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Abstract. — In the present paper, we prove that, for a smooth scheme over a field of
characteristic p > 0, the natural morphism from the divided power stratification structure to
the Frobenius-stratification structure is strictly p-integrable. In particular, as an application
of the second fundamental correspondence, we obtain a natural bijection between the set
of Frobenius-descent data and the set of p-dormant PD-connections on objects of weakly
integrable categories fibered in groupoids over categories of schemes. This bijection may be
regarded as a generalization of the well-known equivalence concerning dormant connections
and Frobenius-descent data.
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Introduction

I.0. — Let p be a prime number, S a scheme over a field of characteristic p, and X a
scheme which is smooth and separated over S. Write XF → S for the base-change of the
structure morphism X → S of X by the absolute [p-th power] Frobenius endomorphism
of S [cf. Definition 1.1],

FrX/S : X // XF

for the relative [p-th power] Frobenius morphism of X/S [cf. Definition 1.1], SchS for the
category of schemes over S and morphisms of schemes over S [cf. [3], Definition 1.6, (i)],
and

PDP 1 ⊆ X ×S X
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Frobenius-descent datum.
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for the closed subscheme of X ×S X defined by the quasi-coherent ideal of OX×SX ob-
tained by forming the square of the quasi-coherent ideal that defines the diagonal closed
subscheme X ⊆ X×S X of X×S X [cf. [4], Definition 2.1, (ii); [2], Remark 4.2]. For each
i ∈ {1, 2}, write, moreover,

PDpr1i :
PDP 1 // X

for the morphism over S obtained by forming the composite of the natural closed im-
mersion PDP 1 ↪→ X ×S X and the projection X ×S X → X onto the i-th factor [cf. [3],
Definition 2.3, (ii); [4], Lemma 2.2].

I.1. — In the remainder of the present Introduction, let

E

be a locally free OX-module. Here, let us recall some discussions of [4], Introduction. Let
us first recall that a connection on E [i.e., relative to X/S] is defined to be a homomor-
phism of (X → S)−1OS-modules

∇ : E // E ⊗OX
Ω1

X/S

that satisfies the equality ∇(fe) = f∇(e)+ e⊗ df — where f , e are local sections of OX ,
E , respectively [cf. [4], Definition 1.6]. On the other hand, it is well-known [cf., e.g., [2],
Proposition 2.9] that giving a connection on E [i.e., a homomorphism of (X → S)−1OS-
modules as above] is equivalent to giving an isomorphism of OPDP 1-modules

(PDpr12)
∗E ∼ // (PDpr11)

∗E

that restricts, on the diagonal closed subscheme X ⊆ PDP 1, to the identity automorphism
of E [cf. [4], Proposition 2.6, (ii)]. Moreover, such an isomorphism (PDpr12)

∗E ∼→ (PDpr11)
∗E

is naturally related to the notion of a divided power stratification [cf., e.g., [2], Definition
4.3] on E .

Now let us observe that since the above “second” definition of the notion of a connection
[i.e., an isomorphism (PDpr12)

∗E ∼→ (PDpr11)
∗E as above] and the definition of the notion

of a divided power stratification of [2], Definition 4.3, are “sufficiently abstract”, one may
apply these definitions [not only to locally free modules as above but also] to an object of
a category fibered in groupoids over the category SchS. In the remainder of the present
Introduction, let F → SchS be a category fibered in groupoids over SchS and ξ an object
of F over X. Thus, one may define

• a PD-connection on ξ to be an isomorphism

(PDpr12)
∗ξ

∼ // (PDpr11)
∗ξ

in F over the identity automorphism of PDP 1 that restricts to the identity automorphism
of ξ = ((PDpr12)

∗ξ)|X = ((PDpr11)
∗ξ)|X [cf. [3], Definition 4.1, (iii); [4], Definition 2.5].

Moreover, one may also define

• a PD-stratification to be a collection of data similar to a divided power stratification
defined in [2], Definition 4.3 [cf. [3], Definition 4.6; [4], Definition 2.5] and
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• a PD-integrable PD-connection to be a PD-connection whose PD-curvature [cf. [3],
Definition 4.7, (i); [4], Definition 2.5] is the identity automorphism [cf. [3], Definition 4.7,
(ii); [4], Definition 2.5].

Write

PDStrt(ξ), PDIntCnn(ξ)

for the sets of PD-stratifications, PD-integrable PD-connections on ξ, respectively [cf. [3],
Definition 4.6; [3], Definition 4.7, (ii); [4], Definition 2.5].

Here, let us recall that one important result of [4] [cf. [4], Theorem A] asserts that

if the category F fibered in groupoids over SchS is weakly integrable [cf.
[3], Definition 1.8], then the natural map

PDStrt(ξ) // PDIntCnn(ξ)

[cf. [3], Lemma 4.8] is bijective.

Note that this bijection may be regarded as a generalization [cf. [4], Remark 4.3.1, (i)] of
the well-known equivalence of the following two conditions on a given [classical] connection
∇ : E → E ⊗OX

Ω1
X/S on the locally free OX-module E :

• The connection ∇ is integrable — i.e., the curvature of the connection ∇

E ∇ // E ⊗OX
Ω1

X/S
∇1

// E ⊗OX
Ω2

X/S

[cf., e.g., the discussion preceding [2], Theorem 2.15] is zero.

• The connection ∇ extends to a uniquely determined divided power stratification on
E .

I.2. — We shall refer to a descent datum on the object ξ of the category F fibered
in groupoids over the category SchS with respect to the relative Frobenius morphism
FrX/S : X → XF of X/S — i.e., an isomorphism in F , over the identity automorphism
of X ×XF X, of the pull-back of ξ by the second projection X ×XF X → X with the
pull-back of ξ by the first projection X ×XF X → X that satisfies a certain “cocycle
condition” on X ×XF X ×XF X — as a Frobenius-descent datum on ξ [cf. Definition 3.2,
(iv)]. Write

FrDsc(ξ)

for the set of Frobenius-descent data on ξ [cf. Definition 3.2, (iv)].
Now let us observe that one verifies easily that the natural closed immersion PDP 1 ↪→

X ×S X factors through the closed immersion X ×XF X ↪→ X ×S X determined by the
morphism XF → S [cf. Lemma 1.3]. Thus, by pulling back a Frobenius-descent datum
on ξ by the resulting closed immersion PDP 1 ↪→ X ×XF X, one obtains an isomorphism

(PDpr12)
∗ξ

∼ // (PDpr11)
∗ξ
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in F over the identity automorphism of PDP 1. Let us also observe that this isomorphism
is in fact a PD-connection on ξ; moreover, this PD-connection naturally extends to a PD-
stratification on ξ. In summary, one may construct a PD-stratification from a Frobenius-
descent datum, i.e., obtain a map of sets

FrDsc(ξ) // PDStrt(ξ) ( // PDIntCnn(ξ))

[cf. Proposition 1.11; Proposition 3.3; [3], Lemma 4.8; [3], Lemma 4.12, (i)].

I.3. — Next, let us recall the notion of p-curvature [cf., e.g., [5], §5]. One may associate,
to a divided power stratification [or, alternatively, an integrable connection] on the locally
free OX-module E , the p-curvature, i.e., a certain homomorphism of OX-modules

E // E ⊗OX
Fr∗X/SΩ

1
XF /S.

The usual definition of the p-curvature of a divided power stratification relies, at least a
priori, on the fact that E is an OX-module. Thus, the usual definition cannot be applied,
at least in any immediate way, to a PD-stratification on an object of F discussed in
§I.1. However, S. Mochizuki gave a “sufficiently abstract” definition of p-curvature [cf.
[7], Proposition 1.7; [8], §2.3], which does work even if one works with the category F
fibered in groupoids over SchS as in §I.1. We define

• the (π, p)-curvature of a PD-stratification — that is an automorphism of a certain
object of F — by applying a similar definition to the definition by Mochizuki [cf. also
Remark 3.9.1, (i)], i.e., [3], Definition 4.13, (i) [cf. Proposition 1.11; [3], Definition 4.13,
(i)].

Moreover, we define

• a (π, p)-dormant PD-connection by applying [3], Definition 4.13, (iii), i.e., to be a
[necessarily PD-integrable — cf. [3], Lemma 4.8] PD-connection that arises from a PD-
stratification whose (π, p)-curvature is the identity automorphism [cf. Proposition 1.11;
[3], Definition 4.13, (iii)].

Write
π,pDrmCnn(ξ) ⊆ PDIntCnn(ξ)

for the set of (π, p)-dormant PD-connections on ξ [cf. Proposition 1.11; [3], Definition
4.13, (iii)].

I.4. — Next, let us recall that it is well-known [cf., e.g., [5], Theorem 5.1] that, for a given
integrable connection ∇ on the locally free OX-module E , the following two conditions
are equivalent:

(†) The integrable connection ∇ is dormant — i.e., the p-curvature of the integrable
connection ∇

E // E ⊗OX
Fr∗X/SΩ

1
XF /S

[cf. §I.3] is zero.
(‡) The integrable connection ∇ arises from a uniquely determined Frobenius-descent

datum on E [cf. the final display of §I.2].
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Here, let us observe that the proof of the above relationship between dormant connec-
tions and Frobenius-descent data given in [5], §5, relies, at least a priori, on the fact that
E is an OX-module [cf. the argument concerning the endomorphism “P” in the proof of
[5], Theorem 5.1]. In particular, this proof cannot be applied, at least in any immediate
way, in a situation in which we work with the category F fibered in groupoids over SchS

as in §I.1.
In the present paper, we give a “geometric proof” of the above equivalence, which does

work even if one works with a certain category F fibered in groupoids over SchS as in §I.1.
One important result of the present paper — that may be regarded as an application of the
second fundamental correspondence of [3], Definition 6.7 — is as follows [cf. Corollary 3.9].

THEOREM A. — Let p be a prime number, S a scheme over a field of characteristic
p, X a scheme which is smooth and separated over S,

F // SchS

a weakly integrable [cf. [3], Definition 1.8] category fibered in groupoids over SchS, and
ξ an object of F over X. Then the map

FrDsc(ξ) // π,pDrmCnn(ξ)

[cf. Proposition 1.11; Definition 3.2, (iv); Proposition 3.3; [3], Definition 4.13, (iii); [3],
Lemma 4.14] determined by the morphism π : PD → Fr [cf. Proposition 1.11] is bijective.

We shall say that the category F fibered in groupoids over SchS is Frobenius-descent
effective if the relative [p-th power] Frobenius morphism of every smooth scheme over
S is an effective descent morphism, i.e., relative to the category F fibered in groupoids
over SchS [cf. Definition 3.2, (v)]. Since [one verifies easily that] the relative Frobenius
morphism of a smooth scheme over S is a finite flat universal homeomorphism, one verifies
immediately from elementary descent theory that both

• the category fibered in groupoids of locally free modules [cf. [4], Definition 1.1] and

• the category fibered in groupoids of smooth schemes [cf. [4], Definition 1.7]

are Frobenius-descent effective [cf. Remark 3.2.1].
As an application of Theorem A, we also obtain the following result [cf. Corollary 3.10].

THEOREM B. — Let p be a prime number, S a scheme over a field of characteristic
p, X a scheme which is smooth and separated over S, and

F // SchS

a weakly integrable [cf. [3], Definition 1.8] and Frobenius-descent effective [cf.
Definition 3.2, (v)] category fibered in groupoids over SchS. Write XF → S for the base-
change of the structure morphism X → S of X by the absolute [p-th power] Frobenius
endomorphism of S,

FrX/S : X // XF
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for the relative [p-th power] Frobenius morphism of X/S, and

F|Drm
X

for the groupoid defined as follows:

• An object of the category F|Drm
X is a pair (ξ,∇) consisting of an object ξ of F|X [cf. [3],

Definition 1.6, (ii)] and a (π, p)-dormant PD-connection ∇ on ξ [cf. Proposition 1.11;
[3], Definition 4.1, (iii); [3], Definition 4.13, (iii); [4], Definition 2.5].

• If (ξ1,∇1) and (ξ2,∇2) are objects of the category F|Drm
X , then a morphism (ξ1,∇1) →

(ξ2,∇2) in the category F|Drm
X is defined to be an isomorphism ξ1

∼→ ξ2 in F|X that is
PD-horizontal [cf. [3], Definition 4.2; [4], Definition 2.5].

Then the functor

F|XF // F|Drm
X

[cf. Corollary 3.9] determined by the morphism FrX/S : X → XF is an equivalence of
categories.

Thus, we obtain generalizations of the equivalence of the two conditions (†) and (‡) in
§I.4, i.e., Theorem A and Theorem B.

Acknowledgments

This research was supported by JSPS KAKENHI Grant Number 18K03239 and by the
Research Institute for Mathematical Sciences, an International Joint Usage/Research
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1. Frobenius-stratification Structures

In the present §1, we introduce and discuss the notion of a Frobenius-stratification
structure on a smooth scheme over a field of positive characteristic [cf. Definition 1.8
below]. In the present §1, let p be a prime number, S a scheme over a field of characteristic
p, and X a scheme which is smooth and separated over S. Thus, we have the divided power
stratification structure on X/S

PD =
(
(PDP n)n≥0, (PDιn : PDP n → PDP n+1)n≥0,

(PDσn : PDP n → X(2))n≥0, (PDδn1,n2 : PDP n1,n2 → PDP n1+n2)n1, n2≥0

)
[cf. [4], Definition 2.5].

DEFINITION 1.1. — We shall write

FrS : S // S

for the absolute [p-th power] Frobenius endomorphism of S,

FrX : X // X
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for the absolute [p-th power] Frobenius endomorphism of X,

XF // S

for the base-change of the structure morphism X → S of X by FrS, and

FrX/S : X // XF

for the relative [p-th power] Frobenius morphism of X/S. Thus, we have a commutative
diagram of schemes

X
FrX/S

!!B
BB

BB
BB

��1
11
11
11
11
11
11
11
1

FrX

��
XF //

��

X

��
S

FrS

// S

— where the right-hand lower square is cartesian.

DEFINITION 1.2.

(i) We shall write

FrP
def
= X ×XF

X

for the fiber product of two copies of FrX/S : X → XF . Thus, the structure morphism
XF → S of XF determines a closed immersion over S

FrP � � // X(2).

(ii) Let i be an element of {1, 2}. Then we shall write

Frpri :
FrP // X

for the projection onto the i-th factor.

LEMMA 1.3. — Let n be a nonnegative integer. Then the morphism PDσn : PDP n → X(2)

factors through the closed immersion FrP ↪→ X(2) of Definition 1.2, (i):

PDP n //

PDσn ##F
FF

FF
FF

F
FrP
nN

}}zz
zz
zz
zz

X(2).

Proof. — This assertion follows immediately from [4], Lemma 3.11 [cf. also [4], Lemma
3.2]. □
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DEFINITION 1.4. — Let n be a nonnegative integer.

(i) We shall write

FrP n ⊆ FrP

for the closed subscheme of FrP obtained by forming the scheme-theoretic image of the
morphism PDP n → FrP obtained in Lemma 1.3. Thus, we have a sequence of closed
subschemes of FrP

FrP ⊇ . . . ⊇ FrP n+1 ⊇ FrP n ⊇ . . . ⊇ FrP 2 ⊇ FrP 1 ⊇ FrP 0.

(ii) We shall write

Frιn : FrP n � � // FrP n+1

for the natural closed immersion over S.

(iii) We shall write

Frσn : FrP n � � // X(2)

for the closed immersion over S obtained by forming the composite of the natural closed
immersion FrP n ↪→ FrP and the closed immersion FrP ↪→ X(2) of Definition 1.2, (i).

(iv) We shall write

πn : PDP n // FrP n

for the morphism over S obtained by the definition of FrP n. Thus, we have a commutative
diagram of schemes over S

PDP n πn

//

PDσn ##F
FF

FF
FF

F
FrP n

mM

Frσn||yy
yy
yy
yy

X(2).

LEMMA 1.5. — The collection of data(
(FrP n)n≥0, (Frιn : FrP n → FrP n+1)n≥0, (Frσn : FrP n → X(2))n≥0

)
forms a pre-stratification structure [cf. [3], Definition 2.2] on X/S.

Proof. — It is immediate from the definitions of “Frιn” and “Frσn” that the collection
of data under consideration satisfies condition (1) of [3], Definition 2.2. Moreover, it
follows from the commutative diagram of Definition 1.4, (iv), and [4], Lemma 2.2, that
the collection of data under consideration satisfies condition (2) of [3], Definition 2.2.
This completes the proof of Lemma 1.5. □

DEFINITION 1.6. — Let n1, n2 be nonnegative integers. Thus, we have the scheme
FrP n1,n2 over S [cf. [3], Definition 2.4, (i), in the case where we take the “S” to be the
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pre-stratification structure of Lemma 1.5]. Then one verifies easily that the commutative
diagram of schemes over S

PDP n1,n2
PDδn1,n2

//

PDσn1,n2

��

PDP n1+n2

PDσn1+n2

��

X(3)

Xpr
(3)
{1,3}

// X(2)

[cf. condition (1) of [3], Definition 2.5; [4], Proposition 2.4] determines a commutative
diagram of schemes over S

FrP n1,n2 //
� _

��

FrP n1+n2

� _

��

X(3)

Xpr
(3)
{1,3}

// X(2)

— where the vertical arrows are the natural closed immersions. We shall write

Frδn1,n2 : FrP n1,n2 // FrP n1+n2

for the upper horizontal arrow of this diagram.

PROPOSITION 1.7. — The collection of data

Fr =
(
(FrP n)n≥0, (Frιn : FrP n → FrP n+1)n≥0,

(Frσn : FrP n → X(2))n≥0, (Frδn1,n2 : FrP n1,n2 → FrP n1+n2)n1, n2≥0

)
forms a stratification structure [cf. [3], Definition 2.5] on X/S.

Proof. — This assertion follows immediately from Lemma 1.5 and [4], Proposition 2.4,
together with the definition of “Frδn1,n2”. □

DEFINITION 1.8. — We shall refer to the stratification structure of Proposition 1.7

Fr =
(
(FrP n)n≥0, (Frιn : FrP n → FrP n+1)n≥0,

(Frσn : FrP n → X(2))n≥0, (Frδn1,n2 : FrP n1,n2 → FrP n1+n2)n1, n2≥0

)
as the Frobenius-stratification structure on X/S.

LEMMA 1.9. — Let n be a nonnegative integer. Then the closed immersion Frιn : FrP n ↪→
FrP n+1 is square-nilpotent [cf. [3], Definition 1.2, (ii)]. In particular, the stratification
structure Fr is ι-quasi-nil-retraction-like [cf. [3], Definition 3.1, (i)].

Proof. — This assertion follows from [4], Lemma 2.7 [cf. also [3], Remark 1.2.1]. □
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LEMMA 1.10. — Let r be a positive integer; n1, . . . , nr nonnegative integers. Write n
def
=∑r

i=1 ni. Then the morphisms in the diagram of schemes over S

FrP×n
Frδ×n

n1,...,nr //

Frδ×n ##F
FF

FF
FF

F
FrP n1,...,nr

Frδn1,...,nrzztt
tt
tt
tt
t

FrP n

of [3], Definition 2.6 [i.e., in the case where we take the “S” to be the Frobenius-
stratification structure Fr], are quasi-nil-retraction-like [cf. [3], Definition 1.2, (iii)].

Proof. — This assertion follows from Lemma 1.9 and [3], Remark 3.1.1, (iii). □

PROPOSITION 1.11. — The collection of data

π
def
= (πn : PDP n → FrP n)n≥0

forms a morphism of stratification structures [cf. [3], Definition 2.8]

PD // Fr.

Proof. — This assertion follows immediately from the various definitions involved. □

LEMMA 1.12. — Let r be a positive integer; n1, . . . , nr nonnegative integers. Then the
morphism πn1,...,nr : PDP n1,...,nr → FrP n1,...,nr [cf. [3], Definition 2.9, i.e., in the case where
we take the “Φ” to be the morphism π of Proposition 1.11] is quasi-nil-retraction-like.

Proof. — This assertion follows — in light of [3], Remark 3.7.1 — from Lemma 1.9
and [4], Lemma 2.7. □

2. Divided Power Polynomial Algebras in Positive Characteristic

In the present §2, we discuss divided power polynomial algebras in positive character-
istic. The results obtained in the present §2 will be applied in §3 to prove that the
Frobenius-stratification structures have some good properties.

In the present §2, let R be a ring and A an R-algebra. Suppose that there exist a
nonnegative integer d and d elements a1, . . . , ad ∈ A of A such that the ai’s determine an
étale morphism R[s1, . . . , sd] → A over R — where s1, . . . , sd are indeterminates. Thus,

we are in the situation of [4], §3. In particular, we are given the ring A(2) def
= A⊗R A, the

kernel I ⊆ A(2) of the multiplication A(2) ↠ A, and the homomorphisms

X
♯ pr

(2)
1 , X

♯ pr
(2)
2 : A // A(2)

given by mapping a ∈ A to a⊗ 1, 1⊗ a ∈ A(2), respectively. In the present §2, let p be a
prime number. Moreover, suppose that the ring R is a ring over a field of characteristic
p.
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DEFINITION 2.1.

(i) We shall write

Jp ⊆ A(2)

for the ideal of A(2) generated by

X
♯ pr

(2)
2 (a1)

p − X
♯ pr

(2)
1 (a1)

p , . . . , X
♯ pr

(2)
2 (ad)

p − X
♯ pr

(2)
1 (ad)

p

[cf. also [4], Lemma 3.11] and

FrA
def
= A(2)/Jp

for the quotient of A(2) by the ideal Jp ⊆ A(2) of A(2).

(ii) Let i be an element of {1, 2}. Then we shall write

Fr
♯ pri : A // FrA

for the homomorphism obtained by forming the composite of the homomorphism X
♯ pr

(2)
i : A →

A(2) and the natural surjective homomorphism A(2) ↠ FrA.

(iii) Let n be a nonnegative integer. Then we shall write

FrAn ⊆ PDAn

[cf. [4], Definition 3.1, (ii)] for the subring of PDAn obtained by forming the image of the
homomorphism (FrAn ↠) A(2)/(In+1 + J) → PDAn obtained in [4], Lemma 3.11.

(iv) Let n be a nonnegative integer. Then we shall write

Fr
♯ ι

n : FrAn+1 // // FrAn

for the natural surjective homomorphism.

(v) Let n be a nonnegative integer. Then we shall write

Fr
♯ σ

n : A(2) // FrAn

for the natural surjective homomorphism.

(vi) Let n be a nonnegative integer. Then we shall write

♯π
n : FrAn � � // PDAn

for the natural injective homomorphism.

LEMMA 2.2. — Write

X
def
= Spec(A) // S

def
= Spec(R).

In particular, we are in the situation of §1, which thus implies that we are given the
morphisms

Frpr1,
Frpr2 :

FrP // X, πn : PDP n // FrP n
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— where n is a nonnegative integer — and the pre-stratification structure on X/S of
Lemma 1.5 (

(FrP n)n≥0, (Frιn : FrP n → FrP n+1)n≥0, (Frσn : FrP n → X(2))n≥0

)
.

Then there exist isomorphisms of schemes

FrP
∼ // Spec(FrA), FrP n ∼ // Spec(FrAn)

such that the morphisms of schemes

Frpr1,
Frpr2, πn, Frιn, Frσn

coincide — relative to the isomorphisms of schemes under consideration and the iso-
morphisms of schemes of [4], Lemma 3.2 — with the morphisms of schemes induced by
the homomorphisms

Fr
♯ pr1,

Fr
♯ pr2, ♯π

n, Fr
♯ ι

n, Fr
♯ σ

n

defined in Definition 2.1, respectively.

Proof. — This assertion follows immediately from [4], Lemma 3.2, together with the
various definitions involved. □

DEFINITION 2.3. — Let r be a positive integer; n1, . . . , nr nonnegative integers. Write

n
def
=

∑r
i=1 ni.

(i) Let m1, . . . ,mr be nonnegative integers such that mi ≤ ni for each i ∈ {1, . . . , r}; j
an element of {1, . . . , r+1}; j′ an element of {1, . . . , r}. Then it follows from Lemma 2.2
that we obtain rings

FrAn1,...,nr , FrA×r

that “correspond” — relative to the isomorphisms of schemes of Lemma 2.2 — to the
schemes

FrP n1,...,nr , FrP×r

defined in [3], Definition 2.4, (i), (vi) [i.e., in the case where we take the “S” to be the
pre-stratification structure of Lemma 1.5], respectively, and homomorphisms

Fr
♯ ι

m1,...,mr
n1,...,nr

: FrAn1,...,nr // FrAm1,...,mr ,

Fr
♯ pr

n1,...,nr

j : A // FrAn1,...,nr , Fr
♯ pr

n1,...,nr

{j′,j′+1} :
FrAnj′ // FrAn1,...,nr ,

Fr
♯ pr

×r
j : A // FrA×r, Fr

♯ pr
×r
{j′,j′+1} :

FrA1 // FrA×r

that “correspond” — relative to the isomorphisms of schemes of Lemma 2.2 — to the
morphisms of schemes

Frιm1,...,mr
n1,...,nr

, Frprn1,...,nr

j , Frprn1,...,nr

{j′,j′+1},
Frpr×r

j , Frpr×r
{j′,j′+1}

defined in [3], Definition 2.4, (ii), (iv), (v), (vi) [i.e., in the case where we take the “S”
to be the pre-stratification structure of Lemma 1.5], respectively.
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(ii) It follows from Lemma 2.2 that we obtain homomorphisms

Fr
♯ δ

×n
n1,...,nr

: FrAn1,...,nr // FrA×n, Fr
♯ δ

×n : FrAn // FrA×n,

Fr
♯ δ

n1,...,nr : FrAn // FrAn1,...,nr

that “correspond” — relative to the isomorphisms of schemes of Lemma 2.2 — to the
morphisms of schemes

Frδ×n
n1,...,nr

, Frδ×n, Frδn1,...,nr

defined in [3], Definition 2.6 [i.e., in the case where we take the “S” to be the stratification
structure of Definition 1.8], respectively.

(iii) Let i be an element of {1, . . . , r + 1}. Suppose that n ≥ 1. Then it follows from
Lemma 2.2 that we obtain rings

FrAn1,...,nr , FrA×r

that “correspond” — relative to the isomorphisms of schemes of Lemma 2.2 — to the
schemes

FrP n1,...,nr , FrP×r

defined in [3], Definition 2.7, (i), (v) [i.e., in the case where we take the “S” to be the
stratification structure of Definition 1.8], respectively, and homomorphisms

Fr
♯ ι

n1,...,nr : FrAn1,...,nr // FrAn1,...,nr , Fr
♯ δ

n1,...,nr : FrAn−1 // FrAn1,...,nr ,

Fr
♯ pr

n1,...,nr

i : A // FrAn1,...,nr , Fr
♯ ι

0
n1,...,nr

: FrAn1,...,nr // A,

Fr
♯ ι

×r : FrA×r // FrA×r, Fr
♯ δ

×r : FrAr−1 // FrA×r,

Fr
♯ pr

×r
i : A // FrA×r, Fr

♯ ι
0
×r :

FrA×r // A

that “correspond” — relative to the isomorphisms of schemes of Lemma 2.2 — to the
morphisms of schemes

Frιn1,...,nr , Frδn1,...,nr , Frprn1,...,nr

i , Frι0n1,...,nr
,

Frι×r, Frδ×r, Frpr×r
i , Frι0×r

defined in [3], Definition 2.7, (ii), (iii), (iv), (v) [i.e., in the case where we take the “S”
to be the stratification structure of Definition 1.8], respectively.

(iv) Let m′ ≤ m ≤ n be nonnegative integers and i an element of {1, 2}. Then it
follows from Lemma 2.2 that we obtain a ring

πAn|m

that “corresponds” — relative to the isomorphisms of schemes of Lemma 2.2 and [4],
Lemma 3.2, and — to the scheme

πP n|m
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defined in [3], Definition 2.10, (i) [i.e., in the case where we take the “Φ” to be the
morphism of Proposition 1.11], and homomorphisms

♯π
n|m : FrAm // πAn|m,

π
♯ ι

n|m′

n|m : πAn|m // πAn|m′
,

π
♯ pr

n|m
i : A // πAn|m,

π
♯ ι

0
n|m : πAn|m // A

that “correspond” — relative to the isomorphisms of schemes of Lemma 2.2 and [4],
Lemma 3.2 — to the morphisms of schemes

πn|m, π ι
n|m′

n|m , πpr
n|m
i , π ι0n|m

defined in [3], Definition 2.10, (ii), (iii), (iv), (v) [i.e., in the case where we take the “Φ”
to be the morphism of Proposition 1.11], respectively.

DEFINITION 2.4. — Let n be a positive integer. Then we shall write

[n, d]<p ⊆ [n, d]

for the subset of the set [n, d] of [4], Definition 3.4, (i), consisting of maps {1, . . . , n} →
{0, . . . , d} such that ]m−1({i}) < p whenever i 6= 0. Thus, the equivalence relation “∼”
on the set [n, d] of [4], Definition 3.4, (ii), determines an equivalence relation on the subset
[n, d]<p.

LEMMA 2.5. — Let n be a positive integer. Then the following hold:

(i) Let m be an element of [n, d]<p/ ∼ (⊆ [n, d]/ ∼). Then the element x[m] ∈ PDAn

defined in [4], Definition 3.4, (iii), is contained in the subring FrAn ⊆ PDAn of PDAn.

(ii) If one regards FrAn as an A-module by the homomorphism Fr
♯ pr

n
1 (respectively,

Fr
♯ pr

n
2 ), then the A-module FrAn is free, and the subset {x[m]}m∈[n,d]<p/∼ ⊆ FrAn of FrAn

[cf. (i)] forms a basis of the free A-module FrAn.

Proof. — Since [it is immediate that] (p− 1)! is invertible in R, these assertions follow
immediately from condition (4) of [2], Definition 3.1, and [4], Lemma 3.5, (i). □

LEMMA 2.6. — Let n be a nonnegative integer. Then the following hold:

(i) It holds that the injective homomorphism ♯π
n : FrAn ↪→ PDAn is an isomorphism

if and only if the inequality n ≤ p− 1 holds.
In the remainder of the present paper, if n ≤ p−1, then let us identify FrAn with PDAn

by means of this isomorphism ♯π
n : FrAn ∼→ PDAn:

FrAn = PDAn.

(ii) It holds that the natural surjective homomorphism FrA ↠ FrAn is an isomorphism
if and only if the inequality d(p− 1) ≤ n holds.
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Proof. — These assertions follow immediately from Lemma 2.5, (ii), and [4], Lemma
3.5, (i). □

LEMMA 2.7. — Let r be a positive integer; n1, . . . , nr nonnegative integers. Write n
def
=∑r

i=1 ni. Let us recall the commutative diagram of rings

FrAn

Fr
♯ δ

n1,...,nr

zzttt
tt
tt
tt Fr

♯ δ
×n

##F
FF

FF
FF

F

FrAn1,...,nr

Fr
♯ δ

×n
n1,...,nr

// FrA×n

[cf. [3], Definition 2.6, i.e., in the case where we take the “S” to be the stratification
structure of Definition 1.8]. Then the homomorphisms in this diagram are injective.

Proof. — This assertion follows from [4], Lemma 3.8. □

LEMMA 2.8. — Suppose that n ≥ 3. Let us recall the commutative diagram of injective
[cf. Lemma 2.7] homomorphisms of rings

FrAn � �
Fr
♯ δ

1,n−1

//
� _

Fr
♯ δ

n−1,1

��

� q

Fr
♯ δ

×n

##G
GG

GG
GG

GG
GG

GG
GG

GG
GG

FrA1,n−1
� _

Fr
♯ δ

×n
1,n−1

��
FrAn−1,1 � �

Fr
♯ δ

×n
n−1,1

// FrA×n.

Then the following two conditions are equivalent:

(1) Either n 6= p or d = 0.

(2) The intersection of the image of Fr
♯ δ

×n
1,n−1 and the image of Fr

♯ δ
×n
n−1,1 coincides with

the image of Fr
♯ δ

×n.

Proof. — First, we verify the implication (1) ⇒ (2). If d = 0, then it is immediate
that condition (2) is satisfied. If n ≤ p− 1, then it follows from Lemma 2.6, (i), and [4],
Lemma 3.9, that condition (2) is satisfied. Suppose that n ≥ p+ 1 and d 6= 0.

Let z be an element of PDA×n = FrA×n [cf. Lemma 2.6, (i); [4], Definition 3.3, (i)]
contained in the intersection under consideration. Thus, it follows from [4], Lemma
3.9, that z is contained in the image of PD

♯ δ
×n [cf. [4], Definition 3.3, (ii)]. For each

m ∈ [n, d], write am ∈ A for the uniquely determined element of A such that if one
regards PDA×n = FrA×n as an A-module by the homomorphism PD

♯ pr
×n
1 = Fr

♯ pr
×n
1 [cf.

Lemma 2.6, (i); [4], Definition 3.3, (i)], then the equality z =
∑

m∈[n,d] amx⊗m holds [cf.

[4], Definition 3.4, (iv); [4], Lemma 3.5, (ii)].
Next, let us observe that it follows — in light of [4], Lemma 3.7, (i) — from Lemma 2.5,

(ii), and [4], Lemma 3.5, (i), that, to verify the implication (1) ⇒ (2), it suffices to verify
the following claim:
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Claim 2.8.A: If m ∈ [n, d] \ [n, d]<p, then am = 0.

To this end, let m be an element of [n, d] \ [n, d]<p. Now let us observe that since z is
contained in the image of PD

♯ δ
×n, it follows from [4], Lemma 3.7, (i), that, to verify the

equality am = 0, we may assume without loss of generality, by replacing m by a suitable
element of [n, d] equivalent [i.e., with respect to the equivalence relation of [4], Definition
3.4, (ii) — cf. [4], Remark 3.6.1] to m, that the map m : {1, . . . , n} → {0, . . . , d} sends
every element of the subset {1, . . . , p} ⊆ {1, . . . , n} [cf. our assumption that n ≥ p+1] to
1 ∈ {0, . . . , d}. Then since z is contained in the image of Fr

♯ δ
×n
n−1,1, and n−1 ≥ p, it follows

immediately from Lemma 2.5, (ii), and [4], Lemma 3.7, (i), that am = 0, as desired. This
completes the proof of Claim 2.8.A, hence also of the implication (1) ⇒ (2).

Next, to verify the implication (2) ⇒ (1), suppose that n = p and d 6= 0. Write
m ∈ [n, d] for the map {1, . . . , n} → {0, . . . , d} given by mapping every i ∈ {1, . . . , n}
to 1 ∈ {0, . . . , d}. Then one verifies easily from Lemma 2.5, (i), and [4], Lemma 3.7, (i),
that the element x⊗m ∈ PDA×n = FrA×n [cf. [4], Definition 3.4, (v)] is contained in the
intersection under consideration. On the other hand, one verifies easily from Lemma 2.5,
(ii), and [4], Lemma 3.7, (i), that the element x⊗m ∈ PDA×n is not contained in the
image of Fr

♯ δ
×n. This completes the proof of the implication (2) ⇒ (1), hence also of

Lemma 2.8. □

LEMMA 2.9. — Let r be a positive integer; n1, . . . , nr nonnegative integers. Write

n
def
=

∑r
i=1 ni. Suppose that n ≥ 1. Then the kernel of the surjective homomorphism

Fr
♯ ι

n1,...,nr : FrAn1,...,nr ↠ FrAn1,...,nr — i.e., the ideal of FrAn1,...,nr generated by the image of
FrAn∩(PDI [n]/PDI [n+1]) ⊆ FrAn [cf. [4], Definition 3.1, (i)] by Fr

♯ δ
n1,...,nr — is annihilated

by the kernel of the surjective homomorphism Fr
♯ ι

0,...,0
n1,...,nr

: FrAn1,...,nr ↠ FrA0,...,0 = A.

Proof. — This assertion follows immediately from [4], Lemma 3.10. □

LEMMA 2.10. — Let n ≤ p be a nonnegative integer. If one regards PDAp as an A-
module by the homomorphism PD

♯ pr
p
1, then the kernel of the surjective homomorphism

π
♯ ι

p|n
p|p :

PDAp = πAp|p ↠ πAp|n coincides with the A-submodule of PDAp freely [cf. [4],

Lemma 3.5, (i)] generated by the x[m]’s, where m ranges over the elements of [p, d]<p/ ∼
(⊆ [p, d]/ ∼) such that every m ∈ m (⊆ [p, d]<p) satisfies the inequality ]m−1({1, . . . , d}) ≥
n+ 1.

Proof. — Let us first observe that [it is immediate that] (p−1)! is invertible in R. Thus,
Lemma 2.10 follows immediately — in light of condition (4) of [2], Definition 3.1 — from
Lemma 2.5, (ii), and [4], Lemma 3.5, (i). This completes the proof of Lemma 2.10. □

LEMMA 2.11. — Let n ≤ p be a positive integer. Then the kernel of the surjective

homomorphism
π
♯ ι

p|n−1
p|n : πAp|n ↠ πAp|n−1 is annihilated by the kernel of the natural

surjective homomorphism
π
♯ ι

0
p|n :

πAp|n ↠ A.

Proof. — This assertion follows immediately from Lemma 2.10, together with condition
(4) of [2], Definition 3.1. □
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3. An Application of the Second Fundamental Correspondence

In the present §3, we prove [cf. Theorem 3.8 below] that, for a smooth scheme over a
field of characteristic p > 0, the morphism π : PD → Fr of Proposition 1.11 is strictly
p-integrable [cf. [3], Definition 3.9]. Moreover, we discuss an application of the second
fundamental correspondence of [3], Definition 6.7 [cf. Corollary 3.9 below]. In the present
§3, let p be a prime number, S a scheme over a field of characteristic p, X a scheme
which is smooth and separated over S,

F // SchS

a category fibered in groupoids over SchS, and

ξ

an object of F over X.

LEMMA 3.1. — Let n be a nonnegative integer. Then the following hold:

(i) It holds that the morphism πn : PDP n → FrP n is an isomorphism if and only if
the inequality n ≤ p− 1 holds.

(ii) It holds that the natural closed immersion FrP n ↪→ FrP is an isomorphism if and
only if the inequality d(p− 1) ≤ n holds.

Proof. — Assertion (i) (respectively, (ii)) follows from Lemma 2.6, (i) (respectively,
(ii)). □

DEFINITION 3.2.

(i) We shall write

FrT
def
= X ×XF

X ×XF
X

for the fiber product of three copies of FrX/S : X → XF .

(ii) Let I ⊆ {1, 2, 3} be a subset of {1, 2, 3} of cardinality two. Then we shall write

FrprTI :
FrT // FrP

for the projection onto the factors labeled by the elements of I, i.e., the morphism given
by “(x1, x2, x3) 7→ (xi1 , xi2)”, where I = {i1, i2} and i1 < i2.

(iii) Let i be an element of {1, 2, 3}. Then we shall write

FrprTi :
FrT // X

for the projection onto the i-th factor.

(iv) We shall refer to a descent datum on ξ with respect to the morphism FrX/S : X →
XF — i.e., an isomorphism in F|FrP

θ : Frpr∗2ξ
∼ // Frpr∗1ξ
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that satisfies the following “cocycle condition” as a Frobenius-descent datum on ξ: The
composite

(FrprT3 )
∗ξ = (FrprT{2,3})

∗Frpr∗2ξ
(FrprT{2,3})

∗θ

∼
// (FrprT{2,3})

∗Frpr∗1ξ

= (FrprT2 )
∗ξ = (FrprT{1,2})

∗Frpr∗2ξ
(FrprT{1,2})

∗θ

∼
// (FrprT{1,2})

∗Frpr∗1ξ

= (FrprT1 )
∗ξ = (FrprT{1,3})

∗Frpr∗1ξ
(FrprT{1,3})

∗(θ−1)

∼
// (FrprT{1,3})

∗Frpr∗2ξ

= (FrprT3 )
∗ξ

—where we write θ−1 for the inverse of the isomorphism θ — is the identity automorphism
of (FrprT3 )

∗ξ. We shall write

FrDsc(ξ)

for the set of Frobenius-descent data on ξ.

(v) We shall say that the category F fibered in groupoids over SchS is Frobenius-descent
effective if the relative [p-th power] Frobenius morphism of every smooth scheme over S
is an effective descent morphism, i.e., relative to the category F fibered in groupoids over
SchS.

REMARK 3.2.1. — Since [one verifies easily that] the relative Frobenius morphism of a
smooth scheme over S is a finite flat universal homeomorphism, one verifies immediately
from elementary descent theory that both

• the category LcFr → SchS fibered in groupoids of [4], Definition 1.1, and

• the category SmSch → SchS fibered in groupoids of [4], Definition 1.7,

are Frobenius-descent effective.

PROPOSITION 3.3. — The notion of a Frobenius-descent datum on ξ of Defini-
tion 3.2, (iv), is the same as the notion of an Fr-stratification on ξ in the sense
of Definition 1.8 and [3], Definition 4.6:

FrDsc(ξ) = FrStrt(ξ)

[cf. Definition 1.8; [3], Definition 4.6].

Proof. — This assertion follows immediately from Lemma 3.1, (ii), together with the
various definitions involved [cf. also [3], Remark 4.6.2]. □
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LEMMA 3.4. — The following hold:

(i) The stratification structure Fr satisfies condition (1) of [3], Definition 3.2.

(ii) Suppose that X is of positive relative dimension over S. Then the stratification
structure Fr is δ-strictly cocartesian of level ≥ p + 1 [cf. [3], Definition 3.1, (iv)]
but not δ-strictly cocartesian of level ≥ p.

Proof. — First, we verify assertion (i). Let us first recall from Lemma 1.9 that Fr is
ι-quasi-nil-retraction-like. Moreover, it follows from Lemma 1.10 and Lemma 2.7 that
Fr is δ-nil-retraction-like [cf. [3], Definition 3.1, (iii)]. In particular, the stratification
structure Fr satisfies condition (1) of [3], Definition 3.2, as desired. This completes the
proof of assertion (i).

Next, we verify assertion (ii). Let us recall from the first paragraph of the present
proof of Lemma 3.4 that Fr is δ-nil-retraction-like. Thus, it follows immediately from
Lemma 2.8 that the stratification structure Fr is δ-strictly cocartesian of level ≥ p+1 but
not δ-strictly cocartesian of level ≥ p, as desired. This completes the proof of assertion
(ii), hence also of Lemma 3.4. □

LEMMA 3.5. — The following hold:

(i) The stratification structure Fr satisfies condition (1) of [3], Definition 3.6.

(ii) The stratification structure Fr satisfies condition (2) of [3], Definition 3.6.

(iii) Suppose that p 6= 2 (respectively, p = 2). Then the surjective homomorphism
of OT 1-modules from (Frι0T )∗(Ω

1
X/S ⊗OX

Ω1
X/S) [i.e., the conormal sheaf of the closed im-

mersion FrιT×2 : T
1 ↪→ FrP×2 — cf. (i); [3], Lemma 3.5, (i), (iv)] to the conormal sheaf

of the square-nilpotent closed immersion T 1 ↪→ FrP×2 [cf. (ii)] determined by the closed
immersion Frι×2 : FrP×2 ↪→ FrP×2 [cf. (i)] determines an isomorphism of

(Frι0T )∗Ω
2
X/S (respectively, (Frι0T )∗(S2Ω1

X/S)

— where we write S2Ω1
X/S for the symmetric product of Ω1

X/S of degree two) with the

conormal sheaf of the square-nilpotent closed immersion T 1 ↪→ FrP×2.

Proof. — Let us first recall from Lemma 3.1, (i), that FrP n may be identified with
PDP n whenever n ≤ p− 1. Thus, since 1 ≤ p− 1, assertion (i) follows from the fact that
PD satisfies condition (1) of [3], Definition 3.6 [cf. [4], Theorem 4.1]. Next, assertions (ii),
(iii) follow immediately from Lemma 2.5, (ii), and [4], Lemma 3.7, (i). This completes
the proof of Lemma 3.5. □

THEOREM 3.6. — Let p be a prime number, S a scheme over a field of characteristic
p, and X a scheme which is smooth and separated over S of relative dimension d.
Then the following hold:

(i) The following two conditions are equivalent:

(i-1) Either p 6= 2 or d = 0.
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(i-2) The Frobenius-stratification structure Fr [cf. Definition 1.8] is of standard
type [cf. [3], Definition 3.6].

(ii) The following three conditions are equivalent:

(ii-1) Either p = 2 or d = 0.

(ii-2) The Frobenius-stratification structure Fr is integrable [cf. [3], Definition
3.2].

(ii-3) The Frobenius-stratification structure Fr is strictly integrable [cf. [3], Def-
inition 3.3].

Proof. — Assertion (i) follows immediately from Lemma 3.5, (i), (ii), (iii). Next, we
verify assertion (ii). Let us first verify the following assertion:

Claim 3.6.A: The Frobenius-stratification structure Fr satisfies conditions
(1), (3), and (4) of [3], Definition 3.2.

To this end, let us first recall from Lemma 3.4, (i), that Fr satisfies condition (1) of
[3], Definition 3.2. Moreover, it follows from Lemma 1.9 that Fr satisfies condition (3)
of [3], Definition 3.2. Finally, one verifies immediately from a similar argument to the
argument applied in the fifth paragraph of the proof of [4], Theorem 4.1, together with
Lemma 2.9, that Fr satisfies condition (4) of [3], Definition 3.2. This completes the proof
of Claim 3.6.A.
Next, let us verify the following assertion:

Claim 3.6.B: The Frobenius-stratification structure Fr satisfies conditions
(2), (3) of [3], Definition 3.3.

To this end, let us first observe that it follows from Lemma 2.5, (ii), that Fr satisfies
condition (2) of [3], Definition 3.3. Moreover, it follows immediately from Lemma 3.5,
(iii), together with a similar argument to the argument applied in [3], Remark 3.6.2, that
Fr satisfies condition (3) of [3], Definition 3.3. This completes the proof of Claim 3.6.B.

Now it follows from Claim 3.6.A and Claim 3.6.B, together with Lemma 3.4, (ii), that
assertion (ii) holds. This completes the proof of assertion (ii), hence also of Theorem 3.6.

□

REMARK 3.6.1. — Suppose that p = 2. Then, as discussed in Lemma 3.5, (iii), the
conormal sheaf of the square-nilpotent closed immersion T 1 ↪→ FrP×2 [cf. Lemma 3.5,
(ii)] is isomorphic to the OT 1-module (Frι0T )∗(S2Ω1

X/S). Now let us observe that [since

p = 2] the OX-module S2Ω1
X/S fits into the following exact sequence of OT 1-modules

0 // Fr∗X/SΩ
1
XF /S

// S2Ω1
X/S

// Ω2
X/S

// 0.

Moreover, one verifies immediately that

• the quotient module Ω2
X/S is closely related to the conormal sheaf of the square-

nilpotent closed immersion PDιT×2 : T
1 ↪→ PDP×2 [cf. [4], Theorem 4.1], i.e., closely related

to the notion of the PD-curvature [cf. also [4], Remark 4.3.1, (i), (ii)], and
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• the submodule Fr∗X/SΩ
1
XF /S is isomorphic to the conormal sheaf of the square-

nilpotent closed immersion π ι02|0 : X ↪→ πP 2|0 , i.e., closely related to the notion of the

(π, p)-curvature [cf. Remark 3.9.1, (i), (ii), below].

COROLLARY 3.7. — Let S be a scheme over a field of characteristic two, X a scheme
which is smooth and separated over S,

F // SchS

a weakly integrable [cf. [3], Definition 1.8] category fibered in groupoids over SchS, and
ξ an object of F over X. Then the natural map

FrDsc(ξ) // FrIntCnn(ξ)

[cf. Definition 1.8; Definition 3.2, (iv); Proposition 3.3; [3], Definition 4.7, (ii)] is bijec-
tive.

Proof. — This assertion follows from Theorem 3.6, (ii), and [3], Theorem 5.6. □

The main result of the present paper is as follows.

THEOREM 3.8. — Let p be a prime number, S a scheme over a field of characteristic
p, and X a scheme which is smooth and separated over S. Then the morphism [cf.
[3], Definition 2.8] from the divided power stratification structure [cf. [4], Definition 2.5]
to the Frobenius-stratification structure [cf. Definition 1.8]

π : PD =
(
(PDP n)n≥0, (PDιn : PDP n → PDP n+1)n≥0,

(PDσn : PDP n → X(2))n≥0, (PDδn1,n2 : PDP n1,n2 → PDP n1+n2)n1, n2≥0

)
// Fr =

(
(FrP n)n≥0, (Frιn : FrP n → FrP n+1)n≥0,

(Frσn : FrP n → X(2))n≥0, (Frδn1,n2 : FrP n1,n2 → FrP n1+n2)n1, n2≥0

)
[cf. Proposition 1.11] is strictly p-integrable [cf. [3], Definition 3.9].

Proof. — Let us first observe that it follows from Lemma 2.5, (ii), and [4], Lemma 3.5,
(i), together with Lemma 1.12, that π is nil-retraction-like [cf. [3], Definition 3.7, (i)]. In
particular, the morphism π satisfies condition (1) of [3], Definition 3.8.

Next, it follows from [4], Theorem 4.1 (respectively, Lemma 3.4, (i), (ii); Lemma 1.9)
that condition (2) (respectively, (3); (4)) of [3], Definition 3.8, is satisfied.

Next, let us verify that π satisfies condition (5) of [3], Definition 3.8. Let n ≤ p be a
positive integer. Let us first observe that it follows immediately from Lemma 2.5, (ii), and
[4], Lemma 3.5, (i), together with Lemma 2.10, that the morphism πp|n : πP p|n → FrP n is
nil-retraction-like [cf. [3], Definition 1.2, (iv)], which thus implies [cf. [3], Remark 1.3.1]
that the morphism πp|n : πP p|n → FrP n satisfies conditions (1), (2) of [3], Definition 1.3.
Now let us take the “X” (respectively, “Y ”) of [3], Definition 1.3, to be X (respectively,
X) and the closed immersion “iX” (respectively, “iY ”) of [3], Definition 1.3, to be the
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closed immersion π ι0p|n : X ↪→ πP p|n (respectively, Frι0n : X = FrP 0 ↪→ FrP n). Then it

follows from Lemma 2.11 that condition (3) of [3], Definition 1.3, is satisfied. Moreover,
condition (4) of [3], Definition 1.3, is immediate. This completes the proof of the assertion
that π satisfies condition (5) of [3], Definition 3.8. In particular, the morphism π satisfies
condition (1) of [3], Definition 3.9.

Next, it follows from immediately from Lemma 2.5, (ii), and [4], Lemma 3.5, (i),
together with Lemma 2.10, that π is p-pr-finite flat [cf. [3], Definition 3.7, (ii)]. In
particular, the morphism π satisfies condition (2) of [3], Definition 3.9.

Finally, it follows from Lemma 2.5, (ii), that Fr is pr-finite flat [cf. [3], Definition 3.1,
(ii)]. In particular, condition (3) of [3], Definition 3.9, is satisfied. Thus, we conclude that
the morphism π is strictly p-integrable. This completes the proof of Theorem 3.8. □

One main application of the second fundamental correspondence of [3], Definition 6.7,
is as follows.

COROLLARY 3.9. — Let p be a prime number, S a scheme over a field of character-
istic p, X a scheme which is smooth and separated over S,

F // SchS

a weakly integrable [cf. [3], Definition 1.8] category fibered in groupoids over SchS, and
ξ an object of F over X. Then the map

FrDsc(ξ) // π,pDrmCnn(ξ)

[cf. Proposition 1.11; Definition 3.2, (iv); Proposition 3.3; [3], Definition 4.13, (iii); [3],
Lemma 4.14] determined by the morphism π : PD → Fr [cf. Proposition 1.11] is bijective.

Proof. — This assertion follows from Theorem 3.8 and [3], Theorem 6.6. □

REMARK 3.9.1. — Suppose that we are in the situation of Corollary 3.9.

(i) Suppose that one takes the “F → SchS” of Corollary 3.9 to be the category
LcFr → SchS fibered in groupoids of [4], Definition 1.1 [cf. also [4], Proposition 1.5],
which thus implies that the object ξ corresponds to a locally free OX-module E .
Let ∇ be a PD-integrable [cf. [3], Definition 4.7, (ii); [4], Definition 2.5] PD-connection

[cf. [3], Definition 4.1, (iii); [4], Definition 2.5] on ξ. Then it follows from [4], Proposition
2.6, (ii), that the PD-connection ∇ corresponds to a classical connection on E , i.e., a
certain homomorphism of (X → S)−1OS-modules [cf. [4], Definition 1.6]

E // E ⊗OX
Ω1

X/S.

Moreover, it follows from [4], Corollary 4.3 [or the equivalence between (i) and (iii) of [2],
Theorem 4.8 — cf. [4], Remark 4.3.1, (i)], that the PD-integrable PD-connection ∇ on ξ
extends to a uniquely determined PD-stratification [cf. [3], Definition 4.6; [4], Definition

2.5] ∇̃ on ξ.
Now let us observe that one verifies easily from Lemma 2.10 that the closed immersion

π ι0p|0 : X ↪→ πP p|0 is square-nilpotent. Moreover, it is well-known that the conormal sheaf
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of this square-nilpotent closed immersion π ι0p|0 : X ↪→ πP p|0 is isomorphism to the OX-

module Fr∗X/SΩ
1
XF /S [cf., e.g., [7], Proposition 1.6]. Thus, it follows from [4], Lemma 1.2,

(ii), that the subgroup

Liftπ ι0
p|0

(
(πp|0)∗ξ, (πp|0)∗ξ; idξ

)
⊆ AutF|πPp|0

(
(πp|0)∗ξ

)
may be naturally identified with the module

Γ
(
X,Fr∗X/SΩ

1
XF /S ⊗OX

EndOX
(E)

)
.

In particular, we conclude that the (π, p)-curvature [cf. Proposition 1.11; [3], Definition

4.13, (i)] of the PD-stratification ∇̃ may be naturally identified with a global section of

Fr∗X/SΩ
1
XF /S ⊗OX

EndOX
(E).

Moreover, in this case, one verifies easily from a straightforward calculation [cf., e.g., [7],
Proposition 1.7] that this global section of Fr∗X/SΩ

1
XF /S ⊗OX

EndOX
(ξ) coincides, up to

sign, with the p-curvature of the corresponding classical connection on E

E // E ⊗OX
Ω1

X/S

in the usual sense [cf., e.g., the discussion preceding [5], Theorem 5.1].
In particular, we conclude from Remark 3.2.1 that the bijection of Corollary 3.9 may

be regarded as a generalization of the equivalence between

• quasi-coherent OXF -modules and

• quasi-coherent OX-modules equipped with dormant connections [i.e., integrable
connections of p-curvature zero]

by Cartier [cf., e.g., [5], Theorem 5.1] [i.e., in the case where the modules under consid-
eration are locally free].

(ii) Suppose that one takes “F → SchS” of Corollary 3.9 to be the category SmSch →
SchS fibered in groupoids of [4], Definition 1.7 [cf. also [4], Prposition 1.11], which thus
implies that the object ξ is a smooth morphism Z → X of schemes over S. Let ∇
be a quasi-p-PD-connection [cf. [3], Definition 4.1, (i); [4], Definition 2.5] on ξ. Then
it follows immediately from a similar argument to the argument of (i), together with
[4], Lemma 1.8, (ii), that the (π, p)-curvature of the quasi-p-PD-connection ∇ may be
naturally identified with a global section of

Fr∗X/SΩ
1
XF /S ⊗OX

ξ∗TZ/X .

COROLLARY 3.10. — Let p be a prime number, S a scheme over a field of character-
istic p, X a scheme which is smooth and separated over S, and

F // SchS

a weakly integrable [cf. [3], Definition 1.8] and Frobenius-descent effective [cf.
Definition 3.2, (v)] category fibered in groupoids over SchS. Write XF → S for the base-
change of the structure morphism X → S of X by the absolute [p-th power] Frobenius
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endomorphism of S,

FrX/S : X // XF

for the relative [p-th power] Frobenius morphism of X/S, and

F|Drm
X

for the groupoid defined as follows:

• An object of the category F|Drm
X is a pair (ξ,∇) consisting of an object ξ of F|X [cf. [3],

Definition 1.6, (ii)] and a (π, p)-dormant PD-connection ∇ on ξ [cf. Proposition 1.11;
[3], Definition 4.1, (iii); [3], Definition 4.13, (iii); [4], Definition 2.5].

• If (ξ1,∇1) and (ξ2,∇2) are objects of the category F|Drm
X , then a morphism (ξ1,∇1) →

(ξ2,∇2) in the category F|Drm
X is defined to be an isomorphism ξ1

∼→ ξ2 in F|X that is
PD-horizontal [cf. [3], Definition 4.2; [4], Definition 2.5].

Then the functor

F|XF // F|Drm
X

[cf. Corollary 3.9] determined by the morphism FrX/S : X → XF is an equivalence of
categories.

Proof. — This assertion follows from Corollary 3.9. □

Corollary 3.9 and [4], Corollary 4.3, give an alternative proof [of a slight generalization]
of [1], Theorem B.0.1, and [6], Lemma 3.5 [cf. also [1], Remark B.0.2], i.e., the following
assertion.

COROLLARY 3.11. — Let p be a prime number; S a scheme over a field of character-
istic p; X, Z smooth schemes over S; ξ : Z → X a smooth morphism over S. Write
XF → S for the base-change of the structure morphism X → S of X by the absolute
[p-th power] Frobenius endomorphism of S and

FrX/S : X // XF

for the relative [p-th power] Frobenius morphism of X/S. Suppose that the OX-module
ξ∗TZ/X is zero. Then the following two conditions are equivalent:

(1) The image of the Kodaira-Spencer homomorphism TX/S → R1ξ∗TZ/X asso-
ciated to Z/X is zero.

(2) There exists a unique, up to isomorphism, smooth morphism Y → XF of schemes
over S that fits into the following cartesian diagram of schemes over S:

Z //

ξ

��

Y

��

X
FrX/S

// XF .
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Proof. — Let us first observe that, to verify Corollary 3.11, we may assume [cf. Re-
mark 3.2.1] without loss of generality, by replacing S, X by affine open subschemes of
S, X, respectively, that both S and X are affine [which thus implies that X is separated
over S].

Next, let us observe that since X is affine, one verifies easily that condition (1) is
equivalent to the condition that the Kodaira-Spencer class ∈ H1(Z, ξ∗Ω1

X/S ⊗OZ
TZ/X)

is trivial. Thus, since [we have assumed that] the OX-module ξ∗TZ/X is zero, it follows
from Proposition 3.12, (i), (ii), below that condition (1) is equivalent to the following
condition:

(1′) The smooth morphism ξ : Z → X [that is an object over X of the category SmSch
fibered in groupoids over SchS of [4], Definition 1.7] admits a unique PD-connection.

Next, let us observe that, again by our assumption that the OX-module ξ∗TZ/X is
zero, it follows from [4], Remark 4.3.1, (ii), that every PD-connection on ξ : Z → X is
PD-integrable. Thus, it follows from [4], Prposition 1.11, and [4], Corollary 4.3, that
every PD-connection on ξ : Z → X extends to a uniquely determined PD-stratification
on ξ : Z → X. On the other hand, again by our assumption that the OX-module ξ∗TZ/X

is zero, it follows from Remark 3.9.1, (ii), that every PD-stratification on ξ : Z → X is
(π, p)-dormant. Thus, in summary, we conclude from Corollary 3.9 and [4], Prposition
1.11, that condition (1) is equivalent to the following condition:

(1′′) The smooth morphism ξ : Z → X [that is an object over X of the category SmSch
fibered in groupoids over SchS of [4], Definition 1.7] admits a unique Frobenius-descent
datum.

On the other hand, the equivalence (1′′) ⇔ (2) follows from Remark 3.2.1. This completes
the proof of Corollary 3.11. □

PROPOSITION 3.12. — Let Z be a scheme over S and ξ : Z → X a smooth morphism
over S, which thus determines an object over X of the category SmSch fibered in groupoids
over SchS of [4], Definition 1.7. Then the following hold:

(i) The following two conditions are equivalent:

(1) The object ξ of SmSch over X admits a PD-connection [cf. [3], Definition
4.1, (iii); [4], Definition 2.5], i.e., the set PDCnn1(ξ) [cf. [3], Remark 4.1.1; [3], Definition
4.4; [4], Definition 2.5] is nonempty.

(2) The Kodaira-Spencer class ∈ H1(Z, ξ∗Ω1
X/S ⊗OZ

TZ/X) associated to Z/X is
trivial.

(ii) If the set PDCnn1(ξ) is nonempty, then the set PDCnn1(ξ) has a natural struc-
ture of torsor under the module

Γ(X,Ω1
X/S ⊗OZ

ξ∗TZ/X).

Proof. — These assertions follow immediately from a straightforward calculation con-
cerning [4], Lemma 1.8, (i), (ii), in a specific situation in which we take the “(X,X,X ↪→
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X, ξ1, ξ2, φ)” of [4], Lemma 1.8, to be(
PDP 1, X = PDP 0, PDι0, (PDpr12)

∗Z → PDP 1, (PDpr11)
∗Z → PDP 1, idZ

)
[cf. [4], Lemma 2.7], which thus implies [cf. [2], Remark 4.2] that the “OX-module IX”
of [4], Lemma 1.8, is isomorphic to the OX-module Ω1

X/S [cf. also the second paragraph

of the proof of [6], Lemma 3.5]. □
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