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Abstract. — In the present paper, we prove that the divided power stratification structures
are strictly integrable and of standard type. In particular, as an application of the first funda-
mental correspondence, we obtain a natural bijection between the set of PD-stratifications and
the set of PD-integrable PD-connections on objects of weakly integrable categories fibered in
groupoids over categories of schemes. This bijection may be regarded as a generalization of the
well-known equivalence concerning integrable connections and divided power stratifications.
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Introduction

I.0. — Let S be a scheme and X a scheme which is smooth and separated over S.
Write SchS for the category of schemes over S and morphisms of schemes over S [cf. [2],
Definition 1.6, (i)] and

PDP 1 ⊆ X ×S X

for the closed subscheme of X ×S X defined by the quasi-coherent ideal of OX×SX ob-
tained by forming the square of the quasi-coherent ideal that defines the diagonal closed
subscheme X ⊆ X ×S X of X ×S X [cf. Definition 2.1, (ii); [1], Remark 4.2]. For each
i ∈ {1, 2}, write, moreover,

PDpr1i :
PDP 1 // X

2010 Mathematics Subject Classification. — 14D15.
Key words and phrases. — divided power stratification structure, curvature, integrable connection,
divided power stratification.
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for the morphism over S obtained by forming the composite of the natural closed im-
mersion PDP 1 ↪→ X ×S X and the projection X ×S X → X onto the i-th factor [cf.
Lemma 2.2; [2], Definition 2.3, (ii)].

I.1. — In the remainder of the present Introduction, let

E
be a locally free OX-module. Let us first recall that a connection on E [i.e., relative to
X/S] is defined to be a homomorphism of (X → S)−1OS-modules

∇ : E // E ⊗OX
Ω1

X/S

that satisfies the equality ∇(fe) = f∇(e) + e ⊗ df — where f , e are local sections of
OX , E , respectively [cf. Definition 1.6]. On the other hand, it is well-known [cf., e.g., [1],
Proposition 2.9] that giving a connection on E [i.e., a homomorphism of (X → S)−1OS-
modules as above] is equivalent to giving an isomorphism of OPDP 1-modules

(PDpr12)
∗E ∼ // (PDpr11)

∗E

that restricts, on the diagonal closed subscheme X ⊆ PDP 1, to the identity automorphism
of E [cf. Proposition 2.6, (ii)]. Moreover, such an isomorphism (PDpr12)

∗E ∼→ (PDpr11)
∗E is

naturally related to the notion of a divided power stratification [cf., e.g., [1], Definition
4.3] on E .

Now let us observe that since the above “second” definition of the notion of a connection
[i.e., an isomorphism (PDpr12)

∗E ∼→ (PDpr11)
∗E as above] and the definition of the notion

of a divided power stratification of [1], Definition 4.3, are “sufficiently abstract”, one may
apply these definitions [not only to locally free modules as above but also] to an object of
a category fibered in groupoids over the category SchS. In the remainder of the present
Introduction, let F → SchS be a category fibered in groupoids over SchS and ξ an object
of F over X. Thus, one may define a PD-connection on ξ to be an isomorphism

(PDpr12)
∗ξ

∼ // (PDpr11)
∗ξ

in F over the identity automorphism of PDP 1 that restricts to the identity automorphism
of ξ = ((PDpr12)

∗ξ)|X = ((PDpr11)
∗ξ)|X [cf. Definition 2.5; [2], Definition 4.1, (iii)]. More-

over, one may also define a PD-stratification on ξ to be a collection of data similar to a
divided power stratification defined in [1], Definition 4.3 [cf. Definition 2.5; [2], Definition
4.6]. Write

PDCnn1(ξ), PDStrt(ξ)

for the sets of PD-connections, PD-stratifications on ξ, respectively [cf. Definition 2.5;
[2], Remark 4.1.1; [2], Definition 4.4; [2], Definition 4.6].

I.2. — Next, let us recall that it is well-known [cf., e.g., [1], Theorem 4.8] that, for a
given connection ∇ on the locally free OX-module E , the following two conditions are
equivalent:

(†) The connection ∇ is integrable — i.e., the curvature of the connection ∇

E ∇ // E ⊗OX
Ω1

X/S
∇1

// E ⊗OX
Ω2

X/S
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[cf., e.g., the discussion preceding [1], Theorem 2.15] is zero.

(‡) The connection ∇ extends to a uniquely determined divided power stratification
on E .

Here, let us observe that the usual definition of the curvature — hence also of the
integrability — of a connection relies, at least a priori, on the fact that E is an OX-
module. In particular, these definitions of curvature and integrability cannot be applied,
at least in any immediate way, to a connection on an object of F discussed in §I.1.
Moreover, let us recall that the proof of the above relationship between integrable

connections and divided power stratifications given in [1], §4, relies, at least a priori, on
the fact that E is an OX-module [cf. the argument concerning the ring of divided power
differential operators on E in the proof of [1], Theorem 4.8]. In particular, this proof
cannot be applied, at least in any immediate way, in a situation in which we work with
the category F fibered in groupoids over SchS as in §I.1.
Thus, one may pose the following two questions:

(A) What is a suitable definition of “curvature” [and “integrability”] of a PD-connection
[cf. §I.1] on an object of F?

(B) What is a suitable condition on F that leads us to a situation in which one may
obtain a natural bijection between the set of “integrable” PD-connections [cf. (A)] and
the set of PD-stratifications [cf. §I.1], i.e., on a fixed object of F?

Note that the question (A) (respectively, (B)) is related to the discussion of [3], Definition
2.3, and Remark 4.3.2 of the present paper (respectively, [3], Question 2.7).

I.3. — With regard to the question (A) of §I.2, we define the PD-curvature of a PD-
connection — that is an automorphism of a certain object of F — by applying [2],
Definition 4.7, (i) [cf. Definition 2.5; [2], Definition 4.7, (i)]. Note that we observe in Re-
mark 4.3.1, (i), that this definition essentially generalizes the usual definition of the cur-
vature of a connection on a module. Moreover, we define a PD-integrable PD-connection
by applying [2], Definition 4.7, (ii), i.e., to be a PD-connection whose PD-curvature is
the identity automorphism [cf. Definition 2.5; [2], Definition 4.7, (ii)]. Write

PDIntCnn(ξ) ⊆ PDCnn1(ξ)

for the set of PD-integrable PD-connections on ξ [cf. Definition 2.5; [2], Definition 4.7,
(ii)].

With regard to the question (B) of §I.2, we defined, in [2], the notion of a weakly
integrable category fibered in groupoids over SchS [cf. [2], Definition 1.8]. Moreover, we
prove that each of

• the category fibered in groupoids of locally free modules [cf. Definition 1.1] and

• the category fibered in groupoids of smooth schemes [cf. Definition 1.7]

gives an example of a weakly integrable category fibered in groupoids over SchS [cf. Propo-
sition 1.5; Proposition 1.11].

One important result of the present paper — that may be regarded as an applica-
tion of the first fundamental correspondence of [2], Definition 5.7 — is as follows [cf.
Corollary 4.3].
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THEOREM A. — Let S be a scheme, X a scheme which is smooth and separated over
S,

F // SchS

a weakly integrable [cf. [2], Definition 1.8] category fibered in groupoids over SchS, and
ξ an object of F over X. Then the natural map

PDStrt(ξ) // PDIntCnn(ξ)

[cf. Definition 2.5; [2], Definition 4.6; [2], Definition 4.7, (ii); [2], Lemma 4.8] is bijec-
tive.

Moreover, one may prove that, as in the case of connections on modules, if X is of
relative dimension ≤ 1 over S, then every PD-connection on an object over X of a weakly
integrable category fibered in groupoids over SchS is PD-integrable [cf. Corollary 4.2]. In
particular, we also obtain the following result [cf. Corollary 4.4].

THEOREM B. — Let S be a scheme, X a scheme which is smooth and separated over
S,

F // SchS

a category fibered in groupoids over SchS, and ξ an object of F over X. Suppose that the
following two conditions are satisfied:

(1) The category F fibered in groupoids over SchS is weakly integrable [cf. [2],
Definition 1.8].

(2) The scheme X is of relative dimension ≤ 1 over S.

Then the natural map
PDStrt(ξ) // PDCnn1(ξ)

[cf. Definition 2.5; [2], Definition 4.4; [2], Definition 4.6] is bijective.

Thus, we obtain generalizations of the equivalence of the two conditions (†) and (‡) in
§I.2, i.e., Theorem A and Theorem B.

Acknowledgments

This research was supported by JSPS KAKENHI Grant Number 18K03239 and by the
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1. Two Examples of Integrable Category Fibered in Groupoids

In the present §1, we give two examples of integrable [cf. [2], Definition 1.7] categories
fibered in groupoids [cf. Proposition 1.5 and Proposition 1.11 below]. In the present §1,
let S be a scheme. Thus, we have the category

SchS
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of schemes over S and morphisms of schemes over S [cf. [2], Definition 1.6, (i)].

DEFINITION 1.1. — We shall write

LcFr // SchS

for the category fibered in groupoids over SchS defined as follows:

• An object of the category LcFr is a pair (X, E) consisting of a scheme X over S and
a locally free OX-module E .

• If (X, E) and (X ′, E ′) are objects of the category LcFr, then a morphism (X, E) →
(X ′, E ′) in the category LcFr is defined to be a pair (f, φ) consisting of a morphism

f : X → X ′ of schemes over S and an isomorphism φ : E ∼→ f ∗E ′ of OX-modules.

• The functor LcFr → SchS sends “(X, E)” to “X” and “(f, φ)” to “f”.

LEMMA 1.2. — Let X, X be schemes over S; X ↪→ X a square-nilpotent [cf. [2],

Definition 1.2, (ii)] closed immersion over S; E1, E2 locally free OX-modules; φ : E1|X
∼→

E2|X an isomorphism of OX-modules. Write ξ1
def
= (X, E1), ξ2

def
= (X, E2) for the objects of

the category LcFr determined by E1, E2, respectively; IX ⊆ OX for the conormal sheaf of
the square-nilpotent closed immersion X ↪→ X [i.e., the quasi-coherent ideal of OX that
defines the closed subscheme of X determined by the closed immersion X ↪→ X]. Then
the following hold:

(i) There exists an element

o(X ↪→ X, E1, E2, φ) ∈ H1
(
X, IX ⊗OX

HomOX
(E1|X , E2|X)

)
that satisfies the following condition: Let Y be a scheme over S and f : Y → X a mor-

phism over S. Write Y
def
= Y ×X X ↪→ Y for the [necessarily square-nilpotent] closed

immersion over S obtained by forming the base-change of the closed immersion X ↪→ X
by the morphism f , f : Y → X for the morphism over S obtained by forming the base-
change of the morphism f by the closed immersion X ↪→ X, and IY ⊆ OY for the
conormal sheaf of the square-nilpotent closed immersion Y ↪→ Y . Then it holds that the
set

LiftY ↪→Y (f
∗ξ1, f

∗ξ2; f
∗φ)

[cf. [2], Definition 1.6, (iii)] is nonempty if and only if the pull-back

f ∗o(X ↪→ X, E1, E2, φ) ∈ H1
(
Y , IY ⊗OY

HomOY

(
f ∗(E1|X), f ∗(E2|X)

))
is zero.

(ii) Suppose that the set

LiftX↪→X(ξ1, ξ2;φ)

is nonempty. Then the set LiftX↪→X(ξ1, ξ2;φ) has a natural structure of torsor under
the module

Γ
(
X, IX ⊗OX

HomOX
(E1|X , E2|X)

)
.
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Proof. — These assertions follow from elementary deformation theory. □

LEMMA 1.3. — The category LcFr fibered in groupoids over SchS satisfies condition (1)
of [2], Definition 1.7.

Proof. — Let

X
f

//
� _

jX
��

Y � _
jY
��

X
f

// Y

be a cartesian diagram in SchS such that the morphism jY is a square-nilpotent closed
immersion, and, moreover, the morphism f is conormally strict with respect to the square-
nilpotent closed immersion jY [cf. [2], Definition 1.3], which thus implies that there exist
schemesX, Y and closed immersions iX : X ↪→ X, iY : Y ↪→ Y that satisfy conditions (3),

(4) of [2], Definition 1.3. Moreover, let E1, E2 be locally free OY -modules; φ : E1|Y
∼→ E2|Y

an isomorphism of OY -modules. Write IX , IY for the conormal sheaves of the square-

nilpotent closed immersions jX : X ↪→ X, jY : Y ↪→ Y , respectively; ξ1
def
= (X, E1), ξ2

def
=

(X, E2) for the objects of the category LcFr determined by E1, E2, respectively. Then, to
verify Lemma 1.3, it suffices to verify the bijectivity of the map induced by f

LiftjY (ξ1, ξ2;φ)
// LiftjX (f

∗ξ1, f
∗ξ2; f

∗φ).

To this end, suppose that the codomain of this map is nonempty.
First, let us verify the following claim:

Claim 1.3.A: The domain of the map under consideration is nonempty.

To this end, let us recall from condition (3) of [2], Definition 1.3, that the closed immer-
sions ιX : X ↪→ X, ιY : X ↪→ Y induce isomorphisms of modules

H1
(
X, IX ⊗OX

HomOX
(f ∗E1, f ∗E2)

) ∼ // H1
(
X, i∗XIX ⊗OX

HomOX

(
(f ∗E1)|X , (f ∗E2)|X

))
,

H1
(
Y, IY ⊗OY

HomOY
(E1, E2)

) ∼ // H1
(
Y , i∗Y IY ⊗OY

HomOY
(E1|Y , E2|Y )

)
,

respectively. Moreover, it follows from condition (4) of [2], Definition 1.3, and [2], Lemma
1.4, that the homomorphism induced by f

H1
(
Y , i∗Y IY ⊗OY

HomOY
(E1|Y , E2|Y )

)
// H1

(
X, i∗XIX ⊗OX

HomOX

(
(f ∗E1)|X , (f ∗E2)|X

))
is an isomorphism. Thus, since [we have assumed that] the codomain of the map under
consideration is nonempty, it follows from Lemma 1.2, (i), that the domain of the map
under consideration is nonempty, as desired. This completes the proof of Claim 1.3.A.
Next, let us verify the desired bijectivity. To this end, let us recall from condition

(3) of [2], Definition 1.3, that the closed immersions ιX : X ↪→ X, ιY : X ↪→ Y induce
isomorphisms of modules

Γ
(
X, IX ⊗OX

HomOX
(f ∗E1, f ∗E2)

) ∼ // Γ
(
X, i∗XIX ⊗OX

HomOX

(
(f ∗E1)|X , (f ∗E2)|X

))
,
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Γ
(
Y, IY ⊗OY

HomOY
(E1, E2)

) ∼ // Γ
(
Y , i∗Y IY ⊗OY

HomOY
(E1|Y , E2|Y )

)
,

respectively. Moreover, it follows from condition (4) of [2], Definition 1.3, and [2], Lemma
1.4, that the homomorphism induced by f

Γ
(
Y , i∗Y IY ⊗OY

HomOY
(E1|Y , E2|Y )

)
// Γ
(
X, i∗XIX ⊗OX

HomOX

(
(f ∗E1)|X , (f ∗E2)|X

))
is an isomorphism. Thus, it follows from Lemma 1.2, (ii), together with Claim 1.3.A,
that the map under consideration is bijective, as desired. This completes the proof of
Lemma 1.3. □

LEMMA 1.4. — The category LcFr fibered in groupoids over SchS satisfies condition (2)
of [2], Definition 1.7.

Proof. — Let

X
a //

b
��

Y

c

��
Z

d
// W

be a commutative diagram in SchS which is strictly cocartesian [cf. [2], Definition 1.5]; V
a scheme over S;

V
e // X, W

f1
))

f2

55 V

quasi-nil-retraction-like morphisms [cf. [2], Definition 1.2, (iii)] over S such that

f1 ◦ c ◦ a ◦ e = (f1 ◦ d ◦ b ◦ e =) f2 ◦ c ◦ a ◦ e = (f2 ◦ d ◦ b ◦ e =) idV ;

E a locally free OV -module; φ : c∗E1
∼→ c∗E2 an isomorphism of OY -modules — where we

write Ei
def
= f ∗

i E [i ∈ {1, 2}] — such that the pull-back e∗a∗φ is the identity automorphism

of E = e∗a∗c∗E1 = e∗a∗c∗E2. Write ξ1
def
= (W, E1), ξ2

def
= (W, E2) for the objects of the

category LcFr determined by E1, E2, respectively. Then, to verify Lemma 1.4, it suffices
to verify the bijectivity of the map induced by d

Liftc(ξ1, ξ2;φ) // Liftb(d
∗ξ1, d

∗ξ2; a
∗φ).

Now let us observe that since each of the morphisms a, b, c, d, e, f1, f2 is an affine
morphism [cf. [2], Remark 1.2.1], to verify the desired bijectivity, we may assume without
loss of generality, by replacing V by a suitable open subscheme of V , that

• the scheme V — hence also the schemes X, Y , Z, and W — is affine,

• both M1
def
= Γ(W, E1) and M2

def
= Γ(W, E2) are flat Γ(W,OW )-modules, and, moreover,

• if one regards the rings AY
def
= Γ(Y,OY ), AZ

def
= Γ(Z,OZ), AW

def
= Γ(W,OW ) as

subrings of AX
def
= Γ(X,OX) by the relevant injective homomorphisms [cf. condition (1)

of [2], Definition 1.5], then the equality

AW = AY ∩ AZ
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in AX holds [cf. condition (2) of [2], Definition 1.5].

Then since the homomorphism AW → AZ is injective, the injectivity of the map un-
der consideration is immediate. Moreover, to verify the surjectivity of the map under
consideration, it suffices to verify the following claim:

Claim 1.4.A: Suppose that we are given an isomorphism φY : M1 ⊗AW

AY
∼→ M2⊗AW

AY of AY -modules and an isomorphism φZ : M1⊗AW
AZ

∼→
M2 ⊗AW

AZ of AZ-modules such that φY ⊗AY
AX = φZ ⊗AZ

AX . Then

there exists an isomorphism φW : M1
∼→ M2 of AW -modules such that

φW ⊗AW
AY = φY and φW ⊗AW

AZ = φZ .

To this end, let us observe that it follows immediately from the equality φY ⊗AY
AX =

φZ ⊗AZ
AX that the diagram of natural injective homomorphisms of modules

M1 ⊗AW
AY

φY

∼
// M2 ⊗AW

AY� u

((QQ
QQQ

QQQ
QQQ

Q

M1

+ �

99rrrrrrrrrr
� s

%%LL
LLL

LLL
LLL

M2 ⊗AW
AX

M1 ⊗AW
AZ

φZ

∼
// M2 ⊗AW

AZ

) 	

66mmmmmmmmmmmm

is commutative, which thus implies that the image of these two composite [i.e., fromM1 to
M2⊗AW

AX ] is contained in the intersection (M2⊗AW
AY )∩(M2⊗AW

AZ) [i.e., in M2⊗AW

AX ]. Thus, since M2 is a flat AW -module, we conclude immediately from the equality
AW = AY ∩ AZ that the above two composites determine a [single] homomorphism
φW : M1 → M2 of AW -modules such that φW ⊗AW

AY = φY and φW ⊗AW
AZ = φZ .

Moreover, by applying a similar argument to this argument to φ−1
Y and φ−1

Z , we conclude
that φW is an isomorphism. This completes the proof of Claim 1.4.A, hence also of
Lemma 1.4. □

PROPOSITION 1.5. — The category LcFr fibered in groupoids over SchS is integrable
[cf. [2], Definition 1.7], hence also [cf. [2], Remark 1.8.1] weakly integrable [cf. [2],
Definition 1.8].

Proof. — Let us observe that one verifies easily that the category LcFr fibered in
groupoids over SchS satisfies condition (3) of [2], Definition 1.7. Thus, Proposition 1.5
follows from Lemma 1.3 and Lemma 1.4. This completes the proof of Proposition 1.5. □

DEFINITION 1.6. — Let E be a locally free OX-module. Then we shall refer to a homo-
morphism of (X → S)−1OS-modules

∇ : E // E ⊗OX
Ω1

X/S

as a classical connection on E if the equality ∇(fe) = f∇(e) + e⊗ df — where f , e are
local sections of OX , E , respectively — holds.
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DEFINITION 1.7. — We shall write

SmSch // SchS

for the category fibered in groupoids over SchS defined as follows:

• An object of the category SmSch is a smooth morphism Z → X of schemes over S.

• If ξ : Z → X and ξ′ : Z ′ → X ′ are objects of the category SmSch, then a morphism
(ξ : Z → X) → (ξ′ : Z ′ → X ′) in the category SmSch is defined to be a pair (fZ , fX)
consisting of morphisms fZ : Z → Z ′ and fX : X → X ′ of schemes over S such that the
diagram in SchS

Z
fZ //

ξ

��

Z ′

ξ′

��
X

fX

// X ′

is commutative and induces an isomorphism Z
∼→ X ×X′ Z ′.

• The functor SmSch → SchS sends “Z → X” to “X” and “(fZ , fX)” to “fX”.

LEMMA 1.8. — Let X, X be schemes over S; X ↪→ X a square-nilpotent closed
immersion over S; ξ1 : Z1 → X, ξ2 : Z2 → X smooth morphisms over S; φ : Z1 ×X X

∼→
Z2 ×X X an isomorphism over X. Write Z

def
= Z1 ×X X, ξ : Z → X for the [necessarily

smooth] morphism over S obtained by forming the base-change of the morphism ξ1 by the
closed immersion X ↪→ X, and IX ⊆ OX for the conormal sheaf of the square-nilpotent
closed immersion X ↪→ X. Then the following hold:

(i) There exists an element

o(X ↪→ X, ξ1, ξ2, φ) ∈ H1(Z, ξ∗IX ⊗OZ
TZ/X)

that satisfies the following condition: Let Y be a scheme over S and f : Y → X a mor-

phism over S. Write Y
def
= Y ×X X ↪→ Y for the [necessarily square-nilpotent] closed

immersion over S obtained by forming the base-change of the closed immersion X ↪→ X
by the morphism f , f : Y → X for the morphism over S obtained by forming the base-
change of the morphism f by the closed immersion X ↪→ X, fZ : Z ×X Y → Z for the
morphism over S obtained by forming the base-change of the morphism f by the mor-
phism ξ, ξY : Z×X Y → Y for the morphism over S obtained by forming the base-change
of the morphism ξ by the morphism f , and IY ⊆ OY for the conormal sheaf of the
square-nilpotent closed immersion Y ↪→ Y . Then it holds that the set

LiftY ↪→Y (f
∗ξ1, f

∗ξ2; f
∗φ)

is nonempty if and only if the pull-back

f ∗
Zo(X ↪→ X, ξ1, ξ2, φ) ∈ H1(Z ×X Y , ξ∗Y IY ⊗OZ×XY

TZ×XY /Y )

is zero.
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(ii) Suppose that the set

LiftX↪→X(ξ1, ξ2;φ)

is nonempty. Then the set LiftX↪→X(ξ1, ξ2;φ) has a natural structure of torsor under
the module

Γ(Z, ξ∗IX ⊗OZ
TZ/X).

Proof. — These assertions follow from elementary deformation theory. □

LEMMA 1.9. — The category SmSch fibered in groupoids over SchS satisfies condition (1)
of [2], Definition 1.7.

Proof. — This assertion follows immediately from a similar argument to the argument
applied in the proof of Lemma 1.3, together with Lemma 1.8. □

LEMMA 1.10. — The category SmSch fibered in groupoids over SchS satisfies condition
(2) of [2], Definition 1.7.

Proof. — Let

X
a //

b
��

Y

c

��
Z

d
// W

be a commutative diagram in SchS which is strictly cocartesian; V a scheme over S;

V
e // X, W

f1
))

f2

55 V

quasi-nil-retraction-like morphisms over S such that

f1 ◦ c ◦ a ◦ e = (f1 ◦ d ◦ b ◦ e =) f2 ◦ c ◦ a ◦ e = (f2 ◦ d ◦ b ◦ e =) idV ;

T a scheme over S; ξ : T → V a smooth morphism over S; φ : T1 ×W Y
∼→ T2 ×W Y an

isomorphism over Y — where we write Ti for the fiber product of ξ and fi [i ∈ {1, 2}] —
such that the pull-back e∗a∗φ is the identity automorphism of T = e∗a∗c∗T1 = e∗a∗c∗T2.
Write ξ1 : T1 → W , ξ2 : T2 → W for the objects of the category SmSch determined by T1,
T2, respectively. Then, to very Lemma 1.10, it suffices to verify the bijectivity of the map
induced by d

Liftc(ξ1, ξ2;φ) // Liftb(d
∗ξ1, d

∗ξ2; a
∗φ).

Now let us observe that since each of the morphisms a, b, c, d, e, f1, f2 is an affine
morphism [cf. [2], Remark 1.2.1], to verify the desired bijectivity, we may assume without
loss of generality, by replacing V by a suitable open subscheme of V , that

• the scheme V — hence also the schemes X, Y , Z, and W — is affine, and, moreover,
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• if one regards the rings AY
def
= Γ(Y,OY ), AZ

def
= Γ(Z,OZ), AW

def
= Γ(W,OW ) as

subrings of AX
def
= Γ(X,OX) by the relevant injective homomorphisms [cf. condition (1)

of [2], Definition 1.5], then the equality

AW = AY ∩ AZ

in AX holds [cf. condition (2) of [2], Definition 1.5].

Moreover, let us observe that since [we have assumed that] the pull-back e∗a∗φ is the
identity automorphism of T , one verifies easily that every element of each of the two sets
Liftc(ξ1, ξ2;φ), Liftb(d

∗ξ1, d
∗ξ2; a

∗φ) induces the “identity automorphism” of the underly-
ing topological space, i.e., relative to the “identifications” of the underlying topological
spaces of T , T1, T2, T1 ×W Z, and T2 ×W Z determined by the relevant morphisms of
schemes [cf. [2], Remark 1.2.1]. In particular, to verify the desired bijectivity, we may
assume without loss of generality, by replacing T by a suitable open subscheme of T , that
T is affine [which thus implies that Γ(T,OT ) is flat over Γ(V,OV )]. Then the desired
bijectivity follows immediately from a similar argument to the argument applied in the
proof of Lemma 1.4. This completes the proof of Lemma 1.10. □

PROPOSITION 1.11. — The category SmSch fibered in groupoids over SchS is integrable,
hence also [cf. [2], Remark 1.8.1] weakly integrable.

Proof. — Let us observe that one verifies easily that the category SmSch fibered in
groupoids over SchS satisfies condition (3) of [2], Definition 1.7. Thus, Proposition 1.11
follows from Lemma 1.9 and Lemma 1.10. This completes the proof of Proposition 1.11.

□

2. Divided Power Stratification Structures

In the present §2, we introduce and discuss the notion of a divided power stratification
structure on a smooth scheme [cf. Definition 2.5 below]. In the present §2, let S be a
scheme and X a scheme which is smooth and separated over S.

DEFINITION 2.1.

(i) We shall write(
PDP // X(2), PDI [1] ⊆ OPDP ,

(
(−)[n] : PDI [1] // OPDP

)
n≥0

)
for the divided power envelope of the diagonal closed immersion X ↪→ X(2) with respect
to a divided power structure on a quasi-coherent ideal of OS [cf. Remark 2.1.1 below].
Thus, we have a sequence of quasi-coherent ideals of OPDP

. . . ⊆ PDI [n+1] ⊆ PDI [n] ⊆ . . . ⊆ PDI [2] ⊆ PDI [1] ⊆ OPDP .

(ii) Let n be a nonnegative integer. Then we shall write

PDP n ⊆ PDP
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for the closed subscheme of PDP defined by the quasi-coherent ideal PDI [n+1] ⊆ OPDP of

OPDP . Thus, we have a sequence of closed subschemes of PDP

PDP ⊇ . . . ⊇ PDP n+1 ⊇ PDP n ⊇ . . . ⊇ PDP 2 ⊇ PDP 1 ⊇ PDP 0.

(iii) Let n be a nonnegative integer. Then we shall write

PDιn : PDP n � � // PDP n+1

for the natural closed immersion over S.

(iv) Let n be a nonnegative integer. Then we shall write

PDσn : PDP n // X(2)

for the morphism over S obtained by forming the composite of the natural closed immer-
sion PDP n ↪→ PDP and the natural morphism PDP → X(2).

REMARK 2.1.1. — It follows from [1], Corollary 3.22, that an arbitrary divided power
structure on a quasi-coherent ideal of OS extends to OX . Thus, it follows from [1],
Remarks 3.20, (6), that the divided power envelope of the diagonal closed immersion
X ↪→ X(2) does not depend on the choice of a divided power structure on a quasi-coherent
ideal of OS. In particular, one may take the “divided power structure” of Definition 2.1,
(i), to be the “trivial divided power structure” [i.e., on the zero ideal of OS].

LEMMA 2.2. — The collection of data(
(PDP n)n≥0, (PDιn : PDP n → PDP n+1)n≥0, (PDσn : PDP n → X(2))n≥0

)
forms a pre-stratification structure [cf. [2], Definition 2.2] on X/S.

Proof. — It is immediate from the definitions of “PDιn” and “PDσn” that the collection
of data under consideration satisfies condition (1) of [2], Definition 2.2. Moreover, it
follows from [1], Remarks 3.20, (4), and [1], Corollary 3.22, that the collection of data
under consideration satisfies condition (2) of [2], Definition 2.2. This completes the proof
of Lemma 2.2. □

DEFINITION 2.3. — Let n1, n2 be nonnegative integers. Thus, we have the scheme
PDP n1,n2 over S [cf. [2], Definition 2.4, (i), in the case where we take the “S” to be the
pre-stratification structure of Lemma 2.2]. Now let us recall from the discussion preceding
[1], Definition 4.3, that we have a morphism PDP n1,n2 → PDP n1+n2 over S. We shall write

PDδn1,n2 : PDP n1,n2 // PDP n1+n2

for this morphism.
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PROPOSITION 2.4. — The collection of data

PD =
(
(PDP n)n≥0, (PDιn : PDP n → PDP n+1)n≥0,

(PDσn : PDP n → X(2))n≥0, (PDδn1,n2 : PDP n1,n2 → PDP n1+n2)n1, n2≥0

)
forms a stratification structure [cf. [2], Definition 2.5] on X/S.

Proof. — This assertion follows immediately from Lemma 2.2, together with the defi-
nition of “PDδn1,n2”. □

DEFINITION 2.5. — We shall refer to the stratification structure of Proposition 2.4

PD =
(
(PDP n)n≥0, (PDιn : PDP n → PDP n+1)n≥0,

(PDσn : PDP n → X(2))n≥0, (PDδn1,n2 : PDP n1,n2 → PDP n1+n2)n1, n2≥0

)
as the divided power stratification structure on X/S.

PROPOSITION 2.6. — Let E be a locally free OX-module. Write ξ = (X, E) for the object
of the category LcFr fibered in groupoids over SchS of Definition 1.1 determined by E.
Then the following hold:

(i) The notion of a divided power stratification on the locally free OX-module E
in the sense of [1], Definition 4.3, is the same as the notion of a PD-stratification on
ξ in the sense of Definition 2.5 and [2], Definition 4.6:

{divided power stratifications on E in the sense of [1], Definition 4.3} = PDStrt(ξ)

[cf. Definition 2.5; [2], Definition 4.6].

(ii) There exists a natural bijection between

• the set of classical connections [cf. Definition 1.6] on the locally free OX-module
E and

• the set of PD-connections on ξ [cf. Definition 2.5; [2], Definition 4.1, (iii)]

PDCnn1(ξ)

[cf. Definition 2.5; [2], Remark 4.1.1; [2], Definition 4.4]

that is compatible, in the evident sense, with the identification of (i)

{divided power stratifications on E in the sense of [1], Definition 4.3} = PDStrt(ξ).

Proof. — These assertions follow immediately — in light of [1], Proposition 2.9, and
[1], Remark 4.2 — from the various definitions involved. □

LEMMA 2.7. — Let n be a nonnegative integer. Then the closed immersion PDιn : PDP n ↪→
PDP n+1 is square-nilpotent. In particular, the stratification structure PD is ι-quasi-
nil-retraction-like [cf. [2], Definition 3.1, (i)].
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Proof. — This assertion follows from [1], Proposition 3.25 [cf. also [2], Remark 1.2.1].
□

LEMMA 2.8. — Let r be a positive integer; n1, . . . , nr nonnegative integers. Write n
def
=∑r

i=1 ni. Then the morphisms in the diagram of schemes over S

PDP×n
PDδ×n

n1,...,nr //

PDδ×n $$H
HH

HH
HH

HH
PDP n1,...,nr

PDδn1,...,nryysss
sss

sss
s

PDP n

of [2], Definition 2.6 [i.e., in the case where we take the “S” to be the divided power
stratification structure PD], are quasi-nil-retraction-like.

Proof. — This assertion follows from Lemma 2.7 and [2], Remark 3.1.1, (iii). □

3. Divided Power Polynomial Algebras

In the present §3, we discuss divided power polynomial algebras. The results obtained
in the present §3 will be applied in §4 to prove that the divided power stratification
structures have some good properties.

In the present §3, let R be a ring and A an R-algebra. Suppose that there exist a
nonnegative integer d and d elements a1, . . . , ad ∈ A of A such that the ai’s determine an
étale morphism R[s1, . . . , sd] → A over R — where s1, . . . , sd are indeterminates. Write

A(2) def
= A⊗R A;

I ⊆ A(2)

for the kernel of the multiplication A(2) ↠ A;

X
] pr

(2)
1 , X

] pr
(2)
2 : A // A(2)

for the homomorphisms given by mapping a ∈ A to a ⊗ 1, 1 ⊗ a ∈ A(2), respectively.
Thus, for each nonnegative integer n, if one regards the ring A(2)/In+1 as an A-algebra

by X
] pr

(2)
1 (respectively, X

] pr
(2)
2 ), then the images of

X
] pr

(2)
2 (a1)− X

] pr
(2)
1 (a1) , . . . ,

X
] pr

(2)
2 (ad)− X

] pr
(2)
1 (ad)

in A(2)/In+1 determine an isomorphism A[t1, . . . , td]/(t1, . . . , td)
n+1 ∼→ A(2)/In+1 of A-

algebras — where t1, . . . , td are indeterminates.

DEFINITION 3.1.

(i) We shall write(
PDA

def
= A〈x1, . . . , xd〉, PDI [1] ⊆ PDA,

(
(−)[n] : PDI [1] // PDA

)
n≥0

)
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for the divided power polynomial A-algebra on the indeterminates {x1, . . . , xd} [cf., e.g.,
[1], Theorem 3.9]. Thus, we have a sequence of ideals of PDA

. . . ⊆ PDI [n+1] ⊆ PDI [n] ⊆ . . . ⊆ PDI [2] ⊆ PDI [1] ⊆ PDA

[cf. [1], Definition 3.24].

(ii) Let n be a nonnegative integer. Then we shall write

PDAn def
= PDA/PDI [n+1]

for the quotient of PDA by the ideal PDI [n+1] ⊆ PDA of PDA.

(iii) Let n be a nonnegative integer. Then we shall write

PD
] ι

n : PDAn+1 // // PDAn

for the natural surjective homomorphism.

(iv) Let n be a nonnegative integer. Then if one regards the ring A(2)/In+1 as an

A-algebra by X
] pr

(2)
1 , then it follows from the discussion preceding Definition 3.1 that we

have a homomorphism of A-algebras

A(2)/In+1 // PDAn

given by, for each i ∈ {1, . . . , d}, mapping X
] pr

(2)
2 (ai)− X

] pr
(2)
1 (ai) to xi. We shall write

PD
] σ

n : A(2) // PDAn

for the homomorphism obtained by forming the composite of the natural surjective ho-
momorphism A(2) ↠ A(2)/In+1 and this homomorphism A(2)/In+1 → PDAn.

LEMMA 3.2. — Write

X
def
= Spec(A) // S

def
= Spec(R).

In particular, we are in the situation of [2], §2, hence also the situation of §2 of the
present paper, which thus implies that we are given the morphisms

Xpr
(2)
1 , Xpr

(2)
2 : X(2) // X

of [2], Definition 2.1, (iii), and the pre-stratification structure on X/S of Lemma 2.2 of
the present paper(

(PDP n)n≥0, (PDιn : PDP n → PDP n+1)n≥0, (PDσn : PDP n → X(2))n≥0

)
.

Then there exist isomorphisms of schemes

X(2) ∼ // Spec(A(2)), PDP n ∼ // Spec(PDAn)

— where n is a nonnegative integer — such that the morphisms of schemes

Xpr
(2)
1 , Xpr

(2)
2 , PDιn, PDσn
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coincide — relative to the isomorphisms of schemes under consideration — with the
morphisms of schemes induced by the homomorphisms

X
] pr

(2)
1 , X

] pr
(2)
2 , PD

] ι
n, PD

] σ
n

defined in the discussion preceding Definition 3.1 and Definition 3.1, respectively.

Proof. — This assertion follows immediately from a similar argument to the argument
applied in the proof of [1], Proposition 3.32, together with the various definitions involved.

□

DEFINITION 3.3. — Let r be a positive integer; n1, . . . , nr nonnegative integers. Write

n
def
=

∑r
i=1 ni.

(i) Let m1, . . . ,mr be nonnegative integers such that mi ≤ ni for each i ∈ {1, . . . , r}; j
an element of {1, . . . , r+1}; j′ an element of {1, . . . , r}. Then it follows from Lemma 3.2
that we obtain rings

PDAn1,...,nr , PDA×r

that “correspond” — relative to the isomorphisms of schemes of Lemma 3.2 — to the
schemes

PDP n1,...,nr , PDP×r

defined in [2], Definition 2.4, (i), (vi) [i.e., in the case where we take the “S” to be the
pre-stratification structure of Lemma 2.2], respectively, and homomorphisms

PD
] ι

m1,...,mr
n1,...,nr

: PDAn1,...,nr // PDAm1,...,mr ,

PD
] pr

n1,...,nr

j : A // PDAn1,...,nr , PD
] pr

n1,...,nr

{j′,j′+1} :
PDAnj′ // PDAn1,...,nr ,

PD
] pr

×r
j : A // PDA×r, PD

] pr
×r
{j′,j′+1} :

PDA1 // PDA×r

that “correspond” — relative to the isomorphisms of schemes of Lemma 3.2 — to the
morphisms of schemes

PDιm1,...,mr
n1,...,nr

, PDprn1,...,nr

j , PDprn1,...,nr

{j′,j′+1},
PDpr×r

j , PDpr×r
{j′,j′+1}

defined in [2], Definition 2.4, (ii), (iv), (v), (vi) [i.e., in the case where we take the “S”
to be the pre-stratification structure of Lemma 2.2], respectively.

(ii) It follows from Lemma 3.2 that we obtain homomorphisms

PD
] δ

×n
n1,...,nr

: PDAn1,...,nr // PDA×n, PD
] δ

×n : PDAn // PDA×n,

PD
] δ

n1,...,nr : PDAn // PDAn1,...,nr

that “correspond” — relative to the isomorphisms of schemes of Lemma 3.2 — to the
morphisms of schemes

PDδ×n
n1,...,nr

, PDδ×n, PDδn1,...,nr
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defined in [2], Definition 2.6 [i.e., in the case where we take the “S” to be the stratification
structure of Definition 2.5], respectively.

(iii) Let i be an element of {1, . . . , r + 1}. Suppose that n ≥ 1. Then it follows from
Lemma 3.2 that we obtain rings

PDAn1,...,nr , PDA×r

that “correspond” — relative to the isomorphisms of schemes of Lemma 3.2 — to the
schemes

PDP n1,...,nr , PDP×r

defined in [2], Definition 2.7, (i), (v) [i.e., in the case where we take the “S” to be the
stratification structure of Definition 2.5], respectively, and homomorphisms

PD
] ι

n1,...,nr : PDAn1,...,nr // PDAn1,...,nr , PD
] δ

n1,...,nr : PDAn−1 // PDAn1,...,nr ,

PD
] pr

n1,...,nr

i : A // PDAn1,...,nr , PD
] ι

0
n1,...,nr

: PDAn1,...,nr // A,

PD
] ι

×r : PDA×r // PDA×r, PD
] δ

×r : PDAr−1 // PDA×r,

PD
] pr

×r
i : A // PDA×r, PD

] ι
0
×r :

PDA×r // A

that “correspond” — relative to the isomorphisms of schemes of Lemma 3.2 — to the
morphisms of schemes

PDιn1,...,nr , PDδn1,...,nr , PDprn1,...,nr

i , PDι0n1,...,nr
,

PDι×r, PDδ×r, PDpr×r
i , PDι0×r

defined in [2], Definition 2.7, (ii), (iii), (iv), (v) [i.e., in the case where we take the “S”
to be the stratification structure of Definition 2.5], respectively.

DEFINITION 3.4. — Let n be a positive integer.

(i) We shall write

[n, d]

for the set of maps {1, . . . , n} → {0, . . . , d}.
(ii) We shall define an equivalence relation ∼ on the set [n, d] as follows: For m, n ∈

[n, d], we write m ∼ n if ]m−1({i}) = ]n−1({i}) for every i ∈ {0, . . . , d} [cf. Remark 3.6.1
below].

(iii) Let m be an element of [n, d]/ ∼. Then we shall write

x[m] def
=

d∏
i=0

x
[]m−1({i})]
i ∈ PDAn

— where we write

x0
def
= 1,
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and m ∈ m ⊆ [n, d]. Note that it is immediate that the element “x[m]” does not depend
on the choice of m ∈ m, i.e., depends only on m.

(iv) Let m be an element of [n, d]. Then we shall write

x⊗m
def
= xm(1) ⊗ · · · ⊗ xm(n) ∈ PDA×n

— where we write

x0
def
= 1.

(v) Let m be an element of [n, d]/ ∼. Then we shall write

x⊗m
def
=

∑
m∈m

x⊗m ∈ PDA×n.

LEMMA 3.5. — Let n be a positive integer. Then the following hold:

(i) If one regards PDAn as an A-module by the homomorphism PD
] pr

n
1 (respectively,

PD
] pr

n
2 ), then the A-module PDAn is free, and the subset {x[m]}m∈[n,d]/∼ ⊆ PDAn of PDAn

forms a basis of the free A-module PDAn.

(ii) If one regards PDA×n as an A-module by the homomorphism PD
] pr

×n
1 (respectively,

PD
] pr

×n
n+1), then the A-module PDA×n is free, and the subset {x⊗m}m∈[n,d] ⊆ PDA×n of

PDA×n forms a basis of the free A-module PDA×n.

Proof. — Assertion (i) follows from (4) of [1], Theorem 3.9. Assertion (ii) follows from
assertion (i). □

DEFINITION 3.6. — Let n be a positive integer.

(i) We shall write

Sn

for the group of self-bijections of the set {1, . . . , n} and

S1,n−1 (respectively, Sn−1,1)

for the subgroup of Sn obtained by forming the stabilizer of 1 ∈ {1, . . . , n} (respectively,
n ∈ {1, . . . , n}).

(ii) The assignment

Sn 3 σ � // (xi1 ⊗ · · · ⊗ xin 7→ xiσ(1)
⊗ · · · ⊗ xiσ(n)

)

— where we write

x0
def
= 1,

and ij is an element of {0, . . . , d} for each j ∈ {1, . . . , n} — determines an action of the
group Sn on the subset {x⊗m}m∈[n,d] ⊆ PDA×n of PDA×n discussed in Lemma 3.5, (ii).
Thus, it follows from Lemma 3.5, (ii), that if one regards PDA×n as an A-module by the
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homomorphism PD
] pr

×n
1 , then this action determines an action of the group Sn on the

A-module PDA×n. For a subgroup G ⊆ Sn of Sn, we shall write

(PDA×n)G ⊆ PDA×n

for the A-submodule of G-invariants.

REMARK 3.6.1. — Let n be a positive integer. Then the action of the group Sn on the
set {1, . . . , n} induces an action of the group Sn on the set [n, d]. Moreover, one verifies
easily that the equivalence relation ∼ on the set [n, d] of Definition 3.4, (ii), coincides
with the equivalence relation on the set [n, d] determined by this action of the group Sn

on the set [n, d].

LEMMA 3.7. — Let n be a positive integer. Then the following hold:

(i) Let m be an element of [n, d]/ ∼. Then the homomorphism PD
] δ

×n : PDAn → PDA×n

maps x[m] ∈ PDAn to x⊗m ∈ PDA×n:

PD
] δ

×n(x[m]) = x⊗m.

(ii) The homomorphism PD
] δ

×n : PDAn → PDA×n is injective.

(iii) The image of the injective [cf. (ii)] homomorphism PD
] δ

×n : PDAn ↪→ PDA×n co-

incides with the submodule (PDA×n)Sn ⊆ PDA×n of PDA×n.

Proof. — Assertion (i) follows from a straightforward calculation [cf. also the discus-
sion preceding [1], Definition 4.3, concerning the homomorphism “δ”]. Assertions (ii),
(iii) follow immediately from assertion (i), together with Lemma 3.5, (i), (ii) [cf. also
Remark 3.6.1]. □

LEMMA 3.8. — Let r be a positive integer; n1, . . . , nr nonnegative integers. Write n
def
=∑r

i=1 ni. Let us recall the commutative diagram of rings

PDAn

PD
♯δ

n1,...,nr

yysss
sss

sss
s PD

♯δ
×n

##H
HH

HH
HH

HH

PDAn1,...,nr

PD
♯δ

×n
n1,...,nr

// PDA×n

[cf. [2], Definition 2.6, i.e., in the case where we take the “S” to be the stratification
structure of Definition 2.5]. Then the homomorphisms in this diagram are injective.

Proof. — Let us first observe that since the homomorphism PD
] δ

×n is injective [cf.
Lemma 3.7, (ii)], to verify Lemma 3.8, it suffices to verify that the homomorphism
PD
] δ

×n
n1,...,nr

is injective. Thus, by applying Lemma 3.5, (i), (ii), and induction on r [cf.

the definition of the homomorphism PD
] δ

×n
n1,...,nr

], to verify Lemma 3.8, we may assume
without loss of generality that r = 1. On the other hand, it follows from Lemma 3.7, (ii),
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that if r = 1, then the homomorphism PD
] δ

×n
n1,...,nr

is injective, as desired. This completes
the proof of Lemma 3.8. □

LEMMA 3.9. — Suppose that n ≥ 3. Let us recall the commutative diagram of injective
[cf. Lemma 3.8] homomorphisms of rings

PDAn � �
PD

♯δ
1,n−1

//
� _

PD
♯δ

n−1,1

��

� r

PD
♯δ

×n

$$H
HH

HH
HH

HH
HH

HH
HH

HH
HH

H
PDA1,n−1

� _

PD
♯δ

×n
1,n−1

��
PDAn−1,1 � �

PD
♯δ

×n
n−1,1

// PDA×n.

Then the intersection of the image of PD
] δ

×n
1,n−1 and the image of PD

] δ
×n
n−1,1 coincides with

the image of PD
] δ

×n.

Proof. — Let z be an element of PDA×n contained in the intersection under consid-
eration. Then it follows immediately from Lemma 3.7, (iii), that z is contained in both
(PDA×n)S1,n−1 and (PDA×n)Sn−1,1 . Thus, since [one verifies easily from our assumption
that n ≥ 3 that] the group Sn is generated by the subgroups S1,n−1 and Sn−1,1, again
by Lemma 3.7, (iii), we conclude that z is contained in the image of PD

] δ
×n, as desired.

This completes the proof of Lemma 3.9. □

LEMMA 3.10. — Let r be a positive integer; n1, . . . , nr nonnegative integers. Write

n
def
=

∑r
i=1 ni. Suppose that n ≥ 1. Then the kernel of the surjective homomorphism

PD
] ι

n1,...,nr : PDAn1,...,nr ↠ PDAn1,...,nr — i.e., the ideal of PDAn1,...,nr generated by the image

of PDI [n]/PDI [n+1] ⊆ PDAn by PD
] δ

n1,...,nr — is annihilated by the kernel of the surjective

homomorphism PD
] ι

0,...,0
n1,...,nr

: PDAn1,...,nr ↠ PDA0,...,0 = A.

Proof. — Let us first observe that it follows from [1], Lemma 3.5, [1], Lemma 3.7,
and [1], Proposition 3.25, together with the various definitions involved, that we have
a natural divided power structure on the ideal of PDAn (respectively, PDAn1,...,nr) ob-
tained by forming the kernel of the surjective homomorphism PD

] ι
0
n :

PDAn ↠ PDA0 = A

(respectively, PD
] ι

0,...,0
n1,...,nr

: PDAn1,...,nr ↠ PDA0,...,0 = A), by means of which let us regard

the ring PDAn (respectively, PDAn1,...,nr) as a divided power ring. Moreover, one verifies
immediately from the discussion preceding [1], Definition 4.3, that the homomorphism
PD
] δ

n1,...,nr : PDAn → PDAn1,...,nr is compatible with the respective divided power structures.

Thus, Lemma 3.10 follows immediately from the [easily verified] fact that the ideal “I [n]”
defined in [1], Definition 3.24, for the divided power ring PDAn1,...,nr in the case where
we take the “n” of [1], Definition 3.24, to be n + 1 is zero. This completes the proof of
Lemma 3.10. □
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LEMMA 3.11. — Let n be a nonnegative integer and p a prime number. Suppose that the
ring R is a ring over a field of characteristic p. Write J ⊆ A(2)/In+1 for the ideal of
A(2) generated by [the images of]

X
] pr

(2)
2 (a1)

p − X
] pr

(2)
1 (a1)

p , . . . , X
] pr

(2)
2 (ad)

p − X
] pr

(2)
1 (ad)

p.

Then the homomorphism A(2)/In+1 → PDAn of Definition 3.1, (iv), factors through the
natural surjective homomorphism A(2)/In+1 ↠ A(2)/(In+1 + J).

Proof. — It follows from the definition of the homomorphism A(2)/In+1 → PDAn of
Definition 3.1, (iv), that, to verify Lemma 3.11, it suffices to verify that xp

i = 0 for
every i ∈ {1, . . . , d}. On the other hand, this follows immediately from the equality
“n!γn(x) = xn” in [1], Definition 3.1. This completes the proof of Lemma 3.11. □

4. An Application of the First Fundamental Correspondence

In the present §4, we prove [cf. Theorem 4.1 below] that the divided power stratification
structure PD is strictly integrable [cf. [2], Definition 3.3] and of standard type [cf. [2], Def-
inition 3.6]. Moreover, we discuss an application of the first fundamental correspondence
of [2], Definition 5.7 [cf. Corollary 4.3 below].

The main result of the present paper is as follows.

THEOREM 4.1. — Let S be a scheme and X a scheme which is smooth and separated
over S. Then the divided power stratification structure [cf. Definition 2.5]

PD =
(
(PDP n)n≥0, (PDιn : PDP n → PDP n+1)n≥0,

(PDσn : PDP n → X(2))n≥0, (PDδn1,n2 : PDP n1,n2 → PDP n1+n2)n1, n2≥0

)
is strictly integrable [cf. [2], Definition 3.3] and of standard type [cf. [2], Definition
3.6].

Proof. — Let us first observe that it follows from [1], Remark 4.2, that PD satisfies
condition (1) of [2], Definition 3.6. Moreover, it follows immediately from Lemma 3.5,
(i), (ii), and Lemma 3.7, (i), that PD satisfies conditions (2), (3) of [2], Definition 3.6. In
particular, the stratification structure PD is of standard type.
Next, let us recall from Lemma 2.7 that PD is ι-quasi-nil-retraction-like. Moreover, it

follows from Lemma 2.8 and Lemma 3.8 that PD is δ-nil-retraction-like [cf. [2], Definition
3.1, (iii)]. In particular, the stratification structure PD satisfies condition (1) of [2],
Definition 3.2.

Moreover, since PD is δ-nil-retraction-like [cf. the second paragraph of the present
proof of Theorem 4.1], it follows from Lemma 3.9 that PD is δ-strictly cocartesian of level
≥ 3 [cf. [2], Definition 3.1, (iv)]. In particular, the stratification structure PD satisfies
condition (2) of [2], Definition 3.2.

Next, it follows from Lemma 2.7 that the stratification structure PD satisfies condition
(3) of [2], Definition 3.2.

Next, let us verify that PD satisfies condition (4) of [2], Definition 3.2. Let us first ob-
serve that since [it follows from the second paragraph of the present proof of Theorem 4.1
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that] the morphism PDδ×2 : PDP×2 → PDP 2 is nil-retraction-like [cf. [2], Definition 1.2,
(iv)], it follows from [2], Remark 1.3.1, that the morphism PDδ×2 : PDP×2 → PDP 2 satisfies
conditions (1), (2) of [2], Definition 1.3. Now let us take the “X” (respectively, “Y ”) of [2],
Definition 1.3, to be X (respectively, X) and the closed immersion “iX” (respectively,
“iY ”) of [2], Definition 1.3, to be the closed immersion PDι0,01,1 : X = PDP 0,0 ↪→ PDP×2

(respectively, PDι02 : X = PDP 0 ↪→ PDP 2). Then it follows from Lemma 3.10 that condi-
tion (3) of [2], Definition 1.3, is satisfied. Moreover, condition (4) of [2], Definition 1.3, is
immediate. This completes the proof of the assertion that PD satisfies condition (4) of
[2], Definition 3.2. In particular, the stratification structure PD satisfies condition (1) of
[2], Definition 3.3.

Next, it follows from Lemma 3.5, (i), that PD is pr-finite flat [cf. [2], Definition 3.1,
(ii)]. In particular, the stratification structure PD satisfies condition (2) of [2], Definition
3.3.

Thus, since PD satisfies condition (3) of [2], Definition 3.3 [cf. the first paragraph of the
present proof of Theorem 4.1 and [2], Remark 3.6.2], we conclude that the stratification
structure PD is strictly integrable. This completes the proof of Theorem 4.1. □

COROLLARY 4.2. — Let S be a scheme, X a scheme which is smooth and separated
over S,

F // SchS

a category fibered in groupoids over SchS, and ξ an object of F over X. Suppose that the
following two conditions are satisfied:

(1) The category F fibered in groupoids over SchS is weakly integrable [cf. [2],
Definition 1.8].

(2) The scheme X is of relative dimension ≤ 1 over S.

Then every PD-connection [cf. Definition 2.5; [2], Definition 4.1, (iii)] on ξ is PD-
integrable [cf. Definition 2.5; [2], Definition 4.7, (ii)]:

PDCnn1(ξ) = PDIntCnn(ξ)

[cf. Definition 2.5; [2], Definition 4.7, (ii)].

Proof. — This assertion follows from Theorem 4.1 and [2], Proposition 4.10. □

One main application of the first fundamental correspondence of [2], Definition 5.7, is
as follows.

COROLLARY 4.3. — Let S be a scheme, X a scheme which is smooth and separated
over S,

F // SchS

a weakly integrable [cf. [2], Definition 1.8] category fibered in groupoids over SchS, and
ξ an object of F over X. Then the natural map

PDStrt(ξ) // PDIntCnn(ξ)
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[cf. Definition 2.5; [2], Definition 4.6; [2], Definition 4.7, (ii); [2], Lemma 4.8] is bijec-
tive.

Proof. — This assertion follows from Theorem 4.1 and [2], Theorem 5.6. □

REMARK 4.3.1. — Suppose that we are in the situation of Corollary 4.3.

(i) Suppose that one takes the “F → SchS” of Corollary 4.3 to be the category
LcFr → SchS fibered in groupoids of Definition 1.1 [cf. also Proposition 1.5], which thus
implies that the object ξ corresponds to a locally free OX-module E .
Let ∇ be a PD-connection on ξ. Then it follows from Proposition 2.6, (ii), that the PD-

connection ∇ corresponds to a classical connection on E , i.e., a certain homomorphism
of (X → S)−1OS-modules [cf. Definition 1.6]

E // E ⊗OX
Ω1

X/S.

Now let us recall that the closed immersion PDιT×2 : T
1 ↪→ PDP×2 of [2], Definition

3.6, is a square-nilpotent closed immersion whose conormal sheaf is isomorphic to the
OT 1-module (PDι0T )∗Ω

2
X/S [cf. Theorem 4.1; condition (3) of [2], Definition 3.6]. Thus, it

follows from Lemma 1.2, (ii), that the subgroup

LiftPDιT×2

(
(PDpr×2

1 )∗ξ, (PDpr×2
1 )∗ξ; id(XprT1 )∗ξ

)
⊆ AutF|PDP×2

(
(PDpr×2

1 )∗ξ
)

may be naturally identified with the module

Γ
(
X,Ω2

X/S ⊗OX
EndOX

(E)
)
.

In particular, since the stratification structure PD is of standard type [cf. Theorem 4.1],
and the category LcFr fibered in groupoids is weakly integrable [cf. Proposition 1.5], by
applying [2], Lemma 4.9, we conclude that the PD-curvature [cf. Definition 2.5; [2],
Definition 4.7, (i)] of the PD-connection ∇ may be naturally identified with a global
section of

Ω2
X/S ⊗OX

EndOX
(E).

Moreover, in this case, one verifies easily from a straightforward calculation that this
global section of Ω2

X/S ⊗OX
EndOX

(ξ) coincides, up to sign, with the curvature of the
corresponding classical connection on E

E // E ⊗OX
Ω1

X/S

in the usual sense [cf., e.g., the discussion preceding [1], Theorem 2.15].
In particular, we conclude from Proposition 2.6, (i), (ii), that the bijection of Corol-

lary 4.3 may be regarded as a generalization of the equivalence [cf. [1], Theorem 4.8]
between

• an integrable connection on E and

• a divided power stratification on E
[i.e., in the case where the modules under consideration are locally free].
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(ii) Suppose that one takes the “F → SchS” of Corollary 4.3 to be the category
SmSch → SchS fibered in groupoids of Definition 1.7 [cf. also Proposition 1.11], which
thus implies that the object ξ is a smooth morphism Z → X of schemes over S. Let
∇ be a PD-connection on ξ. Then it follows immediately from a similar argument to
the argument of (i), together with Lemma 1.8, (ii), that the PD-curvature of the PD-
connection ∇ may be naturally identified with a global section of

Ω2
X/S ⊗OX

ξ∗TZ/X .

REMARK 4.3.2. — In [3], Definition 2.3, B. Osserman asserted that the integrability of a

[PD-]connection [cf. Proposition 2.6, (ii)] concerns a certain “cocycle condition” on “X
(2)
3 ”

— i.e., T 1 in the notational conventions of [2] [cf. [2], Definition 3.4, (i)]. However, this
is false. Indeed, as we have already observed in [2], Lemma 4.9, the “cocycle condition”

on “X
(2)
3 ” — i.e., T 1 in the notational conventions of [2] — for every PD-connection

is always satisfied whenever the category F fibered in groupoids over SchS is weakly
integrable [as in the case of LcFr — cf. Proposition 1.5]. As discussed in Remark 4.3.1,
(i), and [2], Definition 4.7, (i), the integrability of a PD-connection concerns a certain
“cocycle condition” on PDP×2 [i.e., as opposed to a certain “cocycle condition” on T 1].

COROLLARY 4.4. — Let S be a scheme, X a scheme which is smooth and separated
over S,

F // SchS

a category fibered in groupoids over SchS, and ξ an object of F over X. Suppose that the
following two conditions are satisfied:

(1) The category F fibered in groupoids over SchS is weakly integrable [cf. [2],
Definition 1.8].

(2) The scheme X is of relative dimension ≤ 1 over S.

Then the natural map
PDStrt(ξ) // PDCnn1(ξ)

[cf. Definition 2.5; [2], Definition 4.4; [2], Definition 4.6] is bijective.

Proof. — This assertion follows from Corollary 4.2 and Corollary 4.3. □
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