ◦ Sι0×2 =
Spr22 ◦ Sι1 ◦ Sδ×2 ◦ Sι0×2 = idX
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hold.

(iv) It follows from Remark 3.1.2 and conditions (2), (3) of Definition 3.3 [cf. also
condition (1) of Definition 2.2; Remark 2.6.1; Remark 2.7.1, (ii)] that the morphisms

Spr×2
1 = Spr21 ◦ Sι1 ◦ Sδ×2, Spr×2

3 = Spr22 ◦ Sι1 ◦ Sδ×2,

Spr11 =
Spr21 ◦ Sι1, Spr12 =

Spr22 ◦ Sι1,

Spr×2
1 = Spr21 ◦ Sδ×2, Spr×2

3 = Spr22 ◦ Sδ×2,

Spr21,
Spr22

are finite and flat.

REMARK 3.3.2. — Suppose that the stratification structure S is strictly integrable. Let
n ≥ 3 be an integer. Let us recall the diagram of schemes over S

X = SP 0,...,0
Sι0,...,01,...,1 // SP×n

Sδ×n
1,n−1 //

Sδ×n
n−1,1

��

SP 1,n−1

Sδ1,n−1

��
SP n−1,1

Sδn−1,1

// SP n

Sprn1
,,

Sprn2

22 X.

Then it follows from Remark 3.1.2 and condition (2) of Definition 3.3 [cf. also Re-
mark 2.6.1] that the morphisms

Spr×n
1 = Sprn1 ◦ Sδ1,n−1 ◦ Sδ×n

1,n−1,
Spr×n

n+1 =
Sprn2 ◦ Sδ1,n−1 ◦ Sδ×n

1,n−1,

Spr1,n−1
1 = Sprn1 ◦ Sδ1,n−1, Spr1,n−1

3 = Sprn2 ◦ Sδ1,n−1,

Sprn−1,1
1 = Sprn1 ◦ Sδn−1,1, Sprn−1,1

3 = Sprn2 ◦ Sδn−1,1,

Sprn1 ,
Sprn2

are finite and flat.

REMARK 3.3.3. — In sequels to the present paper, we give some examples of strictly
integrable stratification structures.

DEFINITION 3.4.

(i) We shall write

T 1 ⊆ X(3)

for the closed subscheme of X(3) defined by the quasi-coherent ideal of OX(3) obtained by
forming the square of the quasi-coherent ideal that defines the diagonal closed subscheme
X ⊆ X(3) of X(3).
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(ii) Let i be an element of {1, 2, 3}. Then we shall write

XprTi : T
1 // X

for the morphism over S obtained by forming the composite of the natural closed immer-

sion T 1 ↪→ X(3) and the morphism Xpr
(3)
i : X(3) → X.

LEMMA 3.5. — Suppose that the morphism Sσ1 : SP 1 → X(2) determines an isomor-
phism of SP 1 with the closed subscheme of X(2) defined by the quasi-coherent ideal of
OX(2) obtained by forming the square of the quasi-coherent ideal that defines the diagonal

closed subscheme X ⊆ X(2) of X(2) [which thus implies that the morphisms

Sσ1,0 : SP 1 = SP 1,0 // X(3), Sσ0,1 : SP 1 = SP 0,1 // X(3),

Sσ×2 : SP×2 // X(3)

are closed immersions]. Then the following hold:

(i) The closed immersion Sσ0,0 : X = SP 0,0 ↪→ X(3) [cf. Remark 2.4.1, (i)] factors
as the composite of a square-nilpotent closed immersion X ↪→ T 1 whose conormal
sheaf is isomorphic to Ω1

X/S ⊕ Ω1
X/S and the natural closed immersion T 1 ↪→ X(3).

Write
Sι0T : X

� � // T 1

for the resulting square-nilpotent closed immersion [whose conormal sheaf is isomorphic
to Ω1

X/S ⊕ Ω1
X/S].

(ii) The closed immersion Sσ1,0 : SP 1 = SP 1,0 ↪→ X(3) factors as the composite of a
square-nilpotent closed immersion SP 1 ↪→ T 1 whose conormal sheaf is isomorphic
to Sι0∗Ω

1
X/S and the natural closed immersion T 1 ↪→ X(3).

Write
Sι1,0T : SP 1 � � // T 1

for the resulting square-nilpotent closed immersion [whose conormal sheaf is isomorphic
to Sι0∗Ω

1
X/S].

(iii) The closed immersion Sσ0,1 : SP 1 = SP 0,1 ↪→ X(3) factors as the composite of a
square-nilpotent closed immersion SP 1 ↪→ T 1 whose conormal sheaf is isomorphic
to Sι0∗Ω

1
X/S and the natural closed immersion T 1 ↪→ X(3).

Write
Sι0,1T : SP 1 � � // T 1

for the resulting square-nilpotent closed immersion [whose conormal sheaf is isomorphic
to Sι0∗Ω

1
X/S].

(iv) The natural closed immersion T 1 ↪→ X(3) factors as the composite of a square-
nilpotent closed immersion T 1 ↪→ SP×2 whose conormal sheaf is isomorphic to
(Sι0T )∗(Ω

1
X/S ⊗OX

Ω1
X/S) and the closed immersion Sσ×2 : SP×2 ↪→ X(3).

Write
SιT×2 : T

1 � � // SP×2
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for the resulting square-nilpotent closed immersion [whose conormal sheaf is isomorphic
to (Sι0T )∗(Ω

1
X/S ⊗OX

Ω1
X/S)].

Proof. — These assertions follow immediately from elementary algebraic geometry. □

DEFINITION 3.6. — We shall say that the stratification structure S is of standard type
if the following three conditions are satisfied:

(1) The morphism Sσ1 : SP 1 → X(2) determines an isomorphism of SP 1 with the
closed subscheme of X(2) defined by the quasi-coherent ideal of OX(2) obtained by forming
the square of the quasi-coherent ideal that defines the diagonal closed subscheme X ⊆
X(2) of X(2).

(2) The closed immersion SιT×2 : T
1 ↪→ SP×2 of Lemma 3.5, (iv) [cf. (1)], factors as the

composite of a square-nilpotent closed immersion T 1 ↪→ SP×2 and the closed immersion
Sι×2 : SP×2 ↪→ SP×2 [cf. (1)].

(3) If we write N for the conormal sheaf of the square-nilpotent closed immersion
T 1 ↪→ SP×2 of (2), then the surjective homomorphism (Sι0T )∗(Ω

1
X/S ⊗OX

Ω1
X/S) ↠ N of

OT 1-modules determined [cf. Lemma 3.5, (iv)] by the closed immersion Sι×2 : SP×2 ↪→
SP×2 induces an isomorphism (Sι0T )∗Ω

2
X/S

∼→ N of OT 1-modules.

In this situation, we shall write

SιT×2 : T
1 � � // SP×2

for the square-nilpotent closed immersion [whose conormal sheaf is isomorphic to (Sι0T )∗Ω
2
X/S

— cf. (3)] of (2) and

SδT1 : T
1 // SP 1

for the morphism over S obtained by forming the composite of the morphism SιT×2 : T
1 →

SP×2 and the morphism Sδ×2
1 : SP×2 → SP 1.

REMARK 3.6.1. — Suppose that the stratification structure S is of standard type. Let
us recall the diagram of schemes over S

X
Sι0

//

Sι0

��

SP 1

Sι0,1T
��

SP 1

Sι1,0T

// T 1

XprT1
++

XprT3

33 X.
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(i) It follows from Lemma 3.5, (iii), and condition (1) of Definition 3.6, together with
elementary algebraic geometry, that the diagram

X
Sι0

//

Sι0

��

SP 1

Sι0,1T
��

SP 1

Sι1,0T

// T 1

is cartesian, and the right-hand vertical arrow of this diagram is a square-nilpotent closed
immersion. Moreover, again by condition (1) of Definition 3.6, together with elementary
algebraic geometry, the lower horizontal arrow of this diagram is conormally strict with
respect to the right-hand vertical arrow.

(ii) It follows from elementary algebraic geometry that the morphisms

T 1

XprT1
**

XprT3

44 X

are quasi-nil-retraction-like.

(iii) It follows from Remark 2.3.1 and condition (1) of Definition 3.6 that the equalities

XprT1 ◦ Sι0,1T ◦
Sι0 = XprT3 ◦ Sι0,1T ◦

Sι0 = idX

hold.

(iv) It follows from condition (1) of Definition 3.6, together with elementary algebraic
geometry [cf. also Remark 2.3.1], that the morphisms

idX = XprT1 ◦ Sι0,1T ◦
Sι0, idX = XprT3 ◦ Sι0,1T ◦

Sι0,

Spr11 =
XprT1 ◦ Sι0,1T , Spr12 =

XprT3 ◦ Sι0,1T ,

Spr11 =
XprT1 ◦ Sι1,0T , Spr12 =

XprT3 ◦ Sι1,0T ,

XprT1 ,
XprT3

are finite and flat.

REMARK 3.6.2. — Suppose that the stratification structure S is of standard type. Then
let us recall that the conormal sheaf of the square-nilpotent closed immersion SιT×2 : T

1 ↪→
SP×2 of Definition 3.6 is isomorphic to the OT 1-module (Sι0T )∗Ω

2
X/S. Thus, since [one

verifies easily that] the morphism XprTi : T
1 → X is finite and flat for each i ∈ {1, 2, 3},

and the OX-module Ω2
X/S is coherent and locally free, one verifies immediately that the

stratification structure S satisfies condition (3) of Definition 3.3.

REMARK 3.6.3. — In sequels to the present paper, we give some examples of stratification
structures of standard type.
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In the remainder of the present §3, let

T =
(
(TP n)n≥0, (

Tιn : TP n → TP n+1)n≥0,

(Tσn : TP n → X(2))n≥0, (
Tδn1,n2 : TP n1,n2 → TP n1+n2)n1, n2≥0

)
be a stratification structure on X/S and

Φ = (Φn)n≥0 : S // T

a morphism of stratification structures.

DEFINITION 3.7.

(i) We shall say that the morphism Φ is nil-retraction-like if, for each positive integer
r and nonnegative integers n1, . . . , nr, the morphism Φn1,...,nr : SP n1,...,nr → TP n1,...,nr is
nil-retraction-like.

(ii) Let r be a nonnegative integer. Then we shall say that the morphism Φ is
r-pr-finite flat if, for each nonnegative integer n ≤ r and i ∈ {1, 2}, the morphism
Φpr

r|n
i : ΦP r|n → X is finite and flat.

REMARK 3.7.1. — Suppose that the stratification structures S and T are ι-quasi-nil-
retraction-like. Then, in the situation of Definition 2.9, it follows from conditions (1), (3)
of Definition 2.8 and Remark 2.8.1 that the morphism Φn1,...,nr : SP n1,...,nr → TP n1,...,nr is
quasi-nil-retraction-like.

DEFINITION 3.8. — Let r be a nonnegative integer. Then we shall say that the morphism
Φ is r-integrable if the following five conditions are satisfied:

(1) The morphism Φ is nil-retraction-like.

(2) The stratification structure S is ι-quasi-nil-retraction-like and δ-nil-retraction-like.

(3) The stratification structure T is ι-quasi-nil-retraction-like, δ-nil-retraction-like,
and δ-strictly cocartesian of level ≥ r + 1.

(4) Let n ≤ r be a positive integer. Then the morphism Tιn−1 : TP n−1 → TP n is a
square-nilpotent closed immersion.

(5) Let n ≤ r be a positive integer. Then the morphism Φr|n : ΦP r|n → TP n is
conormally strict with respect to the square-nilpotent closed immersion Tιn−1 : TP n−1 ↪→
TP n [cf. (4)].

REMARK 3.8.1. — Let r be a nonnegative integer. Suppose that the morphism Φ is
r-integrable

(i) It follows from Remark 1.2.1 and condition (4) of Definition 3.8 that, for each
nonnegative integers m ≤ n ≤ r, the morphism Tιmn : TPm → TP n is quasi-nil-retraction-
like.
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(ii) In the situation of Definition 2.10, (v), it follows from (i) and conditions (1), (3)
of Definition 3.8 that the morphism Φι0n|m : X → ΦP n|m is quasi-nil-retraction-like.

REMARK 3.8.2. — Let n ≤ r be positive integers. Then one verifies easily from the
various definitions involved that the diagram of schemes over S

ΦP r|n−1 Φr|n−1

//

Φ ι
r|n−1
r|n

��

TP n−1

Tιn−1

��
ΦP r|n

Φr|n
// TP n

is cartesian. Now suppose that the morphism Φ is r-integrable. Then it follows from
conditions (4), (5) of Definition 3.8 that the right-hand vertical arrow of this diagram
is a square-nilpotent closed immersion, and the lower horizontal arrow of this diagram is
conormally strict with respect to the right-hand vertical arrow.

REMARK 3.8.3. — Let r be a nonnegative integer. Suppose that the morphism Φ is
r-integrable. Let n ≥ r + 1 be an integer. Let us recall the diagram of schemes over S

X = TP 0,...,0
Tι0,...,01,...,1 // TP×n

Tδ×n
1,n−1 //

Tδ×n
n−1,1

��

TP 1,n−1

Tδ1,n−1

��
TP n−1,1

Tδn−1,1

// TP n

Tprn1
,,

Tprn2

22 X.

(i) It follows from condition (3) of Definition 3.8 that the diagram

TP×n
Tδ×n

1,n−1 //

Tδ×n
n−1,1

��

TP 1,n−1

Tδ1,n−1

��
TP n−1,1

Tδn−1,1

// TP n

is [commutative and] strictly cocartesian.

(ii) It follows from Remark 3.1.1, (ii), and condition (3) of Definition 3.8 that the
morphism

X = TP 0,...,0
Tι0,...,01,...,1 // TP×n

is quasi-nil-retraction-like.

(iii) It follows from Remark 3.1.1, (i), and condition (3) of Definition 3.8 that the
morphisms

TP n

Tprn1
**

Tprn2

44 X
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are quasi-nil-retraction-like.

(iv) It follows from Remark 2.4.1, (ii), and Remark 2.6.1 that the equalities

Tprn1 ◦ Tδ1,n−1 ◦ Tδ×n
1,n−1 ◦ Tι0,...,01,...,1 =

Tprn2 ◦ Tδ1,n−1 ◦ Tδ×n
1,n−1 ◦ Tι0,...,01,...,1 = idX

hold.

DEFINITION 3.9. — Let r be a nonnegative integer. Then we shall say that the morphism
Φ is strictly r-integrable if the following three conditions are satisfied:

(1) The morphism Φ is r-integrable.

(2) The morphism Φ is r-pr-finite flat.

(3) The stratification structure T is pr-finite flat.

REMARK 3.9.1. — Let n ≤ r be positive integers. Suppose that the morphism Φ is
strictly r-integrable. Let us recall the diagram of schemes over S

X
Φ ι0

r|n−1 // ΦP r|n−1 Φr|n−1

//

Φ ι
r|n−1
r|n

��

TP n−1

Tιn−1

��
ΦP r|n

Φr|n
// TP n

Tprn1
,,

Tprn2

22 X.

(i) It follows from Remark 3.8.1, (ii), and condition (1) of Definition 3.9 that the
morphism

Φι0r|n−1 : X // ΦP r|n−1

is quasi-nil-retraction-like.

(ii) It follows from Remark 3.1.1, (i), condition (3) of Definition 3.8, and condition
(1) of Definition 3.9 that the morphisms

TP n

Tprn1
**

Tprn2

44 X

are quasi-nil-retraction-like.

(iii) It follows from condition (1) of Definition 2.2 and Remark 2.10.1, (ii), that the
equalities

Tprn1 ◦ Tιn−1 ◦ Φr|n−1 ◦ Φι0r|n−1 =
Tprn2 ◦ Tιn−1 ◦ Φr|n−1 ◦ Φι0r|n−1 = idX

hold.

(iv) It follows from conditions (2), (3) of Definition 3.9 [cf. also condition (1) of
Definition 2.2; Remark 2.10.1, (ii)] that the morphisms

Φpr
r|n−1
1 = Tprn1 ◦ Tιn−1 ◦ Φr|n−1, Φpr

r|n−1
2 = Tprn2 ◦ Tιn−1 ◦ Φr|n−1,
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Tprn−1
1 = Tprn1 ◦ Tιn−1, Tprn−1

2 = Tprn2 ◦ Tιn−1,

Φpr
r|n
1 = Tprn1 ◦ Φr|n, Φpr

r|n
2 = Tprn2 ◦ Φr|n,

Tprn1 ,
Tprn2

are finite and flat.

REMARK 3.9.2. — Let r be a nonnegative integer. Suppose that the morphism Φ is
strictly r-integrable. Let n ≥ r + 1 be an integer. Let us recall the diagram of schemes
over S

X = TP 0,...,0
Tι0,...,01,...,1 // TP×n

Tδ×n
1,n−1 //

Tδ×n
n−1,1

��

TP 1,n−1

Tδ1,n−1

��
TP n−1,1

Tδn−1,1

// TP n

Tprn1
,,

Tprn2

22 X.

Then it follows from Remark 3.1.2 and condition (3) of Definition 3.9 [cf. also Re-
mark 2.6.1] that the morphisms

Tpr×n
1 = Tprn1 ◦ Tδ1,n−1 ◦ Tδ×n

1,n−1,
Tpr×n

n+1 =
Tprn2 ◦ Tδ1,n−1 ◦ Tδ×n

1,n−1,

Tpr1,n−1
1 = Tprn1 ◦ Tδ1,n−1, Tpr1,n−1

3 = Tprn2 ◦ Tδ1,n−1,

Tprn−1,1
1 = Tprn1 ◦ Tδn−1,1, Tprn−1,1

3 = Tprn2 ◦ Tδn−1,1,

Tprn1 ,
Tprn2

are finite and flat.

REMARK 3.9.3. — In sequels to the present paper, we give some examples of strictly
r-integrable morphisms of stratification structures.

4. Stratifications and Integrable Connections

In the present §4, we introduce and discuss the notions of a connection [cf. Defini-
tion 4.4 below], a stratification [cf. Definition 4.6 below], and an integrable connection [cf.
Definition 4.7, (ii), below]. In the present §4, let S be a scheme, X a scheme which is
smooth and separated over S,

S =
(
(SP n)n≥0, (

Sιn : SP n → SP n+1)n≥0,

(Sσn : SP n → X(2))n≥0, (
Sδn1,n2 : SP n1,n2 → SP n1+n2)n1, n2≥0

)
a stratification structure on X/S,

F // SchS
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a category fibered in groupoids over SchS, and

ξ

an object of F over X.

DEFINITION 4.1. — Let n be a nonnegative integer.

(i) We shall write

SqCnnn(ξ)
def
= LiftSι0n

(
(Sprn2 )

∗ξ, (Sprn1 )
∗ξ; idξ

)
and refer to an element of the set SqCnnn(ξ) as a quasi-n-S-connection on ξ.

(ii) Let ∇ be a quasi-n-S-connection on ξ and m ≤ n a nonnegative integer. Then
one verifies easily that the isomorphism

(Sιmn )
∗∇ : (Sprm2 )

∗ξ
∼ // (Sprm1 )

∗ξ

[cf. condition (1) of Definition 2.2] is a quasi-m-S-connection on ξ. We shall write

∇|m
def
= (Sιmn )

∗∇

for this quasi-m-S-connection on ξ. Thus, we have a map of sets

SqCnnn(ξ) // SqCnnm(ξ)

given by mapping ∇ ∈ SqCnnn(ξ) to ∇|m ∈ SqCnnm(ξ).

(iii) We shall refer to a quasi-1-S-connection on ξ as an S-connection on ξ [cf. Re-
mark 4.1.1 below].

REMARK 4.1.1. — One verifies easily that the notion of an S-connection is the same as
the notion of a 1-S-connection in the sense of Definition 4.4 below.

DEFINITION 4.2. — Let n be a nonnegative integer; ξ1, ξ2 objects of F over X; ∇1,
∇2 quasi-n-S-connections on ξ1, ξ2, respectively; φ : ξ1

∼→ ξ2 an isomorphism in F|X .
Then we shall say that the isomorphism φ is S-horizontal [with respect to ∇1, ∇2] if the
diagram in F|SP 1

(Sprn2 )
∗ξ1 ∼

(Sprn2 )
∗ϕ

//

∇1 ≀
��

(Sprn2 )
∗ξ2

∇2≀
��

(Sprn1 )
∗ξ1

∼

(Sprn1 )
∗ϕ

// (Sprn1 )
∗ξ2

is commutative.
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DEFINITION 4.3. — Let r ≥ 2 be an integer; n1, . . . , nr positive integers. Write n
def
=∑r

i=1 ni [so 1 ≤ ni ≤ n−1 for each i ∈ {1, . . . , r}]. Let ∇ be a quasi-(n−1)-S-connection
on ξ. Then we shall write

∇n1,...,nr : (Sprn1,...,nr

r+1 )∗ξ
∼ // (Sprn1,...,nr

1 )∗ξ

for the isomorphism in F|SPn1,...,nr obtained by forming the composite

(Sprn1,...,nr

r+1 )∗ξ = (Sprn1,...,nr

{r,r+1} )
∗(Sprnr

2 )∗ξ
(Spr

n1,...,nr
{r,r+1} )∗(∇|nr )

∼
// (Sprn1,...,nr

{r,r+1} )
∗(Sprnr

1 )∗ξ

= (Sprn1,...,nr
r )∗ξ = (Sprn1,...,nr

{r−1,r})
∗(Spr

nr−1

2 )∗ξ
(Spr

n1,...,nr
{r−1,r} )∗(∇|nr−1 )

∼
// (Sprn1,...,nr

{r−1,r})
∗(Spr

nr−1

1 )∗ξ

· · ·

= (Sprn1,...,nr

2 )∗ξ = (Sprn1,...,nr

{1,2} )∗(Sprn1
2 )∗ξ

(Spr
n1,...,nr
{1,2} )∗(∇|n1 )

∼
// (Sprn1,...,nr

{1,2} )∗(Sprn1
1 )∗ξ

= (Sprn1,...,nr

1 )∗ξ.

Moreover, we shall write

∇×r : (Spr×r
r+1)

∗ξ
∼ / / (Spr×r

1 )∗ξ

for “∇n1,...,nr” in the case where we take the “(n1, . . . , nr)” to be (1, . . . , 1).

DEFINITION 4.4. — Let n be a nonnegative integer and ∇ a quasi-n-S-connection on ξ.
Then we shall say that ∇ is an n-S-connection if, for each positive integers n1, n2 such
that n1 + n2 = n, the “cocycle condition”

(∇|n−1)
n1,n2 = (Sδn1,n2)∗∇

[cf. Remark 2.6.1] is satisfied. We shall write

SCnnn(ξ) ⊆ SqCnnn(ξ)

for the set of n-S-connections on ξ.

LEMMA 4.5. — The map SqCnnn(ξ) → SqCnnm(ξ) of Definition 4.1, (ii), restricts to
a map of subsets

SCnnn(ξ) // SCnnm(ξ).

Proof. — Let ∇ be an n-S-connection on ξ; m1, m2 positive integers such that m1 +
m2 = m. Then since ∇ is an n-S-connection, the “cocycle condition”

(∇|n−1)
m1+n−m,m2 = (Sδm1+n−m,m2)∗∇
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is satisfied. Thus, by pulling back this equality by the morphism Sιm1,m2
m1+n−m,m2

: SPm1,m2 →
SPm1+n−m,m2 , we conclude from condition (1) of Definition 2.2 and condition (4) of Def-
inition 2.5 that the “cocycle condition”

(∇|m−1)
m1,m2 = (Sδm1,m2)∗(∇|m)

is satisfied, as desired. This completes the proof of Lemma 4.5. □

DEFINITION 4.6. — We shall write

SStrt(ξ)
def
= lim←−

n≥0

SCnnn(ξ)

[cf. Lemma 4.5] and refer to an element of the set SStrt(ξ) as an S-stratification on ξ.

REMARK 4.6.1. — A typical example of an S-stratification is as follows: Suppose that
there exists an object of F over S such that ξ is given by the pull-back of the object
by X → S. Then, for each nonnegative integer n, since [one verifies easily that] the two
composites

SP n
Sprn1 // X // S, SP n

Sprn2 // X // S

coincide, we have a natural identification

∇n : (
Sprn2 )

∗ξ = (Sprn1 )
∗ξ.

Now one verifies immediately that these ∇n’s form an S-stratification on ξ.

REMARK 4.6.2. — Suppose that we are in the situation of Remark 2.5.1. Thus, we have
a stratification structure on X/S(
(P n)n≥0, (ι

n : P n ↪→ P n+1)n≥0, (σ
n : P n → X(2))n≥0, (δ

n1,n2 : P n1,n2 → P n1+n2)n1, n2≥0

)
.

Suppose, moreover, that there exists a nonnegative integer n0 such that the closed im-
mersion Pn0 ↪→ P is an isomorphism. In this situation, one verifies easily that the notion
of a stratification on ξ [i.e., with respect to the above stratification structure] is the same
as the notion of a descent datum on ξ with respect to the morphism X → Y [in the usual
sense] — i.e., an isomorphism in F|P

q∗2ξ
∼ // q∗1ξ

that satisfies a certain cocycle condition.

DEFINITION 4.7.

(i) Let ∇ be an S-connection on ξ. Then we shall refer to the automorphism of
(Spr×2

1 )∗ξ in F|SP×2 obtained by forming the composite

(Sι×2)∗(∇×2) ◦ (Sδ×2)∗(∇−1)
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— where we write ∇−1 for the inverse of the isomorphism ∇ — as the S-curvature of ∇.
(ii) We shall say that an S-connection on ξ is S-integrable if the S-curvature of the

S-connection is the identity automorphism of (Spr×2
1 )∗ξ. We shall write

SIntCnn(ξ) ⊆ SCnn1(ξ)
(
= SqCnn1(ξ)

)
for the set of S-integrable S-connections on ξ.

LEMMA 4.8. — If n > m = 1, then the map SCnnn(ξ) → SCnnm(ξ) = SCnn1(ξ) of
Lemma 4.5 restricts to a map of subsets

SCnnn(ξ) // SIntCnn(ξ).

Proof. — Let us first observe that it follows from Lemma 4.5 that we may assume
without loss of generality that n = 2. Let ∇ be a 2-S-connection on ξ. Thus, the
“cocycle condition”

(∇|1)×2 = (Sδ×2)∗∇

is satisfied. In particular, by pulling back this equality by the morphism Sι×2 : SP×2 →
SP×2, we obtain an equality

(Sι×2)∗
(
(∇|1)×2

)
= (Sδ×2)∗(∇|1).

Thus, the S-curvature of ∇|1 is the identity automorphism, as desired. This completes
the proof of Lemma 4.8. □

LEMMA 4.9. — Suppose that the following two conditions are satisfied:

(1) The stratification structure S is of standard type.

(2) The category F fibered in groupoids over SchS satisfies condition (1) of Defini-
tion 1.8.

Then the pull-back by the closed immersion SιT×2 : T
1 ↪→ SP×2 of Definition 3.6 of the

S-curvature of an S-connection on ξ is the identity automorphism of (XprT1 )
∗ξ. In

particular, the S-curvature of an S-connection on ξ is an element of

LiftSιT×2

(
(Spr×2

1 )∗ξ, (Spr×2
1 )∗ξ; id(XprT1 )∗ξ

)
⊆ AutF|SP×2

(
(Spr×2

1 )∗ξ
)
.

Proof. — Let ∇ be an S-connection on ξ. Write α for the pull-back of the S-curvature
of ∇ by SιT×2, i.e.,

α = (SιT×2)
∗(Sι×2)∗(∇×2) ◦ (SιT×2)

∗(Sδ×2)∗(∇−1) = (SιT×2)
∗(∇×2) ◦ (SδT1 )∗(∇−1).

Now let us observe that it follows from our assumption that S is of standard type, and
F satisfies condition (1) of Definition 1.8 [cf. also Remark 3.6.1] that the morphism Sι1,0T

determines a bijection

LiftSι0,1T

(
(XprT1 )

∗ξ, (XprT1 )
∗ξ; id(Spr11)

∗ξ

) ∼ // LiftSι0
(
(Spr11)

∗ξ, (Spr11)
∗ξ; idξ

)
.
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Next, let us observe that since [one verifies easily that]

SιT×2 ◦ Sι0,1T = Sι0,11,1,
SδT1 ◦ Sι0,1T = idSP 1 ,

the pull-back (Sι0,1T )∗α is the identity automorphism of (Spr11)
∗ξ, which thus implies that

α is an element of the domain of the above bijection. Next, let us observe that since [one
verifies easily that]

SιT×2 ◦ Sι1,0T = Sι1,01,1,
SδT1 ◦ Sι1,0T = idSP 1 ,

the pull-back (Sι1,0T )∗α is the identity automorphism of (Spr11)
∗ξ, which thus implies that

the image by the above bijection of α is the identity automorphism of (Spr11)
∗ξ. Thus,

we conclude that α is the identity automorphism, as desired. This completes the proof of
Lemma 4.9. □

PROPOSITION 4.10. — Suppose that the following three conditions are satisfied:

(1) The stratification structure S is of standard type.

(2) The category F fibered in groupoids over SchS is weakly integrable.

(3) The scheme X is of relative dimension ≤ 1 over S.

Then every S-connection on ξ is S-integrable:

SqCnn1(ξ) = SCnn1(ξ) = SIntCnn(ξ).

Proof. — Since S is of standard type, and X is of relative dimension ≤ 1 over S, it
follows from condition (3) of Definition 3.6 that the closed immersion SιT×2 : T

1 ↪→ SP×2

of Definition 3.6 is an isomorphism. Thus, Proposition 4.10 follows from Lemma 4.9.
This completes the proof of Proposition 4.10. □

In the remainder of the present §4, let

T =
(
(TP n)n≥0, (

Tιn : TP n → TP n+1)n≥0,

(Tσn : TP n → X(2))n≥0, (
Tδn1,n2 : TP n1,n2 → TP n1+n2)n1, n2≥0

)
be a stratification structure on X/S and

Φ = (Φn)n≥0 : S // T

a morphism of stratification structures.

DEFINITION 4.11. — Let n be a nonnegative integer and ∇ a quasi-n-T-connection on ξ.
Then one verifies easily from condition (1) of Definition 2.8 and Remark 2.8.1 that the
isomorphism

(Φn)∗∇ : (Sprn2 )
∗ξ

∼ // (Sprn1 )
∗ξ

[cf. condition (2) of Definition 2.8] is a quasi-n-S-connection on ξ. We shall write

Φ∗∇ def
= (Φn)∗∇
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for this quasi-n-S-connection on ξ. Thus, we have a map of sets

Φ∗ : TqCnnn(ξ) // SqCnnn(ξ)

given by mapping ∇ ∈ TqCnnn(ξ) to Φ∗∇ ∈ SqCnnn(ξ).

LEMMA 4.12. — Let n be a nonnegative integer. Then the following hold:

(i) The map Φ∗ : TqCnnn(ξ) → SqCnnn(ξ) of Definition 4.11 restricts to a map of
subsets

Φ∗ : TCnnn(ξ) // SCnnn(ξ).

In particular, we have a map of sets

Φ∗ : TStrt(ξ) // SStrt(ξ)

[cf. condition (1) of Definition 2.8].

(ii) Suppose that the category F fibered in groupoids over SchS satisfies condition (3)
of Definition 1.7, and that the morphism Φ is nil-retraction-like. Then the diagram of
sets

TCnnn(ξ)
Φ∗

//
� _

��

SCnnn(ξ)
� _

��
TqCnnn(ξ)

Φ∗
// SqCnnn(ξ)

[cf. (i)] is cartesian.

Proof. — First, we verify assertion (i). Let ∇ be an n-T-connection on ξ; n1, n2

positive integers such that n1 +n2 = n. Then since ∇ is an n-T-connection, the “cocycle
condition”

(∇|n−1)
n1,n2 = (Tδn1,n2)∗∇

is satisfied. Thus, by pulling back this equality by the morphism Φn1,n2 : SP n1,n2 →
TP n1,n2 , we conclude from conditions (1), (2), and (3) of Definition 2.8 that the “cocycle
condition” (

(Φ∗∇)|n−1

)n1,n2 = (Sδn1,n2)∗(Φ∗∇)

is satisfied, as desired. This completes the proof of assertion (i).
Next, we verify assertion (ii). Let∇ be a quasi-n-T-connection on ξ such that the quasi-

n-S-connection Φ∗∇ is an n-S-connection; n1, n2 positive integers such that n1 + n2 =
n. Then since F satisfies condition (3) of Definition 1.7, and the morphism Φ is nil-
retraction-like, to verify the “cocycle condition”

(∇|n−1)
n1,n2 = (Tδn1,n2)∗∇

for∇, it suffices to verify the pull-back of this equality by the morphism Φn1,n2 : SP n1,n2 →
TP n1,n2 , i.e., the equality

((Φ∗∇)|n−1)
n1,n2 = (Sδn1,n2)∗(Φ∗∇)
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[cf. conditions (1), (2), and (3) of Definition 2.8]. On the other hand, since the quasi-
n-S-connection Φ∗∇ is an n-S-connection, this equality is satisfied, as desired. This
completes the proof of assertion (ii), hence also of Lemma 4.12. □

DEFINITION 4.13. — Let n ≤ r be nonnegative integers.

(i) Let ∇ be a quasi-r-S-connection on ξ. Then we shall refer to the automorphism
of (Φn|0)∗ξ in F|ΦPn|0

(Φn|0)∗ξ = (Φpr
n|0
2 )∗ξ ∼

(Φ ιn|0)∗(∇|n) // (Φpr
n|0
1 )∗ξ = (Φn|0)∗ξ

[cf. Remark 2.10.1, (iii)] as the (Φ, n)-curvature of ∇. Moreover, we shall refer to the
(Φ, n)-curvature of the quasi-n-S-connection on ξ determined by an S-stratification on
ξ as the (Φ, n)-curvature of the S-stratification.

(ii) We shall say that a quasi-r-S-connection on ξ is (Φ, n)-dormant if the (Φ, n)-
curvature of the quasi-r-S-connection is the identity automorphism of (Φn|0)∗ξ. More-
over, we shall say that an S-stratification on ξ is (Φ, n)-dormant if the quasi-n-S-
connection determined by the S-stratification is (Φ, n)-dormant. We shall write

Φ,nDrmStrt(ξ) ⊆ SStrt(ξ)

for the set of (Φ, n)-dormant S-stratifications on ξ.

(iii) We shall say that an S-connection on ξ is (Φ, n)-dormant if the S-connection is
contained in the image of the composite

Φ,nDrmStrt(ξ) �
� // SStrt(ξ) // SCnn(ξ).

[In particular, every (Φ, n)-dormant S-connection is S-integrable — cf. Lemma 4.8.] We
shall write

Φ,nDrmCnn(ξ) ⊆ SIntCnn(ξ)

for the set of (Φ, n)-dormant S-connections on ξ. Thus, we have a natural surjective map

Φ,nDrmStrt(ξ) // // Φ,nDrmCnn(ξ).

LEMMA 4.14. — Let n be a nonnegative integer. Then the map Φ∗ : TStrt(ξ)→ SStrt(ξ)
of Lemma 4.12, (i), factors through the subset Φ,nDrmStrt(ξ) ⊆ SStrt(ξ). In particular,
we obtain a map of sets

Φ∗ : TStrt(ξ) // Φ,nDrmStrt(ξ).

Proof. — This assertion follows immediately from the various definitions involved [cf.
the cartesian diagram of Definition 2.10, (ii)]. □
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5. The First Fundamental Correspondence

In the present §5, we prove the first main result of the present paper [cf. Theorem 5.6
below]. In the present §5, let S be a scheme, X a scheme which is smooth and separated
over S,

S =
(
(SP n)n≥0, (

Sιn : SP n → SP n+1)n≥0,

(Sσn : SP n → X(2))n≥0, (
Sδn1,n2 : SP n1,n2 → SP n1+n2)n1, n2≥0

)
a stratification structure on X/S,

F // SchS

a category fibered in groupoids over SchS, and

ξ

an object of F over X. Suppose that

• the stratification structure S is integrable (respectively, strictly integrable), and that

• the category F fibered in groupoids over SchS is integrable (respectively, weakly
integrable).

LEMMA 5.1. — Let r ≥ 2 be an integer; n1, . . . , nr positive integers. Write n
def
=

∑r
i=1 ni

[so n ≥ 2]. Let ∇ be an (n− 1)-S-connection on ξ. Then the equality

∇×n = (Sδ×n
n1,...,nr

)∗∇n1,...,nr

holds.

Proof. — This assertion follows immediately from Lemma 4.5, together with the “co-
cycle conditions” of Definition 4.4 for ∇|1, . . . ,∇|n−1. □

LEMMA 5.2. — Let m ≤ n be nonnegative integers. Then the map

SCnnn(ξ) // SCnnm(ξ)

[cf. Lemma 4.5] is injective.

Proof. — Let us first observe that it is immediate that we may assume without
loss of generality that m = n − 1. Let ∇, ∇′ be n-S-connections on ξ such that
∇|n−1 = ∇′|n−1. Now since F satisfies condition (3) of Definition 1.7, and the mor-
phism Sδ1,n−1 : SP 1,n−1 → SP n is nil-retraction-like [cf. condition (1) of Definition 3.2;
condition (1) of Definition 3.3], to verify Lemma 5.2, it suffices to verify the equality

(Sδ1,n−1)∗∇ = (Sδ1,n−1)∗∇′.

On the other hand, since both ∇ and ∇′ are n-S-connections, it follows from the “cocycle
condition” of Definition 4.4 that (Sδ1,n−1)∗∇, (Sδ1,n−1)∗∇′ are completely determined by
∇|n−1, ∇′|n−1, respectively. In particular, we conclude that (Sδ1,n−1)∗∇ = (Sδ1,n−1)∗∇′,
as desired. This completes the proof of Lemma 5.2. □
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LEMMA 5.3. — Let n ≥ 2 be an integer and ∇ a quasi-n-S-connection on ξ. Then it
holds that ∇ is an n-S-connection on ξ if and only if the following two conditions are
satisfied:

(1) The quasi-(n− 1)-S-connection ∇|n−1 is an (n − 1)-S-connection.

(2) The equality

(∇|n−1)
×n = (Sδ×n)∗∇

holds.

Proof. — First, we verify the necessity. Suppose that ∇ is an n-S-connection on ξ.
Then it follows from Lemma 4.5 that condition (1) is satisfied. Next, to verify condition
(2), let us observe that it follows from Lemma 5.1, together with condition (1), that

(∇|n−1)
×n = (Sδ×n

1,n−1)
∗((∇|n−1)

1,n−1
)
.

Thus, since ∇ is an n-S-connection, which thus implies that the equality

(∇|n−1)
1,n−1 = (Sδ1,n−1)∗∇

holds, condition (2) is satisfied, as desired. This completes the proof of the necessity.
Next, we verify the sufficiency. Suppose that ∇ satisfies the two conditions in the

statement of Lemma 5.3. Let n1, n2 be positive integers such that n1+n2 = n. Then since
F satisfies condition (3) of Definition 1.7, and the morphism Sδ×n

n1,n2
: SP×n → SP n1,n2 is

nil-retraction-like [cf. condition (1) of Definition 3.2; condition (1) of Definition 3.3], to
verify the “cocycle condition” (∇|n−1)

n1,n2 = (Sδn1,n2)∗∇, it suffices to verify the equality

(Sδ×n
n1,n2

)∗
(
(∇|n−1)

n1,n2
)
= (Sδ×n)∗∇,

or, alternatively [cf. condition (2)], the equality

(Sδ×n
n1,n2

)∗
(
(∇|n−1)

n1,n2
)
= (∇|n−1)

×n.

On the other hand, since ∇|n−1 is an (n−1)-S-connection [cf. condition (1)], this equality
follows from Lemma 5.1. This completes the proof of the sufficiency, hence also of
Lemma 5.3. □

LEMMA 5.4. — The map

SCnn2(ξ) / / SIntCnn(ξ)

[cf. Lemma 4.8] is surjective.

Proof. — Let us recall that we have assumed that

• the stratification structure S is integrable (respectively, strictly integrable), and that

• the category F fibered in groupoids over SchS is integrable (respectively, weakly
integrable).
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Let ∇ be an S-integrable S-connection on ξ. Then it follows from condition (1) of
Definition 1.7 (respectively, condition (1) of Definition 1.8), together with Remark 3.2.2
and Remark 3.3.1, that the morphism Sδ×2 determines a bijection

LiftSι1
(
(Spr22)

∗ξ, (Spr21)
∗ξ;∇

) ∼ // LiftSι×2

(
(Spr×2

3 )∗ξ, (Spr×2
1 )∗ξ; (Sδ×2)∗∇

)
.

Now since ∇ is S-integrable, which thus implies that the equality

(Sι×2)∗(∇×2) = (Sδ×2)∗∇

holds, the isomorphism ∇×2 is an element of the codomain of this bijection. Thus, we

obtain an element ∇̃ of the domain of this bijection whose image coincides with ∇×2, i.e.,

(Sδ×2)∗∇̃ = ∇×2.

On the other hand, since ∇ is an S-connection, it follows from Lemma 5.3, together with

this equality, that ∇̃ is a 2-S-connection on ξ. This completes the proof of Lemma 5.4. □

LEMMA 5.5. — Let n ≥ 3 be an integer. Then the map

SCnnn(ξ) // SCnnn−1(ξ)

[cf. Lemma 4.5] is surjective.

Proof. — Let us recall that we have assumed that

• the stratification structure S is integrable (respectively, strictly integrable), and that

• the category F fibered in groupoids over SchS is integrable (respectively, weakly
integrable).

Let ∇ be an (n− 1)-S-connection on ξ. Then it follows from Lemma 5.1 that

(Sδ×n
1,n−1)

∗(∇1,n−1) = ∇×n = (Sδ×n
n−1,1)

∗(∇n−1,1).

Next, let us observe that it follows from condition (2) of Definition 1.7 (respectively,
condition (2) of Definition 1.8), together with Remark 3.2.3 and Remark 3.3.2, that the
morphism Sδn−1,1 determines a bijection

LiftSδ1,n−1

(
(Sprn2 )

∗ξ, (Sprn1 )
∗ξ;∇1,n−1

)
∼ // LiftSδ×n

n−1,1

(
(Sprn−1,1

3 )∗ξ, (Sprn−1,1
1 )∗ξ; (Sδ×n

1,n−1)
∗∇1,n−1

)
.

Next, let us observe that it follows from the two equalities of the first display of the
present proof of Lemma 5.5 that ∇n−1,1 is an element of the codomain of this bijection. In

particular, we obtain an element ∇̃ of the domain of this bijection whose image coincides
with ∇n−1,1, i.e.,

(Sδn−1,1)∗∇̃ = ∇n−1,1.

On the other hand, this equality, together with the second equality of the first display in
the present proof of Lemma 5.5, implies the equalities

(Sδ×n)∗∇̃ = (Sδ×n
n−1,1)

∗(Sδn−1,1)∗∇̃ = (Sδ×n
n−1,1)

∗∇n−1,1 = ∇×n.
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Thus, it follows from Lemma 5.3 that ∇̃ is an n-connection on ξ. This completes the
proof of Lemma 5.5. □

The first main result of the present paper is as follows.

THEOREM 5.6. — Let S be a scheme, X a scheme which is smooth and separated
over S,

S =
(
(SP n)n≥0, (Sιn : SP n → SP n+1)n≥0,

(Sσn : SP n → X(2))n≥0, (Sδn1,n2 : SP n1,n2 → SP n1+n2)n1, n2≥0

)
a stratification structure on X/S [cf. Definition 2.5],

F // SchS

a category fibered in groupoids over SchS, and ξ an object of F over X. Suppose that the
following two conditions are satisfied:

(1) The stratification structure S is integrable [cf. Definition 3.2] (respectively,
strictly integrable [cf. Definition 3.3]).

(2) The category F fibered in groupoids over SchS is integrable [cf. Definition 1.7]
(respectively, weakly integrable [cf. Definition 1.8]).

Then, for each integer n ≥ 2, the natural maps

SStrt(ξ) // SCnnn(ξ) // SIntCnn(ξ)

[cf. Definition 4.4; Definition 4.6; Definition 4.7, (ii); Lemma 4.8] are bijective.

Proof. — The injectivity of the two maps under consideration follows from Lemma 5.2.
The surjectivity of the first map under consideration follows from Lemma 5.5. The sur-
jectivity of the second map under consideration follows from Lemma 5.4 and Lemma 5.5.
This completes the proof of Theorem 5.6. □

DEFINITION 5.7. — In the situation of Theorem 5.6, we shall refer to the bijection
obtained by Theorem 5.6

SStrt(ξ)
∼ // SIntCnn(ξ)

as the first fundamental correspondence.

6. The Second Fundamental Correspondence

In the present §6, we prove the second main result of the present paper [cf. Theorem 6.6
below]. In the present §6, let S be a scheme; X a scheme which is smooth and separated
over S;

S =
(
(SP n)n≥0, (

Sιn : SP n → SP n+1)n≥0,

(Sσn : SP n → X(2))n≥0, (
Sδn1,n2 : SP n1,n2 → SP n1+n2)n1, n2≥0

)
,
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T =
(
(TP n)n≥0, (

Tιn : TP n → TP n+1)n≥0,

(Tσn : TP n → X(2))n≥0, (
Tδn1,n2 : TP n1,n2 → TP n1+n2)n1, n2≥0

)
stratification structures on X/S;

Φ = (Φn)n≥0 : S // T

a morphism of stratification structures;

F // SchS

a category fibered in groupoids over SchS;

ξ

an object of F over X; r a nonnegative integer. Suppose that

• the morphism Φ is r-integrable (respectively, strictly r-integrable), and that

• the category F fibered in groupoids over SchS is integrable (respectively, weakly
integrable).

LEMMA 6.1. — Let m ≤ n be nonnegative integers. Then the maps

SCnnn(ξ) // SCnnm(ξ), TCnnn(ξ) // TCnnm(ξ)

[cf. Lemma 4.5] are injective.

Proof. — This assertion follows immediately from a similar argument to the argument
applied in the proof of Lemma 5.2, together with conditions (2), (3) of Definition 3.8 and
condition (1) of Definition 3.9. □

LEMMA 6.2. — Let n be a nonnegative integer. Then the map

Φ∗ : TqCnnn(ξ) // SqCnnn(ξ)

[cf. Definition 4.11], hence also the maps

Φ∗ : TCnnn(ξ) / / SCnnn(ξ), Φ∗ : TStrt(ξ) // SStrt(ξ),

[Lemma 4.12, (i)], is injective.

Proof. — This assertion follows from condition (3) of Definition 1.7 and condition (1)
of Definition 3.8 and condition (1) of Definition 3.9. □

LEMMA 6.3. — Let n ≥ r + 1 be an integer. Then the map

TCnnn(ξ) // TCnnn−1(ξ)

[cf. Lemma 4.5] is surjective.

Proof. — This assertion follows immediately from a similar argument to the argument
applied in the proof of Lemma 5.5, together with condition (3) of Definition 3.8 and
condition (1) of Definition 3.9 [cf. also Remark 3.8.3 and Remark 3.9.2]. □
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LEMMA 6.4. — Let∇ be a (Φ, r)-dormant r-S-connection on ξ. Then, for each positive

integer n ≤ r, there exists a quasi-n-T-connection ∇̃n on ξ such that

(Φr|n)∗∇̃n = (Φι
r|n
r|r )

∗∇.

[Note that ΦP r|r = SP r — cf. Definition 2.10, (i).]

Proof. — Let us recall that we have assumed that

• the morphism Φ is r-integrable (respectively, strictly r-integrable), and that

• the category F fibered in groupoids over SchS is integrable (respectively, weakly
integrable).

Let us verify Lemma 6.4 by induction on n. Suppose that n = 1. Then it follows from
condition (1) of Definition 1.7 (respectively, condition (1) of Definition 1.8), together with
Remark 3.8.2 and Remark 3.9.1, that the morphism Φr|1 determines a bijection

LiftTι0
(
(Tpr12)

∗ξ, (Tpr11)
∗ξ; idξ

) ∼ // LiftΦ ι
r|0
r|1

(
(Φpr

r|1
2 )∗ξ, (Φpr

r|1
1 )∗ξ; id(Φr|0)∗ξ

)
.

Then since ∇ is (Φ, r)-dormant, it follows from the definition of the (Φ, r)-curvature that

the pull-back (Φι
r|1
r|r)

∗∇ is an element of the codomain of this bijection. In particular,

we obtain an element ∇̃1 of the domain of this bijection whose image coincides with

(Φι
r|1
r|r)

∗∇, i.e.,

(Φr|1)∗∇̃1 = (Φι
r|1
r|r)

∗∇,

as desired.
Next, suppose that n ≥ 2, and that there exists a quasi-(n− 1)-T-connection ∇̃n−1 on

ξ such that

(Φr|n−1)∗∇̃n−1 = (Φι
r|n−1
r|r )∗∇.

Then it follows from condition (1) of Definition 1.7 (respectively, condition (1) of Def-
inition 1.8), together with Remark 3.8.2 and Remark 3.9.1, that the morphism Φr|n

determines a bijection

LiftTιn−1

(
(Tprn2 )

∗ξ, (Tprn1 )
∗ξ; ∇̃n−1

)
∼ // LiftΦ ι

r|n−1
r|n

(
(Φpr

r|n
2 )∗ξ, (Φpr

r|n
1 )∗ξ; (Φr|n−1)∗∇̃n−1

)
.

Next, let us observe that since (Φr|n−1)∗∇̃n−1 = (Φι
r|n−1
r|r )∗∇, it is immediate that the pull-

back (Φι
r|n
r|r )

∗∇ is an element of the codomain of this bijection. In particular, we obtain

an element ∇̃n of the domain of this bijection whose image coincides with (Φι
r|n
r|r )

∗∇, i.e.,

(Φr|n)∗∇̃n = (Φι
r|n
r|r )

∗∇,

as desired. This completes the proof of Lemma 6.4. □
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LEMMA 6.5. — Let n ≥ r be an integer and ∇ a (Φ, r)-dormant n-S-connection on ξ.

Then there exists an n-T-connection ∇̃ on ξ such that Φ∗∇̃ = ∇.

Proof. — Let us first observe that it follows from Lemma 6.4 that there exists a quasi-

r-T-connection ∇̃r such that

Φ∗∇̃r = ∇|r.
Thus, since ∇|r is an r-S-connection on ξ [cf. Lemma 4.5], it follows from Lemma 4.12,
(ii), together with condition (1) of Definition 3.8 and condition (1) of Definition 3.9, that

∇̃r is an r-T-connection on ξ.
Next, let us observe that it follows from Lemma 6.3 that there exists an n-T-connection

∇̃ on ξ such that

∇̃|r = ∇̃r.

Thus, it follows immediately from Lemma 6.1 that the equality

Φ∗∇̃ = ∇
holds. This completes the proof of Lemma 6.5. □

The second main result of the present paper is as follows.

THEOREM 6.6. — Let S be a scheme; X a scheme which is smooth and separated
over S;

S =
(
(SP n)n≥0, (Sιn : SP n → SP n+1)n≥0,

(Sσn : SP n → X(2))n≥0, (Sδn1,n2 : SP n1,n2 → SP n1+n2)n1, n2≥0

)
,

T =
(
(TP n)n≥0, (Tιn : TP n → TP n+1)n≥0,

(Tσn : TP n → X(2))n≥0, (Tδn1,n2 : TP n1,n2 → TP n1+n2)n1, n2≥0

)
stratification structures on X/S [cf. Definition 2.5];

Φ = (Φn)n≥0 : S // T

a morphism of stratification structures [cf. Definition 2.8];

F // SchS

a category fibered in groupoids over SchS; ξ an object of F over X; r a nonnegative
integer. Suppose that the following two conditions are satisfied:

(1) The morphism Φ is r-integrable [cf. Definition 3.8] (respectively, strictly r-
integrable [cf. Definition 3.9]).

(2) The category F fibered in groupoids over SchS is integrable [cf. Definition 1.7]
(respectively, weakly integrable [cf. Definition 1.8]).

Then the natural maps

TStrt(ξ)
Φ∗

// Φ,rDrmStrt(ξ) // Φ,rDrmCnn(ξ)
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[cf. Definition 4.6; Definition 4.13, (ii), (iii); Lemma 4.14] are bijective.

Proof. — The injectivity of the first map under consideration follows from Lemma 6.2.
The surjectivity of the first map under consideration follows from Lemma 6.2 and Lemma 6.5.
The bijectivity of the second map under consideration follows from Lemma 6.1. This
completes the proof of Theorem 6.6. □

DEFINITION 6.7. — In the situation of Theorem 6.6, we shall refer to the bijection
obtained by Theorem 6.6

TStrt(ξ)
∼ // Φ,rDrmCnn(ξ)

as the second fundamental correspondence.
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