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ABSTRACT. — The purpose of the present paper is to establish a certain abstract theory
related to the notion of an integrable connection. More concretely, to establish certain two
bijections related to the notion of an integrable connection is the main purpose of the present

paper.
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INTRODUCTION

The purpose of the present paper is to establish a certain abstract theory related to the
notion of an integrable connection. More concretely, to establish certain two bijections
[cf. the respective discussions following Theorem A and Theorem B below] related to the
notion of an integrable connection is the main purpose of the present paper.

In the present Introduction, let us fix a scheme S. Write Schg for the category of
schemes over S and morphisms of schemes over S [cf. Definition 1.6, (i)]. Let us also fix
a scheme X which is smooth and separated over S and a category F — Schg fibered in

groupoids over Schg. Write X ¥ x s X for the fiber product of two copies of X over

S [cf. Definition 2.1, (i)] and Xpr®: X® — X for the projection onto the i-th factor
[where i € {1,2}] [cf. Definition 2.1, (iii)].

2010 MATHEMATICS SUBJECT CLASSIFICATION. — 14D15.
KEY WORDS AND PHRASES. — connection, curvature, integrable connection, stratification, stratification
structure.



2 Y UICHIRO HOSHI

One main object of the present paper is a stratification structure [cf. Definition 2.5].
We shall refer to a collection of data

S = ((GPn)nzo’ (6Ln: GPn N 6Pn+1)n207

(60": GPn N X(2))n207 (65n1,n2: GPm,nz N Gpnl+n2>n1,n220)
consisting of
e a scheme ©P" over S for each nonnegative integer n,
e a morphism S/7: ©P" — S P+l gyer S for each nonnegative integer n,
e a morphism o”: ®P" — X® over S for each nonnegative integer n, and

e a morphism S§mmz: S prunz _y 6 pritnz gyer § for each nonnegative integers nq, no
— where we write © P12 for the fiber product of the composite © P™ X Xp—>r§2) X
and the composite © P2 o x@ XK? X [cf. Definition 2.4, (i)]
that satisfies certain conditions as a stratification structure on X/S.

An example of a stratification structure on X/S is given as follows [cf. Remark 2.5.1]:

Let Y be a separated scheme over S and X — Y an affine morphism over S. Write P o

X Xy X; q1, qo: P — X for the projections onto the first, second factors, respectively;
¢13: X Xy X xy X — P for the projection onto the first and third factors. Let

PPCcplc...cprCcpttc...CP

be a sequence of closed subschemes of P. Suppose that the following two conditions are
satisfied:

e The natural closed immersion P° < P determines an isomorphism of P° with the
diagonal closed subscheme X C P of P.

e For each nonnegative integers ny, no, if we write P™ "2 L pra x P2 for the fiber
product of the composite P — P % X and the composite P < P % X then the
composite

P2 X xy X Xy X =2 P
factors through the closed subscheme P™ "2 C P of P. Write

HrLn2 . pni,ne Pnl-‘rnz

for the resulting morphism.

For each nonnegative integer n, write /*: P" — P""! for the natural closed immersion
and ¢”: P" — X® for the composite of the natural closed immersion P* < P and the
closed immersion P < X induced by the morphism ¥ — S. Then the collection of
data

((Pn)nzo, (Lni P PnJrl)nZ(], (O’ni P" = X(2))n20, (5n1,n2: P Pn1+n2)n1’n220)

gives an example of a stratification structure on X/S.
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Let us fix a stratification structure on X/S

S = ((6pn>n20’ <6Ln: GPn — GPnJrl)nZO7

(So™: OP" — XB),5q, (Somimz; Oprime  Spmtnay o).

Note that one condition imposed on a stratification structure is that the morphism
Sg0: 6P 5 X determines an isomorphism of © P° with the diagonal closed subscheme
X C X® of X® [cf. condition (2) of Definition 2.2]. In the remainder of the present Intro-
duction, let us identify © PY with X by means of the isomorphism determined by the mor-
phism ©¢°. For each nonnegative integer n, write ©.0: X = ©P% — S P" for the morphism
over S obtained by forming the composite of the morphisms ©:%,... ©/"~1 [cf. Defini-
tion 2.3, (i)]; ®pr?: P — X for the morphism over S obtained by forming the composite
of the morphism ®¢”: ©P" — X® and the morphism Xprl@) : X@ — X [wherei € {1,2}]

S .n
pr;

S,0
cf. Definition 2.3, (ii)]. Note, moreover, that the composite X = ©P° e &pn X
coincides with the identity automorphism of X [cf. Remark 2.3.1].
Other main objects of the present paper are connections and stratifications. Let us fix
an object £ of F over X. Then we shall refer to an isomorphism

(®pry)*€ —— (®pr})*¢
in F over the identity automorphism of © P* whose pull-back by ©.0 is the identity auto-
morphism of & = (%9)*(Sprh)*¢ = (S2)*(®pr?)*¢ and which satisfies a certain “cocycle

condition” as an n-&-connection on ¢ [cf. Definition 4.4]; moreover, we shall refer to a
1-S-connection as an &-connection [cf. Definition 4.1, (iii); Remark 4.1.1]. Write

6Cnn”({")

for the set of n-S-connections on & [cf. Definition 4.4]. Then one may prove that the
pull-back of an (n + 1)-&-connection by ©.* is an n-&-connection, which thus implies
that one obtains a map ©Cnn"*'(¢) — $Cnn"(¢) [cf. Lemma 4.5]. Write

SStrt(€) o Jim ©Cnn"(€)

n>0

and refer to an element of the set ©Strt(¢) as an S-stratification on £ [cf. Definition 4.6].
Now let us observe that, in the situation of the above example of a stratification structure
on X/, if there exists a nonnegative integer ngy such that the closed immersion P,, < P
is an isomorphism, then one verifies easily that the notion of a stratification on & [i.e.,
with respect to the above stratification structure] is the same as the notion of a descent
datum on & with respect to the morphism X — Y [cf. Remark 4.6.2].

In the present paper, we give the definition of the notion of the &-curvature of an
GS-connection [cf. Definition 4.7, (i)]. The G-curvature of an G-connection on & is defined
to be an automorphism of the pull-back of £ to a certain scheme over S. Moreover, we
shall say that an G-connection is G-integrable if the G-curvature of the G-connection is
the identity automorphism [cf. Definition 4.7, (ii)]. Write

SIntCnn(¢) C ©Cnn'(€)
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for the set of G-integrable G-connections on ¢ [cf. Definition 4.7, (ii)]. Note that one
may prove that if n > 2, then the map ®Cnn"(¢) — ©Cnn'(¢) discussed above factors
through the subset *IntCnn(¢) € ®Cnn'(¢) [cf. Lemma 4.8].

We are now ready to state the first main result of the present paper. Roughly speaking,
the first main result of the present paper asserts that if the stratification structure & and
the category JF fibered in groupoids over Schg have certain “good” properties, then we
have a natural bijection between the set of G-stratifications and the set of G-integrable
S-connections. The first main result of the present paper is as follows [cf. Theorem 5.6].

THEOREM A. — Let S be a scheme, X a scheme which is smooth and separated over
S,

6 — ((Gpn)nZ(b <6Ln: GPn N 6Pn+1)n207
(60_71: GPn N )((2))71207 (65n1,n2 . GPnl,ng — 6Pn1+n2)n1,n220)
a stratification structure on X/S [cf. Definition 2.5],
F —— Schg

a category fibered in groupoids over Schg, and & an object of F over X. Suppose that the
following two conditions are satisfied:

(1)  The stratification structure & is integrable [cf. Definition 3.2] (respectively,
strictly integrable [cf. Definition 3.3]).

(2) The category F fibered in groupoids over Schg is integrable [cf. Definition 1.7]
(respectively, weakly integrable [cf. Definition 1.8]).

Then, for each integer n > 2, the natural maps
SStrt(¢) — ©Cnn"(¢) — IntCnn(¢)
[cf. Definition 4.4; Definition 4.6; Definition 4.7, (ii); Lemma 4.8] are bijective.

In the situation of Theorem A, we shall refer to the bijection obtained by Theorem A
SStrt(¢) — ®IntCnn(¢)

as the first fundamental correspondence [cf. Definition 5.7]. In a sequel to the present
paper, we will observe that this first fundamental correspondence may be regarded as a
generalization of a well-known bijection related to integrable connections.

Next, to explain the second main result of the present paper, let us introduce the
notion of a morphism of stratification structures [cf. Definition 2.8]. Let us fix another
stratification structure on X/S

T = ((FP"uzo, (50" TP = TP 0,
(Fo™: TP — X@)),5g, (Fomnz: Tprene o Spmtna) o).

Then we shall refer to a collection of data
d = (D")n>0
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consisting of a morphism ®": SP* — TP" over S for each nonnegative integer n that
satisfies certain conditions as a morphism of stratification structures.
Let us fix a morphism of stratification structures

P = ((I)n)nzoi 66—

Then one may prove that the pull-back of an n-T-connection by ®™ is an n-&-connection,
which thus implies that one obtains a map *Cnn"(¢) — ©Cnn"(¢), hence also a map
*Strt(€) — ©Strt(€) [cf. Lemma 4.12, (i)].

In the present paper, for a nonnegative integer n, we give the definition of the notion of
the (®,n)-curvature of an G-stratification [cf. Definition 4.13, (i)]. The (®, n)-curvature
of an G-stratification on £ is defined to be an automorphism of the pull-back of ¢ to
a certain scheme over S. We shall say that an G-stratification is (®,n)-dormant if the
(®, n)-curvature of the &-stratification is the identity automorphism [cf. Definition 4.7,
(ii)]. Moreover, we shall say that an &-connection is (®,n)-dormant if the G-connection
extends to a (®,n)-dormant S-stratification [cf. Definition 4.7, (iii)]. Write

1 DrmStrt(€) C Stre(€), ®nDrmCnn(€) € SIntCnn(€)

for the sets of (®,n)-dormant G-stratifications, (®,n)-dormant &-connections on &,
respectively [cf. Definition 4.13, (ii), (iii)]. Note that one may prove that the map
*Strt(€) — ©Strt(€) discussed above factors through the subset ®"DrmStrt(£) C Strt(€)
[cf. Lemma 4.14].

We are now ready to state the second main result of the present paper. Roughly
speaking, the second main result of the present paper asserts that if the morphism &
and the category F fibered in groupoids over Schg have certain “good” properties, then
we have a natural bijection between the set of T-stratifications and the set of (®,n)-
dormant &-connections. The second main result of the present paper is as follows [cf.
Theorem 6.6].

THEOREM B. — Let S be a scheme; X a scheme which is smooth and separated over
S;
6 — ((Gpn)nzo’ (G[jn: Gpn — 6Pn+1)n20)

(So™: OP" — X)), g, (Sgmm2; Sprime — Spmtnzy oo0),
T = (("P")pz0, (0" 5P = TP™),5,,
(Fo™: TP = X B, (Fommz TP o TPt o)
stratification structures on X /S [cf. Definition 2.5];
O =(P"),50: 6 —F
a morphism of stratification structures [cf. Definition 2.8];

F— SChS

a category fibered in groupoids over Schg; & an object of F over X; r a nonnegative
integer. Suppose that the following two conditions are satisfied:
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(1) The morphism ® is r-integrable [cf. Definition 3.8] (respectively, strictly r-
integrable [cf. Definition 3.9]).

(2) The category F fibered in groupoids over Schg is integrable [cf. Definition 1.7]
(respectively, weakly integrable [cf. Definition 1.8]).

Then the natural maps

TStrt(€) —> *"DrmStrt(¢) — *"DrmCnn(€)

[cf. Definition 4.6; Definition 4.13, (ii), (iii); Lemma 4.14] are bijective.

In the situation of Theorem B, we shall refer to the bijection obtained by Theorem B
*Strt(¢) —= *"DrmCnn(¢)

as the second fundamental correspondence [cf. Definition 6.7]. In a sequel to the present
paper, we will observe that this second fundamental correspondence may be regarded as
a generalization of a well-known bijection related to dormant connections, i.e., integrable
connections of p-curvature zero.
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1. INTEGRABLE CATEGORIES FIBERED IN GROUPOIDS

In the present §1, we introduce certain properties of a category fibered in groupoids
over categories of schemes [cf. Definition 1.7 and Definition 1.8 below].

LEMMA 1.1. — Let f: X — Y be a morphism of schemes. Suppose that f is a homeo-
morphism. Then f is affine.

Proor. — To verify Lemma 1.1, we may assume without loss of generality, by replacing
Y by an affine open subscheme of Y, that Y is affine. Let y € Y be a point of Y and
U C X an affine open subscheme of X such that y € f(U). Then since f(U) C Y is an
open neighborhood of y € Y, there exists a section s € I'(Y, Oy) such that y € D(s) C
f(U) — where we write “D(—)” for the maximal [necessarily affine] open subscheme
on which “(—)” is invertible. Then since f is a homeomorphism, and D(s) is contained
in f(U), one verifies easily that the [necessarily affine] open subscheme D(f~'s) C U
of the affine scheme U determined by the section f~'s € T'(U, Ox) satisfies the equality
D(f~'s) = f~1(D(s)). Thus, one obtains an affine open neighborhood D(s) C Y ofy € Y
whose pull-back by f is affine, as desired. This completes the proof of Lemma 1.1.  [J
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DEFINITION 1.2. — Let X, Y be schemes; f: X — Y a morphism of schemes.

(i) We shall say that a closed subscheme of the scheme X is square-nilpotent if the
square of the quasi-coherent ideal of Ox that defines the closed subscheme is zero.

(ii) Suppose that f is a closed immersion. Then we shall say that the closed immersion
f is square-nilpotent if the closed subscheme of Y determined by f is square-nilpotent.

(iii) We shall say that the morphism f is quasi-nil-retraction-like if f induces an
isomorphism X,oq — Yieq, where we write “(—).q” for the closed subscheme of “(—)”
defined by the quasi-coherent ideal of “O(_)” consisting of nilpotent local sections.

(iv) We shall say that the morphism f is nil-retraction-like if f is quasi-nil-retraction-
like, and, moreover, the homomorphism Oy — f,Ox determined by f is injective.

REMARK 1.2.1. — One verifies easily from Lemma 1.1, together with the various defini-
tions involved, that we have the following implications:

nil-retraction-like morphism

square-nilpotent closed immersion =—= quasi-nil-retraction-like morphism

universal homeomorphism

affine morphism.

DEFINITION 1.3. — Let X, Y, Y be schemes; Y < Y a square-nilpotent closed immer-

sion; f: X — Y a morphism of schemes. Write X ©f x Xy Y — X for the [necessarily
square-nilpotent| closed immersion obtained by forming the base-change of the closed
immersion Y — Y by f; Zx, Zy for the conormal sheaves of the square-nilpotent closed
immersions X < X, Y < Y, respectively [i.e., the quasi-coherent ideals of Ox, Oy that
define the closed subschemes of X, Y determined by the closed immersions X — X,
Y < Y, respectively|. Then we shall say that the morphism f is conormally strict with
respect to Y — Y if

(1) the morphism f is quasi-nil-retraction-like [hence also affine — cf. Remark 1.2.1],
and

(2) the homomorphism of Oy-modules
Iy — f*IX

induced by the homomorphism Oy — f,Ox determined by f is injective,

and, moreover, there exist schemes X, Y and closed immersionsiy: X < X, iy: Y <= Y
such that
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(3) the natural homomorphisms
Ix — (ix)«ixZIx, Iy — (iy)«iy Ly

are isomorphisms [or, alternatively, the quasi-coherent ideals Zx, Zy of Ox, Oy are anni-
hilated by the quasi-coherent ideals that define the closed subschemes of X, Y determined
by the closed immersions iy: X < X, iy: Y < Y respectively]|, and

(4) the morphism f: X — Y induces [relative to iy, 7y] an isomorphism of schemes

7 XY

REMARK 1.3.1. — In the situation of Definition 1.3, it is immediate from Remark 1.2.1
that if f is nil-retraction-like, then conditions (1), (2) are always satisfied.

LEMMA 1.4. — In the situation of Definition 1.3, suppose that the morphism f is conor-
mally strict with respect to Y — Y, i.e., satisfies the four conditions of Definition 1.3.
Then the homomorphism of Oy-module

determined by f is an isomorphism.

PROOF. — Since f is affine [cf. condition (1) of Definition 1.3], we may assume without

loss of generality, by replacing Y by an affine open subscheme of Y, that both X and Y

are affine. Write B dof I'X,0x), A def ['(Y,Oy), and Iz C B (respectively, Jp C B;

Iy C A; Jy C A) for the ideal that defines the closed subscheme determined by the closed
immersion X < X (respectively, X < X: Y < Y: Y < Y). Now observe that, to
complete the verification of Lemma 1.4, it suffices to verify that the homomorphism 74
(:) I4®4 (A/JA) — cf. condition (3) of Definition 13) — Ig =148 (:) (IAB) Xp (B/JB)
— cf. condition (3) of Definition 1.3) induced by the homomorphism A — B determined
by f is an isomorphism. On the other hand, it follows from condition (2) of Definition 1.3
that the homomorphism 14 — [4B is injective. Moreover, since the homomorphism
A — B induces an isomorphism A/Ja — B/Jp [cf. condition (4) of Definition 1.3], the
homomorphism I, ®4 (A/Ja) — ([aB)®p(B/Jg) is surjective. This completes the proof
of Lemma 1.4. O

DEFINITION 1.5. — Let
X —1-Y

lc

Z—W
d

o

be a commutative diagram of schemes. Then we shall say that the diagram is strictly
cocartesian if the following two conditions are satisfied:

(1) The morphisms a, b, ¢, and d are nil-retraction-like [hence also affine — cf. Re-
mark 1.2.1].
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(2) The affine open subschemes Uy € W of W that satisfy the following condition
form an open basis of W: If one regards the rings T'(c” (U ), Oy), T(d"(Uw), Oz),
['(Uw, Ow) as subrings of T'(a~ (¢ (Uw)), Ox) = T'(b~"(d"'(Uw)), Ox) by the relevant
injective [cf. (1)] homomorphisms, then the equality

F(th,69w0 Zirxcil(LRv),C)y)lij(dil<Cﬁy),Cjz)
in (a7 (Uw)),Ox) =T (b~ (d ' (Uw)), Ox) holds.

REMARK 1.5.1. — One verifies immediately that a strictly cocartesian diagram of schemes
is cocartesian in the category of schemes.

DEFINITION 1.6. — Let S be a scheme.

(i) We shall write
SChs

for the category of schemes over S and morphisms of schemes over S.
(ii) Let
JF —— Schg
be a category fibered in groupoids over Schg and X a scheme over S. Then we shall write

Flx

for the groupoid of objects of F over X and isomorphisms in F over the identity auto-
morphism of X.

(iii) Let f: X — Y be a morphism in Schg; &1, & objects of F over Y; ¢: f*& = f*&
an isomorphism in F|x. Then we shall write

Lift (&, &2; ¢) C Isomgy, (&1, 62)

for the set of isomorphisms ¢: & — & in F|y such that the equality f*i) = ¢ holds.

DEFINITION 1.7. — Let S be a scheme and
]74——>-Sch5

a category fibered in groupoids over Schg. Then we shall say that the category F fibered
in groupoids over Schg is integrable if the following three conditions are satisfied:

(1) Let

i

[><

?
<~

<<l
=

T
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be a cartesian diagram in Schg such that the morphism jy is a square-nilpotent closed
immersion, and, moreover, the morphism f is conormally strict with respect to the square-
nilpotent closed immersion jy; &, & objects of F over Y ¢: ji-& — ji-& an isomorphism
in Fly. Then the map induced by f

Lift;, (€1,62;0) — Lift;, (f7&1, [ f¢)
is bijective.
(2) Let

X -

S

Y
w

be a commutative diagram in Schg which is strictly cocartesian; V' a scheme over S;

7 —

d

f1
V- X, WV

e

f2

quasi-nil-retraction-like morphisms over S such that

fiocoaoe=(fiodoboe=)fyocoaoe=(fyodoboe=)idy;

¢ an object of F over V; ¢: ¢* f{€ = ¢* f5€ an isomorphism in F|y such that the pull-back
e*a*¢ is the identity automorphism of £ = e*a*c* fi€ = e*a*c* f5€. Then the map induced
by d

Lift.(f1'€, f3& ¢) — Lifty (d" f1€, d" /3§ a"9)
is bijective.
(3) Let f: X — Y be a nil-retraction-like morphism over S and £ an object of F over
Y. Then the homomorphism of groups induced by f

Aut, (€) — Autr, (£€)

is injective.

REMARK 1.7.1. — In sequels to the present paper, we give some examples of integrable
categories fibered in groupoids over Schg.

DEFINITION 1.8. — Let S be a scheme and
F— SChS

a category fibered in groupoids over Schg. Then we shall say that the category F fibered
in groupoids over Schg is weakly integrable if the following three conditions are satisfied:
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(1) Let

b
—

[><

Jjx

X —Y
f

Y

<~
<<

be a cartesian diagram in Schg such that the morphism jy is a square-nilpotent closed
immersion, and, moreover, the morphism f is conormally strict with respect to the square-
nilpotent closed immersion jy; V' a scheme over S;

h1
V— X, Y oV

~——
ho

quasi-nil-retraction-like morphisms over S such that
hiojyofog=(hofojxog=)hyojyofog=(hyofojxog=)idy,
and, moreover, the morphisms

hiojyo [, hy o gy o [, hi o jy, hs o jy,

hlof7 hQOfa h’l? h’2

are finite and flat; & an object of F over V; ¢: ji-hi€ = ji-hi€ an isomorphism in F|y such
that the pull-back g*f*¢ is the identity automorphism of § = g* f*jy-hi& = g* f* 55 h3€.
Then the map induced by f

Lift;, (h1€, h58; ) — Lift;, (f*RYE, fh5E; i*¢)

is bijective.

(2) Let

X 2>y

b lc

Z—W

d
be a commutative diagram in Schg which is strictly cocartesian; V' a scheme over S;
f1
V=X, w : Vv

fo

quasi-nil-retraction-like morphisms over S such that
fiocoaoe=(fiodoboe=)fyocoaoe=(fyodoboe=)idy,
and, moreover, the morphisms

fiocoa, faocoa, fioc, faoc,

fiod, Jaod, fi fo
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are finite and flat; £ an object of F over V; ¢: c*fié = ¢* f;€ an isomorphism in Fly
such that the pull-back e*a*¢ is the identity automorphism of £ = e*a*c* f{§ = e*a*c* f5€.
Then the map induced by d

is bijective.

(3) Condition (3) of Definition 1.7 is satisfied.

REMARK 1.8.1. — One verifies easily that an integrable category fibered in groupoids
over Schg is weakly integrable.

2. STRATIFICATION STRUCTURES

In the present §2, we introduce and discuss the notion of a stratification structure on a
smooth scheme [cf. Definition 2.5 below|. In the present §2, let S be a scheme and X a
scheme which is smooth and separated over S.

DEFINITION 2.1. — Let n be a positive integer.
(i) We shall write

n
A\

X(") défX Xgr+XgX

for the fiber product of n copies of X over S.
(ii)) Let I C{1,...,n} be a nonempty subset of {1,...,n}. Then we shall write

Xpr(ln): x () _ x (D

for the projection onto the factors labeled by the elements of I, i.e., the morphism given
by “(z1,...,20) = (Tiy, -, T4y,)7, where T = {iy, ... iy} and 4y < - - <y

(iii) Let ¢ be an element of {1,...,n}. Then we shall write

Xprgn) &f Xprf{?}): X0 x® = x,

DEFINITION 2.2. — We shall refer to a collection of data
S = ((°P")nz0, (50" OP" = OP™ 1) 50, (S0™: OP" — XP),20)
consisting of
e a scheme ®P" over S for each nonnegative integer n,
e an affine morphism ©,/": ® P* — € P+l gyer S for each nonnegative integer n, and
e an affine morphism ®o”: ®P* — X@ over S for each nonnegative integer n

as a pre-stratification structure on X /S if the following two conditions are satisfied:
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(1) Let n be a nonnegative integer. Then the diagram of schemes over S

S,n

Gpn-i-l

GPn
GUXA Aﬂ
X @

1s commutative.

(2) The morphism ®¢%: ®P® — X® determines an isomorphism of ®P° with the
diagonal closed subscheme X C X of X,

Let us identify ©P° with X by means of the isomorphism determined by the morphism
&0
o’

Spo— X,

DEFINITION 2.3. — Let
S = ((Gpn>n20; (6Ln)n20, (GUn)nzo)

be a pre-stratification structure on X/S and n a nonnegative integer.

(i) Let m be a nonnegative integer such that m < n. Then we shall write

Gan:GPm GPn

for the morphism over S obtained by forming the composite of the morphisms /™, ..., %,
Moreover, we shall write

S n def

Ly, = idepn.

(ii) Let ¢ be an element of {1,2}. Then we shall write
Spr: SpPT - X

for the morphism over S obtained by forming the composite of the morphism ®o™: P" —
X® and the morphism Xprl@): X® - X,

REMARK 2.3.1. — In the situation of Definition 2.3, it follows from conditions (1), (2) of
Definition 2.2 that, for each nonnegative integer n and ¢ € {1, 2}, the diagram of schemes

over S
S

XZGPO

LO
n (G} P
\ A o

X

is commutative. In particular, the morphism ©.2: X = ©P% — P is a closed immersion.
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DEFINITION 2.4. — Let
S = ((°P")nz0, (S1")nz0, (P0™)nx0)

be a pre-stratification structure on X/S; r a positive integer; ny,...,n, nonnegative
integers.

(i) We shall write
6pn1,...,nr déf GPnl Xx o Xx GPnT

— where, foreach i € {1,...,r—1}, the morphism Spni X (respectively, 6 pnit1 _y X)
implicit in the i-th “xx” is the morphism ©pry’ (respectively, Spr}"™).

(ii) Let mq,...,m, be nonnegative integers such that m; < n, for each i € {1,...,7}.

Then we shall write
GL;nl,...,mr . GPml,...,mT 6Pn1,,..,nr
L1yeeeyMp

for the morphism over S determined [cf. condition (1) of Definition 2.2] by the morphisms

GLml GLmT

nyoc s o,
(iii) We shall write
GO_nl,...,nT : GPnl,...,nT X(r+1)

for the morphism over S determined [cf. condition (1) of Definition 2.2] by the morphisms
Sgm_ ..., Sgmr,

(iv) Let i be an element of {1,...,7+ 1}. Then we shall write

Gpr?lv"wnT‘ . 6Pn17"'7n7‘

— = X

for the morphism over S obtained by forming the composite of the
morphism Sgni-nr: € prane _y X+ and the morphism XprET“): X0+ 5 X,
(v) Let i be an element of {1,...,r}. Then we shall write
6pr?z}7;:‘;,17;r : GPnl,...,nT 6Pm
for the projection onto the i-th factor.

(vi) We shall write
GPXT’ 60_><7“: 6P><7“ X(r+1)’
S ...Xr, 6 pxr S XT . 6 pxr S pl
pr,": " P —— X, DIy iyt P —"P
for the “CpPrisne”  «@gntne? 6Gpplitenlirn HSppl-oir? in the case where we take the

v Pl
“(n1,...,n,)" tobe (1,...,1).

REMARK 2.4.1. — In the situation of Definition 2.4:
(i) It follows from condition (2) of Definition 2.2 that the morphism ®g%0: X =

subscheme X C X+ of X (r+1)
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(ii) It follows from Remark 2.3.1 that the diagram of schemes over S

GPnl,A..,nT

is commutative, and the morphism €00 + X = P00 _ & prine ig 5 closed im-

ML yeeeyp ©
mersion.

DEFINITION 2.5. — We shall refer to a collection of data

6 _ ((GPn)nzo’ (6Ln: GPn N 6Pn+1)n207

(Go.n: GPn N X(2)>n207 (65n1,n2 . 6pn1,n2 N 6Pnl+n2)n1,n220)
consisting of

e a pre-stratification structure on X/S
(((‘SPn)nZO7 (GLn: GPn N GPn—O—l)nZO7 (Go_n: GPn N X(2))n20)

and

e an affine morphism ©§™mz: © prunz _y 6 pritnz gyer S for each nonnegative integers
ni, Ng

as a stratification structure on X/S if the following four conditions are satisfied:

(1) Let ny, ny be nonnegative integers. Then the diagram of schemes over S

Sgni,ng

6Pn1 NeD) GPnl “+no
Go.nl,ng \L J{G‘Tnﬁﬂm
X3 x(2)
(3)
P

1s commutative.

(2) Let nq, ny, ng be nonnegative integers. Then the diagram of schemes over S

G5n1m2 idg
6Pn1,n2,n3 ( an3) Gpn1+n2,n3
(ids pny » 65"2’"3)l lﬁénl +n2ng
Gpn1,n2+n3 Gpm +no+n3

66n1,n2+n3

[cf. (1)] is commutative.
(3) Let n be a nonnegative integer. Then the morphisms ©§%", ©§™° coincide —
relative to the identification of ®P? with X [cf. condition (2) of Definition 2.2] — with

the identity automorphisms of ©P%" & Pn0 respectively.
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(4) Let ny, ny be nonnegative integers. Then the diagrams of schemes over S

Sgni,ng S gni,n2

GPnl,nQ G_Pn1+n2 GPnl,ng GPTL1+TL2
S, 112 5 S, n1sn2
bL"1+1’"2 l lbﬂl+”2 Ln1,n2+1l iebnlJF”Q
6pn1+1,n2 GPn1+n2+1 6pn1,n2+1 Gpn1+n2+1
Sgni+lng Sgny,na+l

are commutative.

REMARK 2.5.1. — An example of a stratification structure on X/S is given as follows:

Let Y be a separated scheme over S and X — Y an affine morphism over S. Write P aof

X Xy X; q1, ¢2: P — X for the projections onto the first, second factors, respectively;
q13: X Xy X xy X — P for the projection onto the first and third factors. Let

PPCcplc...cprCcpttc...CP

be a sequence of closed subschemes of P. Suppose that the following two conditions are
satisfied:

e The natural closed immersion P? — P determines an isomorphism of P° with the
diagonal closed subscheme X C P of P.

e For each nonnegative integers ni, no, if we write P™"2 &t pm xx P™ (C X Xy
X Xy X) for the fiber product of the composite P™ — P A X and the composite
P — P % X, then the composite

q1,3

P X xy X xy X —= P
factors through the closed subscheme P™*"2 C P of P. Write
Jnun2 . pning S Pn1+n2

for the resulting morphism.

For each nonnegative integer n, write *: P"® < P"*! for the natural closed immersion
and 0™: P* — X@ for the composite of the natural closed immersion P"* < P and the
closed immersion P < X induced by the morphism Y — S. Then one verifies easily
that the collection of data

((Pn)nzo, (Lni P PnJrl)nZ(], (O’ni P" = X(2))n20, (5n1,n2: P Pn1+n2)n1’n220)

gives an example of a stratification structure on X/S.

DEFINITION 2.6. — Let
S = ((°P")nz0, (Ct")nz0, (S0, (50™™)0, ny>0)

be a stratification structure on X/S; r a positive integer; nq, ..., n, nonnegative integers.
Write n < > i_yn;. Then it follows from conditions (1), (2) of Definition 2.5 that the
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various ©6™™2’s determine a commutative diagram of schemes over S

GPxn GPnl,...,nr
Gpn
We shall write
S cxXn . 6 pxn S pni,...,nr Scexn., 6 pxn S pn
5n1,...,nr' Pt —="p , o PPt ——= " pn

65n1,...,n7« . GPnh...,nT GPn

for the top horizontal, left-hand lower, right-hand lower arrows of this diagram, respec-
tively.

REMARK 2.6.1. — In the situation of Definition 2.6, it follows from condition (1) of
Definition 2.5 that the diagrams of schemes over S
GPn1,...,n7.

GPn GPnl,...,n7- GPn

X, X,
SsXn S sXn
GPXn Moo Gpnl, M GPXTL Moo GPnl,...,nr
bprlxx* Sprylrnr Gprﬁl\ ‘/pr:li’{”’nr
X X

are commautative.

DEFINITION 2.7. — Let
S = ((°P")nz0, (C1")nz0, (90" )nz0. (S0™) ) no>0)

be a stratification structure on X/S; r a positive integer; nq, ..., n, nonnegative integers.
Write n & > i, ni. Suppose that n > 1.
(i) We shall write

def _
GBnl,...,nT 1 GPnl,...,nT X& pn GPn 1

for the fiber product of the morphism ©§7t-nr: & prinr _ 6 P and the morphism
Gbn—l . GPn—l N GPn_

(ii) We shall write

6£n1,...,nr . GBnl,...,nT 6P”17~--,nr’ Gin,...,nT . GBnl,...,n,« GPnfl
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for the first, second projections, respectively, Thus, we have a cartesian diagram of
schemes over S

GPnl, Ny = GPn—l
GAnl ,,,,, nri \LGLn—l
Gpnl,‘..,nr GPn

65711 ..... npe

(iii) Let ¢ be an element of {1,...,7 + 1}. Then we shall write

— = X

6E§L1,m,nr : GBTLLM’”T
for the morphism over S obtained by forming the composite of the morphism
GQm,...,nr: GBm,...,n,« - Gpnl,...,nr and the morphism Gpr?lyw-,nr: GPm,...,nr - X.

(iv) It follows from conditions (3), (4) of Definition 2.5 that the diagram of schemes
over S

is commutative. We shall write

GLO o ¢ GBnl,...,nr

ny,...,

for the morphism over S determined by this commutative diagram and the cartesian
diagram of (ii).

(v) We shall write

GBXT7 GLXT, GPXT‘ GPXT

= ° = I

GQXT: GBXT GPT‘—l’

6pri><7‘: b£><r X, 6£(>J<r: X GBXT

for uGBm,...,nrw’ uGLm,...,nm’ uGém,...,nm’ “Gprm""’n’”” «8,0 ” in the case where we

Eaian 2 ) N1y,
take the “(ny,...,n,)" to be (1,...,1).

REMARK 2.7.1. — In the situation of Definition 2.7:

(i) It follows from Remark 2.4.1, (ii), that the diagram of schemes over S

S,0

is commutative, and the morphism “¢,

i X = P s a closed immersion.
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(i) It follows from condition (1) of Definition 2.2 and Remark 2.6.1 that the diagrams
of schemes over S

Gpnl,.“,nr = GPnfl Gpnl,.“,nr

are commautative.

DEFINITION 2.8. — Let
S = ((°P")nz0, (Ct")nz0, (°0™)nz0, (50" )01 mp>0),

T=(("P"nz0, Ct"nz0, (00, (6™ )y ny>0)

be stratification structures on X/S. Then we shall define a morphism of stratification
structures

6 —%

to be a collection of data
® = (®")n>0

consisting of an affine morphism ®": ® P* — *P" over S for each nonnegative integer n
that satisfies the following three conditions:

(1) Let n be a nonnegative integer. Then the diagram of schemes over S
GPn o ZPn

GLnl l‘ILn

S Pn+1 TPn-‘rl

_—
¢n+1

is commutative.

(2) Let n be a nonnegative integer. Then the diagram of schemes over S

GPn on ‘Ipn

1s commutative.

(3) Let ny, ny be nonnegative integers. Then the diagram of schemes over S

GPn1 ;N2 TPnl,ng
S gn1.ng l iiénlv’@
GPnl “+no Tpnl “+no

Hn1tn2
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— where the upper horizontal arrow is the morphism over S determined [cf. (2)] by the
morphisms ®"', "2 — is commutative.

REMARK 2.8.1. — In the situation of Definition 2.8, it follows from condition (2) of
Definition 2.2 and condition (2) of Definition 2.8 that the morphism ®°: X = ©pP% —
*P% = X coincides with the identity automorphism of X.

DEFINITION 2.9. — Let
S = ((°P")nz0. (Ct")nz0, (S0 )nz0, (P6™" )0 mo>0),

T=((CP"nz0, ("nz0, C0M)nz0, (F6™™) 0 ny>0)
be stratification structures on X/S;
b = ((I)n)nzol 6 —%

a morphism of stratification structures; r a positive integer; nq, ..., n, nonnegative inte-
gers. Then we shall write

q)nl,...,nr . Gpnl,...,nr TPnL...,nT

for the morphism over S determined [cf. condition (2) of Definition 2.8] by the morphisms
®™ .., ®" . [So the upper horizontal arrow of the diagram of Definition 2.8, (3), is the
morphism $""2 ]

DEFINITION 2.10. — Let
S = ((°P")nz0, (Ct")nz0, (°0™)nz0, (50" )01 mo>0),

T = ((P")uz0, (1")nz0, (F0™nzo, (0™, n0)
be stratification structures on X/S;
o = ((I)n)nzof G — T

a morphism of stratification structures; m < n nonnegative integers.
(i) We shall write

<I>Pn|m def GPn Xtp TPm
— n

for the fiber product of the morphism ®": ®P* — *P™ and the morphism */: *P™ —
Tpn [SO @Bn\n — GPn]

(ii) We shall write

fI’én\m: @Bn\m GPn7 gn\m @Bn\m ‘IPm
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for the first, second projections, respectively, Thus, we have a cartesian diagram
schemes over S

pnlm

<I>Pn|m Tpm
@anl i‘ILz’L

GPn TPTL

" )

(iii) Let m’ < m be a nonnegative integer. Then we shall write

n|m/
<I>L | . <I>Pn|m @Pn\m
Lplm Ea

for the morphism over S determined by the morphism =, : *P™ — TpPm™,

(iv) Let ¢ be an element of {1,2}. Then we shall write

<I>przl\m: @Bn\m

— = X

for the morphism over S obtained by forming the composite of the morphism
S P and the morphism Spr?: P* — X.

of

<I>£n|m: <I>£n|m -

(v) It follows from condition (1) of Definition 2.8 and Remark 2.8.1 that the diagram

of schemes over S

XZGPOZTPO$TPm

GL%\J/ ifL;‘n

GPn Tpn

is commutative. We shall write

<I>O ® pn|lm
bpjm: X —> P

for the morphism over S determined by this commutative diagram and the cartesian

diagram of (ii).

REMARK 2.10.1. — In the situation of Definition 2.10:
(i) It follows from Remark 2.3.1 that the diagram of schemes over S

7n\m

N A

is commautative, and the morphism ®¢ ‘ . X — ®P"m ig a closed immersion.
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(ii) It follows from condition (1) of Definition 2.2 and condition (2) of Definition 2.8
that the diagram of schemes over S

pnlm

<I>Pn|m GPm
q’prﬂlm %pr:n
B X

1s commutative.

(iii) It follows from (ii) and Remark 2.3.1 that the equalities
@n|0 _ fbpr?m _ Qprg‘o: <I>£TL|0 GPO - X

hold.

3. INTEGRABLE STRATIFICATION STRUCTURES

In the present §3, we introduce the notion of an integrable stratification structure on
a smooth scheme [cf. Definition 3.2 below| and the notion of an integrable morphism of
stratification structures [cf. Definition 3.8 below|. In the present §3, let S be a scheme,
X a scheme which is smooth and separated over S, and

6 _ ((Gpn)nzo’ (G{,n: Gpn — 6Pn+1)n207

(GU": Spn _y )((2))71207 (65n1,n2: S pninz 6pn1+n2>m’n220)

a stratification structure on X/S.

DEFINITION 3.1.

(i) We shall say that the stratification structure & is t-quasi-nil-retraction-like if, for
each nonnegative integer n, the morphism ©;": ® P* — © Pn*! i5 quasi-nil-retraction-like.

(ii)) We shall say that the stratification structure & is pr-finite flat if, for each non-
negative integer n and i € {1,2}, the morphism pr?: ®P* — X is finite and flat.

(ili) We shall say that the stratification structure & is o0-nil-retraction-like if the
following condition is satisfied: Let r be a positive integer; nq, . .., n, nonnegative integers.
Write n & >, ni. Then the morphisms in the commutative diagram of Definition 2.6

6P><n LT Gpnl,...,nr
GA A“,nr
GPn

are nil-retraction-like.
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(iv) Let r be a positive integer. Then we shall say that the stratification structure &
is d-strictly cocartesian of level > r if, for each integer n > r, the commutative diagram
of schemes over S

S eXn
6P><n Lin-1 6P1,n71
65531’1\L i@él,nl
GPn—l,l GPn
66n—1,1

is strictly cocartesian.

REMARK 3.1.1. — Suppose that the stratification structure & is t-quasi-nil-retraction-
like.

(i) In the situation of Definition 2.3, (ii), it follows from Remark 2.3.1 that the
morphism Spr?: SP" — X is quasi-nil-retraction-like.
(ii) In the situation of Definition 2.4, (ii), it follows from (i) that the morphism

Gé,ﬁlfjj‘ﬁ?i S pmisme _y 6 preane is gyasi-nil-retraction-like.

(iii) In the situation of Definition 2.6, it follows from (ii) and conditions (3), (4) of
Definition 2.5 that the morphisms in the commutative diagram

6P”17---,nr

are quasi-nil-retraction-like.

REMARK 3.1.2. — Suppose that the stratification structure & is pr-finite flat. Then,
in the situation of Definition 2.4, (iv), one verifies immediately that the morphism
Spriteohtt € prisene s X g finite and flat.

DEFINITION 3.2. — We shall say that the stratification structure & is integrable if the
following four conditions are satisfied:

(1) The stratification structure & is t-quasi-nil-retraction-like and J-nil-retraction-like.
(2) The stratification structure & is d-strictly cocartesian of level > 3.
(3) The morphism ©.!: © P! — ©P? is a square-nilpotent closed immersion.

(4) The morphism $§*2: € P*2 — © P2 ig conormally strict with respect to the square-
nilpotent closed immersion ©.!: © Pt < © P2 [cf. (3)].
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REMARK 3.2.1. — Suppose that the stratification structure & is integrable.

(i) Tt follows from condition (3) of Definition 3.2 that the morphism ©,*?: ©Px2 —
SP*2 is a square-nilpotent closed immersion, hence also [cf. Remark 1.2.1] quasi-nil-
retraction-like.

(ii) It follows from Remark 3.1.1, (ii), and condition (1) of Definition 3.2 that the
morphism ©.17: X = SPO0 — © PX2 iy quasi-nil-retraction-like. Thus, it follows from (i)
that the morphism ©/0,: X — ©P*2 is quasi-nil-retraction-like.

REMARK 3.2.2. — Let us recall from Definition 2.7, (ii), that the diagram

G(SXQ
6P><2 = 6P1

is cartesian. Now suppose that the stratification structure & is integrable. Then it follows
from conditions (3), (4) of Definition 3.2 that the right-hand vertical arrow of this diagram
is a square-nilpotent closed immersion, and the lower horizontal arrow of this diagram is
conormally strict with respect to the right-hand vertical arrow.

REMARK 3.2.3. — Suppose that the stratification structure & is integrable. Let n > 3
be an integer. Let us recall the diagram of schemes over S

GLO ..... 0 S cXn
X = GPO,...,O 1.1 6P><n Ln—1 Gpl,nfl
Gérjfl,ll i@dl,nl .
pry
S pn—1,1 S pn —TTTT—u
P S e — ¢
Gprg

(i) It follows from condition (2) of Definition 3.2 that the diagram

S eXn

6P><n ln—1 GPLnfl
655n1’1l l@él,nl
S pn—1,1 S pn
P Gdn—l,l P

is [commutative and] strictly cocartesian.

(ii) It follows from Remark 3.1.1, (ii), and condition (1) of Definition 3.2 that the
morphism

is quasi-nil-retraction-like.



INTEGRABLE CONNECTIONS I 25

(iii) It follows from Remark 3.1.1, (i), and condition (1) of Definition 3.2 that the
morphisms
Gpr’f.
°pr T X
GPI.EL
are quasi-nil-retraction-like.
(iv) It follows from Remark 2.4.1, (ii), and Remark 2.6.1 that the equalities

— 0,...,0 — 0,...,0
(‘551,n 10651><n GLl 1:6pr30651,n 1066{(71 S

S._..n _
pry © n—10° n—19 "l

)
geeey

hold.

DEFINITION 3.3. — We shall say that the stratification structure & is strictly integrable
if the following three conditions are satisfied:

(1) The stratification structure & is integrable.
(2) The stratification structure & is pr-finite flat.

(3) Let i be an element of {1,3}. Then the morphism “pr;*: ®P*? — X is finite and
flat.

REMARK 3.3.1. — Suppose that the stratification structure & is strictly integrable. Let
us recall the diagram of schemes over S

6,0 S 5x2
X X2 6P><2 = 6p1

(i) It follows from Remark 3.2.1, (ii), and condition (1) of Definition 3.3 that the
morphism

6£(>J<2 ¢ 6£><2
is quasi-nil-retraction-like.

(ii) It follows from Remark 3.1.1, (i), condition (1) of Definition 3.2, and condition
(1) of Definition 3.3 that the morphisms

G’pr%

A
°PPT X

Gpr%

are quasi-nil-retraction-like.

(iii) It follows from Remark 2.4.1, (ii), and Remark 2.6.1 that the equalities

Gpr%OGLl oGéX206£[>)<2 — bprgOGLI oGéX2OG£g2 :ldX
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hold.

(iv) It follows from Remark 3.1.2 and conditions (2), (3) of Definition 3.3 [cf. also
condition (1) of Definition 2.2; Remark 2.6.1; Remark 2.7.1, (ii)] that the morphisms

GET — prl S 1 6éX2, pr§2 — GPI% OG 1 o 6é><27
6p p1"1 © 1 GP pr2 © 17
Gprf prl 6§><2 Gprgj pl“2 65><2
°pri,  pr3

are finite and flat.

REMARK 3.3.2. — Suppose that the stratification structure G is strictly integrable. Let
n > 3 be an integer. Let us recall the diagram of schemes over S

GLO ,,,,, 0 SeXn
X — 6 p0,....0 Lo & pxn tnot & pln-l
667>1<n1 1i iezgl,nl .
pry
- T T
GPn 1,1 _ 6Pn - X.
bén—l,l

S n
pry

Then it follows from Remark 3.1.2 and condition (2) of Definition 3.3 [cf. also Re-
mark 2.6.1] that the morphisms

“pri” = Oprf 0 96N o S5y Sprly = Cpry oG9 o S,
6pri,n—1 _ Gpljlw o 651,71—1’ GPI.;,n—l _ 6prg o 651,71—1’
6pr7ll—1,1 _ 6pr711 o Gén—l,l’ 6prg—1,1 _ 6pr;1 o 65n—1,1’

°ptf,  prj

are finite and flat.

REMARK 3.3.3. — In sequels to the present paper, we give some examples of strictly
integrable stratification structures.

DEFINITION 3.4.
(i) We shall write
T C X®
for the closed subscheme of X defined by the quasi-coherent ideal of Oy obtained by

formlng the square of the quasi-coherent ideal that defines the diagonal closed subscheme
X CX® of XG
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(ii) Let i be an element of {1,2,3}. Then we shall write
Xprl'o Tt —= X

for the morphism over S obtained by forming the composite of the natural closed immer-
sion T < X©) and the morphism pr( ) X®) 5 X,

LEMMA 3.5. — Suppose that the morphism So': P! — X determines an isomor-
phism of S P! with the closed subscheme of X® defined by the quasi-coherent ideal of
Ox @ obtained by forming the square of the quasi-coherent ideal that defines the diagonal

closed subscheme X C X® of X [which thus implies that the morphisms

S 10 Gpl GPIO X(3) 6 0, .bpl 6P01 X(3)

GO,XZ: 6P><2 X(S)
are closed immersions|. Then the following hold:

(i) The closed immersion ®c%°: X = SP% <« XO) [c¢f Remark 2.4.1, ()] factors
as the composite of a square-nilpotent closed immersion X — T* whose conormal
sheaf is isomorphic to Qﬁ(/s ® Qﬁ(/s and the natural closed immersion T — X©).

Write

0 Xe—us Tt

for the resulting square-nilpotent closed immersion [whose conormal sheaf is isomorphic
to Qx5 @ Qx/gl-

(ii) The closed immersion ®ot0: S Pt = € PL0 <y XG) factors as the composite of a
square-mlpotent closed immersion ® P! < T' whose conormal sheaf is isomorphic

0% QY /g and the natural closed immersion T' — X@)
Write

1,0
GLT7 26P1C Tl

for the resulting square-nilpotent closed immersion [whose conormal sheaf is isomorphic
to 0L /-

(iii) The closed immersion ®o% : ® P! = S POl <y XO) factors as the composite of a
square-nllpotent closed immersion ® P! < T' whose conormal sheaf is isomorphic

0% OQl X/8 and the natural closed immersion T «— X ©).

Write

& L%1 . Splc__ ol
for the resulting square-nilpotent closed immersion [whose conormal sheaf is isomorphic

0 O],

(iv) The natural closed immersion T — X®) factors as the composite of a square-
nilpotent closed immersion T' — ©P*? whose conormal sheaf is isomorphic to
(%49, (Qﬁ(/s ®oy Qﬁ(/s) and the closed immersion So*?: ©P*2 « X0,

Write

T . Tl S px2
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for the resulting square-nilpotent closed immersion [whose conormal sheaf is isomorphic
to (90§).(Q /s ©ox V)]

PrROOF. — These assertions follow immediately from elementary algebraic geometry. [l

DEFINITION 3.6. — We shall say that the stratification structure & is of standard type
if the following three conditions are satisfied:

(1) The morphism ®o': P! — X® determines an isomorphism of P! with the
closed subscheme of X(?) defined by the quasi-coherent ideal of Oy ) obtained by forming
the square of the quasi-coherent ideal that defines the diagonal closed subscheme X C
X®@ of X®).

(2) The closed immersion /1, : Tt < © P*2 of Lemma 3.5, (iv) [cf. (1)], factors as the
composite of a square-nilpotent closed immersion 7" < ©P*2? and the closed immersion
6é><2: 6£><2 SN 6P><2 [Cf (1>]

(3) 1If we write N for the conormal sheaf of the square-nilpotent closed immersion
T — SP*? of (2), then the surjective homomorphism (®¢3.). (2} g ®ox Qy,g) — N of
Ori-modules determined [cf. Lemma 3.5, (iv)] by the closed immersion ©,*2: © P*2
©P*? induces an isomorphism (®:5.),0% /s = N of Opi-modules.

In this situation, we shall write
GQZQ . Tl( 6£X2

for the square-nilpotent closed immersion [whose conormal sheaf is isomorphic to (5:3), % /s

— cf. (3)] of (2) and
GQ{ . Tl 6p1

for the morphism over S obtained by forming the composite of the morphism ©,2,: 7! —
S P*2 and the morphism ®§7?: ©p*2 — S pl,

REMARK 3.6.1. — Suppose that the stratification structure & is of standard type. Let
us recall the diagram of schemes over S

GLO
X —=6p!

GLOJ/ igb(j):l
X T
pry

T —
°pl——T'T X
bL’

X T
T prl
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(i) It follows from Lemma 3.5, (iii), and condition (1) of Definition 3.6, together with
elementary algebraic geometry, that the diagram

&0
X bpl

GPI i Tl
T

is cartesian, and the right-hand vertical arrow of this diagram is a square-nilpotent closed
immersion. Moreover, again by condition (1) of Definition 3.6, together with elementary
algebraic geometry, the lower horizontal arrow of this diagram is conormally strict with
respect to the right-hand vertical arrow.

(ii) It follows from elementary algebraic geometry that the morphisms

XppT
T
XprT
are quasi-nil-retraction-like.
(iii) It follows from Remark 2.3.1 and condition (1) of Definition 3.6 that the equalities

Xl 66,01 (60 _ X T 601 60 _;
pry o up prs o iyt ot =idy

hold.

(iv) It follows from condition (1) of Definition 3.6, together with elementary algebraic
geometry [cf. also Remark 2.3.1], that the morphisms

X T 601 60

idy = “prj o L, idy = *prl 00! 090,
“pri = Tpr] 0%up, Fpry = Yprg o Cup,
Sprl = XprT 68,10, Sprl = XprT 0 ©.10

Ypri, o Tprg

are finite and flat.

REMARK 3.6.2. — Suppose that the stratification structure & is of standard type. Then
let us recall that the conormal sheaf of the square-nilpotent closed immersion €2, : T —
SP*? of Definition 3.6 is isomorphic to the Opi-module (®13.).0% 4. Thus, since [one
verifies easily that] the morphism ¥pr?: 7% — X is finite and flat for each i € {1,2,3},
and the Ox-module Q3 X/s 18 coherent and locally free, one verifies immediately that the
stratification structure 6 satisfies condition (3) of Definition 3.3.

REMARK 3.6.3. — In sequels to the present paper, we give some examples of stratification
structures of standard type.
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In the remainder of the present §3, let

T — ((‘ZPn)nZO’ (‘ILn: ‘IPn N ‘EZPn—&-l)nZO’

(To_n: Tpn N X(2)>n207 (T(snl,ng . Tpnl,nz N ‘IpnlJrnz)nl’nZZO)
be a stratification structure on X/S and
(I) = ((I)n)nzof 6 e I

a morphism of stratification structures.

DEFINITION 3.7.

(i) We shall say that the morphism ® is nil-retraction-like if, for each positive integer
r and nonnegative integers ni,...,n,, the morphism ®m--nr: & prinr _y T pnisne g
nil-retraction-like.

(ii)) Let r be a nonnegative integer. Then we shall say that the morphism ® is
r-pr-finite flat if, for each nonnegative integer n < r and ¢ € {1,2}, the morphism
q’gf‘n: ®prin — X is finite and flat.

REMARK 3.7.1. — Suppose that the stratification structures & and ¥ are ¢-quasi-nil-
retraction-like. Then, in the situation of Definition 2.9, it follows from conditions (1), (3)
of Definition 2.8 and Remark 2.8.1 that the morphism ®mt--nr: © Prasnr _y T pni..nr g

quasi-nil-retraction-like.

DEFINITION 3.8. — Let r be a nonnegative integer. Then we shall say that the morphism
® is r-integrable if the following five conditions are satisfied:

(1) The morphism @ is nil-retraction-like.
(2) The stratification structure & is t-quasi-nil-retraction-like and J-nil-retraction-like.

(3) The stratification structure ¥ is t-quasi-nil-retraction-like, J-nil-retraction-like,
and J-strictly cocartesian of level > r + 1.

(4) Let n < r be a positive integer. Then the morphism */*~1: TPn=l — Tpn g 4
square-nilpotent closed immersion.
(5) Let n < r be a positive integer. Then the morphism ®71": ®prl» — Tpn g

conormally strict with respect to the square-nilpotent closed immersion */"~!: T Pr=1
P [cf. (4)].

REMARK 3.8.1. — Let r be a nonnegative integer. Suppose that the morphism & is
r-integrable

(i) It follows from Remark 1.2.1 and condition (4) of Definition 3.8 that, for each
nonnegative integers m < n < r, the morphism */: *P™ — *P" is quasi-nil-retraction-

like.
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(ii) In the situation of Definition 2.10, (v), it follows from (i) and conditions (1), (3)
of Definition 3.8 that the morphism ¢ £?7,|m: X — ®prim is quasi-nil-retraction-like.

REMARK 3.8.2. — Let n < r be positive integers. Then one verifies easily from the
various definitions involved that the diagram of schemes over S

Prin—1
@Pr\n—l = TPn_l
ébizll \L‘ILn—l
D prin T pn
B Pprin P

is cartesian. Now suppose that the morphism ® is r-integrable. Then it follows from
conditions (4), (5) of Definition 3.8 that the right-hand vertical arrow of this diagram
is a square-nilpotent closed immersion, and the lower horizontal arrow of this diagram is
conormally strict with respect to the right-hand vertical arrow.

REMARK 3.8.3. — Let r be a nonnegative integer. Suppose that the morphism ¢ is
r-integrable. Let n > r 4+ 1 be an integer. Let us recall the diagram of schemes over S

gjL(J ,,,,, 0 T oXn
X = ‘ZPO, 0 1.1 TPXn Ln—1 Tpl,n—l
T —
5;n1,1i J{‘Zal,n 1 .
pry
- T T s
TPn 1,1 TPn - X.
Tgn—1,1 —
pry

(i) It follows from condition (3) of Definition 3.8 that the diagram

T oXn

TPXTL Ln—1 ‘Ipl,n—l
5553171l lf(sl,n—l
T pn—1,1 T pn
P ‘Iénfl,l P

is [commutative and]| strictly cocartesian.

(ii) It follows from Remark 3.1.1, (ii), and condition (3) of Definition 3.8 that the
morphism

is quasi-nil-retraction-like.

(iii) It follows from Remark 3.1.1, (i), and condition (3) of Definition 3.8 that the
morphisms
ipr’iz
P x
Tprg,
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are quasi-nil-retraction-like.
(iv) It follows from Remark 2.4.1, (ii), and Remark 2.6.1 that the equalities
prj o Tt (I(Sln 1 O‘ILO (1) pry o Tt T{5171 1° L(l) """ (1) = idx

hold.

DEFINITION 3.9. — Let r be a nonnegative integer. Then we shall say that the morphism
® is strictly r-integrable if the following three conditions are satisfied:

(1) The morphism & is r-integrable.
(2) The morphism @ is r-pr-finite flat.
(3) The stratification structure ¥ is pr-finite flat.

REMARK 3.9.1. — Let n < r be positive integers. Suppose that the morphism & is
strictly r-integrable. Let us recall the diagram of schemes over S

Ar|'rL71 _ gr|n71 _
X @Pr\n 1 ‘I_Pn 1
@L:Iz—ll J/iLn—l
Ten
pry
<I>Pr|n TPn > Y
L Brin —
= T n

(i) It follows from Remark 3.8.1, (ii), and condition (1) of Definition 3.9 that the
morphism

<I>O d prin—1
—r|n 1- t X P

is quasi-nil-retraction-like.

(ii) It follows from Remark 3.1.1, (i), condition (3) of Definition 3.8, and condition
(1) of Definition 3.9 that the morphisms

‘Ipr'iz

A
‘ZPn . X

Tpr'g

are quasi-nil-retraction-like.
(iii) It follows from condition (1) of Definition 2.2 and Remark 2.10.1, (ii), that the
equalities

‘ILn 1 o@ﬂn 1,20 TLn 1 Ogdnfl d 0

pr o bpjn—1 = pr2 o 0 lppo1 = idx

hold.

(iv) It follows from conditions (2), (3) of Definition 3.9 [cf. also condition (1) of
Definition 2.2; Remark 2.10.1, (ii)] that the morphisms

rin— 1 — rin— 1 —
prl\ pr OZLn 1 @Hn l’ pr2| pr2 OTLn 1 gﬂn 1’
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T n—1 n—1

T .n—1__FT n
pry = "pryo-t -, pry
o rin _ T n r|n d__rn
pry" = "prj o @', pr
A ) T N
pry, pry

are finite and flat.

REMARK 3.9.2. — Let r be a nonnegative integer.

T n—1

="prio™,

“pryodrh

Suppose that the morphism & is

strictly r-integrable. Let n > r + 1 be an integer. Let us recall the diagram of schemes

over S
g;LO AAAAA 0 ‘zaxn
X = TPO,...,O Lol Tpxn Ln—1 Tpl,n—l

idrffl,li \L‘Iél,n—l .

pry

- T
TPTL 1,1 TPYL - X.
Tgn—1,1
Tprg

Then it follows from Remark 3.1.2 and condition (3) of Definition 3.9 [cf. also Re-
mark 2.6.1] that the morphisms

Tpriwt — TpI.?l“L o Tél,nfl o T(an Tpr:;ﬁl — Tprg o Tél,nfl o Téxn

1,n—1> 1,n-1
‘Ipr},n—l _ ‘Zprrlz o ‘Zél,n—l7 ‘Zpré,n—l _ ‘Iprrzz o ‘3:51,77,—17
Tpr?fl,l _ Ipl‘? o T(Snfl,l7 Tprgfl,l _ Tprg o ‘I(Snfl,l’

i, prg

are finite and flat.

REMARK 3.9.3. — In sequels to the present paper, we give some examples of strictly
r-integrable morphisms of stratification structures.

4. STRATIFICATIONS AND INTEGRABLE CONNECTIONS

In the present §4, we introduce and discuss the notions of a connection [cf. Defini-
tion 4.4 below], a stratification [cf. Definition 4.6 below], and an integrable connection [cf.
Definition 4.7, (ii), below]. In the present §4, let S be a scheme, X a scheme which is
smooth and separated over S,

S = ((Gpn)nzo’ (GLn: GPn N 6Pn+l)n207

(GO_n: GPn N X(2)>n>07 (65n1,n2 . GPnl,ng N GPn1+n2>n1 n2>0)
a stratification structure on X/S,

F— SChS
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a category fibered in groupoids over Schg, and

3
an object of F over X.

DEFINITION 4.1. — Let n be a nonnegative integer.
(i) We shall write

n def - . 7\ * AT
Gann (f) = Llft@bg ((Gpr2) §, (6p1"1) §§1d£)
and refer to an element of the set ©qCnn"(€) as a quasi-n-&-connection on .

(ii) Let V be a quasi-n-&-connection on ¢ and m < n a nonnegative integer. Then
one verifies easily that the isomorphism

() Ve (Spry') € — (pr")’¢
[cf. condition (1) of Definition 2.2] is a quasi-m-&-connection on §. We shall write
VI < (S1)'V
for this quasi-m-G-connection on &. Thus, we have a map of sets
©qCnn"(§) — ®qCnn™(€)

given by mapping V € ®qCnn"(¢) to V|,, € ©qCnn™(¢).

(iii) We shall refer to a quasi-1-&-connection on £ as an S-connection on £ [cf. Re-
mark 4.1.1 below].

REMARK 4.1.1. — One verifies easily that the notion of an &-connection is the same as
the notion of a 1-&-connection in the sense of Definition 4.4 below.

DEFINITION 4.2. — Let n be a nonnegative integer; &, & objects of F over X; Vy,
Vs, quasi-n-&-connections on &1, &, respectively; ¢: & — & an isomorphism in F|y.
Then we shall say that the isomorphism ¢ is G-horizontal [with respect to Vi, Vs] if the
diagram in F|ep1

o (®pry)* o .
(pry) & ———— (°pr})*&
Vlll Z\LVQ
G .n\* ~ S__.n\*

r _— r
(Cpr)& Sy (Tpry)

is commutative.
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DEFINITION 4.3. — Let r > 2 be an integer; nq,...,n, positive integers. Write n o
S nilsol <n; <n-—1foreachi€ {1,...,r}]. Let V be a quasi-(n— 1)-&-connection
on &. Then we shall write

vnl,..., . ( pr:—l‘,:l ,nr) é- ~ (6pr7111,...,nr)*£

for the isomorphism in F|e pny....n, obtained by forming the composite

.....

(Pt ™)' = (Oprf ) oy ) e (prisy) (pri)'e

,,,,,

= (Sprpm )t = (Fprily ) (Cpry ) e = (Cpryi) (Fpr )€

= (pry ) e = (Opryin" ) (Tprgt) € = (Tpriis™ )" (Cprit)E

= (OprfT)EL
Moreover, we shall write
er: (Gprfll)*g _~ (Gpriw')*é

for “V™-" in the case where we take the “(ny,...,n,)” to be (1,...,1).

DEFINITION 4.4. — Let n be a nonnegative integer and V a quasi-n-&-connection on &.
Then we shall say that V is an n-&-connection if, for each positive integers ny, ns such
that ny + ny = n, the “cocycle condition”

(V‘nf]_)nl’nQ — (66n1,n2)*v
[cf. Remark 2.6.1] is satisfied. We shall write
“Cn"(€) € “qCnn"(¢)

for the set of n-G-connections on &.

LEMMA 4.5. — The map qCnn" (&) — ©qCnn™(€) of Definition 4.1, (ii), restricts to
a map of subsets

SCnn" (&) — “Cnn™(¢).

PROOF. — Let V be an n-G-connection on &; my, my positive integers such that m; +
mo = m. Then since V is an n-&-connection, the “cocycle condition”

(V‘n71>m1+n7m,m2 — (65m1+n—m7m2)*v
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is satisfied. Thus, by pulling back this equality by the morphism /1" ;S pmimz

mi+n—m,msy *
& prutn=mmz e conclude from condition (1) of Definition 2.2 and condition (4) of Def-
inition 2.5 that the “cocycle condition”

(F]oa) ™ = (56772 (9],,)
is satisfied, as desired. This completes the proof of Lemma 4.5. U

DEFINITION 4.6. — We shall write

SStrt(€) o Jim SCnn"(¢)

n>0

[cf. Lemma 4.5] and refer to an element of the set ©Strt(£) as an &-stratification on £.

REMARK 4.6.1. — A typical example of an &-stratification is as follows: Suppose that
there exists an object of F over S such that € is given by the pull-back of the object
by X — S. Then, for each nonnegative integer n, since [one verifies easily that] the two
composites

s Gpr’f & Gprg

P'— X —= 5 P"—X——S8
coincide, we have a natural identification
Vi (Opr3)"€ = (Opr)*E.

Now one verifies immediately that these V,,’s form an G-stratification on &.

REMARK 4.6.2. — Suppose that we are in the situation of Remark 2.5.1. Thus, we have
a stratification structure on X/S

((Pn)nzo, ([,ni P — PnJrl)nzo, (O'n: P = X(Q))nzo, (6711,712: Pz Pn1+n2)n17n220)'

Suppose, moreover, that there exists a nonnegative integer ny such that the closed im-
mersion P,, — P is an tsomorphism. In this situation, one verifies easily that the notion
of a stratification on & [i.e., with respect to the above stratification structure| is the same
as the notion of a descent datum on £ with respect to the morphism X — Y [in the usual
sense| — i.e., an isomorphism in F|p

BE — qi€

that satisfies a certain cocycle condition.

DEFINITION 4.7.

(i) Let V be an G-connection on . Then we shall refer to the automorphism of
(®pri?)*¢ in Flepx2 obtained by forming the composite

(GQXQ)*(vXQ) o (6é><2)*(vfl)
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— where we write V! for the inverse of the isomorphism V — as the &-curvature of V.

(ii)) We shall say that an G-connection on & is &-integrable if the G-curvature of the
G-connection is the identity automorphism of (GE?Q)*f . We shall write

SIntCnn(¢) C Cnn'(¢) (= qCnn'(€))

for the set of G-integrable G-connections on €.

LEMMA 48. — Ifn > m = 1, then the map ®Cnn™(¢) — Cnn™(¢) = ®Cnn'(€) of
Lemmoa 4.5 restricts to a map of subsets

©Cnn"(¢) — ®IntCnn(¢).

PROOF. — Let us first observe that it follows from Lemma 4.5 that we may assume
without loss of generality that n = 2. Let V be a 2-G-connection on &. Thus, the
“cocycle condition”

(v|1)><2 — (65><2)*v

is satisfied. In particular, by pulling back this equality by the morphism ©,*?: ® P*2 —
S P*2 we obtain an equality

(GAXZ)*((V|1>X2) — (Géx2)*<v|1)'

Thus, the &-curvature of V| is the identity automorphism, as desired. This completes
the proof of Lemma 4.8. Il

LEMMA 4.9. — Suppose that the following two conditions are satisfied:
(1) The stratification structure & is of standard type.

(2) The category F fibered in groupoids over Schg satisfies condition (1) of Defini-
tion 1.8.

Then the pull-back by the closed immersion S11,: T < SP*% of Definition 3.6 of the
S-curvature of an G-connection on & is the identity automorphism of (Xprf)*¢. In
particular, the S-curvature of an &-connection on & is an element of

Lifte,r, ((°pri®)*¢, (Opri?®) & idxpryee) © Atz . ((Tpry?)’e).

PROOF. — Let V be an G-connection on £. Write « for the pull-back of the G-curvature
of V by ©.L,, ie.,
a = (L) (L) (V2) 0 (Cuin) (P8 ) (V) = (Seln) (V?) o (967" (V7).

Now let us observe that it follows from our assumption that & is of standard type, and
F satisfies condition (1) of Definition 1.8 [cf. also Remark 3.6.1] that the morphism .
determines a bijection

Lifteb(%g ((Xpr{)*ﬁ, (Xprh)*¢; id(epr%)*g) —= Lifte,o ((Gpr%)*f, (®pr)*¢; idg).
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Next, let us observe that since [one verifies easily that]

GT 601 _ 6,01 65T06L01
1 T

Lo © Ly =74y, = ide p1,

the pull-back (®.% 1) « is the identity automorphism of (Sprl)*¢, which thus implies that
« is an element of the domain of the above bijection. Next, let us observe that since [one
verifies easily that]

GT 6,10 _ 6,10 65T GL

Ly © "ty =Ty, 7 =idep1,

the pull-back (S:7")*a is the identity automorphism of (Spr})*¢, which thus implies that
the image by the above bijection of « is the identity automorphism of (®pri)*€. Thus,
we conclude that « is the identity automorphism, as desired. This completes the proof of
Lemma 4.9. U

PROPOSITION 4.10. — Suppose that the following three conditions are satisfied:
(1) The stratification structure & is of standard type.
(2) The category F fibered in groupoids over Schg is weakly integrable.
(3) The scheme X is of relative dimension < 1 over S.

Then every G-connection on £ is S-integrable:
SqCnn'(¢) = ®Cnn'(¢) = ®IntCnn(¢).

PROOF. — Since & is of standard type, and X is of relative dimension < 1 over S, it
follows from condition (3) of Definition 3.6 that the closed immersion ©.7,: T — © Px2
of Definition 3.6 is an isomorphism. Thus, Proposition 4.10 follows from Lemma 4.9.
This completes the proof of Proposition 4.10. U

In the remainder of the present §4, let
= ((an)nZO, (zbnl Tpn — Tpn+1)n20’

(‘Zo_n . ‘ZPn N X(2))n207 (Sénl,ng . TPnl,ng N TPn1+n2)n1’n220)
be a stratification structure on X/S and
(I) = (q)n)nzoi 6 e T

a morphism of stratification structures.

DEFINITION 4.11. — Let n be a nonnegative integer and V a quasi-n-%-connection on &.
Then one verifies easily from condition (1) of Definition 2.8 and Remark 2.8.1 that the
isomorphism

(@")"V: (Opry)*€ — (Tpr})¢

[cf. condition (2) of Definition 2.8] is a quasi-n-S-connection on £. We shall write

*V & (o")*V
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for this quasi-n-G-connection on £. Thus, we have a map of sets
d*: *qCnn"(¢) — ©qCnn"(¢)

given by mapping V € *qCnn"(¢) to ®*V € SqCnn" ().

LEMMA 4.12. — Let n be a nonnegative integer. Then the following hold:

(i) The map ®*: *qCnn" (&) — ©qCnn" (&) of Definition 4.11 restricts to a map of
subsets

®*: *Cnn"(¢) — ©Cnn"(¢).
In particular, we have a map of sets

®*: TStrt(€) — Strt ()

[cf. condition (1) of Definition 2.8].

(ii) Suppose that the category F fibered in groupoids over Schg satisfies condition (3)
of Definition 1.7, and that the morphism ® is nil-retraction-like. Then the diagram of
sets

o

TCnn”(é”) — 6Cnn”(£)

| |

%qCan” (€) ——~ SqCun(€)
[cf. (1)] is cartesian.

PrROOF. — First, we verify assertion (i). Let V be an n-T-connection on &; ng, no
positive integers such that ny +ns = n. Then since V is an n-T-connection, the “cocycle
condition”

(v|n_1)n1,n2 — (T&nl,ng)*v

is satisfied. Thus, by pulling back this equality by the morphism ®m1m2: ©prinz
P2 we conclude from conditions (1), (2), and (3) of Definition 2.8 that the “cocycle
condition”

(V) [n1) ™™ = (96""2)"(27V)

is satisfied, as desired. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let V be a quasi-n-%-connection on £ such that the quasi-
n-G-connection ®*V is an n-G-connection; ny, ny positive integers such that ny + ny =
n. Then since F satisfies condition (3) of Definition 1.7, and the morphism ¢ is nil-
retraction-like, to verify the “cocycle condition”

(V‘nfl)nlﬂm — (Tanl,ng)*v

for V, it suffices to verify the pull-back of this equality by the morphism @2 : © prm2 —
TPz e the equality

(279 )" = (S5772)"(2°V)
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[cf. conditions (1), (2), and (3) of Definition 2.8]. On the other hand, since the quasi-
n-G-connection ®*V is an n-&-connection, this equality is satisfied, as desired. This
completes the proof of assertion (ii), hence also of Lemma 4.12. U

DEFINITION 4.13. — Let n < r be nonnegative integers.
(i) Let V be a quasi-r-&-connection on &. Then we shall refer to the automorphism
of (@nlo)*f in .F|<I>Bn|0

(@MO)*& _ (@Eg\())*g (‘?gn\OI(VIn) (¢E?IO)*£ _ (gn|0)*€

[cf. Remark 2.10.1, (iii)] as the (®,n)-curvature of V. Moreover, we shall refer to the
(®, n)-curvature of the quasi-n-&-connection on ¢ determined by an G-stratification on
¢ as the (®,n)-curvature of the G-stratification.

(ii)) We shall say that a quasi-r-&-connection on ¢ is (®,n)-dormant if the (®,n)-
curvature of the quasi-r-&-connection is the identity automorphism of (®"°)*¢. More-
over, we shall say that an G-stratification on & is (®,n)-dormant if the quasi-n-&-
connection determined by the G-stratification is (®,n)-dormant. We shall write

2 DrmStrt(€) C ©Strt(€)

for the set of (®,n)-dormant S-stratifications on &.

(iii) We shall say that an G-connection on ¢ is (®, n)-dormant if the G-connection is
contained in the image of the composite

2 DrmStrt (€)= ©Strt(¢) — “Cnn(€).

[In particular, every (®,n)-dormant &-connection is G-integrable — cf. Lemma 4.8.] We
shall write

®2DrmCnn(¢) € “IntCnn(€)

for the set of (®,n)-dormant G-connections on . Thus, we have a natural surjective map

2 DrmStrt(¢) —= " DrmCnn(€).

LEMMA 4.14. — Let n be a nonnegative integer. Then the map ®*: *Strt(£) — ©Strt(€)
of Lemma 4.12, (i), factors through the subset ®"DrmStrt(£) C Strt(€). In particular,
we obtain a map of sets

®*: *Strt(€) — "DrmStrt(€).

PrROOF. — This assertion follows immediately from the various definitions involved |[cf.
the cartesian diagram of Definition 2.10, (ii)]. O
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5. THE FIRST FUNDAMENTAL CORRESPONDENCE

In the present §5, we prove the first main result of the present paper [cf. Theorem 5.6
below|. In the present §5, let S be a scheme, X a scheme which is smooth and separated
over S,

6 — ((Gpn)nzo’ <6Ln: GPn N 6Pn+1)n207
(GO.n: GPn — X(Q))nzo, (Gé‘nl,nz . GPn1,n2 N 6Pn1+n2)n1,n220)
a stratification structure on X/S,
F— SChS
a category fibered in groupoids over Schg, and

3
an object of F over X. Suppose that

e the stratification structure & is integrable (respectively, strictly integrable), and that

e the category F fibered in groupoids over Schg is integrable (respectively, weakly
integrable).

r

LEMMA 5.1. — Let r > 2 be an integer; ny,...,n, positive integers. Write n o Doy M
[son>2]. Let V be an (n — 1)-&-connection on . Then the equality

Vxn — (65><n )*an,...,nr

N yeeny Ny
holds.

PrROOF. — This assertion follows immediately from Lemma 4.5, together with the “co-
cycle conditions” of Definition 4.4 for V|q,..., V|,—1. O

LEMMA 5.2. — Let m < n be nonnegative integers. Then the map
SCnn™(¢) — SCnn™ ()
[¢f. Lemma 4.5] is injective.

PROOF. — Let us first observe that it is immediate that we may assume without
loss of generality that m = n — 1. Let V, V' be n-&-connections on £ such that
Vi1 = V'|n—1. Now since F satisfies condition (3) of Definition 1.7, and the mor-
phism €gtn=l: € pln=l s S pnis pilretraction-like [cf. condition (1) of Definition 3.2;
condition (1) of Definition 3.3], to verify Lemma 5.2, it suffices to verify the equality

(651,n71)*v — (Gél’nil)*vl.

On the other hand, since both V and V' are n-&-connections, it follows from the “cocycle
condition” of Definition 4.4 that (S§'"1)*V, (S§L"=1)*V" are completely determined by
Vl|n_1, V'|n_1, respectively. In particular, we conclude that (562"~ 1)*V = (S§tn=1)*V/|
as desired. This completes the proof of Lemma 5.2. O
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LEMMA 5.3. — Let n > 2 be an integer and V a quasi-n-&-connection on £. Then it
holds that V is an n-&-connection on & if and only if the following two conditions are
satisfied:

(1) The quasi-(n — 1)-&-connection V|, is an (n — 1)-&S-connection.
(2) The equality
(V]n-1)" = (°6°")"V
holds.

PRrROOF. — First, we verify the necessity. Suppose that V is an n-&-connection on &.
Then it follows from Lemma 4.5 that condition (1) is satisfied. Next, to verify condition
(2), let us observe that it follows from Lemma 5.1, together with condition (1), that

(V6n-1)" = (96151 (V)™ 7).
Thus, since V is an n-&-connection, which thus implies that the equality
(v’n_l)l,n—l — (651,n—1)*v

holds, condition (2) is satisfied, as desired. This completes the proof of the necessity.
Next, we verify the sufficiency. Suppose that V satisfies the two conditions in the

statement of Lemma 5.3. Let ny, ny be positive integers such that n;+ns = n. Then since

F satisfies condition (3) of Definition 1.7, and the morphism €§*" . S pxn — © pninz jg

ni,n2 -’

nil-retraction-like [cf. condition (1) of Definition 3.2; condition (1) of Definition 3.3], to
verify the “cocycle condition” (V|,_;)"™2 = (9§™m2)*V | it suffices to verify the equality

(%057) (V]nmn)™) = (S677)*V,

ni,nz

or, alternatively [cf. condition (2)], the equality

(Géxn )*((v|n71>n1,n2) — (V’nil)xn.

ni,n2

On the other hand, since V|,_; is an (n—1)-&-connection [cf. condition (1)], this equality
follows from Lemma 5.1. This completes the proof of the sufficiency, hence also of
Lemma 5.3. U

LEMMA 5.4. — The map
SCnn?(¢) — ®IntCnn(¢)

[¢f. Lemma 4.8] is surjective.

PROOF. — Let us recall that we have assumed that
e the stratification structure & is integrable (respectively, strictly integrable), and that

e the category F fibered in groupoids over Schg is integrable (respectively, weakly
integrable).
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Let V be an &-integrable &-connection on . Then it follows from condition (1) of
Definition 1.7 (respectively, condition (1) of Definition 1.8), together with Remark 3.2.2
and Remark 3.3.1, that the morphism ©§*? determines a bijection

Lifte,: ((“pr3)*€, (°pr})"€; V) — Lifte s ((pry®)"¢, (Tpri?)&; (70°%)"V).
Now since V is G-integrable, which thus implies that the equality
(6£X2)*<VX2> — (GéXZ)*V

holds, the isomorphism V>*2 is an element of the codomain of this bijection. Thus, we
obtain an element V of the domain of this bijection whose image coincides with V*2, i.e.,

(65><2)*6 _ VX2.

On the other hand, since V is an &-connection, it follows from Lemma 5.3, together with
this equality, that V is a 2-&-connection on £. This completes the proof of Lemma 5.4. [J

LEMMA 5.5. — Let n > 3 be an integer. Then the map
SCnn® (€) — SCon™(¢)

[cf. Lemma 4.5] is surjective.

PROOF. — Let us recall that we have assumed that

e the stratification structure & is integrable (respectively, strictly integrable), and that

e the category F fibered in groupoids over Schg is integrable (respectively, weakly
integrable).

Let V be an (n — 1)-&-connection on &. Then it follows from Lemma 5.1 that
(S8 (VM) = T = (050 ) (V).

Next, let us observe that it follows from condition (2) of Definition 1.7 (respectively,
condition (2) of Definition 1.8), together with Remark 3.2.3 and Remark 3.3.2, that the
morphism ©6" 1! determines a bijection

Liftesin-t ((Cpr3) "€, (Sprf) € V")

—= Liftegen, ((Sprs™)"€ (Cpri )6 (So71) V),

Next, let us observe that it follows from the two equalities of the first display of the
present proof of Lemma 5.5 that V"~!! is an element of the codomain of this bijection. In

particular, we obtain an element V of the domain of this bijection whose image coincides
with Vb1 e,

(657171,1)*6 S v N
On the other hand, this equality, together with the second equality of the first display in
the present proof of Lemma 5.5, implies the equalities

(Géxn)*% _ (65;;11171)*(6571—1,1)*% _ (65;;11171)*vn—1,1 S Vs
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Thus, it follows from Lemma 5.3 that V is an n-connection on ¢. This completes the
proof of Lemma 5.5. U

The first main result of the present paper is as follows.

THEOREM 5.6. — Let S be a scheme, X a scheme which is smooth and separated
over S,

6 — ((Gpn>n20) (GLn: GPn N 6Pn+1)n207

(GO_n: GPn N X(Q))nZ(L (6(5n1,n2 . GPm,nz N 6pn1+n2>n17n220)
a stratification structure on X/S [cf. Definition 2.5],
F— SChS

a category fibered in groupoids over Schg, and & an object of F over X. Suppose that the
following two conditions are satisfied:

(1)  The stratification structure & is integrable [cf. Definition 3.2] (respectively,
strictly integrable [cf. Definition 3.3]).

(2) The category F fibered in groupoids over Schg is integrable [cf. Definition 1.7]
(respectively, weakly integrable [cf. Definition 1.8]).

Then, for each integer n > 2, the natural maps
©Strt(¢) — ©Cnn"(¢) — IntCnn(¢)
[cf. Definition 4.4; Definition 4.6; Definition 4.7, (ii); Lemma 4.8] are bijective.

PrROOF. — The injectivity of the two maps under consideration follows from Lemma 5.2.
The surjectivity of the first map under consideration follows from Lemma 5.5. The sur-
jectivity of the second map under consideration follows from Lemma 5.4 and Lemma 5.5.
This completes the proof of Theorem 5.6. U

DEFINITION 5.7. — In the situation of Theorem 5.6, we shall refer to the bijection
obtained by Theorem 5.6

SStrt(¢) —= ®IntCnn(¢)

as the first fundamental correspondence.

6. THE SECOND FUNDAMENTAL CORRESPONDENCE

In the present §6, we prove the second main result of the present paper [cf. Theorem 6.6
below|. In the present §6, let S be a scheme; X a scheme which is smooth and separated
over S,

6 _ ((Gpn)n207 (6Ln: GPn N 6Pn+1)n207

(GO'nI Gpn N X(z))nEO; (Gém,nz: Gpm,nz N GPn1+n2)nhn220)’
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T = ((TPn>n207 (TLn: Tpn — Tpn+1)n20,

(Fo™: TP" X(2))n20, (Forumz; T prina SP"1+"2)n1,n220)
stratification structures on X/S;
O =(D"),50: 6 —F
a morphism of stratification structures;
JF —— Schg
a category fibered in groupoids over Schg;
§
an object of F over X; r a nonnegative integer. Suppose that
e the morphism ® is r-integrable (respectively, strictly r-integrable), and that

e the category F fibered in groupoids over Schg is integrable (respectively, weakly
integrable).

LEMMA 6.1. — Let m < n be nonnegative integers. Then the maps
SCan(¢) —= SCon™(¢),  Com’(€) — TCon (€)
[¢f. Lemma 4.5] are injective.

PrROOF. — This assertion follows immediately from a similar argument to the argument
applied in the proof of Lemma 5.2, together with conditions (2), (3) of Definition 3.8 and
condition (1) of Definition 3.9. O

LEMMA 6.2. — Let n be a nonnegative integer. Then the map
®*: TqCnn"(¢) — ©qCnn"(¢)
[cf. Definition 4.11], hence also the maps

®*: *Cnn"(¢) — ©Cnn"(¢), d*: TStrt () — Strt(€),
[Lemma 4.12, ()], is injective.
PRrROOF. — This assertion follows from condition (3) of Definition 1.7 and condition (1)
of Definition 3.8 and condition (1) of Definition 3.9. O

LEMMA 6.3. — Letn > r + 1 be an integer. Then the map
*Cnn" () — *Cnn" 1 (¢)
[c¢f. Lemma 4.5] is surjective.

ProOOF. — This assertion follows immediately from a similar argument to the argument
applied in the proof of Lemma 5.5, together with condition (3) of Definition 3.8 and
condition (1) of Definition 3.9 [cf. also Remark 3.8.3 and Remark 3.9.2]. O
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LEMMA 6.4. — Let V be a (®,r)-dormant r-G-connection on &. Then, for each positive
integer n < r, there exists a quasi-n-T-connection V,, on & such that

(@)Y, = (P V.

=r|r
[Note that ® P"I" = © P" — cf. Definition 2.10, (i).]
PrROOF. — Let us recall that we have assumed that

e the morphism ® is r-integrable (respectively, strictly r-integrable), and that

e the category F fibered in groupoids over Schg is integrable (respectively, weakly
integrable).

Let us verify Lemma 6.4 by induction on n. Suppose that n = 1. Then it follows from
condition (1) of Definition 1.7 (respectively, condition (1) of Definition 1.8), together with
Remark 3.8.2 and Remark 3.9.1, that the morphism ®"* determines a bijection

Liftszo((Tpré)*,f, (Tpri)*f;idg) L>Liftq,gl(l) (( prgu) &, ( prgu) f;id@rm)*g).

Then since V is (®, r)-dormant, it follows from the definition of the (®,r)-curvature that
the pull-back (‘I’ o .)*V is an element of the codomain of this bijection. In particular,

we obtain an element Vi of the domain of this bijection whose image coincides with

(®/ 1NV, e,

r\r

(@"1)V, = (*4)V,

—’r|r

as desired. N
Next, suppose that n > 2, and that there exists a quasi-(n — 1)-%-connection V,,_; on
¢ such that

(grm—l)*%n_l _ (<I>L7"|n—1>*v‘

=r|r

Then it follows from condition (1) of Definition 1.7 (respectively, condition (1) of Def-
inition 1.8), together with Remark 3.8.2 and Remark 3.9.1, that the morphism Prin
determines a bijection

Liftz,n— ((Tprg)*f, (Tpr?)*& 6nfl)

_~ Lift, - ((@E;\n>*£’ ((I)Egln)*f; (@r\nfl)*ﬁnil).

*r|n

Next, let us observe that since (@’"'"’1)*671_1 =(® :I: 1) V, it is immediate that the pull-

back (* r'”) V is an element of the codomain of this bijection. In particular, we obtain

an element V,, of the domain of this bijection whose image coincides with (® T'") V,ie.,
(@r\n)*% (@Lﬂn) v,

=r|r

as desired. This completes the proof of Lemma 6.4. U
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LEMMA 6.5. — Let n > r be an integer and V a (®,r)-dormant n-&-connection on &.
Then there exists an n-%-connection V on & such that ®*V = V.

PROOF. — Let us first observe that it follows from Lemma 6.4 that there exists a quasi-
r-¢-connection V, such that

®*V, = V|,.

Thus, since V|, is an r-&-connection on & [cf. Lemma 4.5], it follows from Lemma 4.12,
(ii), together with condition (1) of Definition 3.8 and condition (1) of Definition 3.9, that

V., is an r-%-connection on &.
__ Next, let us observe that it follows from Lemma 6.3 that there exists an n-%-connection
V on € such that

V], = V,.
Thus, it follows immediately from Lemma 6.1 that the equality
V=V
holds. This completes the proof of Lemma 6.5. U

The second main result of the present paper is as follows.

THEOREM 6.6. — Let S be a scheme; X a scheme which is smooth and separated
over S;

S = (<6Pn)n207 <6Ln: GPn — 6Pn+1)n207
(GO_TL: GPTL N )((2))”207 (6(')‘711,712 : GPnl,nz N 6Pn1+n2)n1,n220)7
S — ((Tpn)nzo’ (‘ILn: TPn N TPn—&-l)nZO’

(T TP = X @), (Fgmne: TPz Tpritne) o)
stratification structures on X/S [cf. Definition 2.5];
O =(P"),50: 6 —F
a morphism of stratification structures [cf. Definition 2.8];
F —— Schg

a category fibered in groupoids over Schg; & an object of F over X; r a nonnegative
integer. Suppose that the following two conditions are satisfied:

(1) The morphism ® is r-integrable [cf. Definition 3.8] (respectively, strictly r-
integrable [cf. Definition 3.9]).

(2) The category F fibered in groupoids over Schg is integrable [cf. Definition 1.7]
(respectively, weakly integrable [cf. Definition 1.8]).

Then the natural maps

TStrt(€) —> ®"DrmStrt(¢) — *"DrmCnn(€)
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[cf. Definition 4.6; Definition 4.13, (ii), (iii); Lemma 4.14] are bijective.

PrROOF. — The injectivity of the first map under consideration follows from Lemma 6.2.
The surjectivity of the first map under consideration follows from Lemma 6.2 and Lemma 6.5.
The bijectivity of the second map under consideration follows from Lemma 6.1. This
completes the proof of Theorem 6.6. O

DEFINITION 6.7. — In the situation of Theorem 6.6, we shall refer to the bijection
obtained by Theorem 6.6

*Strt(¢) —= *"DrmCnn(¢)

as the second fundamental correspondence.
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