RIMS-1903

Integrable Connections II: Divided Power Stratifications

By

Yuichiro HOSHI

July 2019

京都大学 数理解析研究所

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan

INTEGRABLE CONNECTIONS II: DIVIDED POWER STRATIFICATIONS

Yuichiro Hoshi

July 2019

ABSTRACT. — In the present paper, we prove that the divided power stratification structures are strictly integrable and of standard type. In particular, as an application of the first fundamental correspondence, we obtain a natural bijection between the set of PD-stratifications and the set of PD-integrable PD-connections on objects of weakly integrable categories fibered in groupoids over categories of schemes. This bijection may be regarded as a generalization of the well-known equivalence concerning integrable connections and divided power stratifications.

CONTENTS

INTRODUCTION		
$\S1.$	Two Examples of Integrable Category Fibered in Groupoids	4
§2.	Divided Power Stratification Structures	.11
§3.	Divided Power Polynomial Algebras	. 14
§4.	AN APPLICATION OF THE FIRST FUNDAMENTAL CORRESPONDENCE	. 21
REF	ERENCES	. 24
0		

INTRODUCTION

I.0. — Let S be a scheme and X a scheme which is *smooth* and *separated* over S. Write Sch_S for the category of schemes over S and morphisms of schemes over S [cf. [2], Definition 1.6, (i)] and

$${}^{\mathrm{PD}}P^1 \subseteq X \times_S X$$

for the closed subscheme of $X \times_S X$ defined by the quasi-coherent ideal of $\mathcal{O}_{X \times_S X}$ obtained by forming the square of the quasi-coherent ideal that defines the diagonal closed subscheme $X \subseteq X \times_S X$ of $X \times_S X$ [cf. Definition 2.1, (ii); [1], Remark 4.2]. For each $i \in \{1, 2\}$, write, moreover,

 $^{\mathrm{PD}}\mathrm{pr}_{i}^{1} \colon {}^{\mathrm{PD}}P^{1} \longrightarrow X$

²⁰¹⁰ Mathematics Subject Classification. - 14D15.

KEY WORDS AND PHRASES. — divided power stratification structure, curvature, integrable connection, divided power stratification.

for the morphism over S obtained by forming the composite of the natural closed immersion ${}^{\text{PD}}P^1 \hookrightarrow X \times_S X$ and the projection $X \times_S X \to X$ onto the *i*-th factor [cf. Lemma 2.2; [2], Definition 2.3, (ii)].

I.1. — In the remainder of the present Introduction, let

Е

be a locally free \mathcal{O}_X -module. Let us first recall that a *connection* on \mathcal{E} [i.e., relative to X/S] is defined to be a homomorphism of $(X \to S)^{-1}\mathcal{O}_S$ -modules

$$\nabla \colon \mathcal{E} \longrightarrow \mathcal{E} \otimes_{\mathcal{O}_X} \Omega^1_{X/S}$$

that satisfies the equality $\nabla(fe) = f\nabla(e) + e \otimes df$ — where f, e are local sections of $\mathcal{O}_X, \mathcal{E}$, respectively [cf. Definition 1.6]. On the other hand, it is well-known [cf., e.g., [1], Proposition 2.9] that giving a connection on \mathcal{E} [i.e., a homomorphism of $(X \to S)^{-1}\mathcal{O}_S$ -modules as above] is equivalent to giving an isomorphism of \mathcal{O}_{PDP1} -modules

$$({}^{\mathrm{PD}}\mathrm{pr}_2^1)^*\mathcal{E} \xrightarrow{\sim} ({}^{\mathrm{PD}}\mathrm{pr}_1^1)^*\mathcal{E}$$

that restricts, on the diagonal closed subscheme $X \subseteq {}^{\text{PD}}P^1$, to the *identity automorphism* of \mathcal{E} [cf. Proposition 2.6, (ii)]. Moreover, such an isomorphism $({}^{\text{PD}}\text{pr}_2^1)^*\mathcal{E} \xrightarrow{\sim} ({}^{\text{PD}}\text{pr}_1^1)^*\mathcal{E}$ is naturally related to the notion of a *divided power stratification* [cf., e.g., [1], Definition 4.3] on \mathcal{E} .

Now let us observe that since the above "second" definition of the notion of a connection [i.e., an isomorphism $({}^{\mathrm{PD}}\mathrm{pr}_2^1)^*\mathcal{E} \xrightarrow{\sim} ({}^{\mathrm{PD}}\mathrm{pr}_1^1)^*\mathcal{E}$ as above] and the definition of the notion of a divided power stratification of [1], Definition 4.3, are "sufficiently abstract", one may apply these definitions [not only to locally free modules as above but also] to an object of a category fibered in groupoids over the category Sch_S. In the remainder of the present Introduction, let $\mathcal{F} \to \operatorname{Sch}_S$ be a category fibered in groupoids over Sch_S and ξ an object of \mathcal{F} over X. Thus, one may define a PD-connection on ξ to be an isomorphism

$$(^{\mathrm{PD}}\mathrm{pr}_{2}^{1})^{*}\xi \xrightarrow{\sim} (^{\mathrm{PD}}\mathrm{pr}_{1}^{1})^{*}\xi$$

in \mathcal{F} over the identity automorphism of ${}^{\mathrm{PD}}P^1$ that restricts to the identity automorphism of $\xi = (({}^{\mathrm{PD}}\mathrm{pr}_2^1)^*\xi)|_X = (({}^{\mathrm{PD}}\mathrm{pr}_1^1)^*\xi)|_X$ [cf. Definition 2.5; [2], Definition 4.1, (iii)]. Moreover, one may also define a PD-stratification on ξ to be a collection of data similar to a divided power stratification defined in [1], Definition 4.3 [cf. Definition 2.5; [2], Definition 4.6]. Write

$$^{\rm PD}{\rm Cnn}^1(\xi),$$
 $^{\rm PD}{\rm Strt}(\xi)$

for the sets of PD-connections, PD-stratifications on ξ , respectively [cf. Definition 2.5; [2], Remark 4.1.1; [2], Definition 4.4; [2], Definition 4.6].

I.2. — Next, let us recall that it is well-known [cf., e.g., [1], Theorem 4.8] that, for a given connection ∇ on the locally free \mathcal{O}_X -module \mathcal{E} , the following two conditions are *equivalent*:

(†) The connection ∇ is *integrable* — i.e., the *curvature* of the connection ∇

$$\mathcal{E} \xrightarrow{\nabla} \mathcal{E} \otimes_{\mathcal{O}_X} \Omega^1_{X/S} \xrightarrow{\nabla^1} \mathcal{E} \otimes_{\mathcal{O}_X} \Omega^2_{X/S}$$

[cf., e.g., the discussion preceding [1], Theorem 2.15] is zero.

(‡) The connection ∇ extends to a uniquely determined divided power stratification on \mathcal{E} .

Here, let us observe that the usual definition of the *curvature* — hence also of the *integrability* — of a connection *relies*, at least a *priori*, on the fact that \mathcal{E} is an \mathcal{O}_X -module. In particular, these definitions of *curvature* and *integrability* cannot be applied, at least in any immediate way, to a connection on an object of \mathcal{F} discussed in §I.1.

Moreover, let us recall that the proof of the above relationship between integrable connections and divided power stratifications given in [1], §4, relies, at least a priori, on the fact that \mathcal{E} is an \mathcal{O}_X -module [cf. the argument concerning the ring of divided power differential operators on \mathcal{E} in the proof of [1], Theorem 4.8]. In particular, this proof cannot be applied, at least in any immediate way, in a situation in which we work with the category \mathcal{F} fibered in groupoids over Sch_S as in §I.1.

Thus, one may pose the following two questions:

(A) What is a suitable definition of "curvature" [and "integrability"] of a PD-connection [cf. §I.1] on an object of \mathcal{F} ?

(B) What is a suitable condition on \mathcal{F} that leads us to a situation in which one may obtain a natural bijection between the set of "integrable" PD-connections [cf. (A)] and the set of PD-stratifications [cf. §I.1], i.e., on a fixed object of \mathcal{F} ?

Note that the question (A) (respectively, (B)) is related to the discussion of [3], Definition 2.3, and Remark 4.3.2 of the present paper (respectively, [3], Question 2.7).

I.3. — With regard to the question (A) of §I.2, we define the PD-curvature of a PD-connection — that is an automorphism of a certain object of \mathcal{F} — by applying [2], Definition 4.7, (i) [cf. Definition 2.5; [2], Definition 4.7, (i)]. Note that we observe in Remark 4.3.1, (i), that this definition essentially generalizes the usual definition of the curvature of a connection on a module. Moreover, we define a PD-integrable PD-connection by applying [2], Definition 4.7, (ii), i.e., to be a PD-connection whose PD-curvature is the identity automorphism [cf. Definition 2.5; [2], Definition 4.7, (ii)]. Write

$$^{\text{PD}}\text{IntCnn}(\xi) \subseteq ^{\text{PD}}\text{Cnn}^{1}(\xi)$$

for the set of PD-integrable PD-connections on ξ [cf. Definition 2.5; [2], Definition 4.7, (ii)].

With regard to the question (B) of §I.2, we defined, in [2], the notion of a *weakly integrable* category fibered in groupoids over Sch_S [cf. [2], Definition 1.8]. Moreover, we prove that each of

- the category fibered in groupoids of *locally free modules* [cf. Definition 1.1] and
- the category fibered in groupoids of *smooth schemes* [cf. Definition 1.7]

gives an example of a *weakly integrable* category fibered in groupoids over Sch_S [cf. Proposition 1.5; Proposition 1.11].

One important result of the present paper — that may be regarded as an application of the *first fundamental correspondence* of [2], Definition 5.7 — is as follows [cf. Corollary 4.3].

THEOREM A. — Let S be a scheme, X a scheme which is smooth and separated over S,

 $\mathcal{F} \longrightarrow \operatorname{Sch}_S$

a weakly integrable [cf. [2], Definition 1.8] category fibered in groupoids over Sch_S , and ξ an object of \mathcal{F} over X. Then the natural map

$$^{\text{PD}}\text{Strt}(\xi) \longrightarrow ^{\text{PD}}\text{IntCnn}(\xi)$$

[cf. Definition 2.5; [2], Definition 4.6; [2], Definition 4.7, (ii); [2], Lemma 4.8] is bijective.

Moreover, one may prove that, as in the case of connections on modules, if X is of relative dimension ≤ 1 over S, then every PD-connection on an object over X of a weakly integrable category fibered in groupoids over Sch_S is PD-integrable [cf. Corollary 4.2]. In particular, we also obtain the following result [cf. Corollary 4.4].

THEOREM B. — Let S be a scheme, X a scheme which is smooth and separated over S,

$$\mathcal{F} \longrightarrow \operatorname{Sch}_S$$

a category fibered in groupoids over Sch_S , and ξ an object of \mathcal{F} over X. Suppose that the following two conditions are satisfied:

(1) The category \mathcal{F} fibered in groupoids over Sch_S is weakly integrable [cf. [2], Definition 1.8].

(2) The scheme X is of relative dimension ≤ 1 over S.

Then the natural map

$$^{\text{PD}}\text{Strt}(\xi) \longrightarrow ^{\text{PD}}\text{Cnn}^1(\xi)$$

[cf. Definition 2.5; [2], Definition 4.4; [2], Definition 4.6] is bijective.

Thus, we obtain *generalizations* of the equivalence of the two conditions (\dagger) and (\ddagger) in §I.2, i.e., Theorem A and Theorem B.

Acknowledgments

This research was supported by JSPS KAKENHI Grant Number 18K03239 and by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

1. Two Examples of Integrable Category Fibered in Groupoids

In the present $\S1$, we give two examples of *integrable* [cf. [2], Definition 1.7] categories fibered in groupoids [cf. Proposition 1.5 and Proposition 1.11 below]. In the present \$1, let S be a scheme. Thus, we have the category

of schemes over S and morphisms of schemes over S [cf. [2], Definition 1.6, (i)].

DEFINITION 1.1. — We shall write

 $LcFr \longrightarrow Sch_S$

for the category fibered in groupoids over Sch_S defined as follows:

• An object of the category LcFr is a pair (X, \mathcal{E}) consisting of a scheme X over S and a locally free \mathcal{O}_X -module \mathcal{E} .

• If (X, \mathcal{E}) and (X', \mathcal{E}') are objects of the category LcFr, then a morphism $(X, \mathcal{E}) \to (X', \mathcal{E}')$ in the category LcFr is defined to be a pair (f, ϕ) consisting of a morphism $f: X \to X'$ of schemes over S and an isomorphism $\phi: \mathcal{E} \xrightarrow{\sim} f^* \mathcal{E}'$ of \mathcal{O}_X -modules.

• The functor LcFr \rightarrow Sch_S sends " (X, \mathcal{E}) " to "X" and " (f, ϕ) " to "f".

LEMMA 1.2. — Let X, \underline{X} be schemes over $S; \underline{X} \hookrightarrow X$ a square-nilpotent [cf. [2], Definition 1.2, (ii)] closed immersion over $S; \mathcal{E}_1, \mathcal{E}_2$ locally free \mathcal{O}_X -modules; $\phi: \mathcal{E}_1|_{\underline{X}} \xrightarrow{\sim} \mathcal{E}_2|_{\underline{X}}$ an isomorphism of $\mathcal{O}_{\underline{X}}$ -modules. Write $\xi_1 \stackrel{\text{def}}{=} (X, \mathcal{E}_1), \xi_2 \stackrel{\text{def}}{=} (X, \mathcal{E}_2)$ for the objects of the category LcFr determined by $\mathcal{E}_1, \mathcal{E}_2$, respectively; $\mathcal{I}_X \subseteq \mathcal{O}_X$ for the conormal sheaf of the square-nilpotent closed immersion $\underline{X} \hookrightarrow X$ [i.e., the quasi-coherent ideal of \mathcal{O}_X that defines the closed subscheme of X determined by the closed immersion $\underline{X} \hookrightarrow X$]. Then the following hold:

(i) There exists an element

$$o(\underline{X} \hookrightarrow X, \mathcal{E}_1, \mathcal{E}_2, \phi) \in H^1(\underline{X}, \mathcal{I}_X \otimes_{\mathcal{O}_X} \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}_1|_{\underline{X}}, \mathcal{E}_2|_{\underline{X}}))$$

that satisfies the following condition: Let Y be a scheme over S and $f: Y \to X$ a morphism over S. Write $\underline{Y} \stackrel{\text{def}}{=} Y \times_X \underline{X} \hookrightarrow Y$ for the [necessarily square-nilpotent] closed immersion over S obtained by forming the base-change of the closed immersion $\underline{X} \hookrightarrow X$ by the morphism $f, \underline{f}: \underline{Y} \to \underline{X}$ for the morphism over S obtained by forming the basechange of the morphism f by the closed immersion $\underline{X} \hookrightarrow X$, and $\mathcal{I}_Y \subseteq \mathcal{O}_Y$ for the conormal sheaf of the square-nilpotent closed immersion $\underline{Y} \hookrightarrow Y$. Then it holds that the set

$$\operatorname{Lift}_{\underline{Y} \hookrightarrow Y}(f^*\xi_1, f^*\xi_2; f^*\phi)$$

[cf. [2], Definition 1.6, (iii)] is nonempty if and only if the pull-back

$$\underline{f}^* o(\underline{X} \hookrightarrow X, \mathcal{E}_1, \mathcal{E}_2, \phi) \in H^1(\underline{Y}, \mathcal{I}_Y \otimes_{\mathcal{O}_{\underline{Y}}} \mathcal{H}om_{\mathcal{O}_{\underline{Y}}}(\underline{f}^*(\mathcal{E}_1|\underline{X}), \underline{f}^*(\mathcal{E}_2|\underline{X})))$$

is zero.

(ii) Suppose that the set

$$\operatorname{Lift}_{\underline{X} \hookrightarrow X}(\xi_1, \xi_2; \phi)$$

is nonempty. Then the set $\operatorname{Lift}_{\underline{X} \hookrightarrow X}(\xi_1, \xi_2; \phi)$ has a natural structure of torsor under the module

$$\Gamma(\underline{X}, \mathcal{I}_X \otimes_{\mathcal{O}_X} \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}_1|_{\underline{X}}, \mathcal{E}_2|_{\underline{X}})).$$

PROOF. — These assertions follow from elementary deformation theory.

LEMMA 1.3. — The category LcFr fibered in groupoids over Sch_S satisfies condition (1) of [2], Definition 1.7.

Proof. — Let

be a cartesian diagram in Sch_S such that the morphism j_Y is a square-nilpotent closed immersion, and, moreover, the morphism f is conormally strict with respect to the squarenilpotent closed immersion j_Y [cf. [2], Definition 1.3], which thus implies that there exist schemes $\overline{X}, \overline{Y}$ and closed immersions $i_X \colon \overline{X} \hookrightarrow X, i_Y \colon \overline{Y} \hookrightarrow Y$ that satisfy conditions (3), (4) of [2], Definition 1.3. Moreover, let $\mathcal{E}_1, \mathcal{E}_2$ be locally free \mathcal{O}_Y -modules; $\phi \colon \mathcal{E}_1|_{\underline{Y}} \xrightarrow{\sim} \mathcal{E}_2|_{\underline{Y}}$ an isomorphism of $\mathcal{O}_{\underline{Y}}$ -modules. Write $\mathcal{I}_X, \mathcal{I}_Y$ for the conormal sheaves of the squarenilpotent closed immersions $j_X \colon \underline{X} \hookrightarrow X, j_Y \colon \underline{Y} \hookrightarrow Y$, respectively; $\xi_1 \stackrel{\text{def}}{=} (X, \mathcal{E}_1), \xi_2 \stackrel{\text{def}}{=} (X, \mathcal{E}_2)$ for the objects of the category LcFr determined by $\mathcal{E}_1, \mathcal{E}_2$, respectively. Then, to verify Lemma 1.3, it suffices to verify the *bijectivity* of the map induced by f

$$\operatorname{Lift}_{j_Y}(\xi_1,\xi_2;\phi) \longrightarrow \operatorname{Lift}_{j_X}(f^*\xi_1,f^*\xi_2;f^*\phi).$$

To this end, suppose that the codomain of this map is *nonempty*.

First, let us verify the following claim:

Claim 1.3.A: The domain of the map under consideration is *nonempty*.

To this end, let us recall from condition (3) of [2], Definition 1.3, that the closed immersions $\iota_X \colon \overline{X} \hookrightarrow X$, $\iota_Y \colon \overline{X} \hookrightarrow Y$ induce *isomorphisms* of modules

$$H^{1}(X, \mathcal{I}_{X} \otimes_{\mathcal{O}_{X}} \mathcal{H}om_{\mathcal{O}_{X}}(f^{*}\mathcal{E}_{1}, f^{*}\mathcal{E}_{2})) \xrightarrow{\sim} H^{1}(\overline{X}, i_{X}^{*}\mathcal{I}_{X} \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{H}om_{\mathcal{O}_{\overline{X}}}((f^{*}\mathcal{E}_{1})|_{\overline{X}}, (f^{*}\mathcal{E}_{2})|_{\overline{X}})) \xrightarrow{} H^{1}(Y, \mathcal{I}_{Y} \otimes_{\mathcal{O}_{\overline{Y}}} \mathcal{H}om_{\mathcal{O}_{\overline{Y}}}(\mathcal{E}_{1}|_{\overline{Y}}, \mathcal{E}_{2}|_{\overline{Y}})),$$

respectively. Moreover, it follows from condition (4) of [2], Definition 1.3, and [2], Lemma 1.4, that the homomorphism induced by f

$$H^{1}\left(\overline{Y}, i_{Y}^{*}\mathcal{I}_{Y} \otimes_{\mathcal{O}_{\overline{Y}}} \mathcal{H}om_{\mathcal{O}_{\overline{Y}}}(\mathcal{E}_{1}|_{\overline{Y}}, \mathcal{E}_{2}|_{\overline{Y}})\right) \longrightarrow H^{1}\left(\overline{X}, i_{X}^{*}\mathcal{I}_{X} \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{H}om_{\mathcal{O}_{\overline{X}}}\left((f^{*}\mathcal{E}_{1})|_{\overline{X}}, (f^{*}\mathcal{E}_{2})|_{\overline{X}}\right)\right)$$

is an *isomorphism*. Thus, since [we have assumed that] the codomain of the map under consideration is *nonempty*, it follows from Lemma 1.2, (i), that the domain of the map under consideration is *nonempty*, as desired. This completes the proof of Claim 1.3.A.

Next, let us verify the desired *bijectivity*. To this end, let us recall from condition (3) of [2], Definition 1.3, that the closed immersions $\iota_X \colon \overline{X} \hookrightarrow X$, $\iota_Y \colon \overline{X} \hookrightarrow Y$ induce *isomorphisms* of modules

$$\Gamma(X, \mathcal{I}_X \otimes_{\mathcal{O}_X} \mathcal{H}om_{\mathcal{O}_X}(f^*\mathcal{E}_1, f^*\mathcal{E}_2)) \xrightarrow{\sim} \Gamma(\overline{X}, i_X^*\mathcal{I}_X \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{H}om_{\mathcal{O}_{\overline{X}}}((f^*\mathcal{E}_1)|_{\overline{X}}, (f^*\mathcal{E}_2)|_{\overline{X}})),$$

$$\Gamma(Y, \mathcal{I}_Y \otimes_{\mathcal{O}_Y} \mathcal{H}om_{\mathcal{O}_Y}(\mathcal{E}_1, \mathcal{E}_2)) \xrightarrow{\sim} \Gamma(\overline{Y}, i_Y^* \mathcal{I}_Y \otimes_{\mathcal{O}_{\overline{Y}}} \mathcal{H}om_{\mathcal{O}_{\overline{Y}}}(\mathcal{E}_1|_{\overline{Y}}, \mathcal{E}_2|_{\overline{Y}})),$$

respectively. Moreover, it follows from condition (4) of [2], Definition 1.3, and [2], Lemma 1.4, that the homomorphism induced by f

$$\Gamma\left(\overline{Y}, i_Y^* \mathcal{I}_Y \otimes_{\mathcal{O}_{\overline{Y}}} \mathcal{H}om_{\mathcal{O}_{\overline{Y}}}(\mathcal{E}_1|_{\overline{Y}}, \mathcal{E}_2|_{\overline{Y}})\right) \longrightarrow \Gamma\left(\overline{X}, i_X^* \mathcal{I}_X \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{H}om_{\mathcal{O}_{\overline{X}}}\left((f^* \mathcal{E}_1)|_{\overline{X}}, (f^* \mathcal{E}_2)|_{\overline{X}}\right)\right)$$

is an *isomorphism*. Thus, it follows from Lemma 1.2, (ii), together with Claim 1.3.A, that the map under consideration is *bijective*, as desired. This completes the proof of Lemma 1.3. \Box

LEMMA 1.4. — The category LcFr fibered in groupoids over Sch_S satisfies condition (2) of [2], Definition 1.7.

PROOF. — Let

be a commutative diagram in Sch_S which is *strictly cocartesian* [cf. [2], Definition 1.5]; V a scheme over S;

$$V \xrightarrow{e} X, \qquad W \underbrace{\stackrel{f_1}{\underset{f_2}{\longrightarrow}} V}$$

quasi-nil-retraction-like morphisms [cf. [2], Definition 1.2, (iii)] over S such that

$$f_1 \circ c \circ a \circ e = (f_1 \circ d \circ b \circ e =) f_2 \circ c \circ a \circ e = (f_2 \circ d \circ b \circ e =) \operatorname{id}_V;$$

 \mathcal{E} a locally free \mathcal{O}_V -module; $\phi: c^* \mathcal{E}_1 \xrightarrow{\sim} c^* \mathcal{E}_2$ an isomorphism of \mathcal{O}_Y -modules — where we write $\mathcal{E}_i \stackrel{\text{def}}{=} f_i^* \mathcal{E}$ $[i \in \{1, 2\}]$ — such that the pull-back $e^* a^* \phi$ is the identity automorphism of $\mathcal{E} = e^* a^* c^* \mathcal{E}_1 = e^* a^* c^* \mathcal{E}_2$. Write $\xi_1 \stackrel{\text{def}}{=} (W, \mathcal{E}_1), \ \xi_2 \stackrel{\text{def}}{=} (W, \mathcal{E}_2)$ for the objects of the category LcFr determined by $\mathcal{E}_1, \mathcal{E}_2$, respectively. Then, to verify Lemma 1.4, it suffices to verify the *bijectivity* of the map induced by d

$$\operatorname{Lift}_c(\xi_1,\xi_2;\phi) \longrightarrow \operatorname{Lift}_b(d^*\xi_1,d^*\xi_2;a^*\phi)$$

Now let us observe that since each of the morphisms a, b, c, d, e, f_1, f_2 is an *affine* morphism [cf. [2], Remark 1.2.1], to verify the desired *bijectivity*, we may assume without loss of generality, by replacing V by a suitable open subscheme of V, that

- the scheme V hence also the schemes X, Y, Z, and W is affine,
- both $M_1 \stackrel{\text{def}}{=} \Gamma(W, \mathcal{E}_1)$ and $M_2 \stackrel{\text{def}}{=} \Gamma(W, \mathcal{E}_2)$ are *flat* $\Gamma(W, \mathcal{O}_W)$ -modules, and, moreover,

• if one regards the rings $A_Y \stackrel{\text{def}}{=} \Gamma(Y, \mathcal{O}_Y)$, $A_Z \stackrel{\text{def}}{=} \Gamma(Z, \mathcal{O}_Z)$, $A_W \stackrel{\text{def}}{=} \Gamma(W, \mathcal{O}_W)$ as subrings of $A_X \stackrel{\text{def}}{=} \Gamma(X, \mathcal{O}_X)$ by the relevant injective homomorphisms [cf. condition (1) of [2], Definition 1.5], then the equality

$$A_W = A_Y \cap A_Z$$

in A_X holds [cf. condition (2) of [2], Definition 1.5].

Then since the homomorphism $A_W \to A_Z$ is *injective*, the *injectivity* of the map under consideration is immediate. Moreover, to verify the *surjectivity* of the map under consideration, it suffices to verify the following claim:

Claim 1.4.A: Suppose that we are given an isomorphism $\phi_Y \colon M_1 \otimes_{A_W} A_Y \xrightarrow{\sim} M_2 \otimes_{A_W} A_Y$ of A_Y -modules and an isomorphism $\phi_Z \colon M_1 \otimes_{A_W} A_Z \xrightarrow{\sim} M_2 \otimes_{A_W} A_Z$ of A_Z -modules such that $\phi_Y \otimes_{A_Y} A_X = \phi_Z \otimes_{A_Z} A_X$. Then there exists an isomorphism $\phi_W \colon M_1 \xrightarrow{\sim} M_2$ of A_W -modules such that $\phi_W \otimes_{A_W} A_Y = \phi_Y$ and $\phi_W \otimes_{A_W} A_Z = \phi_Z$.

To this end, let us observe that it follows immediately from the equality $\phi_Y \otimes_{A_Y} A_X = \phi_Z \otimes_{A_Z} A_X$ that the diagram of natural injective homomorphisms of modules

is commutative, which thus implies that the image of these two composite [i.e., from M_1 to $M_2 \otimes_{A_W} A_X$] is contained in the intersection $(M_2 \otimes_{A_W} A_Y) \cap (M_2 \otimes_{A_W} A_Z)$ [i.e., in $M_2 \otimes_{A_W} A_X$]. Thus, since M_2 is a flat A_W -module, we conclude immediately from the equality $A_W = A_Y \cap A_Z$ that the above two composites determine a [single] homomorphism $\phi_W \colon M_1 \to M_2$ of A_W -modules such that $\phi_W \otimes_{A_W} A_Y = \phi_Y$ and $\phi_W \otimes_{A_W} A_Z = \phi_Z$. Moreover, by applying a similar argument to this argument to ϕ_Y^{-1} and ϕ_Z^{-1} , we conclude that ϕ_W is an *isomorphism*. This completes the proof of Claim 1.4.A, hence also of Lemma 1.4.

PROPOSITION 1.5. — The category LcFr fibered in groupoids over Sch_S is integrable [cf. [2], Definition 1.7], hence also [cf. [2], Remark 1.8.1] weakly integrable [cf. [2], Definition 1.8].

PROOF. — Let us observe that one verifies easily that the category LcFr fibered in groupoids over Sch_S satisfies condition (3) of [2], Definition 1.7. Thus, Proposition 1.5 follows from Lemma 1.3 and Lemma 1.4. This completes the proof of Proposition 1.5. \Box

DEFINITION 1.6. — Let \mathcal{E} be a locally free \mathcal{O}_X -module. Then we shall refer to a homomorphism of $(X \to S)^{-1} \mathcal{O}_S$ -modules

$$\nabla \colon \mathcal{E} \longrightarrow \mathcal{E} \otimes_{\mathcal{O}_X} \Omega^1_{X/S}$$

as a classical connection on \mathcal{E} if the equality $\nabla(fe) = f\nabla(e) + e \otimes df$ — where f, e are local sections of $\mathcal{O}_X, \mathcal{E}$, respectively — holds.

DEFINITION 1.7. — We shall write

 $SmSch \longrightarrow Sch_S$

for the category fibered in groupoids over Sch_S defined as follows:

• An object of the category SmSch is a smooth morphism $Z \to X$ of schemes over S.

• If $\xi: Z \to X$ and $\xi': Z' \to X'$ are objects of the category SmSch, then a morphism $(\xi: Z \to X) \to (\xi': Z' \to X')$ in the category SmSch is defined to be a pair (f_Z, f_X) consisting of morphisms $f_Z: Z \to Z'$ and $f_X: X \to X'$ of schemes over S such that the diagram in Sch_S

$$\begin{array}{ccc} Z & \xrightarrow{f_Z} & Z' \\ \xi & & & & \downarrow \xi' \\ X & \xrightarrow{f_X} & X' \end{array}$$

is commutative and induces an isomorphism $Z \xrightarrow{\sim} X \times_{X'} Z'$.

• The functor SmSch \rightarrow Sch_S sends " $Z \rightarrow X$ " to "X" and " (f_Z, f_X) " to " f_X ".

LEMMA 1.8. — Let X, \underline{X} be schemes over $S; \underline{X} \hookrightarrow X$ a square-nilpotent closed immersion over $S; \xi_1: Z_1 \to X, \xi_2: Z_2 \to X$ smooth morphisms over $S; \phi: Z_1 \times_X \underline{X} \xrightarrow{\sim} Z_2 \times_X \underline{X}$ an isomorphism over \underline{X} . Write $\underline{Z} \stackrel{\text{def}}{=} Z_1 \times_X \underline{X}, \underline{\xi}: \underline{Z} \to \underline{X}$ for the [necessarily smooth] morphism over S obtained by forming the base-change of the morphism ξ_1 by the closed immersion $\underline{X} \hookrightarrow X$, and $\mathcal{I}_X \subseteq \mathcal{O}_X$ for the conormal sheaf of the square-nilpotent closed immersion $\underline{X} \hookrightarrow X$. Then the following hold:

(i) There exists an element

$$o(\underline{X} \hookrightarrow X, \xi_1, \xi_2, \phi) \in H^1(\underline{Z}, \xi^* \mathcal{I}_X \otimes_{\mathcal{O}_Z} \mathcal{T}_{\underline{Z}/\underline{X}})$$

that satisfies the following condition: Let Y be a scheme over S and $f: Y \to X$ a morphism over S. Write $\underline{Y} \stackrel{\text{def}}{=} Y \times_X \underline{X} \hookrightarrow Y$ for the [necessarily square-nilpotent] closed immersion over S obtained by forming the base-change of the closed immersion $\underline{X} \hookrightarrow X$ by the morphism $f, \underline{f}: \underline{Y} \to \underline{X}$ for the morphism over S obtained by forming the basechange of the morphism f by the closed immersion $\underline{X} \hookrightarrow X, \underline{f}_Z: \underline{Z} \times_{\underline{X}} \underline{Y} \to \underline{Z}$ for the morphism over S obtained by forming the base-change of the morphism \underline{f} by the morphism $\underline{\xi}, \underline{\xi}_Y: \underline{Z} \times_{\underline{X}} \underline{Y} \to \underline{Y}$ for the morphism over S obtained by forming the basechange of the morphism \underline{f} by the morphism over S obtained by forming the basechange of the morphism \underline{f} by the morphism over S obtained by forming the basechange of the morphism \underline{f} . The morphism \underline{f} for the morphism \underline{f} , and $\mathcal{I}_Y \subseteq \mathcal{O}_Y$ for the conormal sheaf of the square-nilpotent closed immersion $\underline{Y} \hookrightarrow Y$. Then it holds that the set

$$\operatorname{Lift}_{\underline{Y} \hookrightarrow Y}(f^*\xi_1, f^*\xi_2; f^*\phi)$$

is **nonempty** if and only if the pull-back

$$\underline{f}_{Z}^{*}o(\underline{X} \hookrightarrow X, \xi_{1}, \xi_{2}, \phi) \in H^{1}(\underline{Z} \times_{\underline{X}} \underline{Y}, \underline{\xi}_{Y}^{*}\mathcal{I}_{Y} \otimes_{\mathcal{O}_{\underline{Z} \times_{\underline{X}} \underline{Y}}} \mathcal{T}_{\underline{Z} \times_{\underline{X}} \underline{Y}/\underline{Y}})$$

is zero.

(ii) Suppose that the set

$$\operatorname{Lift}_{\underline{X} \hookrightarrow X}(\xi_1, \xi_2; \phi)$$

is **nonempty**. Then the set $\text{Lift}_{\underline{X} \hookrightarrow X}(\xi_1, \xi_2; \phi)$ has a **natural structure of torsor** under the module

$$\Gamma(\underline{Z},\xi^*\mathcal{I}_X\otimes_{\mathcal{O}_Z}\mathcal{T}_{\underline{Z}/\underline{X}}).$$

PROOF. — These assertions follow from elementary deformation theory. \Box

LEMMA 1.9. — The category SmSch fibered in groupoids over Sch_S satisfies condition (1) of [2], Definition 1.7.

PROOF. — This assertion follows immediately from a similar argument to the argument applied in the proof of Lemma 1.3, together with Lemma 1.8. \Box

LEMMA 1.10. — The category SmSch fibered in groupoids over Sch_S satisfies condition (2) of [2], Definition 1.7.

Proof. — Let

$$V \xrightarrow{e} X, \qquad W \xrightarrow{f_1} V$$

quasi-nil-retraction-like morphisms over S such that

$$f_1 \circ c \circ a \circ e = (f_1 \circ d \circ b \circ e) = f_2 \circ c \circ a \circ e = (f_2 \circ d \circ b \circ e) \operatorname{id}_V;$$

T a scheme over S; $\xi \colon T \to V$ a smooth morphism over S; $\phi \colon T_1 \times_W Y \xrightarrow{\sim} T_2 \times_W Y$ an isomorphism over Y — where we write T_i for the fiber product of ξ and f_i $[i \in \{1, 2\}]$ such that the pull-back $e^*a^*\phi$ is the identity automorphism of $T = e^*a^*c^*T_1 = e^*a^*c^*T_2$. Write $\xi_1 \colon T_1 \to W$, $\xi_2 \colon T_2 \to W$ for the objects of the category SmSch determined by T_1 , T_2 , respectively. Then, to very Lemma 1.10, it suffices to verify the *bijectivity* of the map induced by d

$$\operatorname{Lift}_c(\xi_1, \xi_2; \phi) \longrightarrow \operatorname{Lift}_b(d^*\xi_1, d^*\xi_2; a^*\phi).$$

Now let us observe that since each of the morphisms a, b, c, d, e, f_1, f_2 is an *affine* morphism [cf. [2], Remark 1.2.1], to verify the desired *bijectivity*, we may assume without loss of generality, by replacing V by a suitable open subscheme of V, that

• the scheme V — hence also the schemes X, Y, Z, and W — is affine, and, moreover,

• if one regards the rings $A_Y \stackrel{\text{def}}{=} \Gamma(Y, \mathcal{O}_Y)$, $A_Z \stackrel{\text{def}}{=} \Gamma(Z, \mathcal{O}_Z)$, $A_W \stackrel{\text{def}}{=} \Gamma(W, \mathcal{O}_W)$ as subrings of $A_X \stackrel{\text{def}}{=} \Gamma(X, \mathcal{O}_X)$ by the relevant injective homomorphisms [cf. condition (1) of [2], Definition 1.5], then the equality

$$A_W = A_Y \cap A_Z$$

in A_X holds [cf. condition (2) of [2], Definition 1.5].

Moreover, let us observe that since [we have assumed that] the pull-back $e^*a^*\phi$ is the *identity automorphism* of T, one verifies easily that every element of each of the two sets $\operatorname{Lift}_c(\xi_1, \xi_2; \phi)$, $\operatorname{Lift}_b(d^*\xi_1, d^*\xi_2; a^*\phi)$ induces the "*identity automorphism*" of the underlying topological space, i.e., relative to the "identifications" of the underlying topological spaces of T, T_1 , T_2 , $T_1 \times_W Z$, and $T_2 \times_W Z$ determined by the relevant morphisms of schemes [cf. [2], Remark 1.2.1]. In particular, to verify the desired *bijectivity*, we may assume without loss of generality, by replacing T by a suitable open subscheme of T, that T is affine [which thus implies that $\Gamma(T, \mathcal{O}_T)$ is flat over $\Gamma(V, \mathcal{O}_V)$]. Then the desired bijectivity follows immediately from a similar argument to the argument applied in the proof of Lemma 1.4. This completes the proof of Lemma 1.10.

PROPOSITION 1.11. — The category SmSch fibered in groupoids over Sch_S is integrable, hence also [cf. [2], Remark 1.8.1] weakly integrable.

PROOF. — Let us observe that one verifies easily that the category SmSch fibered in groupoids over Sch_S satisfies condition (3) of [2], Definition 1.7. Thus, Proposition 1.11 follows from Lemma 1.9 and Lemma 1.10. This completes the proof of Proposition 1.11.

2. Divided Power Stratification Structures

In the present §2, we introduce and discuss the notion of a *divided power stratification* structure on a smooth scheme [cf. Definition 2.5 below]. In the present §2, let S be a scheme and X a scheme which is smooth and separated over S.

DEFINITION 2.1.

(i) We shall write

$$\left({}^{\mathrm{PD}}P \longrightarrow X^{(2)}, \; {}^{\mathrm{PD}}\mathcal{I}^{[1]} \subseteq \mathcal{O}_{\mathrm{PD}P}, \; \left((-)^{[n]} \colon {}^{\mathrm{PD}}\mathcal{I}^{[1]} \longrightarrow \mathcal{O}_{\mathrm{PD}P}\right)_{n \ge 0}\right)$$

for the divided power envelope of the diagonal closed immersion $X \hookrightarrow X^{(2)}$ with respect to a divided power structure on a quasi-coherent ideal of \mathcal{O}_S [cf. Remark 2.1.1 below]. Thus, we have a sequence of quasi-coherent ideals of \mathcal{O}_{PD_P}

$$\ldots \subseteq {}^{\mathrm{PD}}\mathcal{I}^{[n+1]} \subseteq {}^{\mathrm{PD}}\mathcal{I}^{[n]} \subseteq \ldots \subseteq {}^{\mathrm{PD}}\mathcal{I}^{[2]} \subseteq {}^{\mathrm{PD}}\mathcal{I}^{[1]} \subseteq \mathcal{O}_{{}^{\mathrm{PD}}P}.$$

(ii) Let n be a nonnegative integer. Then we shall write

$$^{\mathrm{PD}}P^n \subset ^{\mathrm{PD}}P$$

for the closed subscheme of ^{PD}*P* defined by the quasi-coherent ideal ^{PD} $\mathcal{I}^{[n+1]} \subseteq \mathcal{O}_{PDP}$ of \mathcal{O}_{PDP} . Thus, we have a sequence of closed subschemes of ^{PD}*P*

$${}^{\mathrm{PD}}P\supseteq\ldots\supseteq{}^{\mathrm{PD}}P^{n+1}\supseteq{}^{\mathrm{PD}}P^n\supseteq\ldots\supseteq{}^{\mathrm{PD}}P^2\supseteq{}^{\mathrm{PD}}P^1\supseteq{}^{\mathrm{PD}}P^0.$$

(iii) Let n be a nonnegative integer. Then we shall write

$$^{\mathrm{PD}}\iota^n \colon {}^{\mathrm{PD}}P^n \longrightarrow {}^{\mathrm{PD}}P^{n+1}$$

for the natural closed immersion over S.

(iv) Let n be a nonnegative integer. Then we shall write

$$^{\mathrm{PD}}\sigma^n \colon {}^{\mathrm{PD}}P^n \longrightarrow X^{(2)}$$

for the morphism over S obtained by forming the composite of the natural closed immersion ${}^{\mathrm{PD}}P^n \hookrightarrow {}^{\mathrm{PD}}P$ and the natural morphism ${}^{\mathrm{PD}}P \to X^{(2)}$.

REMARK 2.1.1. — It follows from [1], Corollary 3.22, that an arbitrary divided power structure on a quasi-coherent ideal of \mathcal{O}_S extends to \mathcal{O}_X . Thus, it follows from [1], Remarks 3.20, (6), that the divided power envelope of the diagonal closed immersion $X \hookrightarrow X^{(2)}$ does not depend on the choice of a divided power structure on a quasi-coherent ideal of \mathcal{O}_S . In particular, one may take the "divided power structure" of Definition 2.1, (i), to be the "trivial divided power structure" [i.e., on the zero ideal of \mathcal{O}_S].

LEMMA 2.2. — The collection of data

$$((^{\mathrm{PD}}P^n)_{n>0}, (^{\mathrm{PD}}\iota^n : {}^{\mathrm{PD}}P^n \to {}^{\mathrm{PD}}P^{n+1})_{n>0}, (^{\mathrm{PD}}\sigma^n : {}^{\mathrm{PD}}P^n \to X^{(2)})_{n>0})$$

forms a pre-stratification structure [cf. [2], Definition 2.2] on X/S.

PROOF. — It is immediate from the definitions of "PD ι^n " and "PD σ^n " that the collection of data under consideration satisfies condition (1) of [2], Definition 2.2. Moreover, it follows from [1], Remarks 3.20, (4), and [1], Corollary 3.22, that the collection of data under consideration satisfies condition (2) of [2], Definition 2.2. This completes the proof of Lemma 2.2.

DEFINITION 2.3. — Let n_1 , n_2 be nonnegative integers. Thus, we have the scheme $^{\text{PD}}P^{n_1,n_2}$ over S [cf. [2], Definition 2.4, (i), in the case where we take the " \mathfrak{S} " to be the pre-stratification structure of Lemma 2.2]. Now let us recall from the discussion preceding [1], Definition 4.3, that we have a morphism $^{\text{PD}}P^{n_1,n_2} \rightarrow ^{\text{PD}}P^{n_1+n_2}$ over S. We shall write

 $^{\mathrm{PD}}\delta^{n_1,n_2}$: $^{\mathrm{PD}}P^{n_1,n_2} \longrightarrow ^{\mathrm{PD}}P^{n_1+n_2}$

for this morphism.

PROPOSITION 2.4. — The collection of data

$$\mathrm{PD} = \left((^{\mathrm{PD}} P^n)_{n \ge 0}, \ (^{\mathrm{PD}} \iota^n \colon {}^{\mathrm{PD}} P^n \to {}^{\mathrm{PD}} P^{n+1})_{n \ge 0}, \right.$$

$$({}^{\mathrm{PD}}\sigma^{n} \colon {}^{\mathrm{PD}}P^{n} \to X^{(2)})_{n \ge 0}, \ ({}^{\mathrm{PD}}\delta^{n_{1},n_{2}} \colon {}^{\mathrm{PD}}P^{n_{1},n_{2}} \to {}^{\mathrm{PD}}P^{n_{1}+n_{2}})_{n_{1},n_{2} \ge 0})$$

forms a stratification structure [cf. [2], Definition 2.5] on X/S.

PROOF. — This assertion follows immediately from Lemma 2.2, together with the definition of "PD δ^{n_1,n_2} ".

DEFINITION 2.5. — We shall refer to the stratification structure of Proposition 2.4

 $\mathrm{PD} = \left((^{\mathrm{PD}} P^n)_{n \ge 0}, \ (^{\mathrm{PD}} \iota^n \colon {}^{\mathrm{PD}} P^n \to {}^{\mathrm{PD}} P^{n+1})_{n \ge 0}, \right.$

 $({}^{\mathrm{PD}}\sigma^{n} \colon {}^{\mathrm{PD}}P^{n} \to X^{(2)})_{n \ge 0}, \ ({}^{\mathrm{PD}}\delta^{n_{1},n_{2}} \colon {}^{\mathrm{PD}}P^{n_{1},n_{2}} \to {}^{\mathrm{PD}}P^{n_{1}+n_{2}})_{n_{1},n_{2} \ge 0})$

as the divided power stratification structure on X/S.

PROPOSITION 2.6. — Let \mathcal{E} be a locally free \mathcal{O}_X -module. Write $\xi = (X, \mathcal{E})$ for the object of the category LcFr fibered in groupoids over Sch_S of Definition 1.1 determined by \mathcal{E} . Then the following hold:

(i) The notion of a **divided power stratification** on the locally free \mathcal{O}_X -module \mathcal{E} in the sense of [1], Definition 4.3, is the same as the notion of a **PD-stratification** on ξ in the sense of Definition 2.5 and [2], Definition 4.6:

{divided power stratifications on \mathcal{E} in the sense of [1], Definition 4.3} = {}^{\text{PD}}\text{Strt}(\xi)

[cf. Definition 2.5; [2], Definition 4.6].

(ii) There exists a natural bijection between

• the set of classical connections [cf. Definition 1.6] on the locally free \mathcal{O}_X -module \mathcal{E} and

• the set of **PD-connections** on ξ [cf. Definition 2.5; [2], Definition 4.1, (iii)]

 $^{\rm PD}{\rm Cnn}^1(\xi)$

[cf. Definition 2.5; [2], Remark 4.1.1; [2], Definition 4.4]

that is compatible, in the evident sense, with the identification of (i)

{divided power stratifications on \mathcal{E} in the sense of [1], Definition 4.3} = {^{PD}Strt(ξ).

PROOF. — These assertions follow immediately — in light of [1], Proposition 2.9, and [1], Remark 4.2 — from the various definitions involved.

LEMMA 2.7. — Let *n* be a nonnegative integer. Then the closed immersion $^{\text{PD}}\iota^n : {}^{\text{PD}}P^n \hookrightarrow {}^{\text{PD}}P^{n+1}$ is square-nilpotent. In particular, the stratification structure PD is *ι*-quasi-nil-retraction-like [cf. [2], Definition 3.1, (i)].

PROOF. — This assertion follows from [1], Proposition 3.25 [cf. also [2], Remark 1.2.1]. \Box

LEMMA 2.8. — Let r be a positive integer; n_1, \ldots, n_r nonnegative integers. Write $n \stackrel{\text{def}}{=} \sum_{i=1}^r n_i$. Then the morphisms in the diagram of schemes over S

of [2], Definition 2.6 [i.e., in the case where we take the " \mathfrak{S} " to be the divided power stratification structure PD], are quasi-nil-retraction-like.

PROOF. — This assertion follows from Lemma 2.7 and [2], Remark 3.1.1, (iii). \Box

3. DIVIDED POWER POLYNOMIAL ALGEBRAS

In the present $\S3$, we discuss *divided power polynomial algebras*. The results obtained in the present $\S3$ will be applied in $\S4$ to prove that the divided power stratification structures have some good properties.

In the present §3, let R be a ring and A an R-algebra. Suppose that there exist a nonnegative integer d and d elements $a_1, \ldots, a_d \in A$ of A such that the a_i 's determine an étale morphism $R[s_1, \ldots, s_d] \to A$ over R — where s_1, \ldots, s_d are indeterminates. Write

$$A^{(2)} \stackrel{\text{def}}{=} A \otimes_R A;$$
$$I \subseteq A^{(2)}$$

for the kernel of the multiplication $A^{(2)} \twoheadrightarrow A$;

$${}^{X}_{\sharp}\mathrm{pr}_{1}^{(2)}, {}^{X}_{\sharp}\mathrm{pr}_{2}^{(2)} \colon A \longrightarrow A^{(2)}$$

for the homomorphisms given by mapping $a \in A$ to $a \otimes 1$, $1 \otimes a \in A^{(2)}$, respectively. Thus, for each nonnegative integer n, if one regards the ring $A^{(2)}/I^{n+1}$ as an A-algebra by ${}^X_{\sharp} \operatorname{pr}_1^{(2)}$ (respectively, ${}^X_{\sharp} \operatorname{pr}_2^{(2)}$), then the images of

$${}^{X}_{\sharp} \mathrm{pr}_{2}^{(2)}(a_{1}) - {}^{X}_{\sharp} \mathrm{pr}_{1}^{(2)}(a_{1}), \dots, {}^{X}_{\sharp} \mathrm{pr}_{2}^{(2)}(a_{d}) - {}^{X}_{\sharp} \mathrm{pr}_{1}^{(2)}(a_{d})$$

in $A^{(2)}/I^{n+1}$ determine an isomorphism $A[t_1, \ldots, t_d]/(t_1, \ldots, t_d)^{n+1} \xrightarrow{\sim} A^{(2)}/I^{n+1}$ of A-algebras — where t_1, \ldots, t_d are indeterminates.

DEFINITION 3.1.

(i) We shall write

$$\left({}^{\mathrm{PD}}A \stackrel{\mathrm{def}}{=} A\langle x_1, \dots, x_d \rangle, \; {}^{\mathrm{PD}}I^{[1]} \subseteq {}^{\mathrm{PD}}A, \; \left((-)^{[n]} \colon {}^{\mathrm{PD}}I^{[1]} \longrightarrow {}^{\mathrm{PD}}A\right)_{n \ge 0}\right)$$

for the divided power polynomial A-algebra on the indeterminates $\{x_1, \ldots, x_d\}$ [cf., e.g., [1], Theorem 3.9]. Thus, we have a sequence of ideals of ${}^{\text{PD}}A$

$$\ldots \subseteq {}^{\mathrm{PD}}I^{[n+1]} \subseteq {}^{\mathrm{PD}}I^{[n]} \subseteq \ldots \subseteq {}^{\mathrm{PD}}I^{[2]} \subseteq {}^{\mathrm{PD}}I^{[1]} \subseteq {}^{\mathrm{PD}}A$$

[cf. [1], Definition 3.24].

(ii) Let n be a nonnegative integer. Then we shall write

$$^{\mathrm{PD}}A^{n} \stackrel{\mathrm{def}}{=} {}^{\mathrm{PD}}A/{}^{\mathrm{PD}}I^{[n+1]}$$

for the quotient of ${}^{\mathrm{PD}}A$ by the ideal ${}^{\mathrm{PD}}I^{[n+1]} \subseteq {}^{\mathrm{PD}}A$ of ${}^{\mathrm{PD}}A$.

(iii) Let n be a nonnegative integer. Then we shall write

$${}^{\mathrm{PD}}_{\#}\iota^n : {}^{\mathrm{PD}}A^{n+1} \longrightarrow {}^{\mathrm{PD}}A^r$$

for the natural surjective homomorphism.

(iv) Let n be a nonnegative integer. Then if one regards the ring $A^{(2)}/I^{n+1}$ as an A-algebra by ${}^X_{\sharp} \operatorname{pr}_1^{(2)}$, then it follows from the discussion preceding Definition 3.1 that we have a homomorphism of A-algebras

$$A^{(2)}/I^{n+1} \longrightarrow {}^{\mathrm{PD}}A^n$$

given by, for each $i \in \{1, \ldots, d\}$, mapping ${}_{\sharp}^{X} \operatorname{pr}_{2}^{(2)}(a_{i}) - {}_{\sharp}^{X} \operatorname{pr}_{1}^{(2)}(a_{i})$ to x_{i} . We shall write

 ${}^{\mathrm{PD}}_{\sharp}\sigma^n \colon A^{(2)} \longrightarrow {}^{\mathrm{PD}}A^n$

for the homomorphism obtained by forming the composite of the natural surjective homomorphism $A^{(2)} \to A^{(2)}/I^{n+1}$ and this homomorphism $A^{(2)}/I^{n+1} \to {}^{\mathrm{PD}}A^n$.

LEMMA 3.2. — Write

$$X \stackrel{\text{def}}{=} \operatorname{Spec}(A) \longrightarrow S \stackrel{\text{def}}{=} \operatorname{Spec}(R).$$

In particular, we are in the situation of [2], §2, hence also the situation of §2 of the present paper, which thus implies that we are given the morphisms

$$^{X}\mathrm{pr}_{1}^{(2)}, \, ^{X}\mathrm{pr}_{2}^{(2)} \colon X^{(2)} \longrightarrow X$$

of [2], Definition 2.1, (iii), and the pre-stratification structure on X/S of Lemma 2.2 of the present paper

$$\left(({}^{\mathrm{PD}}P^n)_{n\geq 0}, \ ({}^{\mathrm{PD}}\iota^n \colon {}^{\mathrm{PD}}P^n \to {}^{\mathrm{PD}}P^{n+1})_{n\geq 0}, \ ({}^{\mathrm{PD}}\sigma^n \colon {}^{\mathrm{PD}}P^n \to X^{(2)})_{n\geq 0}\right).$$

Then there exist isomorphisms of schemes

$$X^{(2)} \xrightarrow{\sim} \operatorname{Spec}(A^{(2)}), \qquad {}^{\operatorname{PD}}P^n \xrightarrow{\sim} \operatorname{Spec}({}^{\operatorname{PD}}A^n)$$

- where n is a nonnegative integer - such that the morphisms of schemes

$$^{X}\mathrm{pr}_{1}^{(2)},$$
 $^{X}\mathrm{pr}_{2}^{(2)},$ $^{\mathrm{PD}}\iota^{n},$ $^{\mathrm{PD}}\sigma^{n}$

coincide — relative to the isomorphisms of schemes under consideration — with the morphisms of schemes induced by the homomorphisms

 ${}^{X}_{\sharp} \mathrm{pr}_{1}^{(2)}, \qquad {}^{X}_{\sharp} \mathrm{pr}_{2}^{(2)}, \qquad {}^{\mathrm{PD}}_{\sharp} \iota^{n}, \qquad {}^{\mathrm{PD}}_{\sharp} \sigma^{n}$

defined in the discussion preceding Definition 3.1 and Definition 3.1, respectively.

PROOF. — This assertion follows immediately from a similar argument to the argument applied in the proof of [1], Proposition 3.32, together with the various definitions involved. \Box

DEFINITION 3.3. — Let r be a positive integer; n_1, \ldots, n_r nonnegative integers. Write $n \stackrel{\text{def}}{=} \sum_{i=1}^r n_i$.

(i) Let m_1, \ldots, m_r be nonnegative integers such that $m_i \leq n_i$ for each $i \in \{1, \ldots, r\}$; j an element of $\{1, \ldots, r+1\}$; j' an element of $\{1, \ldots, r\}$. Then it follows from Lemma 3.2 that we obtain rings

$$^{\mathrm{PD}}A^{n_1,\ldots,n_r}$$
. $^{\mathrm{PD}}A^{\times r}$

that "correspond" — relative to the isomorphisms of schemes of Lemma 3.2 — to the schemes

$$^{\text{PD}}P^{n_1,\ldots,n_r}$$
 $^{\text{PD}}P^{\times r}$

defined in [2], Definition 2.4, (i), (vi) [i.e., in the case where we take the " \mathfrak{S} " to be the pre-stratification structure of Lemma 2.2], respectively, and homomorphisms

$${}^{\mathrm{PD}}_{\sharp} \iota^{m_1, \dots, m_r}_{n_1, \dots, n_r} : {}^{\mathrm{PD}} A^{n_1, \dots, n_r} \longrightarrow {}^{\mathrm{PD}} A^{m_1, \dots, m_r},$$

$${}^{\mathrm{PD}}_{\sharp} \mathrm{pr}^{n_1, \dots, n_r}_{j} : A \longrightarrow {}^{\mathrm{PD}} A^{n_1, \dots, n_r},$$

$${}^{\mathrm{PD}}_{\sharp} \mathrm{pr}^{n_1, \dots, n_r}_{\{j', j'+1\}} : {}^{\mathrm{PD}} A^{n_{j'}} \longrightarrow {}^{\mathrm{PD}} A^{n_1, \dots, n_r},$$

$${}^{\mathrm{PD}}_{\sharp} \mathrm{pr}^{\times r}_{j} : A \longrightarrow {}^{\mathrm{PD}} A^{\times r},$$

$${}^{\mathrm{PD}}_{\sharp} \mathrm{pr}^{\times r}_{\{j', j'+1\}} : {}^{\mathrm{PD}} A^{1} \longrightarrow {}^{\mathrm{PD}} A^{\times r}$$

that "correspond" — relative to the isomorphisms of schemes of Lemma 3.2 — to the morphisms of schemes

$${}^{\mathrm{PD}}\iota_{n_1,\dots,n_r}^{m_1,\dots,m_r}, \qquad {}^{\mathrm{PD}}\mathrm{pr}_{j}^{n_1,\dots,n_r}, \qquad {}^{\mathrm{PD}}\mathrm{pr}_{\{j',j'+1\}}^{n_1,\dots,n_r}, \qquad {}^{\mathrm{PD}}\mathrm{pr}_{j'}^{\times r}, \qquad {}^{\mathrm{PD}}\mathrm{pr}_{\{j',j'+1\}}^{\times r}$$

defined in [2], Definition 2.4, (ii), (iv), (v), (vi) [i.e., in the case where we take the " \mathfrak{S} " to be the pre-stratification structure of Lemma 2.2], respectively.

(ii) It follows from Lemma 3.2 that we obtain homomorphisms

$${}^{\mathrm{PD}}_{\sharp} \delta^{\times n}_{n_1,\dots,n_r} \colon {}^{\mathrm{PD}} A^{n_1,\dots,n_r} \longrightarrow {}^{\mathrm{PD}} A^{\times n}, \qquad {}^{\mathrm{PD}}_{\sharp} \delta^{\times n} \colon {}^{\mathrm{PD}} A^n \longrightarrow {}^{\mathrm{PD}} A^{\times n},$$
$${}^{\mathrm{PD}}_{\sharp} \delta^{n_1,\dots,n_r} \colon {}^{\mathrm{PD}} A^n \longrightarrow {}^{\mathrm{PD}} A^{n_1,\dots,n_r}$$

that "correspond" — relative to the isomorphisms of schemes of Lemma 3.2 — to the morphisms of schemes

$$^{\mathrm{PD}}\delta_{n_1,\ldots,n_r}^{\times n}, \qquad ^{\mathrm{PD}}\delta^{\times n}, \qquad ^{\mathrm{PD}}\delta^{n_1,\ldots,n_r}$$

defined in [2], Definition 2.6 [i.e., in the case where we take the " \mathfrak{S} " to be the stratification structure of Definition 2.5], respectively.

(iii) Let *i* be an element of $\{1, \ldots, r+1\}$. Suppose that $n \ge 1$. Then it follows from Lemma 3.2 that we obtain rings

$$^{\mathrm{PD}}\underline{A}^{n_1,\ldots,n_r}, \qquad ^{\mathrm{PD}}\underline{A}^{\times n_r}$$

that "correspond" — relative to the isomorphisms of schemes of Lemma 3.2 — to the schemes

$$^{\mathrm{PD}}\underline{P}^{n_1,\ldots,n_r}, \qquad {}^{\mathrm{PD}}\underline{P}^{\times r}$$

defined in [2], Definition 2.7, (i), (v) [i.e., in the case where we take the " \mathfrak{S} " to be the stratification structure of Definition 2.5], respectively, and homomorphisms

$$\stackrel{\mathrm{PD}}{=} \underline{\iota}^{n_1,\dots,n_r} : \stackrel{\mathrm{PD}}{=} A^{n_1,\dots,n_r} \longrightarrow \stackrel{\mathrm{PD}}{=} \underline{A}^{n_1,\dots,n_r}, \qquad \stackrel{\mathrm{PD}}{=} \underline{\delta}^{n_1,\dots,n_r} : \stackrel{\mathrm{PD}}{=} A^{n-1} \longrightarrow \stackrel{\mathrm{PD}}{=} \underline{A}^{n_1,\dots,n_r},$$

$$\stackrel{\mathrm{PD}}{=} \underline{\mu}^{n_1,\dots,n_r} : A \longrightarrow \stackrel{\mathrm{PD}}{=} \underline{A}^{n_1,\dots,n_r}, \qquad \stackrel{\mathrm{PD}}{=} \underline{\ell}^{0}_{n_1,\dots,n_r} : \stackrel{\mathrm{PD}}{=} \underline{A}^{n_1,\dots,n_r} \longrightarrow A,$$

$$\stackrel{\mathrm{PD}}{=} \underline{\iota}^{\times r} : \stackrel{\mathrm{PD}}{=} A^{\times r} \longrightarrow \stackrel{\mathrm{PD}}{=} \underline{A}^{\times r}, \qquad \stackrel{\mathrm{PD}}{=} \underline{\delta}^{\times r} : \stackrel{\mathrm{PD}}{=} A^{r-1} \longrightarrow \stackrel{\mathrm{PD}}{=} \underline{A}^{\times r},$$

$$\stackrel{\mathrm{PD}}{=} \underline{\mu}^{\times r} : A \longrightarrow \stackrel{\mathrm{PD}}{=} \underline{A}^{\times r}, \qquad \stackrel{\mathrm{PD}}{=} \underline{\delta}^{\times r} : \stackrel{\mathrm{PD}}{=} A^{r-1} \longrightarrow \stackrel{\mathrm{PD}}{=} \underline{A}^{\times r},$$

$$\stackrel{\mathrm{PD}}{=} \underline{\mu}^{\times r} : A \longrightarrow \stackrel{\mathrm{PD}}{=} \underline{A}^{\times r}, \qquad \stackrel{\mathrm{PD}}{=} \underline{A}^{\times r} \longrightarrow A$$

that "correspond" — relative to the isomorphisms of schemes of Lemma 3.2 — to the morphisms of schemes

$${}^{\mathrm{PD}}\underline{\iota}^{n_1,\dots,n_r}, \qquad {}^{\mathrm{PD}}\underline{\delta}^{n_1,\dots,n_r}, \qquad {}^{\mathrm{PD}}\underline{\mathrm{pr}}_i^{n_1,\dots,n_r}, \qquad {}^{\mathrm{PD}}\underline{\iota}_{n_1,\dots,n_r}^0,$$

$${}^{\mathrm{PD}}\underline{\iota}^{\times r}, \qquad {}^{\mathrm{PD}}\underline{\delta}^{\times r}, \qquad {}^{\mathrm{PD}}\underline{\mathrm{pr}}_i^{\times r}, \qquad {}^{\mathrm{PD}}\underline{\iota}_{\times r}^0$$

defined in [2], Definition 2.7, (ii), (iii), (iv), (v) [i.e., in the case where we take the " \mathfrak{S} " to be the stratification structure of Definition 2.5], respectively.

DEFINITION 3.4. — Let n be a positive integer.

(i) We shall write

[n,d]

for the set of maps $\{1, \ldots, n\} \rightarrow \{0, \ldots, d\}$.

(ii) We shall define an equivalence relation ~ on the set [n, d] as follows: For $\mathfrak{m}, \mathfrak{n} \in [n, d]$, we write $\mathfrak{m} \sim \mathfrak{n}$ if $\sharp \mathfrak{m}^{-1}(\{i\}) = \sharp \mathfrak{n}^{-1}(\{i\})$ for every $i \in \{0, \ldots, d\}$ [cf. Remark 3.6.1 below].

(iii) Let $\overline{\mathfrak{m}}$ be an element of $[n, d]/\sim$. Then we shall write

$$x^{[\widetilde{\mathfrak{m}}]} \stackrel{\text{def}}{=} \prod_{i=0}^{d} x_i^{[\sharp\mathfrak{m}^{-1}(\{i\})]} \in {}^{\mathrm{PD}}A^n$$

— where we write

 $x_0 \stackrel{\text{def}}{=} 1,$

and $\mathfrak{m} \in \overline{\mathfrak{m}} \subseteq [n, d]$. Note that it is immediate that the element " $x^{[\overline{\mathfrak{m}}]}$ " does not depend on the choice of $\mathfrak{m} \in \overline{\mathfrak{m}}$, i.e., depends only on $\overline{\mathfrak{m}}$.

(iv) Let \mathfrak{m} be an element of [n, d]. Then we shall write

$$x_{\otimes \mathfrak{m}} \stackrel{\text{def}}{=} x_{\mathfrak{m}(1)} \otimes \cdots \otimes x_{\mathfrak{m}(n)} \in {}^{\mathrm{PD}}A^{\times n}$$

— where we write

$$x_0 \stackrel{\text{def}}{=} 1.$$

(v) Let $\overline{\mathfrak{m}}$ be an element of $[n, d]/\sim$. Then we shall write

$$x_{\otimes \overline{\mathfrak{m}}} \stackrel{\text{def}}{=} \sum_{\mathfrak{m} \in \overline{\mathfrak{m}}} x_{\otimes \mathfrak{m}} \in {}^{\mathrm{PD}} A^{\times n}.$$

LEMMA 3.5. — Let n be a positive integer. Then the following hold:

(i) If one regards ${}^{\text{PD}}A^n$ as an A-module by the homomorphism ${}^{\text{PD}}_{\sharp}\text{pr}_1^n$ (respectively, ${}^{\text{PD}}_{\sharp}\text{pr}_2^n$), then the A-module ${}^{\text{PD}}A^n$ is **free**, and the subset $\{x^{[\overline{\mathfrak{m}}]}\}_{\overline{\mathfrak{m}}\in[n,d]/\sim} \subseteq {}^{\text{PD}}A^n$ of ${}^{\text{PD}}A^n$ forms a **basis** of the free A-module ${}^{\text{PD}}A^n$.

(ii) If one regards ${}^{\text{PD}}A^{\times n}$ as an A-module by the homomorphism ${}^{\text{PD}}_{\sharp} \mathrm{pr}_{1}^{\times n}$ (respectively, ${}^{\text{PD}}_{\sharp} \mathrm{pr}_{n+1}^{\times n}$), then the A-module ${}^{\text{PD}}A^{\times n}$ is **free**, and the subset $\{x_{\otimes \mathfrak{m}}\}_{\mathfrak{m}\in[n,d]} \subseteq {}^{\text{PD}}A^{\times n}$ of ${}^{\text{PD}}A^{\times n}$ forms a **basis** of the free A-module ${}^{\text{PD}}A^{\times n}$.

PROOF. — Assertion (i) follows from (4) of [1], Theorem 3.9. Assertion (ii) follows from assertion (i). $\hfill \Box$

DEFINITION 3.6. — Let n be a positive integer.

(i) We shall write

 \mathfrak{S}_n

for the group of self-bijections of the set $\{1, \ldots, n\}$ and

$$\mathfrak{S}_{1,n-1}$$
 (respectively, $\mathfrak{S}_{n-1,1}$)

for the subgroup of \mathfrak{S}_n obtained by forming the stabilizer of $1 \in \{1, \ldots, n\}$ (respectively, $n \in \{1, \ldots, n\}$).

(ii) The assignment

$$\mathfrak{S}_n \ni \sigma \longmapsto (x_{i_1} \otimes \cdots \otimes x_{i_n} \mapsto x_{i_{\sigma(1)}} \otimes \cdots \otimes x_{i_{\sigma(n)}})$$

— where we write

$$x_0 \stackrel{\text{def}}{=} 1,$$

and i_j is an element of $\{0, \ldots, d\}$ for each $j \in \{1, \ldots, n\}$ — determines an action of the group \mathfrak{S}_n on the subset $\{x_{\otimes \mathfrak{m}}\}_{\mathfrak{m}\in[n,d]} \subseteq {}^{\mathrm{PD}}A^{\times n}$ of ${}^{\mathrm{PD}}A^{\times n}$ discussed in Lemma 3.5, (ii). Thus, it follows from Lemma 3.5, (ii), that if one regards ${}^{\mathrm{PD}}A^{\times n}$ as an A-module by the

homomorphism ${}^{\mathrm{PD}}_{\sharp}\mathrm{pr}_1^{\times n}$, then this action determines an action of the group \mathfrak{S}_n on the *A*-module ${}^{\mathrm{PD}}A^{\times n}$. For a subgroup $G \subseteq \mathfrak{S}_n$ of \mathfrak{S}_n , we shall write

$$(^{\mathrm{PD}}A^{\times n})^G \subseteq {}^{\mathrm{PD}}A^{\times n}$$

for the A-submodule of G-invariants.

REMARK 3.6.1. — Let *n* be a positive integer. Then the action of the group \mathfrak{S}_n on the set $\{1, \ldots, n\}$ induces an action of the group \mathfrak{S}_n on the set [n, d]. Moreover, one verifies easily that the equivalence relation ~ on the set [n, d] of Definition 3.4, (ii), *coincides* with the equivalence relation on the set [n, d] determined by this action of the group \mathfrak{S}_n on the set [n, d].

LEMMA 3.7. — Let n be a positive integer. Then the following hold:

(i) Let $\overline{\mathbf{m}}$ be an element of $[n, d] / \sim$. Then the homomorphism $\stackrel{\mathrm{PD}}{\sharp} \delta^{\times n} : \stackrel{\mathrm{PD}}{\to} A^n \to \stackrel{\mathrm{PD}}{\to} A^{\times n}$ maps $x^{[\overline{\mathbf{m}}]} \in \stackrel{\mathrm{PD}}{\to} A^n$ to $x_{\otimes \overline{\mathbf{m}}} \in \stackrel{\mathrm{PD}}{\to} A^{\times n}$:

$${}^{\mathrm{PD}}_{\ \sharp}\delta^{\times n}(x^{[\overline{\mathfrak{m}}]}) = x_{\otimes\overline{\mathfrak{m}}}$$

(ii) The homomorphism ${}^{\mathrm{PD}}_{\sharp}\delta^{\times n} \colon {}^{\mathrm{PD}}A^n \to {}^{\mathrm{PD}}A^{\times n}$ is injective.

(iii) The image of the injective [cf. (ii)] homomorphism ${}^{\text{PD}}_{\sharp}\delta^{\times n}$: ${}^{\text{PD}}A^n \hookrightarrow {}^{\text{PD}}A^{\times n}$ coincides with the submodule $({}^{\text{PD}}A^{\times n}){}^{\mathfrak{S}_n} \subset {}^{\text{PD}}A^{\times n}$ of ${}^{\text{PD}}A^{\times n}$.

PROOF. — Assertion (i) follows from a straightforward calculation [cf. also the discussion preceding [1], Definition 4.3, concerning the homomorphism " δ "]. Assertions (ii), (iii) follow immediately from assertion (i), together with Lemma 3.5, (i), (ii) [cf. also Remark 3.6.1].

LEMMA 3.8. — Let r be a positive integer; n_1, \ldots, n_r nonnegative integers. Write $n \stackrel{\text{def}}{=} \sum_{i=1}^r n_i$. Let us recall the commutative diagram of rings

[cf. [2], Definition 2.6, i.e., in the case where we take the " \mathfrak{S} " to be the stratification structure of Definition 2.5]. Then the homomorphisms in this diagram are injective.

PROOF. — Let us first observe that since the homomorphism ${}^{\text{PD}}_{\sharp}\delta^{\times n}$ is *injective* [cf. Lemma 3.7, (ii)], to verify Lemma 3.8, it suffices to verify that the homomorphism ${}^{\text{PD}}_{\sharp}\delta^{\times n}_{n_1,\dots,n_r}$ is *injective*. Thus, by applying Lemma 3.5, (i), (ii), and induction on r [cf. the definition of the homomorphism ${}^{\text{PD}}_{\sharp}\delta^{\times n}_{n_1,\dots,n_r}$], to verify Lemma 3.8, we may assume without loss of generality that r = 1. On the other hand, it follows from Lemma 3.7, (ii),

that if r = 1, then the homomorphism ${}^{\text{PD}}_{\sharp} \delta^{\times n}_{n_1,\dots,n_r}$ is *injective*, as desired. This completes the proof of Lemma 3.8.

LEMMA 3.9. — Suppose that $n \ge 3$. Let us recall the commutative diagram of injective [cf. Lemma 3.8] homomorphisms of rings

Then the intersection of the image of ${}^{\text{PD}}_{\ \ \ }\delta^{\times n}_{1,n-1}$ and the image of ${}^{\text{PD}}_{\ \ \ \ }\delta^{\times n}_{n-1,1}$ coincides with the image of ${}^{\text{PD}}_{\ \ \ \ }\delta^{\times n}$.

PROOF. — Let z be an element of ${}^{\text{PD}}A^{\times n}$ contained in the intersection under consideration. Then it follows immediately from Lemma 3.7, (iii), that z is *contained* in both $({}^{\text{PD}}A^{\times n})^{\mathfrak{S}_{1,n-1}}$ and $({}^{\text{PD}}A^{\times n})^{\mathfrak{S}_{n-1,1}}$. Thus, since [one verifies easily from our assumption that $n \geq 3$ that] the group \mathfrak{S}_n is *generated* by the subgroups $\mathfrak{S}_{1,n-1}$ and $\mathfrak{S}_{n-1,1}$, again by Lemma 3.7, (iii), we conclude that z is *contained* in the image of ${}^{\text{PD}}_{\ \sharp}\delta^{\times n}$, as desired. This completes the proof of Lemma 3.9.

LEMMA 3.10. — Let r be a positive integer; n_1, \ldots, n_r nonnegative integers. Write $n \stackrel{\text{def}}{=} \sum_{i=1}^r n_i$. Suppose that $n \ge 1$. Then the kernel of the surjective homomorphism $\stackrel{\text{PD}}{=} \underline{\iota}^{n_1,\ldots,n_r} : \stackrel{\text{PD}}{=} A^{n_1,\ldots,n_r} \xrightarrow{\longrightarrow} \stackrel{\text{PD}}{=} \underline{A}^{n_1,\ldots,n_r} - i.e.$, the ideal of $\stackrel{\text{PD}}{=} A^{n_1,\ldots,n_r}$ generated by the image of $\stackrel{\text{PD}}{=} I^{[n]} / \stackrel{\text{PD}}{=} I^{[n+1]} \subseteq \stackrel{\text{PD}}{=} A^n$ by $\stackrel{\text{PD}}{=} \delta^{n_1,\ldots,n_r} - is$ annihilated by the kernel of the surjective homomorphism $\stackrel{\text{PD}}{=} \iota^{0,\ldots,0}_{n_1,\ldots,n_r} : \stackrel{\text{PD}}{=} A^{n_1,\ldots,n_r} \xrightarrow{\longrightarrow} \stackrel{\text{PD}}{=} A^{0,\ldots,0} = A.$

PROOF. — Let us first observe that it follows from [1], Lemma 3.5, [1], Lemma 3.7, and [1], Proposition 3.25, together with the various definitions involved, that we have a *natural divided power structure* on the ideal of ${}^{\text{PD}}A^n$ (respectively, ${}^{\text{PD}}A^{n_1,\ldots,n_r}$) obtained by forming the kernel of the surjective homomorphism ${}^{\text{PD}}_{\ \ \mu} \iota_n^0$: ${}^{\text{PD}}A^n \twoheadrightarrow {}^{\text{PD}}A^0 = A$ (respectively, ${}^{\text{PD}}_{\ \ \mu} \iota_{n_1,\ldots,n_r}^{n_r}$: ${}^{\text{PD}}A^{n_1,\ldots,n_r} \twoheadrightarrow {}^{\text{PD}}A^{0,\ldots,0} = A$), by means of which let us regard the ring ${}^{\text{PD}}A^n$ (respectively, ${}^{\text{PD}}A^{n_1,\ldots,n_r} : {}^{\text{PD}}A^{n_1,\ldots,n_r} \to {}^{\text{PD}}A^{0,\ldots,0} = A$), by means of which let us regard the ring ${}^{\text{PD}}A^n$ (respectively, ${}^{\text{PD}}A^{n_1,\ldots,n_r}$) as a divided power ring. Moreover, one verifies immediately from the discussion preceding [1], Definition 4.3, that the homomorphism ${}^{\text{PD}}_{\ \ \beta}\delta^{n_1,\ldots,n_r} : {}^{\text{PD}}A^n \to {}^{\text{PD}}A^{n_1,\ldots,n_r}$ is *compatible* with the respective divided power structures. Thus, Lemma 3.10 follows immediately from the [easily verified] fact that the ideal " $I^{[n]}$ " defined in [1], Definition 3.24, for the divided power ring ${}^{\text{PD}}A^{n_1,\ldots,n_r}$ in the case where we take the "n" of [1], Definition 3.24, to be n + 1 is zero. This completes the proof of Lemma 3.10.

LEMMA 3.11. — Let n be a nonnegative integer and p a prime number. Suppose that the ring R is a ring over a field of characteristic p. Write $J \subseteq A^{(2)}/I^{n+1}$ for the ideal of $A^{(2)}$ generated by [the images of]

$${}_{\sharp}^{X} \mathrm{pr}_{2}^{(2)}(a_{1})^{p} - {}_{\sharp}^{X} \mathrm{pr}_{1}^{(2)}(a_{1})^{p}, \dots, {}_{\sharp}^{X} \mathrm{pr}_{2}^{(2)}(a_{d})^{p} - {}_{\sharp}^{X} \mathrm{pr}_{1}^{(2)}(a_{d})^{p}.$$

Then the homomorphism $A^{(2)}/I^{n+1} \to {}^{\text{PD}}A^n$ of Definition 3.1, (iv), factors through the natural surjective homomorphism $A^{(2)}/I^{n+1} \twoheadrightarrow A^{(2)}/(I^{n+1}+J)$.

PROOF. — It follows from the definition of the homomorphism $A^{(2)}/I^{n+1} \to {}^{\text{PD}}A^n$ of Definition 3.1, (iv), that, to verify Lemma 3.11, it suffices to verify that $x_i^p = 0$ for every $i \in \{1, \ldots, d\}$. On the other hand, this follows immediately from the equality " $n!\gamma_n(x) = x^n$ " in [1], Definition 3.1. This completes the proof of Lemma 3.11.

4. AN APPLICATION OF THE FIRST FUNDAMENTAL CORRESPONDENCE

In the present §4, we prove [cf. Theorem 4.1 below] that the divided power stratification structure PD is *strictly integrable* [cf. [2], Definition 3.3] and *of standard type* [cf. [2], Definition 3.6]. Moreover, we discuss an application of the first fundamental correspondence of [2], Definition 5.7 [cf. Corollary 4.3 below].

The main result of the present paper is as follows.

THEOREM 4.1. — Let S be a scheme and X a scheme which is **smooth** and **separated** over S. Then the divided power stratification structure [cf. Definition 2.5]

$$PD = \left((^{PD}P^n)_{n \ge 0}, \ (^{PD}\iota^n \colon {}^{PD}P^n \to {}^{PD}P^{n+1})_{n \ge 0}, \right.$$
$$\left({}^{PD}\sigma^n \colon {}^{PD}P^n \to X^{(2)})_{n \ge 0}, \ (^{PD}\delta^{n_1,n_2} \colon {}^{PD}P^{n_1,n_2} \to {}^{PD}P^{n_1+n_2})_{n_1,n_2 \ge 0} \right)$$

is strictly integrable [cf. [2], Definition 3.3] and of standard type [cf. [2], Definition 3.6].

PROOF. — Let us first observe that it follows from [1], Remark 4.2, that PD satisfies condition (1) of [2], Definition 3.6. Moreover, it follows immediately from Lemma 3.5, (i), (ii), and Lemma 3.7, (i), that PD satisfies conditions (2), (3) of [2], Definition 3.6. In particular, the stratification structure PD is of standard type.

Next, let us recall from Lemma 2.7 that PD is ι -quasi-nil-retraction-like. Moreover, it follows from Lemma 2.8 and Lemma 3.8 that PD is δ -nil-retraction-like [cf. [2], Definition 3.1, (iii)]. In particular, the stratification structure PD satisfies condition (1) of [2], Definition 3.2.

Moreover, since PD is δ -nil-retraction-like [cf. the second paragraph of the present proof of Theorem 4.1], it follows from Lemma 3.9 that PD is δ -strictly cocartesian of level ≥ 3 [cf. [2], Definition 3.1, (iv)]. In particular, the stratification structure PD satisfies condition (2) of [2], Definition 3.2.

Next, it follows from Lemma 2.7 that the stratification structure PD satisfies condition (3) of [2], Definition 3.2.

Next, let us verify that PD satisfies condition (4) of [2], Definition 3.2. Let us first observe that since [it follows from the second paragraph of the present proof of Theorem 4.1 that] the morphism ${}^{\text{PD}}\delta^{\times 2}$: ${}^{\text{PD}}P^{\times 2} \rightarrow {}^{\text{PD}}P^{2}$ is *nil-retraction-like* [cf. [2], Definition 1.2, (iv)], it follows from [2], Remark 1.3.1, that the morphism ${}^{\text{PD}}\delta^{\times 2}$: ${}^{\text{PD}}P^{\times 2} \rightarrow {}^{\text{PD}}P^{2}$ satisfies conditions (1), (2) of [2], Definition 1.3. Now let us take the " \overline{X} " (respectively, " \overline{Y} ") of [2], Definition 1.3, to be X (respectively, X) and the closed immersion " i_X " (respectively, " i_Y ") of [2], Definition 1.3, to be the closed immersion ${}^{\text{PD}}\iota_{1,1}^{0,0}$: $X = {}^{\text{PD}}P^{0,0} \hookrightarrow {}^{\text{PD}}P^{\times 2}$ (respectively, ${}^{\text{PD}}\iota_{2}^{0}$: $X = {}^{\text{PD}}P^{0} \hookrightarrow {}^{\text{PD}}P^{2}$). Then it follows from Lemma 3.10 that condition (3) of [2], Definition 1.3, is satisfied. Moreover, condition (4) of [2], Definition 1.3, is immediate. This completes the proof of the assertion that PD satisfies condition (4) of [2], Definition 3.3.

Next, it follows from Lemma 3.5, (i), that PD is pr-*finite flat* [cf. [2], Definition 3.1, (ii)]. In particular, the stratification structure PD satisfies condition (2) of [2], Definition 3.3.

Thus, since PD satisfies condition (3) of [2], Definition 3.3 [cf. the first paragraph of the present proof of Theorem 4.1 and [2], Remark 3.6.2], we conclude that the stratification structure PD is *strictly integrable*. This completes the proof of Theorem 4.1. \Box

COROLLARY 4.2. — Let S be a scheme, X a scheme which is **smooth** and **separated** over S,

 $\mathcal{F} \longrightarrow \operatorname{Sch}_S$

a category fibered in groupoids over Sch_S , and ξ an object of \mathcal{F} over X. Suppose that the following two conditions are satisfied:

(1) The category \mathcal{F} fibered in groupoids over Sch_S is weakly integrable [cf. [2], Definition 1.8].

(2) The scheme X is of relative dimension ≤ 1 over S.

Then every PD-connection [cf. Definition 2.5; [2], Definition 4.1, (iii)] on ξ is **PD-integrable** [cf. Definition 2.5; [2], Definition 4.7, (ii)]:

$$^{\rm PD}{\rm Cnn}^1(\xi) = ^{\rm PD}{\rm Int}{\rm Cnn}(\xi)$$

[cf. Definition 2.5; [2], Definition 4.7, (ii)].

PROOF. — This assertion follows from Theorem 4.1 and [2], Proposition 4.10. \Box

One main application of the first fundamental correspondence of [2], Definition 5.7, is as follows.

COROLLARY 4.3. — Let S be a scheme, X a scheme which is smooth and separated over S,

$$\mathcal{F} \longrightarrow \operatorname{Sch}_S$$

a weakly integrable [cf. [2], Definition 1.8] category fibered in groupoids over Sch_S , and ξ an object of \mathcal{F} over X. Then the natural map

 $^{\text{PD}}\text{Strt}(\xi) \longrightarrow ^{\text{PD}}\text{IntCnn}(\xi)$

[cf. Definition 2.5; [2], Definition 4.6; [2], Definition 4.7, (ii); [2], Lemma 4.8] is bijective.

PROOF. — This assertion follows from Theorem 4.1 and [2], Theorem 5.6.

REMARK 4.3.1. — Suppose that we are in the situation of Corollary 4.3.

(i) Suppose that one takes the " $\mathcal{F} \to \operatorname{Sch}_S$ " of Corollary 4.3 to be the category LcFr $\to \operatorname{Sch}_S$ fibered in groupoids of Definition 1.1 [cf. also Proposition 1.5], which thus implies that the object ξ corresponds to a *locally free* \mathcal{O}_X -module \mathcal{E} .

Let ∇ be a PD-connection on ξ . Then it follows from Proposition 2.6, (ii), that the PDconnection ∇ corresponds to a *classical connection* on \mathcal{E} , i.e., a certain homomorphism of $(X \to S)^{-1} \mathcal{O}_S$ -modules [cf. Definition 1.6]

$$\mathcal{E} \longrightarrow \mathcal{E} \otimes_{\mathcal{O}_X} \Omega^1_{X/S}.$$

Now let us recall that the closed immersion ${}^{\mathrm{PD}}\underline{\iota}_{\times 2}^T$: $T^1 \hookrightarrow {}^{\mathrm{PD}}\underline{P}^{\times 2}$ of [2], Definition 3.6, is a square-nilpotent closed immersion whose conormal sheaf is isomorphic to the \mathcal{O}_{T^1} -module $({}^{\mathrm{PD}}\iota_T^0)_*\Omega^2_{X/S}$ [cf. Theorem 4.1; condition (3) of [2], Definition 3.6]. Thus, it follows from Lemma 1.2, (ii), that the subgroup

$$\operatorname{Lift}_{\operatorname{PD}_{\underline{\ell}\times 2}}\left((\operatorname{^{PD}}_{\underline{\mathrm{PT}}_{1}}^{\times 2})^{*}\xi, (\operatorname{^{PD}}_{\underline{\mathrm{PT}}_{1}}^{\times 2})^{*}\xi; \operatorname{id}_{(x_{\operatorname{PT}_{1}}^{T})^{*}\xi}\right) \subseteq \operatorname{Aut}_{\mathcal{F}|_{\operatorname{PD}}_{\underline{P}}\times 2}\left((\operatorname{^{PD}}_{\underline{\mathrm{PT}}_{1}}^{\times 2})^{*}\xi\right)$$

may be naturally identified with the module

$$\Gamma(X, \Omega^2_{X/S} \otimes_{\mathcal{O}_X} \mathcal{E}nd_{\mathcal{O}_X}(\mathcal{E})))$$

In particular, since the stratification structure PD is of standard type [cf. Theorem 4.1], and the category LcFr fibered in groupoids is weakly integrable [cf. Proposition 1.5], by applying [2], Lemma 4.9, we conclude that the PD-curvature [cf. Definition 2.5; [2], Definition 4.7, (i)] of the PD-connection ∇ may be naturally identified with a global section of

$$\Omega^2_{X/S} \otimes_{\mathcal{O}_X} \mathcal{E}nd_{\mathcal{O}_X}(\mathcal{E}).$$

Moreover, in this case, one verifies easily from a straightforward calculation that this global section of $\Omega^2_{X/S} \otimes_{\mathcal{O}_X} \mathcal{E}nd_{\mathcal{O}_X}(\xi)$ coincides, up to sign, with the *curvature* of the corresponding classical connection on \mathcal{E}

$$\mathcal{E} \longrightarrow \mathcal{E} \otimes_{\mathcal{O}_X} \Omega^1_{X/S}$$

in the usual sense [cf., e.g., the discussion preceding [1], Theorem 2.15].

In particular, we conclude from Proposition 2.6, (i), (ii), that the *bijection* of Corollary 4.3 may be regarded as a *generalization* of the equivalence [cf. [1], Theorem 4.8] between

- an integrable connection on \mathcal{E} and
- a divided power stratification on \mathcal{E}

[i.e., in the case where the modules under consideration are locally free].

(ii) Suppose that one takes the " $\mathcal{F} \to \operatorname{Sch}_S$ " of Corollary 4.3 to be the category $\operatorname{SmSch} \to \operatorname{Sch}_S$ fibered in groupoids of Definition 1.7 [cf. also Proposition 1.11], which thus implies that the object ξ is a smooth morphism $Z \to X$ of schemes over S. Let ∇ be a PD-connection on ξ . Then it follows immediately from a similar argument to the argument of (i), together with Lemma 1.8, (ii), that the PD-curvature of the PD-connection ∇ may be naturally identified with a global section of

$$\Omega^2_{X/S} \otimes_{\mathcal{O}_X} \xi_* \mathcal{T}_{Z/X}.$$

REMARK 4.3.2. — In [3], Definition 2.3, *B. Osserman* asserted that the *integrability* of a [PD-]connection [cf. Proposition 2.6, (ii)] concerns a certain "cocycle condition" on " $X_3^{(2)}$ " — i.e., T^1 in the notational conventions of [2] [cf. [2], Definition 3.4, (i)]. However, this is *false*. Indeed, as we have already observed in [2], Lemma 4.9, the "cocycle condition" on " $X_3^{(2)}$ " — i.e., T^1 in the notational conventions of [2] — for every PD-connection is *always satisfied* whenever the category \mathcal{F} fibered in groupoids over Sch_S is *weakly integrable* [as in the case of LcFr — cf. Proposition 1.5]. As discussed in Remark 4.3.1, (i), and [2], Definition 4.7, (i), the *integrability* of a PD-connection concerns a certain "cocycle condition" on T^1].

COROLLARY 4.4. — Let S be a scheme, X a scheme which is smooth and separated over S,

$$\mathcal{F} \longrightarrow \operatorname{Sch}_S$$

a category fibered in groupoids over Sch_S , and ξ an object of \mathcal{F} over X. Suppose that the following two conditions are satisfied:

(1) The category \mathcal{F} fibered in groupoids over Sch_S is weakly integrable [cf. [2], Definition 1.8].

(2) The scheme X is of relative dimension ≤ 1 over S.

Then the natural map

$$^{\rm PD}$$
Strt(ξ) \longrightarrow $^{\rm PD}$ Cnn¹(ξ)

[cf. Definition 2.5; [2], Definition 4.4; [2], Definition 4.6] is bijective.

PROOF. — This assertion follows from Corollary 4.2 and Corollary 4.3.

References

- P. Berthelot and A. Ogus, Notes on crystalline cohomology. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978.
- [2] Y. Hoshi, Integrable connections I: two fundamental correspondences. RIMS Preprint 1902 (July 2019).
- [3] B. Osserman, *Connections, curvature, and p-curvature*. available at: https://www.math.ucdavis.edu/~osserman/.

(Yuichiro Hoshi) RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KY-OTO 606-8502, JAPAN

Email address: yuichiro@kurims.kyoto-u.ac.jp