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ABSTRACT. Let p be a prime number. In the present paper, we study geomet-
rically pro-p arithmetic fundamental groups of low-dimensional configuration
spaces associated to a given hyperbolic curve over an arithmetic field such as
a number field or a p-adic local field. Our main results concern the group-
theoretic reconstruction of the function field of certain tripods (i.e., copies
of the projective line minus three points) that lie inside such a configuration
space from the associated geometrically pro-p arithmetic fundamental group,
equipped with the auxiliary data constituted by the collection of decompo-
sition groups determined by the closed points of the associated compactified
configuration space.

0. Introduction

Let n € Z<1; (g,7) a pair of nonnegative integers such that 29 — 2+ 7 > 0; p a
prime number; k a number field or a p-adic local field; X'°¢ a smooth log curve over
k of type (g,r) (cf. Notation 1.3, (iv)). Write My, for the moduli stack (over k) of
pointed stable curves of type (g, 7) (with ordered marked points), and M, C M,
for the open substack corresponding to the smooth curves (cf. Notation 1.3, (i)).
In the present paper, we study the n-th log configuration space X'°¢ associated to
X% — Spec(k) (cf. Definition 1.4). If S'°8 is a log scheme, then we shall write Usg
for the interior of the log scheme S'°% (cf. Notation 1.2, (vi)). The log scheme X°8
may be thought of as a compactification of the usual n-th configuration space Ux,,
associated to the smooth curve Uyx. It is known that the function field of Ux may
be reconstructed group-theoretically

e from its profinite arithmetic fundamental group whenever Uy is of strictly
Belyi type (cf. [AbsTpIIl], Theorem 1.9; [AbsTpIlI], Corollary 1.10) or,

e from its geometrically pro-X arithmetic fundamental group, where ¥ is a
set of prime numbers of cardinality > 2 that contains p, equipped with the
auxiliary data constituted by the collection of decomposition groups asso-
ciated to the closed points of Ux (cf. [AbsTpll], Corollary 2.9), regardless
of whether or not Ux is of strictly Belyi type.

By contrast, in the present paper, we reconstruct the function field of certain tripods

(i.e., copies of the projective line minus three points) that lie inside X!°% group-

theoretically from various geometrically pro-p arithmetic fundamental groups as-

sociated to Ux,, equipped with the auxiliary data constituted by the collection of
1
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decomposition groups determined by the closed points of the underlying scheme
X, of X,
Our main results are as follows:

Theorem 0.1. (Semi-absolute bi-anabelian formulation) Let x € {t,1}; *n €
Z<1; (*g,*r) a pair of nonnegative integers such that 2(*g — 1) + *r > 0; *0 €
{arb, ord} (cf. Notation 1.3, (iv)); ¥a, Xgal sets of prime numbers such that ¥a C
YGal, and XA, Xgal are of cardinality 1 or equal to the set of prime numbers Primes;
p € Ya; *k a generalized sub-p-adic local field (cf. [Topics], Definition 4.11); *k
an algebraic closure of *k; *X'°8 a smooth log curve over *k of type (*g, *T*D) (cf.
Notation 1.3, (iv)). Write * X% for the *n-th log configuration space associated

*n Z
to *Xl& — Spec(*k) (cf. Definition 1.4); *K C *k for the mazimal pro-Xgal
subextension of *k/*k;

T {n(U*X*,L)EA (if £a = Scal)
Uex,,

m(Ux., )PP (if A € Sgal),
where ﬂl(U*x*n)EA denotes the mazimal pro-Xa quotient of m1 (U-x.. ), and
771(U*X*n)[p]

denotes the mazimal geometrically pro-p quotient of m1(U-x.) (cf. Notation 4.1);

Av.y, C o (Uex., X "B)™8; G0 Y Gal(*k/* k)"0

def . .
D-x. = {D C My. ., | D is a decomposition group

assoctated to some x € *X-,(*K)}.

Suppose that the sequence

1—— AU*X* — HU*X* e ngkGal —1
n n

is evact (cf. Notation 4.1; Remark 4.3), and that (* X'°8,*n) is tripodally ample (cf.
Definition 6.1). Thus,

BLXE L (., GT¢", Dex.)
is a PGCS-collection of type (*g,*r =, *n, YA, Laal) (cf. Definition 4.2). Write
Isom(UTXT",U:Xi")
for the set of isomorphisms of schemes UTXTn = UiXin and

Tsom " ([ X17%], B[ X17%))

for the set of equivalence classes of isomorphisms of PGCS-collections %[TXEF] =
%’[iXi(;g} (cf. Definition 4.4) with respect to the equivalence relation given by com-
position with an inner automorphism arising from Iy, . . Then the natural mor-
phism !

Isom(Urx, ,Usx, ) — IsomO“t(%[TXk;gL%[iX;‘;g])

is bijective (cf. Theorem 6.4).
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Theorem 0.2. (From PGCS-collections of type (g,77,n, %A, Xgal) to cer-
tain function fields arising from tripods) Let n € Z~1; (g,7) a pair of non-
negative integers such that 2g — 2+ r > 0; O € {arb,ord}; XA, Xga sets of prime
numbers such that Xa C Xgal, and Xa, Xaa are of cardinality 1 or equal to the
set of prime numbers Primes. Let B = (I,,, G, D,) be a PGCS-collection of type
(9,70, 1,8, 2qa1) (c¢f. Definition 4.2). That is to say, 11, is a profinite group; G
is a quotient of Il,; D, is a set of subgroups of 1l,,; there exist a prime number
p € XA, a generalized sub-p-adic local field k, an algebraic closure k of k, a smooth
log curve X'°8 over k of type (g,TD), and an isomorphism

o I S5 1L, def m(Ux,)”*  (if Za = Zcal)
: 11, Ux,, 7Tl(UXn)[p] (if Sa C Scal)

such that, if we write Gy e Gal(k/k) and K C k for the mazimal pro-Yga
subextension of k/k (so GEGM = Gal(K/k)), then the natural outer action Gy ~
71 (Ux, xi k)2 (cf. Notation 4.1) factors through the natural surjection Gy —»

» . . .
G, and a induces a commutative diagram

where the lower horizontal arrow ag is an isomorphism, as well as a bijection

def

D, = Dx, = {D Clly,, | D is a decomposition group

associated to some x € X,,(K)}.

Suppose that (X'°8 n) is tripodally ample, and that k is a number field or a p-adic
local field. Then:

(i) For any sufficiently small open normal subgroup H of G, one may construct
a family (cf. the discussion of “choices” in the final portion of Remark 6.3)
of a PGCS-collections {#™ = (1P, H, DPY)} of type (0,3°9,2, Y7, L)
associated to the intrinsic structure of the PGCS-collection B (cf. Theorem
6.6, (i)).

(ii) Let Bx: B = PB[X] o (HUXW,cha‘,DXW) be an isomorphism of PGCS-
collections and FBP4 = (H;pd, H, ’Dgpd) a PGCS-collection of type (0,374, 2, YA,
YGal) associated to B (cf. (i)). Write H[X] of Ker(Gy — G/H), where
G%Ga‘ — G/H denotes the composite of the natural quotient G — G/H with
the inverse of the isomorphism (Bx)a: G = G%G"‘ determined by Bx (cf.
Definition 4.4). Let Y'°% be a smooth log curve over k of type (0,3°); write

0, % m1(Uy,)**  (if Ba = Sgal)
U 1 (Uy,)P (if Sa € Sgar)-

Then, for a suitable choice ™4 X] = (Ily,, , H[X], Dy,) of PGCS-collection
of type (0,342 YA, Yqal) associated to B[X| (cf. (i); Remarks 6.2, 6.3),
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Bx induces an isomorphism of PGCS-collections
Bt Pt 5 i [x) € (Iy,, , H[X], Dy,)

(cf. Theorem 6.6, (ii)).

(i) One may construct a quotient group H;pd — ng_dﬂ [*]] (cf. Definition 6.5)
and a field Frac(R[%"Y]) (cf. Definition 6.5) equipped with an action by
ngjl [9'P4] associated to the intrinsic structure of the PGCS-collection %P4
(cf. Theorem 6.6, (iii)).

(iv) In the notation of (ii), (iii), write E[BW¥I] = {Ey,...,Es} for the set of
generalized fiber subgroups C ngd (cf. Definition 4.8, (ii));

5
def
HUYzﬂl = HUYQ/m( ;;/pd)H(Ei)v
i=1

where ( ;pd)nz ngd 5 Ly, denotes the isomorphism determined by B§,pd

(cf. Definition 4.4). Then the isomorphism (6;}”1)11 induces a commutative
diagram

tpd ~
2 HUYZ

i (BN l

Hgfl [%tpd] — HUYzal ’
where the vertical arrows are the natural projections, and H;pjl [tPd] =
Hy,,  denotes a uniquely determined isomorphism of profinite groups (cf.
Theorem 6.6, (iv)).
(v) In the notation of (iv), write Z — Uy, for the profinite étale covering corre-
sponding to (Ily,, —) Uy, | and Fnct(Z) for the function field of Z. Then
one may construct a field isomorphism

Frac(R[#'""1]) 5 Fnct(2)

associated to the intrinsic structure of the data (#'*4, %4 X], B;“,pd: B 5
AP4X]), where the field isomorphism ““7” is equivariant with respect to

the respective natural actions of the profinite groups (P4 —) TIPY, (4],
My, =) Wy, | (cf. the display of (iv); Theorem 6.6, (v)).

These main results are derived from the following results concerning tripods (i.e.,
the case where (g,7) = (0, 3°'9)):

Theorem 0.3. (From PGCS-collections of type (0,3°9,2, Y5, ¥ga1) to CFS-
collections to base fields) We maintain the following notation of Theorem 0.2:
(9,770, A, Bca); B = (I,,G.Dy); k; k; Gyo; X985, K; a: 1M, 5 Iy, ;
ag: G5 G%Ga‘, Suppose that (g,77,n) = (0,3°"4,2). Let E be a generalized fiber
subgroup of Iy (cf. Definition 4.8, (ii)). Such a B and E determine a collection
of data

o/, E|  (A|%), B|#, E), 0B, E), H|2), M|, E)
(cf. Definition 4.8; Theorem 4.9, (ii)). Then:
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(i) Let o = (A, B,0B,H, M) be a CFS-collection (cf. Definition 3.2). That is

(i)

(iii)

to say, A, B are sets; 0B C B is a subset of cardinality 3; H C Aut(A) is

a subgroup; M is a set of maps A — B; there exist a field Tk, a smooth log

curve Y'°8 over Tk of type (0,3°), a bijection Ta: A 5 Yo(Tk) (where Ya

denotes the underlying scheme of the 2-nd log configuration space Yzlog), and

a bijection T8: B = Y (Tk) such that

(a) T8 induces a bijection B\ OB = Uy (k);

(b) the isomorphism of groups Aut(A) = Aut(Ya(Tk)) determined by Ta in-
duces an isomorphism of groups H = Auti;,(Uy,) (= Aut(Ya(Tk)));

(c) if we write My for the set of maps Yo(Tk) — Y (Tk) induced by the 30 nat-
ural morphisms Yo — Y (cf. Proposition 2.1; Definition 2.3, (ii); Propo-
sition 2.6, (ii)), then there exists a bijection M = My such that if A — q
via this bijection, then

g

Write Ss for the symmetric group on 5 letters. Let ¢: H = Sy be an isomor-
phism. Such an isomorphism ¢ determines a subset My[¢] C M (cf. Defini-
tion 3.5). Let A € My[¢]. Such an isomorphism ¢ and element A € Mi|[¢]
determine elements 0[¢, A], 1[o,N], oo[p,\] € OB C B (c¢f. Definition 3.8).
Then:

(1) One may construct a field F[</, ¢, \] associated to the intrinsic structure
of the following collection of data: the CFS-collection <f , the isomorphism
¢: H = Ss, and the element X\ € My[¢] (cf. Definition 3.12; Theorem
3.13, (i), (i)).

(2) The bijection B =Y (Tk) = Tk U {00} given by the composite

L1 5(0[¢.\]).T B(1[#.N]). T B(c0[$,A]) © "6

(cf. the notation of Proposition 2.8) determines a field isomorphism
Fld, 0,0\ 5 Tk

(cf. Theorem 3.13, (i), (ii)).
The isomorphism a: Iy = Uy, induces
(a) bijections (the latter two of which are compatible)

A[#] = Xa(K), B[#,E] = X(K), 0B[#,E] = X(K)\Ux(K),
(b) a group isomorphism H|[%] = Auty(Ux,),
(c) a bijection
M([%, E] = {the maps X2(K) — X(K) induced by
projection morphisms Ux, — Ux }

(cf. Theorem 4.9, (i)).

The above collection of data /|8, E] is a CFS-collection. In particular, one
may construct a CFS-collection <7 [A, E) associated to the intrinsic structure
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of the following collection of data: the PGCS-collection % of type (0,3°79,2, ¥,
YGal) and the generalized fiber subgroup E C Ily (cf. Theorem 4.9, (ii)).

Let ¢: H[%B] = S5 be an isomorphism and X\ € M[%, E)1[¢] C M[%, E] (cf.

(i), (iii)). Write B: B[%B,E] = X(K) for the second bijection of (ii), (a).

Such an isomorphism ¢ and element X € M[A, E|1[¢] determine elements

0[p, A], 1[p, A], oo[p, A] € OB[A, E] C B[#, E] (cf. (i)). Then the bijection

B[%,E] = X(K) = K U {cc} given by the composite

£B(016,X]).B(1[6:2)),6(o0l8.X]) © B
(cf. (i), (a); Propositions 2.1, 2.8) determines a field isomorphism
Flo/ |8, E|,¢,\] = K

(cf. (i), (1), (2)) that is equivariant with respect to the respective natural
actions of the profinite groups G, GfG“‘, relative to the isomorphism ag: G =
GEGE‘ (cf. Definition 4.8, (iii); Theorem 4.9, (iii)).

Theorem 0.4. (From PGCS-collections of type (0,34, 2,3, Xqa) to func-
tion fields of tripods) We maintain the following notation of Theorem 0.2:

(g,7"
HUXn

3 T ZAaEGal); B = (anGa Dn)7 YRS ZA; k; I;;; GEGM; Xlog; K; a: Hn :>
; Dx, . Let ngf be a profinite group which is isomorphic to the étale funda-
prf def

mental group HUX2 = m (Ux,) (relative to a suitable choice of basepoint). Suppose

that (g,77,n) def (0,3°74,2). Then:

(1)

(i)

Let Eg € E[B)] (cf. Definition 4.8, (ii)), ¢: H[B) = Ss an isomorphism, and
A€ M[AB,Ezl1|p| C M[AB,Ez]. Then one may construct from the PGCS-
collection B a collection of isomorphisms between the fields F|<f/ [ B, Ez), ¢, \]
associated to any two choices of the data (Eg,®,\) that is compatible with
composition, i.e., satisfies the “cocycle condition” that arises when one con-

siders three choices of the data (Eg, ¢, ). In particular, one may construct

e q field K[ 2o F| B, Ex), d,\] equipped with a natural action by G

(cf. Theorem 0.3, (iwv)),
o k(A Lof K[%B)¢ (cf. Notation 1.6)
associated to the intrinsic structure of the PGCS-collection A, i.e., which is
independent of the choice of data (Eg, ¢, ) (c¢f. Theorem 5.2, (i)).
Suppose that k is a number field or a p-adic local field. Then there exists an

isomorphism of PGCS-collections 2 =5 BE"| (cf. Theorem 5.1, (iv)). In
particular, there exists an isomorphism

Iy, 5 115" [I15™]

(cf. Theorem 5.1, (iv)). Let E € &[IS™] (¢f. Theorem 5.1, (v)) and B: B =
%[ngf] an isomorphism of PGCS-collections. Then the isomorphism 3: B ~
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BIIEY) induces a commutative diagram

5 ——— 13 5] <——— 1L
le)rf [ngfv E] L [%’ E|H2]
G5 G,

where Iy, 5 TI;7 (1™ denotes the isomorphism determined by 8; 15" —

I, [1I5™] denotes the natural surjection (cf. Theorem 5.1, (v)); E|n, C Il
denotes the generalized fiber subgroup of Ily given by forming the image of
E wvia the composite of arrows 1™ — 1177 [IIB"] & 11y in the upper line of
the diagram; the arrows II5"™ — TP [IB™) B] — G[IE™] denote the natural
surjections (cf. Theorem 5.1, (i), (v)); the arrows Ily — I11[B, E|n,] —» G
denote the natural surjections (cf. Definition 4.8, (i), (ii)); I IS E] —
IL[2, E|n,], GIIY™] — G denote the unique surjections that render the dia-
gram commutative. In particular, we obtain a field

o[, 15, B, 6] % Ry (115", jKerC I Pl 8 )

equipped with a natural action by (g —) 111 [B, E|mn,] (c¢f. Theorems 5.1, (vi);
5.2, (ii)).
In the notation of (i), one may construct a field F\[B, 15" E, 8] (cf. (ii))
equipped with an action by Ily associated to the intrinsic structure of the fol-
lowing collection of data:

e the PGCS-collection AB;

e a profinite group ngf isomorphic to Hpgi ;

o E € &[IE;

e an isomorphism 3: B = %_’[ngf];
such that if

~ def ;
Bx: B BX] = (y,,, Gy, Dx,)

is an isomorphism of PGCS-collections of type (0,34, 2, YA, Yqal), then one
may construct a field isomorphism

F[B,15" E, 8] S Fnct(W)
associated to the intrinsic structure of the data (A, ngf,E, B, Bx), where W
denotes the pro-finite étale covering of Ux corresponding to Iy, (so y, =
Gal(W/Ux)); Fnct(W) denotes the function field of W ; the isomorphism “=”
is equivariant with respect to the respective natural actions of the profinite
groups (Ilz —) 111 [A, E|n,], Hu, (¢f. Theorem 5.2, (iii)).
In the notation of (i), (i), (iii), suppose that Eg = E|n,. Let ¢: H[%] = Ss
be an isomorphism, A\ € M[%, Ez|i[¢] C M[B, Ex|, and

T e R [2,15" E, 8.
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Then T induces, by restriction to decomposition groups (cf. also Proposition
4.7, (iv)), a map

T(-): D\, Ea] — K[2, 15", E, 8] U {oo} & RIS, EJKer(CIE"1>G) | {00}

(v)

(cf. (ii); Theorem 5.1, (vii)); there exists a unique element T[B, 115" E, 8, ¢, ]
€ F[%, ngf, B, ]MI#:Elne] sych that the zero divisor of T[4, ngf, E, 3,6,
is of degree 1 (cf. [AbsTplIll], Proposition 1.6, (iii)) and supported on 0[¢p, \],

T2, 15", E,8,6,\(1[¢,\) = 1 € K[B,115" B, 3],

the divisor of poles of T|%, ngf,E,B,qb,)\] is of degree 1 (cf. [AbsTplII],
Proposition 1.6, (iii)) and supported on oo[p, | (cf. Proposition 2.8). More-
over, the map

T[B, 15" E, 8,6, \(-): D1[#, Ez| — K[, 115" E, 8] U {0}
induces a field isomorphism
K[#) S K[%,115" B, ),

where the isomorphism “>” is equivariant with respect to the respective nat-
ural actions of G (cf. Theorem 5.2, (iv)).

In the notation of (i), (i), () (cf. also, Theorem 5.1, (vii)), the isomorphism
Bx: B = B[X] induces a commutative diagram

Fy[#,18",E,8] ——  Fnct(W)

u U

K[‘%]*N>K[@7ngf7Eﬂﬁ] K

associated to the intrinsic structure of the data (9, ngf, E, 3, Bx), where the
horizontal arrows are the isomorphisms discussed so far in (i), (i), and
Theorem 5.1, (vii); the U’s are the natural inclusions (cf. Theorem 5.2, (v)).

This paper is organized as follows: In §1, we explain some notations. In §2, we de-
scribe the field structure of a field k using the projections Mg 5(k) — Mg 4(k) (de-
termined by forgetting a marked point), together with certain elements 7y, Tya, Ter €
Ss (cf. Definition 2.9) of the symmetric group on 5 letters S5, which we regard as
acting on My 5, by permuting the 5 marked points (cf. Proposition 2.2, (i)). In
63, we define the notion of a CFS-collection and construct a field associated to the
intrinsic structure of a CFS-collection — i.e.,

CFS-collection ~~ field

(cf. Theorem 0.3, (i)). In §4, we define the notion of a PGCS-collection and con-
struct a CFS-collection (hence also a (base) field) associated to the intrinsic struc-
ture of a PGCS-collection — i.e.,

PGCS-collection ~» CFS-collection ~ (base) field

(cf. Theorem 0.3, (ii), (iii), (iv)). In §5, §6, we construct certain function fields
associated to the intrinsic structure of a PGCS-collection — i.e.,

PGCS-collection ~» certain function fields
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— first in the case of PGCS-collections of type (0,3°9,2, Yqa, ¥a) (cf. Theo-
rem 0.4, which is proven in §5), then in the case of PGCS-collections of type
(9,77, n, 2qa1, Ba) (cf. Theorems 0.1, 0.2, which are proven in §6).

1. Notations

Notation 1.1. Let S be a scheme and X a scheme over S, whose structure mor-
phism X — S we denote by f.

(i) Write Aut(X) for the group of automorphisms of the scheme X.
(ii) Write Aut(X — 5) C Aut(X) x Aut(S) for the subgroup of elements (ax, ag)
such that foax = ago f.
(iii) Write Autg(X) C Aut(X — 5) for the subgroup of elements (ax,ag) such
that ag is the identity automorphism of S. When S = Spec(A), where A is a

commutative ring with unity, we shall write Aut4(X) ef Autg(X).

Notation 1.2. Let S'°8 be an fs log scheme (cf. [Nky], Definition 1.7).

(i) Write S for the underlying scheme of S'°&.

(ii) Write Mg for the sheaf of monoids that defines the log structure of S'°8.

(iii) Let S be a geometric point of S. Then we shall denote by I(3, Mg) the ideal
of Ogs generated by the image of Mgz \ Ogy via the homomorphism of
monoids Mgz — Ogz induced by the morphism Mg — Og which defines
the log structure of S'°8.

(iv) Let s € S and 5 a geometric point of S which lies over s. Write (Ms5/Og )P
for the groupification of Mgz/ (’);}E. Then we shall refer to the rank of the

finitely generated free abelian group (Mg 3/ O§7§)gp as the log rank at s. Note
that one verifies easily that this rank is independent of the choice of s, i.e.,
depends only on s.

(v) Let m € Z. Then we shall write

Glossm df {s € S| the log rank at s is < m}.

Note that since S°8=<™ is open in S (cf. [MzTa], Proposition 5.2, (i)), we shall
also regard (by abuse of notation) S°8<™ as an open subscheme of S.

(vi) We shall write Ug 1 Glog<0 and refer to Us as the interior of S1°. When

Us = S, we shall often use the notation S to denote the log scheme S8,

Notation 1.3. Let (g,r) be a pair of nonnegative integers such that 2g — 2+ > 0
and k a field.

(i) Write M, , for the moduli stack (over k) of pointed stable curves of type
(g,7), and M, ,. € M, , for the open substack corresponding to the smooth
curves (cf. [Knu]). Here, we assume the marked points to be ordered.

(ii) Write

Cor =M

g,
for the tautological curve over My ,; D, . o Mg, \ My, for the divisor at

infinity.
(iii) Write M ;f for the log stack obtained by equipping the moduli stack M, ,
with the log structure determined by the divisors with normal crossings 5%7“.
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(iv) The divisor of C,,, given by the union of C, . X, D, with the divisor of
Eg,r determined by the marked points determines a log structure on Egyr; we

. el . .
denote the resulting log stack by C ;E. Thus, we obtain a morphism of log
stacks 1 1
—log —log
Cor = Mgy,

—1

which we refer to as the tautological log curve over M go,f. If S'°8 is an arbitrary
log scheme, then we shall refer to a morphism

Clog N Slog

whose pull-back to some finite étale covering T' — S is isomorphic to the pull-

back of the tautological log curve via some morphism 7"°8 def glog sT —

ﬂ:i as a stable log curve (of type (g,7)). If C — S is smooth, i.e., every
geometric fiber of C' — S is free of nodes, then we shall refer to C'°& — S°8 as
a smooth log curve (of type (g,r)). If C' — S is smooth, and the marked points
of X8 are equipped with an ordering, then we shall refer to C'°¢8 — S'°8 as
a smooth log curve of type (g,7°™"). When it is necessary to distinguish “g, r”
from “g,7°"1”  we shall occasionally write “g,r*™” for “g,r”.

Definition 1.4. Let k be a field; O € {arb,ord}; S def Spec(k); (g,7) a pair of
nonnegative integers such that 2g — 2 +r > 0;

X8 5 5

(cf. Notation 1.2, (vi)) a smooth log curve of type (g,r2); n € Zso. Suppose first
that 00 = ord. Then the smooth log curve X'°8 over S determines a classifying

morphism S — ﬂlgoﬁ. Thus, by pulling back via this morphism S — ﬂ;f the

R —log . . . .
morphism M go);gﬂ n — M gof given by forgetting the last n marked points, we obtain

a morphism of log schemes
X5 _, g,

Observe that since the above construction is manifestly functorial with respect to
permutations of the marked points, we conclude, by an easy étale descent argument,
that one may, in fact, define X'°8 even if OJ = arb. We shall refer to X!°¢ as the
n-th log configuration space associated to X'°8 — S. Note that Xiog = X'°8, Write
xpee 4t

Definition 1.5. Let n € Z-o; O € {arb, ord}; (g,7) a pair of nonnegative integers
such that 2g — 2+ r > 0; X a nonempty set of prime numbers; k a field of charac-
teristic € 3; X'°% a smooth log curve over k of type (g,rD); P a point of X,,; P a
geometric point of X,, which lies over P.

(i) P parametrizes a pointed stable curve of type (g, 4+ n) over some separably
closed field (cf. Notation 1.3, (iv)). Thus, P determines a semi-graph of
anabelioids of pro-X PSC-type (cf. [CmbGC], Definition 1.1, (i)), which is in
fact easily verified to be independent, up to (a non-unique!) isomorphism, of
the choice of the geometric point P lying over P. We shall write G for this
semi-graph of anabelioids of pro-% PSC-type.

(ii) Suppose that 0 = ord. Let us fix an ordered set

def
Cr,n = {017"'acr+n}'
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Thus, by definition, we have a natural bijection C,,, — Cusp(Gp) that de-
termines a bijection between the subset {ci,...,¢.} and the set of cusps of
X8 (cf. [Hgsh], Definition 2.2, (v)). In the following, let us identify the set
Cusp(Gp) with Cy. .

(iii) We shall refer to an irreducible divisor of X,, contained in the complement
X, \ Ux, of the interior Uy, of X,, as a log divisor of X°¢. That is to
say, a log divisor of X!°¢ is an irreducible divisor of X,, whose generic point
parametrizes a pointed stable curve with precisely two irreducible components
(cf. [Hgsh], Definition 2.2, (vi)).

(iv) Let V be a log divisor of X}°¢. Then we shall write Gi> for “G5” in the case
where we take “P” to be the generic point of V, and V to be a geometric
point that lies over the generic point of V.

(v) Suppose that O = ord. Let m € Zs1; y1,-..,Ym € Crp distinct elements
such that §({y1,...,ym}N{c1,...,¢-}) < 1. Then one verifies immediately —
by considering clutching morphisms (cf. [Knu], Definition 3.8) — that there
exists a unique log divisor V of X!°¢, which we shall denote by V (y1,...,%m),
that satisfies the following condition: the semi-graph of anabelioids Gy, (for
some geometric point V that lies over V') has precisely two vertices vy, v2 such
that vy is of type (0,m + 1), vg is of type (g,n+7r—m+ 1), and y1,...,Ym
are cusps of G|y, (cf. [CbTpI], Definition 2.1, (iii)).

Notation 1.6. Let K be a field and G a group that acts on K. Then we write
KG for the subfield of G-invariants of K.

Notation 1.7. Write Brimes for the set of prime numbers. Let G be a profinite
group and ¥ C Primes. Then we shall write G* for the maximal pro-X quotient of
G.

Notation 1.8. Let G be a profinite group and H a closed normal subgroup of
G. Then we shall write Aut(G) for the group of automorphisms of G, Inn(G) C

Aut(QG) for the subgroup of inner automorphisms of G arising from elements of G,

Owt(G) X Aut(G)/Inn(G),

Autg p(G) def {0 € Aut(G) | o(H) = H, and o lies over
the identity automorphism of G/H},

and Inny (G) C Autg /g (G) for the subgroup of inner automorphisms of G' arising

from elements of H. Note that it follows immediately from the various definitions

involved that Inng (G) is a normal subgroup of Autg, 5 (G). Write Outg, g (G) def

Autgp(G)/Tang (G).

Notation 1.9. Let G be a profinite group and H a closed normal subgroup of

G such that H is center-free. Then the conjugation action of G on H induces a

natural outer action G/H N H of G/H on H. Since H is center-free, this outer

. out . . . .
action G/H ~ H, in turn, induces a commutative diagram

1 H G G/H 1

.

11— H— Auwt(H) —— Out(H) ——1
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in which the rows are exact, hence also a natural isomorphism
G = Aut(H) XOut(H) G/H

In particular, one may reconstruct the group G from the natural outer action
out

G/H ~ H.
Notation 1.10. Let G be a profinite group and H a subgroup of G. Then we shall
write
Ce(H) o {9 € G| (gHg )N H has finite index in H, gHg™ '}
for the commensurator of H in G.

Notation 1.11. Let "I, *II,G be profinite groups, fe: fII — G, *e: Il — G
sujections. Then we shall write fA def Ker(e), *A def Ker(*e),
Isom('TL, 1) def {o: TTII 5 TII: isomorphism},

Tsomg (TT1, *1T) e {o € Tsom("IL,*1I) | o(TA) = *A and

o lies over the identity automorphism of G},

and
o)
Tsom&"* (111, 11)
for the set of equivalence classes of o € Isomg ("I, *IT) with respect to the equiva-
lence relation given by composition with an inner automorphism arising from ¥A.

Notation 1.12. Let Eq, Fs be sets. Then we shall write
Maps(El, EQ)

for the set of maps F1 — Es. Let G be a topological group and
Q = {pi; By —~ Qitier

a collection of quotients of F7 indexed by a nonempty set I. Suppose further that
each of the sets F; and Fs is equipped with a topology and a continuous action
by G, and that the topology and continuous action of G on E; induce a topology
and continuous action of G on each of the quotients @Q;, for « € I. For ¢ € I,
we shall refer to a subset F' C Q; of Q; as G-cofinite if, for some open subgroup
H C G, the subset F' C @Q; is stabilized by H, and, moreover, the set F/H of
H-orbits of F is finite. We shall say that a subset F' C E; is pre-(G, Q)-cofinite if,
for some i € I, the image p;(F) of F in Q; is G-cofinite. We shall say that a subset
F C E is (G, Q)-cofinite if it is a finite union of pre-(G, @)-cofinite subsets of Ej.
Let us assume that E; is not (G, Q)-cofinite. Observe that if TF C *F C E; are
(G, Q)-cofinite subsets, then the inclusion E; \*F C E;\ TF induces a natural map

Maps(E1 \ TF, Es) — Maps(Ey \ *F, E).
We shall write

RatMaps(Ey, B2)  lim Maps(E; \ F, E).
FCE,
where F' ranges over the (G, Q)-cofinite subsets of E;. Observe that, if F C E; is
a (G, Q)-cofinite subset, then any o € G induces a natural bijection

Maps(E1 \ F, Ez) = Maps(E1 \ 0~ (F), E»)
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given by taking, for e; € F1\F, (f7)(e1) e (f(e7%(e1)))?. These natural bijections
induce natural actions of G on Maps(E1, F2) and RatMaps(F1, Es).

2. Geometric description of the structure of a field

Let n € Z~,. Write S,, for the symmetric group on n letters. In the present §2, we
describe the field structure of a field k using the projections Mg 5(k) — Mo 4(k),
together with certain elements 7,¢, Tya, Ter € S5 (cf. Definition 2.9 below).

Proposition 2.1. Let n € Zwq, k a field, and X'°% a smooth log curve over k of
type (0,3°4). Then there exist natural isomorphisms
~ ~ =l
Ux, & Mogin, X385 Mgz
arising from the well-known modular interpretation of the moduli stacks in the
codomains of these isomorphisms.

Proof. This follows immediately from the definitions. ]

Proposition 2.2. Let k be a field. Then the following hold:

(i) The homomorphism
Sy — Autk(./\/lo,5)
obtained by considering the permutations of the labels (€ {1,2,3,4,5}) on the
five marked points is an isomorphism. Let us identify Sy with Auty(Mos) by
means of this isomorphism. Thus, S5 acts on ﬂgﬁ and mo,s(k),
(ii) The homomorphism
S3 — Autk(MOA)
obtained by considering the permutations of the labels (€ {1,2,3}) on the first
three marked points is an isomorphism. Let us identify Ss with Auty(Mo.4)
by means of this isomorphism. Thus, S3 acts on mo,:; and ﬂo,zx(k‘).
(iii) By considering the permutations of the labels (€ {1,2,3,4}) on the four marked
points, we obtain a homomorphism

S4 — Autk (M074).

Let a,b,c,d € {1,2,3,4} be distinct elements such that a,b € {1,2,3}. Then
the action of the transposition (a,b) € Sy on Mo 4(k), the action of the trans-
position (a,b) € S3 on Mo.4(k), and the action of the transposition (c,d) € Sy
on Mo 4(k) coincide.

Proof. Assertions (i), (ii) follow immediately from [NaTa], Theorem D (cf. also
[NaTa], Theorem 4.4; [Nkm], Theorem A). Assertion (iii) follows immediately from
the definitions. O

Definition 2.3. Let £k be a field.

(i) Leti € {1,2,3,4,5}. Write p®%: Mo 5(k) — Mo.4(k) for the projection given
by forgetting the i-th marked point Mg 5 — Mo 4.

(ii) By considering the composites of the projections of (i) with the automorphisms
arising from the action of S3 on My 4(k), we obtain a set of surjective maps
Mos(k) — Mo (k). We shall write M < {Mg 5 (k) — Mo 4(k)} for this set
of morphisms. Note that the action of S5 on My 5(k) induces an action of Ss
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on M from the right; the action of S3 on Mo 4(k) induces a free action of Ss

on M from the left.
(iii) We define an equivalence relation on M as follows: For Tq,%q € M,

def -1 -1
Tq ~ iq — {Tq (Z)}Zeﬂ0,4(k)\/\/10,4(k) = {iq (z)}zeﬂoA(k)\MoA(k)'

Note that the action of S5 on M (cf. (ii)) induces an action of S5 on the set
M. of equivalence classes with respect to this equivalence relation, while the
action of S3 on M induces the trivial action of S5 on M.

(iv) Let ¢ € {1,2,3,4,5}. Then we shall write M; € M., for the equivalence class

(cf. (iii)) that contains p*9.
Proposition 2.4. Let k be a field. Then the following hold:
(i) It holds that
Mo\ Mo 4= |_| v

V': a log divisor of ﬂg)i

(cf. Definition 1.5, (i), and Proposition 2.1).
(i) It holds that

{log divisors ofﬂgoj ={V(c1,c4),V(ca,ca),V(c3,ca)}

where c1,ca,¢3,¢4 € C31 = {c1,c2,¢3,¢c4} (cf. Definition 1.5, (i), (v), and
Proposition 2.1).
(ii) It holds that

f(Mo.a(k) \ Mou(k)) =3.
(iv) Let 2 € Moa(k) \ Moa(k) be an element. Then there exists a unique log
divisor V ofﬂgoj such that {2z} =V (k) C Mo 4(k).

We shall regard, by a slight abuse of notation, log divisors of Mﬁii as elements
of MOA(]C)\*MQA(]C) (cf. (v)) and write O def V(er,eq), 1 def V(ea,eq), 00 e
V(Cg, C4) S M074(1€) \MQA(:Z{,’).

Proof. Assertion (i) follows from Definition 1.5, (iii), and Proposition 2.1. Asser-
tion (ii) follows immediately (cf. Definition 1.5, (v)). Assertion (iii) follows from
Proposition 2.1. Assertion (iv) follows from assertions (i), (ii), (iii). O

Proposition 2.5. Let k be a field. Then the following hold:
(i) It holds that

m0,5 \ Mos = U |4

V' a log divisor of ﬁ}fi

(cf. Definition 1.5, (i), and Proposition 2.1).
(ii) It holds that

#{log divisors of ﬂ:ﬁi

=t{V(ca,c5), V(ci,ca,c5), V(ci,cj) |i€{1,2,3}, je{4,5}} =10.



PRO-P SEMI-ABSOLUTE ANABELIAN GEOMETRY 15

(#i) It holds that
(PP TH0) = Ver,ca) UV (er,eares), (PP THL) = Ve, ca) UV (€2, ca, ¢5),

(PPN (00) = V(es, ca) UV (cs,ca, c5),

where ¢1,¢2,¢3,¢4,¢5 € C39 = {c1,...,¢5} (¢f. Definition 1.5, (i), (v); Propo-
sition 2.1). In particular,

PPV (ci en)) = P (Viei ea es)) = Ve, ca),
where i € {1,2,3}.

(iv) Let i€ {1,2,3,4,5}.
o Ifie{1,2,3}, write {#,i"} = {1,2,3} \ {i}; then

tpd\ —
{®:") 1(2)}z€ﬂo‘4(k)\/\/!o,4(k)
:{V(Ci/, C4) U V(Ci//, 05), V(Ciﬂ, C4) U ‘/(Ci/7 05), ‘/Y(Ci7 Cyq, 05) U V(C4, 65)}.

o Ifie {4,5}, write {i"""} = {4,5}\ {i}; then
{7 ) oMo st Mos ) = {V (€5, cm) UV (5, ca,¢5) | § € {1,2,3}}.

Here, ¢1,¢9,c¢3,¢4,¢5 € C3.2 ={c1,...,¢5} (cf. Definition 1.5, (ii)).
(v) It holds that

Moys(k) \ Mos(k) = U PP (=),

2€Mo,a(k)\ Mo, a(k),i€{1,...,5}

Proof. Assertion (i) follows from Definition 1.5, (iii), and Proposition 2.1. Assertion
(ii) follows from Definition 1.5, (v), and Proposition 2.1. Assertions (iii), (iv), (v)
follow immediately from the well-known modular interpretation of the moduli stacks
involved. ]

Proposition 2.6. Let k be a field. Then the following hold:
(i) For eachi € {2,3,4,5}, it holds that pzpd = ng(i o(i—1,4), where (i —1,i) €
S5 = Aut(Mo) denotes the permutation that maps i — 1+ i, i — i — 1.
(i) The assignment {1,2,3,4,5} 39— M; € M. determines a bijection

{1,2,3,4,5} 5 M.

(cf. Definition 2.3, (iii), (iv)). In particular, the fibers of the natural projec-
tion M — M. are Ss-torsors (relative to the action of Ss from the left — cf.
Definition 2.3, (ii)); the set M is of cardinality 30.

(i11) Let a,b,c € {1,2,3,4,5} be distinct elements. Then M, = M, o (b,c) (cf.
Definition 2.3, (iv)), where (b, c) € S5 = Auty(Mos) denotes the permutation
that maps b — ¢, c— b.

(iv) Note that the action of Ss on Mg s induces an action of S5 on the set of log
divisors of Mijﬁi (cf. Definition 1.5, (i), and Proposition 2.1). Let i,j €
{1,2,3,4,5} distinct elements such that {i,j} € {1,2,3} and o € S5. Then

oc(V(ci,¢;)) = Vica(iy Coyy)  (if {o(i),0(4)} £ {1,2,3})
DT Ve eses) (f {1y U{o(i), o ()} = {1,2,3}),

where ¢, Cj, Co(i)s Co(s), 1l € C32 = {c1,Ca,¢3,ca,¢5} (cf. Definition 1.5, (ii)).
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(v) Let z,y € Moa(k) be distinct elements. Then there exists a unique element
z € Mos(k) such that pd(z) = x, piPY(2) = y. We shall write (z,y) €

Mo 5(k) for this unique element.

Proof. Assertion (i) follows from Proposition 2.2, (i), and Definition 2.3, (i). Next,

we consider assertion (ii). Let ¢ € M be an element. By Definition 2.3, (ii),

there exist 7 € Sy and ¢ € {1,2,3,4,5} such that ¢ = 7 Opzpd. In particular,

q~ pzpd (cf. Definition 2.3, (iii)), so the map {1,2,3,4,5} — ML, is surjective. The
injectivity of the map {1,2,3,4,5} — M. follows from Proposition 2.5, (ii), (iv).
This completes the proof of assertion (ii). Next, we consider assertion (iii). By
conjugating by S5, we may suppose that a = 5. Then it follows immediately that
Mg o (b,c) = (b,c) o My, = M, (cf. Definition 2.3, (iii)). Assertions (iv), (v) follow
from the well-known modular interpretation of the moduli stacks involved. (I

Proposition 2.7. Let k be a field, z € Mo (k) \ Mo a(k), and y € Mo (k) \ {z}.
Then we obtain an element

(s ) (@, ) = (0, 5) (2, 9)) € {0, 1,00},

where i,j € {1,2,3} are distinct elements and, by a slight abuse of notation, we
write (i,j) for the corresponding transpositions € S5 — Autg(Mos), € S3 —
Autg(Mo.a) (cf. Proposition 2.2, (i), (ii)). Then the following hold:

(i) Let Ty, y € Moa(k)\ {}. Then
(G ) (@, Ty) = PP, 5) (2, Hy).
(i) It holds that
2 =0z =p"((2,3)(z,y)).
(iii) It holds that
v =1z =pP(1,3)(z,y)).
(iv) It holds that
v =00 <=z =pP((1,2)(x,y)).
Proof. Assertions (i), (ii), (iii), (iv) follow immediately from the various definitions

involved. O

Proposition 2.8. Let k be a field. For every three distinct elements 21, 22, 23 €
Mo.a(k)\ Mo 4(k), there exists a unique regular function t,, ., -, € T'(Moa, Orq,.,)
(which may be regarded as a rational function on Mog.4) such that

® 1. 2,2 tnduces a bijection
tZ1122123 : MOA(]C) S kU {OO},

o the zero divisor of t., ., ., is of degree 1 and supported on z;

o t217z2723 (22) =1
o the divisor of poles of t,, ., ., is of degree 1 and supported on zs.

Proof. This follows immediately from the well-known geometry of the projective
line (i.e., Mo.4). O
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In the remainder of the present §2, we suppose that (21, 22,23) = (0,1,00) (cf.
the final portion of Proposition 2.4) and consider the bijection
toyizmns s Moa(k) = kU {oo}

of Proposition 2.8. In the following, we shall think of k as a subset of Mg 4(k) by
means of this bijection. Our goal will be to describe the field structure of k using
the projections pzpd: Mos(k) = Moa(k) (i € {1,2,3,4,5}) (cf. Definition 2.3, (1))
and Ty, Tra, Ter € S5 (cf. Definition 2.9 below).

Definition 2.9. Let k be a field and x,y € Mg (k) distinct elements. From a
computational point of view, it is often useful to recall that (x,y) € My 5(k) corre-
sponds to the genus 0 curve with 5 ordered marked points given by (0, 1,00, z,y).

(i) (Reflection) We write
f(1 2 3 4 5
12 4 3 5> €55,

d
T Mos(k) S Mos(k): (z,y) — (1 _z, @)

Ty
(ii) (Ratio) We write
f(1 2 4 5
Tra = (1 43 2 5)655’

Tra: Mos(k) =~ Mos(k): (z,y) — (%, %)

(iii) (Cross ratio) We write

Tcrdif(l 2 3 4 5)655,

Ile

Trf

i.e.,

o
1)
w w

ie.,

4 51 2 3

ie.,

et Mos(k) = Mos(k): (z,y) — (y—m y—m).

y Ty-1
Proposition 2.10. Let k be a field, T € S, and x,y € Mg (k) distinct elements.
Then the following hold:
(i) T =1t =
Myor =Mz, MyoT =My, M;or =M, (i€{1,2,5}).
(i) T = Tra <
Myor =My, MyoT =DMy, MjoT =M, (j €{1,3,5}).
(i0i) T = Ter <
Myor =DMy, MsoT =DMy, MioT = Ms,
My oT = My, Mot = Ms.
(iv)
PP (e, y)) =1 — .
(v)

pgpd (Tra(z,y)) =

8|~
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(vi)
(vii)

d o
p‘gp (Tcr(xay)) = yybL'

Proof. Assertions (i), (ii), (iii) follow from Proposition 2.6, (ii), together with the
various definitions involved. Assertions (iv), (v), (vi), (vii) follow from Definition
2.9, (i), (i), (iii). O
Proposition 2.11. Let k be a field and z,y € Moa(k) distinct elements. Then
the following hold:

(i) % :pgpd(Tra(xay))-

(i) If y # %, then @ -y = pP*(ra(2.1)).

Proof. Assertions (i), (ii) follow immediately from Proposition 2.10, (v), (vi). O

Proposition 2.12. Let k be a field such that §k # 3. Then it holds that k is a field
of characteristic # 2 <= there exists an element v € Mg (k) such that * = x.

Proof. Assertion follows immediately from the various definitions involved. O

Proposition 2.13. Let k be a field and =,y € Moa(k) distinct elements. We
suppose that k is a field of characteristic 2. Then the following hold:

(i) ©+1=pP(re(z, 1))

(ii) :c—i—y:y(m%—kl).

Proof. Assertion (i) follows immediately from Proposition 2.10, (iv). Assertion (ii)
follows immediately from the various definitions involved. O

Proposition 2.14. Let k be a field and x,y € Moa(k) distinct elements. We
suppose that k is a field of characteristic # 2. Then the following hold:
(i) z=-1= 1=y
(ii) If x # —1, then 1 +1 = pPY(r(~1, ).
(iii) If v # —1, then x + 1 = pgpd(Tcr(JC, —-1)).
(iv) x+y=y(w~§+1).

Proof. Assertions (i), (iv) follow immediately from the various definitions involved.
Assertions (ii), (iii) follow immediately from Proposition 2.10, (iv), (vii). O

3. Comnstruction of a field associated to a CFS-collection

In the present §3, we introduce the notion of a CFS-collection (cf. Definition 3.2
below) and construct a field associated to the intrinsic structure of a CFS-collection
(cf. Theorem 3.13 below).

Definition 3.1. Let A, B,0B, H, M be sets. We shall refer to & = (A, B,0B, H,
M) as a model CFS-collection (“model configuration-theoretic field structure col-
lection”) if there exist a field k& and a smooth log curve X'°8 over k of type (0,3°79)
such that A = X5(k); B = X(k); 0B = X(k) \ Ux(k); H is the set of automor-
phisms of X3 (k) induced by automorphisms of Uy, over k (cf. Proposition 2.2, (i));
M is the set of maps X5(k) — X (k) induced by the 30 natural morphisms Xy — X
(cf. Proposition 2.1; Definition 2.3, (ii); Proposition 2.6, (ii)).
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Definition 3.2. Let A, B be sets; 0B C B a subset of cardinality 3; H C Aut(A) a
subgroup; M a set of maps A — B. Then we shall say that «# = (A, B,0B, H, M)
is a CFS-collection if it satisfies the following condition: There exist a field k, a
smooth log curve X'°8 over k of type (0,3°9), a bijection a: A = X5(k), and a
bijection 8: B = X (k), such that

(i) B induces a bijection B\ 0B = Ux (k);

(i) the isomorphism of groups Aut(A4) = Aut(Xy(k)) determined by « induces
an isomorphism of groups H = Auty(Ux,) (= Aut(X2(k))) (so H = S5 (cf.
Propositions 2.1 and 2.2, (i)));

(iii) if we write Mx for the set of maps Xo(k) — X (k) induced by the 30 natural
morphisms Xy — X (cf. Proposition 2.1; Definition 2.3, (ii); Proposition 2.6,
(ii)), then there exists a bijection M = Mx such that if A\ — ¢ via this
bijection, then

A :4> Xg(k)

1)

B~ X(k).

Remark 3.3. It is immediate that any model CFS-collection is a CFS-collection.
Moreover, relative to the terminology introduced in Definition 3.9 below, the data
(a, B) that appears in Definition 3.2 may be regarded as an isomorphism of CFS-
collections between the CFS-collection under consideration in Definition 3.2 and
some model CFS-collection.

Definition 3.4. Let (A, B,0B, H, M) be a CFS-collection. Let T\, ¥\ € M. We
define an equivalence relation

IDYVES PN {10 eon = FATH(B) boeon-

The set of equivalence classes of M is of cardinality 5 (cf. Remark 3.3; Proposition
2.6, (ii)).

Definition 3.5. Let (A, B,dB, H, M) be a CFS-collection and ¢: H = S5 an iso-
morphism. Here, we remark that H acts naturally on M (cf. Remark 3.3; Definition
2.3, (ii)). Also, we recall the well-known elementary fact that every automorphism
of S5 is inner; thus, ¢ is unique up to composition with an inner automorphism
of S5. Let a € {1,2,3,4,5} be an element. Write M,[¢] for the unique equiv-
alence class as in Definiiton 3.4 such that M,[¢] = M,[¢] o (¢71(b,c)), for all

transpositions (b,¢) € S5 such that a &€ {b,c} (cf, Remark 3.3; Proposition 2.6,

(ii), (iii)). Thus, M = Mi[¢] U--- U Ms[¢]. Let A € Mi[g]. Write pi[¢,A] = A,

il AL % pi_1[6, N © (6~ 1(i — 1,4)), where i € {2,3,4,5) and (i — 1,i) € Ss.

Definition 3.6. Let (A4, B,0B, H, M) be a CFS-collection, ¢: H = S5 an isomor-
phism, and A € M;[¢p]. We define

Hglo, A def {7y € Aut(B) | there exists an element o € S5

such that o(1) =1 and yo A= Ao ¢ (o)}

Let ¢: H = S5 be an isomorphism, and TA € M;[T¢]. Then one verifies immedi-
ately (cf. Definition 2.2, (i), (ii); Remark 3.3) that Hg[(¢,TA\] = Hg[p, \]. Write
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Hp def Hpp,\] € Aut(B). Finally, one verifies immediately (cf. Definition 2.2,
(i), (ii); Remark 3.3) that the assignment v — ~|sp determines an isomorphism of
groups Hp — Aut(0B). Here, we recall that Aut(dB) is isomorphic to Ss.

Definition 3.7. Let (4, B,0B, H, M) be a CFS-collection, ¢: H = S5 an isomor-
phism, and A\ € M;[¢]. Let xz,y € B be distinct elements. Then there exists an

unique element z € A such that ps[@, A\](z) = =, pa[p, A](2) = y (cf. Remark 3.3;

Proposition 2.6, (v)). Write (z,y)[¢, A] e

Definition 3.8. Let (4, B,0B, H, M) be a CFS-collection, ¢: H = S5 an isomor-
phism, and A € M;[¢]. Then (cf. Remark 3.3; Proposition 2.7, (ii), (iii), (iv)):

e We shall write 0[¢, A] for the unique element x € 9B such that for every

y € B\ {z}, it holds that x = ps[¢, A|((67"(2,3))(x, )¢, A))-
e We shall write 1[¢, A] for the unique element x € dB such that for every

y € B\ {z}, it holds that = = ps[¢, \|((¢~ (1, 3)) (=, y) [, A]).
e We shall write co[¢, A] for the unique element & € OB such that for every

y € B\ {z}, it holds that z = p5[$, \|((¢"(1,2))(x, y) [, ])-

Thus, {0[¢, A], 1[, A], o0[, A} = 9B.
Definition 3.9. Let

Yot = (1A, TB,TOB,TH,TM), *o/ = (*A,%B,*0B, H,* M)
be CFS-collections. We shall refer to (o, 3): 7o = ¥.o7 as an isomorphism of CFS-
collections if a: TA 5 *A, B3: TB 5 B are bijections of sets such that 3(T0B) =
9B, aoTHoa ' =*H, fotMoa ' =*M.
Definition 3.10. Let

Yo/ = (TA,TB,TOB,TH,TM), o/ = (*A,*B,*0B, H, M)
be CFS-collections, (o, 8): T.&Z = .o/ an isomorphism of CFS-collections, f¢: TH =
S5 an isomorphism, and YA € TM;[T¢] (cf. Definition 3.5). Write ¥\ def Bofroa™!;
t¢: *H 5 S5 for the isomorphism obtained by composing ¢ with the isomorphism
tH 5 TH obtained by conjugating by a~!. In this situation, we shall write

def def
(@, 8)('0) = Ho, (o, B)(TA) = FA.

Then we have a commutative diagram

TAga)iA

where i € {1,2,3,4,5} (cf. Definition 3.5).

Definition 3.11. Let (A4, B,0B, H, M) be a CFS-collection and ¢: H ~ S5 an iso-
morphism. Let M;[¢] be as in Definition 3.5. Then we shall write 7y¢[®], Tva[d], Ter [@]
€ H for the unique elements of H such that

My[¢] o e[@] = Ms[¢], Ms[@] o Tu[g] = Mald], Mi[¢] o mue[¢] = Mi[¢],

M>[¢] 0 Tra[¢] = Ma[@], Mu[@] o Trald] = Ma[¢], M;[¢] 0 Tra[g] =
M4[¢] ° Tcr[(yb] = Ml[qﬂ» M5[¢] ° Tcr[(yb] = M2[¢]7 M, [(rb] ° Tcr[(rb] =
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Ma[¢] 0 Tex[¢] = Mu[@], Ms[¢] 0 7er[@] = Ms[d],
where ¢ € {1,2,5} and j € {1, 3,5} (cf. Remark 3.3; Proposition 2.10, (i), (ii), (iii)).

Definition 3.12. Let o = (A, B,0B, H, M) be a CFS-collection, ¢: H = S5 an
isomorphism, and A € M;[¢] an element. We shall say that a collection of maps

B,K: (B\ {o0[g, Al}) x (B\{o0[¢, A]}) = (B\ {oc[o, Al}),
B: (B \ {o0[¢, A]}) = (B \ {oo[¢, Al}),
2: (B\{0[¢, A],00[¢, Al}) = (B \{0[¢, A], 00[, Al})
is CFS-admissible if the following conditions are satisfied:

(1) First, we consider general properties (cf. Proposition 2.11):
(a) B(0[¢, A]) = 0[¢, Al, @(1[g, A]) = 1[¢, Al.
(b) For 2,y € B\ {oo[¢, Al}, B(z,y) = B(y,z), K(z,y) = Wy, z).
(c) OF[C;“ 9;]6 B\{oo[¢, A]}, B(0[¢, A], z) = z,K(0[¢, A], z) = 0], A], B(z,B(z)) =
() For z € B\ {0[6. ], 00lo. N}, (1], N].2) = 2, Rz, B(x)) = 1[5 A].
(e) Let x,y € B\ 0B such that  # y. Then () = ps[p, A](Trald, Al (2, y)).
(f) Let =,y € B\ 0B such that y # A(z). Then

X(x,y) = pald, Al(Tealo, Al(@(2), )

(2) Suppose that §B = 4. Then we define the maps H,X,H, 11 for B\ {co[¢, A]} as
follows: write {a} = B\ {0[®, A], 1[¢, A], 00[¢, A]}; then

B 0[N 1[¢, )] a X | 0[] 1[¢, )] a
0[p, Al | 0[¢, A] 1], Al a 0[p, A] | 0[p,A] 0[¢, Al  0O[¢, A]
g, Al | ¢, Al a  0[g,A]  1[p, A | 0[g, A]  1[g, A] a

a a 0[p, ] 1[, A] a 0], A] a 1[g, A]

B(0[¢, Al) = 0[¢, Al, B([p,A]) =a, Bla) = 1[¢, A,
a(1[¢, Al) = 1, A,  B(a) =a.
(3) Suppose that there does not exist € B\ 9B such that
dx) ==
(cf. Proposition 2.12). Then (cf. Proposition 2.13):
(a) Let x € B\ {o0[¢,A]}. Then B(z) = z and H(z, z) = 0[¢, A].
(b) Let z,y € B\ 9B such that  # y. Then
B(z,1[¢, A]) = ps[¢, Al(7et[, Al (2, 1))
(c) Let z,y € B\ {o0[p, A]} such that y # 0[¢, A]. Then
B(z,y) = My, BX(z, 2(y)), 1[$, A]))-
(4) Suppose that §B # 4, and that there exists an element x € B \ 0B such that
d(z) ==
(cf. Proposition 2.12). Then (cf. Proposition 2.14):

(a) Let z,y € B\ 0B such that (z) = x. Then B(1[¢,\]) = = € B, and

B(y) = M(z, y).
(b) Let = € B\ (9B U {B(1]¢, \])}). Then

Bﬂ(l[(b, )‘]7 1[¢’ )‘]) =Ds5 [gb, )‘}(Trf[¢7 )‘]<E|(1[¢7 A])’ ‘T))
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(c) Let z € B\ (9B U {B(1]¢, \])}). Then

Bz, 1[0, A]) = ps[¢, Al (Ter [, Al (2, B(1[¢, A)))-
(d) Let z,y € B\ {o0[¢, A]} such that y # 0[¢, A]. Then

Bz, y) = Ry, BX(z, 2(y)), 1[$, A]))-

Observe that it follows formally from the above conditions (1), (2), (3), (4) that if
one fixes the data (<, ¢, A), then any CFS-admissible collection of maps is unique.

Thus, if the data (&7, ¢, A) admits a CFS-admissible collection of maps, then we shall

write F[«, ¢, A] %ef (B\ {oo[¢, A]}, B, X, 8, ) for the set B\ {oo[p, A]}, equipped

with the maps H, X, H, 1.

Theorem 3.13. (From CFS-collections to fields) Let & = (A, B,0B,H, M)

be a CFS-collection (cf. Definition 3.2); ¢: H = S5 an isomorphism; i € {1,2,3,4,5};

M;[¢] as in Definition 3.5; A € Mi[¢]; pi[é,A] € M;[#] as in Definition 3.5;

0[p, Al, 1@, A], 00[@p, \] € OB as in Definition 3.8; Tu[@], va[®], Ter[@¢] € H as in

Definition 3.11. Then:

(i) Suppose, further, that the following conditions hold: o/ = (A, B,0B,H, M)

is a model CFS-collection; k and X'°% are as in Definition 3.1; ¢: H = S5 is
the composite of the natural isomorphisms

HS Autk(sz) = AUtk(MO,S) &~ S
cf. Propositions 2.1; 2.2, (i)); A = ptpd € Mq|¢p]. Then the bijection
1
B = X(k) = m0’4(1€) S kU {OO}

induced by to.1.00 (cf- Proposition 2.1, the final portion of Proposition 2.4, and
Proposition 2.8), together with

the operations of addition, multiplication, additive inversion, and
multiplicative inversion arising from the field structure on k,

determines a CFS-admissible collection of maps for (o7, $,\) (cf. Definition
3.12). In particular, the resulting object F[</, ¢, | of Definition 3.12 may be
regarded as o field structure on the set B\ {oo[¢, A]}.

(i) Let

tor = (YA, TB,TOB,TH,TM), *o = (*A,%B,*0B, H,tM)

be CFS-collections; t¢: TH 5 S5 an isomorphism; *¢: *H 5 S5 an isomor-
phism; A € TM[18]; N € M [F¢]; (o, B): T/ 5 Y/ an isomorphism of
CFS-collections. Suppose that

(a,8)('¢) =*¢, (a,B)(TA) =1\

(cf. Definition 3.10), and that (To/,T¢,T\) admits a CFS-admissible collec-
tion of maps. Then (*o7,%¢,*\) admits a CFS-admissible collection of maps.
Moreover, F[ta7, ¢, T\], F[*a/,%¢,*\] may be regarded, respectively, as field
structures on the sets B\ {oo[t¢, TA]}, #B\ {oc[0, *A\]} (cf. (i)), with respect
to which B induces a field isomorphism F[t.a7,T¢, T\ = F[ia/ t¢, ).
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(iii) Let T, ¢: H =5 Sy be isomorphisms and Tx € Mi[T¢],*\ € My[*¢]. Then
there exists a unique element v € Aut(0B) such that v(z[T¢, TA]) = 2[t¢, )]
and v € Aut(0B) < Hp C Aut(B) (cf. Definition 3.6) determines a field
isomorphism

Fla, 79, TN 5 Fla,t¢, ]

relative to the field structures discussed in (i), (ii).

e

Proof. First, we consider assertion (i). Since we suppose that ¢: H(= Auty(Ux,))
S5 is the composite of the natural isomorphisms

Autk(sz) = Autk(Mo,s) & Ss,

by Proposition 2.6, (ii), (iii), and Definitions 2.3, (iv); 3.5, it holds that M;[¢] =
SzopPd (i € {1,2,3,4,5}). Recall that A = p{*® € M;[¢]. Thus, by Definition 3.5,

and Proposition 2.6, (i),
def
pile A= A =pi,
def

pild. A= pica[g, N o (671 (i = 1,4)) =pP o (i — 1i) = p;™,
where i € {2,3,4,5}.

Next, observe that, relative to the identifications induced by the natural iso-
morphisms X (k) = Mo 4(k), Xa(k) = Mg s(k) (cf. Definition 2.1), the following
hold:

e Let z,y € B be distinct elements. Then by Proposition 2.6, (v), and
Definition 3.7, it holds that (z,y)[®, A] = (z,y).

e By the final portion of Proposition 2.4, Proposition 2.7, (ii), (iii), (iv), and
Definition 3.8, it holds that z[¢, \] = z for z € {0, 1, c0}.

e By Definitions 2.9, 3.11, and Proposition 2.10, (i), (ii), (iii), it holds that
Trf [¢] = Trf, Tra[¢] = Tray Tecr [¢] = Tcr-

Thus, assertion (i) follows from Definition 3.12 and Propositions 2.11, 2.12, 2.13,
2.14.

Assertion (ii) follows formally from assertion (i); Definitions 3.2, 3.5, 3.6, 3.12
(cf., especially, the uniqueness of a CFS-collection of maps associated to a given
“(e,p,\)); Remark 3.3; Proposition 2.2, (i), (ii); Proposition 2.6, (ii). (More
details may be found in the (essentially similar) argument given in the final portion
of the proof of assertion (iii).)

Next, we consider assertion (iii). Since Aut(0B) is isomorphic to Ss, it follows
immediately from the various definitions involved that there exists a unique element
v € Aut(0B) such that v(z[T¢, TA]) = z[f¢, )] for z € {0,1,00}. By Definition 3.2
and Remark 3.3, we may assume without loss of generality that 7 is a model CFS-
collection. Moreover, by Definitions 3.5, 3.6; Proposition 2.2, (i), (ii); Proposition
2.6, (ii), we may assume without loss of generality that T¢, T\ are, respectively, the
“@”, “N’ of assertion (i). (More details may be found in the (essentially similar)
argument given in the following paragraph.)

Next, observe that there exists a unique element « € H C Aut(A) such that
tp: H = S5 is the isomorphism obtained by composing ¢ with the isomorphism
H = H obtained by conjugating by a~! (cf. Definition 3.5). Write 8 € Hg C
Aut(B) for the unique element such that A = 8o Ao a™! (cf. Proposition 2.6,
(ii); Definition 3.6). Thus, the pair (o, 8) may be regarded as an isomorphism of
collections of data (o, ¢, TA) 5 (o7, %¢,*\) (cf. Definition 3.10). In particular,
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Blop = 7 (cf. Definitions 3.6, 3.8). By assertion (ii), we may regard the field struc-
ture on F[e7, ¥p,* )] as the result of transporting the field structure on F[e7, T, TA]
via 8. In particular, 8 determines a field isomorphism

Flt, 16, T\ 5 Fl/ b, N,
as desired. O

4. Construction of a CFS-collection associated to a PGCS-collection

In the present §4, we introduce the notion of a PGCS-collection (cf. Definition 4.2
below) and construct a CFS-collection (cf. §3) associated to the intrinsic structure
of a PGCS-collection (cf. Theorem 4.9 below).

Notation 4.1. Let n € Zsg; (g,7) a pair of nonnegative integers such that
2g—2+r > 0; p a prime number; k a generalized sub-p-adic local field (cf. [Topics],
Definition 4.11); k an algebraic closure of k; X!°% a smooth log curve over k of
type (g,7). Write G, = Gal(k/k). In the following, we shall consider the commu-
tative diagram of étale fundamental groups “m(—)” (relative to suitable choices of

basepoints) and their quotients:

1 m(Ux, X k) m(Ux,) Gy 1
1——m (Ux, % k)P —— 7, (Ux, ) G 1
m(Ux, x5 k)® —— 7, (Ux,)® G’(cp) 1,

where we append the superscript (p) to a profinite group to denote its maximal
pro-p quotient, and we write

Wl(UXn)[p] dét wl(UXn)/Ker(m(an Xk /7{) — 7T1([]X71 Xk E)(p))
Definition 4.2. Let n € Z~1; (g,7) a pair of nonnegative integers such that 2g —
24 7r > 0; 0 € {arb,ord}; ¥a,Xga sets of prime numbers such that ¥a C Xgal,
and XA, Xga are of cardinality 1 or equal to Primes; II,, a profinite group; G a
quotient of IL,; D, a set of subgroups of II,. We shall refer to (II,,G,D,,) as
a PGCS-collection (“point-theoretic Galois configuration space collection”) of type
(9,79, n, %A, Xqal) if there exists a collection of data as follows:

e a prime number p € ¥a; a generalized sub-p-adic local field k; an algebraic
closure k of k; a smooth log curve X'°& over k of type (g, TD);
e an isomorphism

ot S M) (5 = Tew)
10, Uxn m(Ux, )P (f Ta € Sgal)

such that, if we write Gy, for the Galois group Gal(k/k) of k and K C k for the
maximal pro-Yga. subextension of k/k (so cha‘ = Gal(K/k)), then the natural
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def

outer action Gy 7 Ayy, = m(Ux, X k)2 factors through the natural surjection

Gy — GEG"“, and « induces a commutative diagram

H" T> Han
,,,,, i XGal
G o GO,

where the lower horizontal arrow a¢ is an isomorphism, as well as a bijection

~ def
D, = Dx, =

= {D CIy,, | D is a decomposition group
associated to some z € X,,(K)}.

Remark 4.3. Let p be a prime number. Then, in the situation of Definition
4.2, if one takes (g,77,n, XA, Laal) to be (0,7°°9, n, {p}, Primes), then one verifies
immediately (cf. [MzTa], Proposition 2.2, (i)) that the natural outer action Gy, ~

71 (Ux, x) k)¥4 factors through the natural surjection G}, — G,(f) if and only if &
contains a primitive p-th root of unity.

Definition 4.4. Let 1% = ('I1,,, TG, D,,), *% = (*11,,,*G, *D,,) be PGCS-collections
of type (g,rDm, YA, Yaal). We shall refer to 8 = (B, Bag,fp): 18 = 1% as
an isomorphism of PGCS-collections if By is an isomorphism of profinite groups
t1I,, 5 11, such that S induces a commutative diagram of homomorphisms of
profinite groups

11, LH> i,

B
TS,
G Ba G,

where 'II, — G, I, — *G are the natural quotient homomorphisms, and
Ba: TG 5 G is an isomorphism, as well as a bijection
D, -~ >iD,.
Bp

Definition 4.5. Let & = (II,,, G, D,,) be a PGCS-collection of type (g,rD,n, YA,
Yca1). Then we shall write Aut(£) for the group of automorphisms of %, Autg (%)
C Aut(9) for the subgroup of automorphisms of £ lying over the identity auto-
morphism of G,

Out(£)
for the group of equivalence classes of automorphisms of the PGCS-collection %
with respect to the equivalence relation given by composition with an inner auto-
morphism arising from II,, and

Outg(Z#)
for the quotient of Autg(%) by the normal subgroup of inner automorphisms arising
from Ker(II,, — G).

Definition 4.6. Let 1% = ('11,,,G,TD,,), ¥% = (*11,,, G,*D,,) be PGCS-collections
of type (g,75,1,8A, Lqal). Then we shall write

Isom("%,*%) C Isom('11,,, *11,,)
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for the set of isomorphisms % 5 % of PGCS-collections,

Isomg (1%, *2) Lof Isomg('1L,, *11,,) N Isom(T%, ¥ %),

and
Isom2"(t 2, 1%)
for the image of Isomg (T4, ¥ %) via the natural surjection
Isomg (TI1,,, *I1,,) — Isom@™*('1L,,, 11,,)
(cf. Notation 1.11).
Proposition 4.7. Letn € {1,2}; XA, Xgal sets of prime numbers such that X C
Ygal, and XA, Xgal are of cardinality 1 or equal to Primes; p € Xa; k a generalized

sub-p-adic local field; _l_c an algebraic closure of k; X'°% a smooth log curve of type
(0,3°Y). Write K C k for the mazimal pro-Yaa subextension of k/k and

of 7. of |m(Ux,)*> (if2a =3
AUX” def m(Ux, Xk k)ZA7 My, def 1(Ux )[p] (f A Qal)
m(Ux,) (if XA € Bqal)-

For x € X,(K), let D, C lly,, be a decomposition group of Iy, —at x. Write
[D.] for the Ayy, -conjugacy class of Dy. If ¥ga = {p}, suppose that k contains
a primitive p-th root of unity. Then the following hold:

(i) The natural morphism Ux, xx k — Ux, — Spec(k) induces an isomorphism
Asz = Ker(HUX2 —» G%Gal).

(i) We shall refer to a subgroup of Ay, as a generalized fiber subgroup if
it coincides with the subgroup Ker(Ay,, — Ay ) associated to one of the 30
projection morphisms

(UX2 :>) Mo,g, — M0’4 (:> Ux)

(cf. Proposition 2.1) given, up to pre-/post-composition with automorphisms
of Mos, Mo (cf. Proposition 2.2, (i), (ii)), by forgetting one of the marked
points (c¢f. [HMM)], Definition 2.1, (ii)). Then there exists a group-theoretic
characterization of the set Ex, of generalized fiber subgroups (c¢f. [ HMM], The-
orem 2.5, (iv)).

(iii) Let E be a generalized fiber subgroup of Auy, (cf. (ii)). Then there exists a

projection morphism p§</1: Ux, — Ux as in (i) that induces isomorphisms
(AUX2 _») AUx2 /E = AUx’ (HUX2 _») HUX2 /E = HUX'
(iv) Write
Dx, o {D Clyy, | D is a decomposition group
associated to some x € X,,(K)}

and [Dx,] for the set of Ay, -conjugacy classes of subgroups € Dx,,. Then
the map
Xn(K) — [Dx,]: © — [Dy]
1s bijective.
(v) Write pQH/lz Uy, — Iy for the surjection of (iii). Then it holds that
Dx = {Cny, (P51(D)) | D € Dx,}
(cf. Notation 1.10).
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(vi) For each x € X(K), it holds that
x€Ux(K) < D, NAy, ={1}.
(vii) The natural morphism

(S5 =) Auty(Ux,) — OUtGEGal (Hsz)

(cf. Notation 1.8; Proposition 2.2, (i)) is bijective.

(viii) Let pg(/lz Ux, — Ux be a projection morphism as in (iii). Then the set of
composite morphisms pg(/l o Autg(Ux,) coincides with the set of projection
morphisms Ux, — Ux as in (ii).

Proof. Assertion (i) follows from [MzTa], Proposition 2.2, (i). Assertions (ii), (iii)
follow from [HMM], Theorem 2.5, (iv).

Next, we consider assertion (iv). Since the surjectivity of the map under con-
sideration follows immediately from the various definitions involved, it suffices to
verify injectivity. First, we consider the case where ¥ g, = Primes. Then assertion
(iv) follows from [Topics|, Theorem 4.12 (i.e., via the same argument as the argu-
ment applied in the proof of [LocAn], Theorem 19.1, to derive [LocAn], Theorem
19.1, from [LocAn|, Theorem A — cf. also the Remark following the statement
of [Topics], Theorem 4.12). Next, we consider the case where Yg, = {p}. Let

z € X,(K) and DY C m(Ux )P, DP) C Iy, = m(Ux,)") decomposition
groups associated to x such that (m(Ux, )P — wl(UXn)(p))(D;[LP]) = D). Then
one verifies easily that the composite morphism p¥ ¢ 1 (Ux, )Pl = Gy, is injec-

tive, and that the image Im(Df[cp ]) of this composite morphism is G ) € Gy, where
k(z) denotes the residue field of x € X,,. Since K D x(x), and

Ker(Im(D) — Im(DP)) = Im(DP!) N Ker(Gx — GP)),

where Im( 2 ]) denotes the image of the composite morphism DY C m (Ux,)®) —

G,(cp ), it holds that
Im(DP)) N Ker(Gj, — G,(Cp)) = Gre) NG = Gr = Ker(Gy, — Gl(cp))'

Thus, the composite morphism D) C m(Ux, )? — G’Ecp) is injective, and we have
a natural isomorphism, together with equalities of subgroups, as follows:

Ker(my (Ux, )P) — 7, (Ux, )®)) = Ker(DIP! - D))
% Ker(Im(DP) — Im(DP))) = Ker(Gy, — G\")) = G

Now let z,y € X,,(K) be distinct elements. If it holds that D) = DZ(,p) (where
we use similar notation for “y” to the notation already introduced for “z”), then it
holds that

D?[/p] C DI . Ker(m (Ux, )P — 71 (Ux, )®)

- Dg’] ~Ker(DLp] N Dg(ﬂp)) — DLPL

and hence, by symmetry, that D;[vp I — D[yp I, Thus, we conclude that x = y by apply-

ing assertion (v) in the case where “Xga = Primes” (which has already been veri-
fied). This completes the proof of assertion (iv). Assertion (v) follows immediately
from assertion (iv). Assertion (vi) follows immediately from the various definitions
involved (cf. also, e.g., [CmbGC], Remark 1.1.3). Assertion (vii) follows immedi-
ately, in light of assertion (ii), from [Topics], Theorem 4.12 (applied successively
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to the second and first arrows of the composite morphisms Ux, — Ux — Spec(k)
arising from the natural projections). Assertion (viii) follows immediately from the
various definitions involved. ]

Definition 4.8. Let YA, Yga be sets of prime numbers such that YA C Yqal,
and YA, Xgal are of cardinality 1 or equal to Primes; B = (Ilo, G, D2) a PGCS-
collection of type (0,3°4 2 ¥x, Baal)-
(i) Write IIs — G for the natural quotient homomorphism (cf. Definition 4.2),
Ay A def Ker(Il; — @), and

A[%)

for the set of Ag[#]-conjugacy classes of subgroups € Ds.
(ii) There exists a group-theoretic characterization of the set E3[#)] of general-

ized fiber subgroups C IIs (cf. Proposition 4.7, (ii)). Let E be a generalized

fiber subgroup of I, Write Ay[%, E] < Ay[#]/E, 1,2, E) € 1,/E, and

pg/l[,%’, E): 11y — 11, [A, E] for the natural quotient homomorphism.
(iii) Write D:1[%, E] = {Cu, 5,50}, [, E|(D)) | D € Dy} and
B[%, E]
for the set of A1[%, E]-conjugacy classes of subgroups € D;[#, E]. Thus,

B[4, E] is equipped with a natural action by G (= 1114, E]/A1[4, E]).
(iv) Write

0B|%,E) < {[D] € B|#,E)| DN A\[®,E]+{1}} C B[®,E|,

where D € Dy[4, E], and [D] denotes the A;[%, E]-conjugacy class of D €
D14, E).
(v) Write
H|%) C Aut(A[)

for the group of bijections A[%] = A[%] induced by the group of Ay[%]-outer
automorphisms (i.e., equivalence classes of automorphisms, relative to the
equivalence relation given by composition with inner automorphisms arising
from elements of Ay[Z]) of the profinite group IIy lying over the identity
automorphism of G.

(vi) Write pA/B[8, E]: A[#B] — B|%,E] for the map induced by the quotient
homomorphism pg/l[@, E): Iy — I, [4, E] and

M[%, E]
for the H[Z]-orbit of p/ B[4, E], relative to the tautological action of H[Z]
on A[4] (i.e., the domain of pA/B[%, F)).

Theorem 4.9. (From PGCS-collections of type (0,34, 2 Y5, Y¥q.1) to CFS-
collections to base fields) We maintain the following notation of Definition
42 (g,TD,TL7ZA7 EGal); (anvan):' k; ];;; chal; Xlog}. K7 a: Hn :> HUXn;
ag: G5 GEG*“. Write B < (IT,, G, D,). Suppose that (g,77,n) = (0,3°9,2).
Let E be a generalized fiber subgroup of Iy (cf. Definition 4.8, (ii)). Then:

(i) The isomorphism a: Iy = Iy, induces
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(a) bijections (the latter two of which are compatible)

(b) a group isomorphism H[%] = Auty,(Ux,),
(¢) a bijection

M[%, E] 5 {the maps Xo(K) — X (K) induced by

projection morphisms Ux, — Ux as in Proposition 4.7, (ii)}.

(i) The above collection of data

%, E| Y (A|#), B|#, E),0B| %, E), H|%), M|%3, E))

is a CFS-collection. In particular, one may construct a CFS-collection </ [ A, E)
associated to the intrinsic structure of the following collection of data: the
PG CS-collection & of type (0,34, 2, YA, Yqa1) and the generalized fiber sub-
group B C Ils.

(iii) Let ¢: H|%) = S5 be an isomorphism and X\ € M[%4, E],[¢| C M|%, E] (cf.
(ii); Definition 3.5). Write B: B[, E] = X(K) for the second bijection of
(i), (a). Such an isomorphism ¢ and element A\ € M[B, El1[¢] determine
elements 0[p, A, 1[p, A], oo[p, A] € OB[SB, E| C B[%, E| (cf. Definition 3.8).
Then the bijection B[#,E] = X(K) = K U{co} given by the composite

£6(016,2)),6(116, 1)), 6(o016,\)) © B
(cf- (i), (a); Propositions 2.1, 2.8) determines a field isomorphism

Flo/ %, E), ¢, & K

cf. Definition 3.12; Theorem 3.13, (i)) that is equivariant with respect to
(cf. ; , q P

the respective natural actions of the profinite groups G, GEG"‘, relative to the
isomorphism ag : G = Gy (cf. Definition 4.8, (iii)).

Proof. Assertion (i) follows immediately from Proposition 4.7, (iv), (v), (vi), (vii),
(viii), and Definition 4.8, (i), (iii), (iv), (v), (vi) (cf. also, in the case of (b), Propo-
sition 2.6, (ii)). Assertion (ii) follows immediately from assertion (i) and Definition
3.2. Assertion (iii) follows from Theorem 3.13, (i), (ii). O

5. Construction of a function field for a tripod associated to a PGCS-
collection

In the present §5, we construct a certain function field associated to the intrinsic
structure of a PGCS-collection of type (0,34, 2 $x, X qa1) (cf. Theorem 5.2 below).

Theorem 5.1. (Review of known results) Let Xa, Xga be sets of prime num-
bers such that XA C Xgal, and XA, Xgal are of cardinality 1 or equal to Primes;
p € Xa; k a number field or a p-adic local field; k an algebraic closure of k; X% a
smooth log curve over k of type (0,3°74); ngf a profinite group which is isomorphic
to the étale fundamental group m (Ux,) (relative to a suitable choice of basepoint).

Write Gx < Gal(k/k). Then:
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One may construct a surjection 1™ — GIIE™] associated to the intrinsic
structure of the profinite group ngf such that the following property is satis-
fied: Any isomorphism ngf 5 m(Ux,) of profinite groups induces a commu-
tative diagram

gt —==m(Ux,)

L

G —=— Gk,

where m (Ux,) — Gy denotes the natural surjection; 15" =5 7 (Ux,) de-
notes the given isomorphism; G[ngf] = Gy, denotes a uniquely determined
isomorphism.

One may construct a set of subgroups Dsy [ngf] of ngf associated to the in-
trinsic structure of the profinite group ngf such that the following property
is satisfied: Any isomorphism ngf 5 m(Ux,) of profinite groups induces a
bijection

D[R] 3 Dgg o {D Cm(Ux,) | D is a decomposition group

associated to some v € Xa(k)}.
One may construct a PGCS-collection
(5™, GII™], D, [T15™])

of type (0,3°°4, 2 Primes, Primes) associated to the intrinsic structure of the
profinite group ngf.

If Yca = {p}, then we suppose further that k contains a primitive p-th root
of unity (cf. Remark 4.3). Write

= [P def IS4 (if $a = Saa)
2 [ 2 ] - Hprf,[p] (sz > )
2 A = ~Gal

(cf- (i); Notation 4.1),
Dy (5] € (5™ — 10,7 [I5]) (Do [115™)),

and G [ngf] for the mazximal pro-Yaa quotient of G[ngf]. Then one may
construct a PGCS-collection

rf; def —» r 1 r —» T
A5 = (10 15, GPex 5], Dy [115])

of type (0,3°74,2, YA, Xqa1) associated to the intrinsic structure of the profinite
group ngf.

One may construct a collection EIEY] of (“generalized fiber”) subgroups of
I associated to the intrinsic structure of the profinite group 1™ such that
the following property is satisfied: Any isomorphism ngf 5 m(Ux,) of profi-
nite groups induces a bijection

~

SBT3 &y, def {generalized fiber subgroups of m1(Ux,)}

(cf. Proposition 4.7, (ii)). For E € &[], write TP 115, B def " /E.
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(vi) Let E € &IE™]. Then one may construct a field Fy[1IY™, E] equipped with
an action by TIE** [ngf, E] associated to the intrinsic structure of the profinite
group Hlfrf[ngf,E] such that the following property is satisfied: Any isomor-
phism I [IB™ E] 5 71 (Ux) of profinite groups induces an isomorphism

~

R E] 3 Fnet(2),
where Z denotes the pro-finite étale covering of Ux corresponding to m (Ux)
(so m(Ux) = Gal(Z/Ux)); Fuct(Z) denotes the function field of Z; the iso-
morphism “S7 is equivariant with respect to the respective actions of the
profinite groups H‘frf[ngf,E], m(Ux).
(vii) Let E € &[IE™]. Then one may construct a subfield
k[ly, E] C Fy 15" E]
equipped with an action by TP IS, E] — G[IE™] associated to the intrinsic
structure of the profinite group I [IIE™ E] such that the following property

is satisfied: Any isomorphism H?rf[ﬂgrf,E] 5 m(Ux) of profinite groups
induces a commutative diagram

F I, E] = Fnct(2)

u u

k,

K[, B
where the horizontal arrows are isomorphisms; the vertical arrows are the
natural inclusions, i.e., k C Fnct(Z) is the subfield of constant functions; the
isomorphisms “7 are equivariant with respect to the respective actions of the
profinite groups IF 1™ E] — GIEY), 7, (Ux) — G

Proof. Assertion (i) follows from [AbsTpl], Theorem 2.6, (ii), (iii), (iv), (v), (vi).
Assertion (ii) follows, by applying Proposition 4.7, (ii); [CmbGC], Corollary 2.7,
(i); [NodNon], Theorem A; [NodNon], Remark 2.4.2, from [AbsTpIII], Theorem 1.9,
(a); [AbsTpIII], Corollary 1.10, (e), applied successively to the morphisms induced
on étale fundamental groups by the composite morphism Ux, — Ux — Spec(k)
(where the first arrow is a projection morphism as in Proposition 4.7, (ii)), i.e., by
the second arrow and the fibers over closed points of the first arrow. Assertion (iii)
follows from assertions (i), (ii). Assertion (iv) follows immediately from assertion
(iii). Assertion (v) follows from Proposition 4.7, (ii). Assertions (vi), (vii) follow
from [AbsTplIII], Theorem 1.9, (e); [AbsTplIl], Corollary 1.10, (h). O

Theorem 5.2. (From PGCS-collections of type (0,3°74,2, YA, ¥ga1) to func-
tion fields of tripods) We maintain the following notation of Definition 4.2:
(g,T’D,TL, EAa EGaI); (HnaGa Dn)7 JRS ZA; k; ];3;' GEGM; Xlog’. K; a: Hn :> HUXW;

Dx,. Let ngf be a profinite group which is isomorphic to the étale fundamen-

tal group H‘l)f; f m1(Ux,) (relative to a suitable choice of basepoint). Write

%< (I,,G,D,). Suppose that (g,r>,n) < (0,3°74,2). Then:

(i) Let Eg € &[] (cf. Definition 4.8, (ii)), ¢: H|%B) = Ss an isomorphism, and
A€ M[B,Ez1|p] C M[B,Ez]. Then one may construct from the PGCS-
collection B a collection of isomorphisms between the fields F |/ [B, Ex|, $, A]
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associated to any two choices of the data (Eg,d, \) that is compatible with
composition, i.e., satisfies the “cocycle condition” that arises when one con-

siders three choices of the data (Eg, ¢, ). In particular, one may construct

e q field K[ o F|d B, Ez), p, N equipped with a natural action by G

(cf. Theorem 4.9, (iii)),
o k|2 K[B)°
associated to the intrinsic structure of the PGCS-collection A, i.e., which is
independent of the choice of data (Eg,d, \).
Suppose that k is a number field or a p-adic local field. Then there exists an

isomorphism of PGCS-collections B = %’[ngf]. In particular, there exists
an isomorphism
IT, 5 10, [I5™].

Let E € &Y™ (¢f. Theorem 5.1, (v)) and B: Z = B[IE™] an isomor-
phism of PGCS-collections. Then the isomorphism (3: B = %[ngf] induces
a commutative diagram

T e T ] < 1Ly
Hlfrf [ngfv E] 15 [%lErb]
G5 a,

where Tl = 115" [ngf] denotes the isomorphism determined by f3; ngf —»

I, [I15™] denotes the natural surjection (cf. Theorem 5.1, (w)); E|m, C Il
denotes the generalized fiber subgroup of Ily given by forming the image of
E via the composite of arrows ngf — I [ngf] & IIy in the upper line of
the diagram; the arrows I3 — TP IS, E] — G[II™] denote the natural
surjections (cf. Theorem 5.1, (i), (v)); the arrows lly — II;[%B, E|n,] » G
denote the natural surjections (cf. Definition 4.8, (i), (ii)); TN IS E] —
IL[#, Eln,], GIIIY™] — G denote the unique surjections that render the dia-
gram commutative. In particular, we obtain a field

P2, 15 B, 5] Fy [, pyer (0 (057, Bl 112, Bl )

)

equipped with a natural action by (Ily —) I11[B, E|n,] (¢f. Theorem 5.1, (vi)).
In the notation of (ii), one may construct a field Fy[B, 115", E, 8] (cf. (ii))
equipped with an action by Ils associated to the intrinsic structure of the fol-
lowing collection of data:

e the PGCS-collection AB;

e a profinite group ngf isomorphic to HIPJZ; ;

o B &Iy,

e an isomorphism 3: % = B[IL™);
such that if

Bx: B BIX]E (y,,, Gr, Dx,)
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is an isomorphism of PGCS-collections of type (0,34, 2, ¥, Xqa1), then one
may construct a field isomorphism

F[#15" E, 8] 5 Fnct(W)

associated to the intrinsic structure of the data (9, ngf,E,ﬂ, Bx), where W
denotes the pro-finite étale covering of Ux corresponding to y, (so lly, =
Gal(W/Ux)); Fnct(W) denotes the function field of W ; the isomorphism “~5”
is equivariant with respect to the respective natural actions of the profinite
groups (Ily —) 1141 [%4, E|n,], Hu, -

(iv) In the notation of (i), (ii), (iii), suppose that Eg = E|m,. Let ¢: H[PB] — S5
be an isomorphism, A € M[B,Ezli[¢] C M[#,Ez|, and

T e Fl[f@angrfaEaﬂ]'

Then T induces, by restriction to decomposition groups (cf. also Proposition
47, (i), a map

T(=): D1|B, Es) — K[B, 15" B, 8] U {oo} & I, p]Ker(GIL1~6) | {50}

(cf. (ii); Theorem 5.1, (vii)); there exists a unique element T[4, ngf, E, B, ¢,

€ R [BIB", B, fINIZ-En] sych that the zero divisor of T[B, 110" | E, B, ¢, \]

is of degree 1 (cf. [AbsTplIIl], Proposition 1.6, (iii)) and supported on 0[¢p, \],
T(#.15", B, 5,6,\(11¢,\]) = 1 € K[#,15", E, 5],

the divisor of poles of T|[%, ngf,E,B,qﬁ,)\] is of degree 1 (cf. [AbsTplII],
Proposition 1.6, (iii)) and supported on oo[p, ] (cf. Proposition 2.8). More-
over, the map

TIB, 15" B, 8,6,\(-): Di|#, Ez] — K[%,15",E, 8] U {0}
induces a field isomorphism
K[#) % K[#,15", B, )

where the isomorphism “=” is equivariant with respect to the respective nat-
ural actions of G.

(v) In the notation of (i), (#i), (iv) (cf. also, Theorem 5.1, (vii)), the isomorphism
Bx: B = B[X] induces a commutative diagram

Fl[‘@vngrf’Evﬁ} — FnCt(W)

) U

K% —= K[, 115" E, f] K

associated to the intrinsic structure of the data (2, ngf, E, B, Bx), where the
horizontal arrows are the isomorphisms discussed so far in (iii), (iv), and
Theorem 5.1, (vii); the U’s are the natural inclusions.

Proof. First, we consider assertion (i). Let TE,¥E € &[4], 1¢,%¢: H[B] = S5
isomorphisms, TA € M[%,TE|;[T¢] C M[%,TE], *\ € M[%,*E|,[*¢] C M[%,*E)].
Consider the subset of Outg (%) (cf. Definition 4.5)

Out(B) < {0 € Oute(®) | o('E) =1E} C Oute ().
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Let 0 € Out (). Then o induces an isomorphism of CFS-collections «/[%, TE] &
/| B, E) (cf. Definition 3.9; Theorem 4.9, (ii)), hence, in particular, a bijection
op: B[#,TE] 5 B|%,*E] (cf. Definition 4.8, (iii)). By Theorem 3.13, (i), op
induces a field isomorphism op|g
(BI#,'E]2) Flo/[8,1E],'6,'\| > Flor[%, El,0(1¢),0('N)] (€ BI#, E)).
By Theorem 3.13, (iii), the data (&7[%,*E],o(1$),0(TA),*¢,*)\) determines a field
isomorphism
or: Flot (8,7 E],0('¢),0("\)] = Flo/[2,7E] 7o, P ).
Thus, the data (%, E,T¢,T\,*E,*¢,*\, o) determines a field isomorphism
o Y opoop|p: Flo/(B,1E), 16,1\ 5 Flo(2, B, 16, IA.

One verifies easily that this construction is compatible with “composition of ¢’s”
in the evident sense. In particular, (one verifies easily that) by applying these field
isomorphisms “c*”, to complete the proof of assertion (i), it suffices to verify the
following assertions:

(a) Outg(9) acts transitively on the set of generalized fiber subgroups of Il (i.e.,
the set Outy,(4) is always nonempty).
(b) The field isomorphism “o*” is completely determined by the data

(%,TE,Tgb, ’r)\, iE’ng’i)\)_
Now suppose that TE =*E, ¢ = ¢, and T\ = ¥\. By Propositions 2.2, (i), (ii);
4.7, (ii), (vii), there exists a commutative diagram
Outg (%) —— Sy
U U
Outs(B) ——= S,

where the horizontal arrows are isomorphism of groups; the vertical arrows are
the natural inclusions. In particular, we conclude that assertion (a) holds. Since
o € Outy, (%) = Sy, it holds that

op € HBpwip (= Ss)
(cf. Definitions 3.6; 4.8, (v)). Thus, (cf. Theorem 3.13, (iii)) the field isomorphism

constructed above arises from an element € H|[%] g5 15 (= Ss). This implies
that o* = id. Assertion (b) then follows formally. This completes the proof of
assertion (i). Assertion (ii) follows immediately from our construction.

Next, we consider assertion (iii). First, observe that the PGCS-collection Z[X] =
(y,,, chal , Dx,) may be naturally identified with the PGCS-collection # [H}’Jriz}

of Theorem 5.1, (iv). Let o € Aut(%[ﬂ%ﬁz]) (cf. Definition 4.5). By assertion (i),
o induces an field isomorphism

~ rf ~ rf ~
(K &) K2yt 15 K@ ) (5 K)
that is equivariant, relative to the isomorphism

(Gal(K/k) =) Gy 5 Gpe™ (= Gal(K/k))
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induced by o, with respect to the respective natural actions of the profinite groups.
In particular, the isomorphism GEG"“ = GEG"“ induced by ¢ arises from an isomor-
phism of fields K = K. Since the natural morphism

Autk(sz) — OUthcal (%[HI()]I;;D

is bijective (cf. Definition 4.5; Proposition 4.7, (vii)), we thus conclude that the
natural morphism
Aut(Ux,) — Out(%[ﬂ%iz])
is bijective. In particular, it follows that the composite isomorphism of PGCS-
collections
—1 rf ~ ~ rf
Bxof " : B+~ B = B|X]| = ,%’[HIF’]XZ]
is induced by some isomorphism of profinite groups
£ o~ f

m" = HpUer
which is unique up to composition with an inner automorphism arising from an
element of Ker(l‘[pUr;2 — Ilyy,) (where we recall that Ily,, is center-free — cf.

Remark 4.3; Lemma 5.3 below; [MzTa], Proposition 2.2, (ii)). Thus, by assertion
(ii); Theorem 5.1, (iv), (vi), the isomorphism of PGCS-collections

Bx: B = BIX]
determines an isomorphism of profinite groups
11,[%4, E|ln,] = Uy,
and a compatible isomorphism of fields
Fi[2,1057 B, 5] 5 Fnct(W).

This complete the proof of assertion (iii). Assertions (iv), (v) follow from assertions
(i), (iii); Theorem 5.1, (vii). |

Lemma 5.3. Let p € Primes, Sga a set of prime numbers such that Yga = {p}
or equal to Primes, k a generalized sub-p-adic local field, and o an automorphism
of the field k. Suppose that o induces the identity outer automorphism of cha‘.
If ¥ a1 # Primes, then suppose that k contains a primitive p-th root of unity (cf.
Remark 4.3). Then o is the identity automorphism of k. In particular, GfGa‘ 18
center-free.

Proof. Suppose that o is not the identity automorphism of k. Thus, there exists
an element o € k such that o(a) # a. Let X be the complement of the points
0,1,00, in the projective line P}. Thus, X is a hyperbolic curve over k. Let Y
be the result of base-changing X by o: k — k. Thus, it follows that X and Y
are isomorphic as schemes over Q. Moreover, conjugating by o defines an outer
isomorphism 7y (X)¥6al ~ 71 (Y)*6at (cf. Remark 4.3) which lies over the identity
outer automorphism of GEG“ (cf. our assumption on o). Thus, we obtain that
this outer isomorphism arises from an k-isomorphism of X with Y (cf. [Topics],
Theorem 4.12). But since conjugation by o preserves the points 0, 1, 00 of ]P’i7 this
implies that o(a) = a € k, a contradiction. The fact that G%G"“ is center-free now
follows by considering automorphisms of finite Galois extensions of k arising from
open subgroups of chal that arise from elements of the center of GfGa‘ (cf. the
proof of [LocAn], Lemma 15.8). O
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6. Construction of a function field associated to a PGCS-collection

In the present §6, we apply the theory developed thus far in the present paper
to prove a semi-absolute bi-anabelian result (cf. Theorem 6.4 below) and also to
construct a certain function field associated to the intrinsic structure of a PGCS-
collection of type (g,75,m, %A, Baal) (cf. Theorem 6.6 below).

Definition 6.1. Let n € Z~1; XA, Xgal be sets of prime numbers such that XA C
Ycal, and XA, Xga are of cardinality 1 or equal to Primes; p € X a; O € {arb, ord};
k a generalized sub-p-adic local field; k an algebraic closure of k; X'°¢ a smooth
log curve over k of type (g,7”). Write K for the maximal pro-Xg, subextension
of k/k. Then we shall say that (X'°% n) is tripodally ample (vesp. tripodally very
ample) if one of the following conditions (i), (ii), (iii) holds:

(i) #(X(K)\Ux(K)) = 3 (vesp. #(X (k) \ Ux (k) = 3) and (g,7",n) = (0,3, 2);
(i) X(K)\ Ux(K) # 0 (resp. X (k) \ Ux(k) # 0), n € Zoo, and r £ 0;
(i) Ux(K) # 0 (resp. Ux (k) # 0) and n € Z~3.
Remark 6.2. We maintain the following notation of Definition 6.1: (g, rHon, S,
Yaal); P € Ba; ks k; X198 K. Let Y'°8 be a smooth log curve over k of type (0, 3°*4).
Write Y;Og for the second log configuration space associated to Y1°8 — Spec(k).
Suppose that (X8 n) is tripodally very ample. Then:

(i) If n = 2, then there exists an isomorphism of k-log schemes X538 5 V,°¢.

(ii) If n > 2, r # 0, and X (k) \ Ux (k) # 0, then there exist projections X% —
le,)og — X8 — X8 given by forgetting the respective final factors. Denote
the last two of these arrows by pg3, : X308 X108 2K X538 = Xlos, Write
Vdiiag € Xo for the diagonal divisor, i.e., the strict transform of the diagonal
divisor in X x X, relative to the morphism ¢: X5 — X x X determined by

the projections to the first and second factors. Let ¢ € X (k) \ Ux (k). Then
one verifies easily that

(p2) () = Wy U Vx,

where Vi, Vi are log divisors of X5°8, Vy is a (g, r)-divisor (cf. [Hgsh], Defini-
tion 3.1, (iii)) such that Vy NViiag # 0, and Vy is a tripodal divisor (cf. [Hgsh],
Definition 3.1, (ii)) such that Vx N Vaiag = 0. In particular, Vy N X851 (cf.
Notation 1.2, (v)) is naturally isomorphic to Uy, and Vyx N X58<! is naturally
isomorphic to Uyx. Moreover, one verifies easily that

(P3/2) (V) = Wyy UWxy,

where Wyy, Wxy are log divisors of Xi°%, and Wyy is a (g, r)-divisor. Here,
we have natural isomorphisms as follows (cf. [Hgsh], Lemma 6.1, (ii), (iii)):

Wyy N X225 3 Uy, Wyy 3 Ys,
nyﬂX;’OgglgUX ><Uy7 WXY:>X><Y.
Finally, we observe that
Wyy = X3 Xxxxxx (¢, ¢c),

where X3 — X x X x X denotes the morphism determined by the projections
to the first, second, and third factors.
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(iii) If n > 3, and Ux (k) # 0, then there exist projections X — X8 —
X;’Og — X;Og — X'°8 given by forgetting the respective final factors. Denote

the last three of these arrows by pf/S: X8 o X8 p§(/2: X5 o X8,

pﬁf/l: X;Og — X8, Write Vgjag C Xo for the diagonal divisor, i.e., the strict
transform of the diagonal divisor in X x X, relative to the morphism ¢: Xs —

X x X determined by the projections to the first and second factors. Let

¢ € Ux (k). Write (c,c¢) € Vgiag € Xa(k) for the unique element such that

t(e,e) = (c,c); Xl def X% xx ¢, where the morphism Xy® — X is the

morphism determined by pg(/l. Then one verifies easily that

log _ log
Xc,n—l _Xn Xx C,

(X8 n — 1) is tripodally very ample, and
(pé(/z)_l(c7 c)=Vy UVx,.

Here, the morphism X!°¢ — X is the morphism determined by the composite
of the projections considered above; Xi?,%_l denotes the (n — 1)-th log con-
figuration space associated to the smooth log curve X8 — Spec(k) of type
(g, (r+1)9); Vy, Vx, are irreducible components of (pg(/Q)’l(c7 ¢); Vy NXyBst
is naturally isomorphic to Uy; Vx, N Xéogsl is naturally isomorphic to Uyx,.
Moreover, one verifies easily that

(Pass) ' (Vy) = Wyy UWx,y,

where Wyy, Wx_y are irreducible components of (pf}S)_l(Vy), and we have
natural isomorphisms as follows (cf. [Hgsh], Lemma 6.1, (ii), (iii)):

<1 ~ ~
Wyvy N X}LOg*1 — (])/27 Wyy — Y5

Wx,y N X 55 3 Uy, x Uy, Wxy 3 X, xY.

Finally, we observe that
Wyy = X4 Xxxxxxxx (¢,¢,¢,¢),

where X; — X x X x X x X denotes the morphism determined by the
projections to the first, second, third, and fourth factors.

Remark 6.3. We maintain the following notation of Definition 4.2: (g, rHon, Ta,
Scal); (Hn, G, Dy); p € Ba; ks k; X% K; a: 10, 5y, . Let Y'°8 be a smooth
log curve over k of type (0,3°'9). Write Y210g for the second log configuration space
associated to Y'°8 — Spec(k). Suppose that (X'°8,n) is tripodally very ample.
Then:

(i) Suppose that n = 2. Then TP % 11, PP & D,

(ii) Suppose that n > 2, r # 0, and X (k) \ Ux (k) # 0.

(a) By [HMM], Theorem 2.5, (v), it makes sense to speak of the generalized

fiber subgroups of length one associated to the profinite group II,. Fix

such a subgroup Ep, of 1I,. Write II,,_4 def I1,,/En,. Similarly, as ¢

ranges from n — 1 to 2, by applying [HMM], Theorem 2.5, (v), to II;, it
makes sense to (speak of and hence, in particular, to) fix a generalized

fiber subgroup of length one Er, of II; and write IT;_, df II;/En,. Fori €
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{1,...,n}, write Il def G; pir;FI: II; — II;_; for the natural surjection;

Aijicn @ Ker(pii)™ A < Ker(Il; — G). (Note that Ay = Ay q.)
Thus, we obtain projections

Hn—>H3—>H2—>H1,

which induce surjections D,, — D; o {Cn, (1, — II;)(D)) | D € Dy},

where j € {1,2,...,n—1}. Let T Epy, C IIy, be a generalized fiber subgroup
of length one such that TEy, # Er,. Write pll_l\2: Iy — Iy /T Epy, for the

natural surjection and Ajy, def Ker(p?\Q).
Let i € {1,...,n}. Write

T, Y (I C A |3D €D such that I = DN A; # {1}};

Zisia o {ICA;)ii |1}

Then it follows from [HMM], Proposition 1.3, (i), (iii), (iv) (cf. also the
surjectivity of “A, — A, _,” in the proof of [HMM], Proposition 1.3);
[HMM], Lemma 1.5, that o maps Z; to the set of decomposition groups in
a(A;) of closed points of X;\Ux, and Z;/;_; to the set of cuspidal inertia

groups of a(A;/;—1). Let I. € Iy, D. € D; be such that I, def D.NA; #

{1} (so a maps D, to a decomposition group in «(Ily) of a closed point ¢
One verifies easily that o maps I € Z;/; to a decomposition group of
a(Ay/1) associated to the diagonal divisor Vgiag (cf. Remark 6.2, (ii)) if
and only if I € Ay/; N Aq\2. Let Igiag € Zy/1 be such an element of Zy ;.
Consider the extensions

1 Ay I, def Iy xqp, [, — L. —1,

def

1*>A2/1*>HDC = Ily xq1, D,—>=D.——1.

By applying (the algorithms of) [NodNon], Theorem A (cf. also [NodNon],
Remark 2.4.2) to the data (II;, — I.,Z5/1), we obtain a group-theoretic
construction of a verticial subgroup Iy, C II7, (unique up to Ay/;-

conjugacy) such that Dy, f Crp, (Ivy) contains some Ag/j-conjugate

of Igjag. Write Iy, def Dy, /Iy, . One verifies easily that o maps Iy, to

a decomposition group in Ily,, associated to Vy (cf. Remark 6.2, (ii)).
Consider the extensions

1 As)o M, %5 xy, Iy, —= Iy —1,

Vy

1 As)o p,, I3 xm, Dy Dy, 1.

By applying (the algorithms of) [NodNon], Theorem A (cf. also [NodNon],
Remark 2.4.2) to the data (HIVY — Ivy,Z3/2), we obtain a group-theoretic
construction of a verticial subgroup Iy, C i, (unique up to Asz/s-
conjugacy) such that if we write

def def
Dwy, = OHDVY (Iwyy ), wyy = Dwyy [Twyy
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ef
AN def Ker(Ilyy,.,, = G),

then Ay, is indecomposable (cf. Remark 6.2, (ii); [Hgsh], Definition
6.2; [Hgsh], Remark 6.3). One verifies easily that o maps Iy,, to a
decomposition group in Ily,, associated to Wyy (cf. Remark 6.2, (ii))
and induces a natural isomorphism

Uw,, — Uy,,,
where we write

I déf ﬂ-l(UYQ)EA (lf DINES 2Gral)
Yo T\ Uy (if Sa C Saa)-

(f) Write I e Iy,, and
piPd ' (pwd C T1PY | 3D4 € Dy such that
Iwyy € D3 C Dyyy, D™ = Dy /Iy, ).
Note that it follows immediately from the equality
Wyy = X3 Xxxxxx (¢,¢¢)

(cf. Remark 6.2, (ii)), together with Proposition 4.7, (iv), that « induces
an isomorphism H;pd = Uy, that maps Dgpd to the set of decomposition

groups of closed points of Wyy = Y3 (cf. Remark 6.2, (ii)).

(iii) By [HMM], Theorem 2.5, (iv), it makes sense to speak of the generalized fiber
subgroups of co-length one associated to the profinite group IL,. Fix such a
subgroup F of II,,. Write II; def II,/E; Ay def Ker(Ily — G). Thus, we obtain
a projection

Hn — H17

which induces a surjection D,, — D, def {Cn,(Il,, - I1,)(D) | D € D,,}. Let

D, € Dy be such that D.NA; = {1} (so @ maps D, to a decomposition group

in a(Ily) of a closed point ¢ of Ux — cf. (ii), (b)). Write IL. ,,—1 def I1,, x11, D,

and

Dc,nfl déf {D C Hc,nfl | D e Dn}

Note that it follows immediately from the equality XE?EA = X% xy ¢ (cf.
Remark 6.2, (iii)), together with Proposition 4.7, (iv), that « induces an
isomorphism

7T1(UX
7T1(UX

en1)2 (if Za = Egal)

~ def
II,.,—1 — 11 =
n—1 Ux, s { )P (if BA € Bga).

c,n—1

that maps D, ,—1 to the set of decomposition groups of closed points of X ,,—1.
Thus, we obtain a PGCS-collection of type (g, (r + 1)7,n — 1, %A, Xgal)

(Hc,nf 1 Ga Dc,nf 1 )

(well-defined up to IL,-conjugacy) associated to the intrinsic structure of the
PGCS-collection of type (g,7,n, XA, Ycal)

(I, G, Dn)
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and the choices of the generalized fiber subgroup E and the decomposition
group D.. Finally, by applying the algorithms of (ii) to the data (Il.,_1,G,
D, n—1), we obtain a group-theoretic construction of 1P pipd,
Thus, in summary, in either of the situations discussed in (i), (ii), (iii), we obtain
a PG CS-collection of type (0,3°7,2, YA, Lqal)
(I, @, D)
(well-defined up to II,,-conjugacy) associated to the intrinsic structure of the PGCS-
collection of type (9,7, 1, LA, Lqa1)
(I,.G. D)
and the choices of generalized fiber subgroups (cf. (ii), (a); (iii)) and the decomposi-
tion group D, (cf. (ii), (b); (iii)).
Theorem 6.4. (Semi-absolute bi-anabelian formulation) Let x € {t,1}; *n €
Z<1; (*g,*r) a pair of nonnegative integers such that 2(*g — 1) + *r > 0; *0 €
{arb,ord}; XA, Xqal sets of prime numbers such that Xa C Xgal, and XA, Xgal are
of cardinality 1 or equal to Primes; p € ¥a; *k a generalized sub-p-adic local field;
*k an algebraic closure of *k; *X'°8 a smooth log curve over *k of type (*g, *T*D).
Write *:Xi%g for the *n-th log configuration space associated to *X°8 3 Spec(*k);
*K C *k for the maximal pro-Xga subextension of *k/*k;
e [m@x )% (i Za = Sow)
TXen m(Uex. )PL (if A € Zaal);
def

AU*x*n - Wl(U*X*" X *E)EA; G*E]Sal dﬁf Gal(*E/*k)ZGal;

def , .
D-x,, = {D Clly.,. | D is a decomposition group

associated to some x € *X«,(*K)}
(cf. Notation 4.1). Suppose that the sequence
1 ——=ABvy, ——uy  ——GIg" ——1

is exvact (cf. Notation 4.1; Remark 4.3), and that (* X'°8,*n) is tripodally ample (cf.
Definition 6.1). Thus,

AP XE E (., GT¢" Dex.)
is a PGCS-collection of type (*g,*r" P, *n, XA, Baa1) (¢f. Definition 4.2). Write

Isom(UTXTn,Utxin)
for the set of isomorphisms of schemes UTXM = U;Xin and
Isom " ([ X[%%], 28 X ;%))

for the set of equivalence classes of isomorphisms of PGCS-collections %[TX:C;F] =
%’[iXi(ﬁ (cf. Definition 4.4) with respect to the equivalence relation given by com-
position with an inner automorphism arising from Uy. . Then the natural mor-
phism "

Tsom(Usx, ,Usx, ) — Isom™"" ([T X1%], B[ X %))

is bijective.
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Proof. First, observe that we may assume without loss of generality that
Tsom " (B[ X|%%], B[ X1°%]) # 0.

Then it follows from [HMM], Theorem A, (i), that (Tg,TrTD,‘Ln) = (ig,irim,in).
Thus, we shall write
(*g,"r"7,"n) = (9,7, n).

Next, recall that it follows from Lemma 5.3 (cf. also Remark 4.3; the final con-
clusion of Remark 6.3); [MzTa], Proposition 2.2, (ii), that IIy., is center-free.
Thus, by applying Notation 1.9 to a suitable open normal subgroup of Ily. , ~ that
arises from a open normal subgroup of G;,S“H we conclude that, after replacing *k
by a suitable finite Galois subextension of *k in * K, we may assume that (*X°% n)
is tripodally very ample.

Next, observe that the injectivity of the natural morphism

Isom(Urx, ,Usx, ) — Tsom©"* (%[TXE:?L ,@[iX;‘;g])

follows immediately from Lemma 5.3 (cf. also Remark 4.3; the final conclusion
of Remark 6.3); the injectivity portion of [Topics], Theorem 4.12 (applied to the
hyperbolic curves that arise as the codomains of the various natural projections
U-x, = Usx).

Let o € Isom (%[ X\°¢], #[t X!°¢]). By Definition 4.4, o induces a commutative
diagram of homomorphisms of profinite groups

R

YGal .Y YGal
Giy oo™ Gig™,

as well as a bijection

Since (* X8, n) is tripodally very ample, by applying Remark 6.3 to suitable choices
of generalized fiber subgroups and decomposition groups, we obtain, for each * €
{t,1}, a PGCS-collection of type (0,34, 2 ¥a, Xqa)

"Bt (I, G DY)
associated to the intrinsic structure of the PGCS-collection %[* X°8] (together with

the suitable choices of generalized fiber subgroups and decomposition groups) such
that o € Isom(2[ X!°8], Z[* X|°¢]) induces an isomorphism

o e Isom (TP + P9),
By Theorem 5.2, (i), o induces a field isomorphism
(K &) KB 3 KF2r) (5 K)
that is equivariant, relative to the isomorphism og
(Gal('K/Tk) =) GIem 5 Grem (= Gal(*K/'k)),

with respect to the respective natural actions of GTEkGal, G?kcal on K[1#PY), K[t
In particular, the isomorphism o¢: G?kcal = G?kGal arises from an isomorphism of

fields K = 'K that induces an isomorphism of fields Tk = *k. In the following,
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to simplify the notation, we shall identify TK with *K and Tk with %k via these
isomorphisms and denote the resulting fields by K, k.

Write Isomy (Ui x,, Us x, ) for the set of isomorphisms of schemes Ut x, = U:x,
that lie over the field k. Next, observe that it follows from Definition 4.6; [HMM],
Theorem 2.5, (v); [Topics], Theorem 4.12 (applied successively to the various arrows
of the composite morphisms Usx, — U«x,_, — --- = Usx — Spec(k) arising from
the natural projections), that the natural morphism

Isomy (Uix, ,Usx, ) — Isom®4t (%[TX:LOE;},%[IX:;’%])

GEaal
is bijective. We thus conclude that the natural morphism

Isom(Usx, , Uiy, ) — Isom©"* ([T X1o¢], [t x1°8))
is bijective. (I

Definition 6.5. We maintain the following notation of Definition 4.2: (g, rHon, S,
Yaal); (I, G, D,); X8, Write % def (I, G, D,). Suppose that (g,77,n) =
(0,3°74,2). Let ngf be a profinite group which is isomorphic to the étale funda-

mental group H{’,i %ef m1(Ux,) (relative to a suitable choice of basepoint) and

B: % = A5 an isomorphism of PGCS-collections (cf. Theorem 5.2, (ii)). Re-
call from Definition 4.8, (ii), that there exists a group-theoretic characterization of
the set &[H] = {En,. .., Es} of generalized fiber subgroups C II;. Write
5
Eq (B Uaon[%) € 10/ En.

i=1
By Theorem 5.2, (i), one may construct a field K[| equipped with a natural action
by G associated to the intrinsic structure of the PGCS-collection A. Let E; € E;[H)
and EP" € &3] (cf. Theorem 5.1, (v)) be such that EP|y, = E; (cf. Theo-
rem 5.2, (ii)). By Theorem 5.2, (ii), one may construct a field F;[4%, ngf,Efrf,ﬂ]
equipped with a natural action by (Ils —)II; [4, E;] associated to the intrinsic struc-
ture of the data (4, ngf,Efrf,B). Let T € F1[4%, ngf,EZPrf,ﬁ}. Then T induces,
by restriction to decomposition groups (cf. also Proposition 4.7, (iv)), a map

T(-): D1[A, E;] — K[$B] U {c0}

(cf. Theorem 5.2, (iv)). Thus, it follows immediately from the scheme-theoretic
interpretation of this situation given in Theorem 5.2, (iii), (v), that we obtain a
natural 111 [B, E;] (— G )-equivariant injection

P8, 15", EP, 8] < RatMaps(D, [, Ei], K[))

(cf. Notation 1.12; Definition 4.8, (iii); Theorem 5.2, (i)). Here, in the definition of
“RatMaps(—, —)” (cf. Notation 1.12), we take the collection of quotients to be the
single “identity quotient” D1[%, E;] — D1[%#, E;]. Write

plg/l[e@,El] D2 — Dl[e@7 EI]

for the surjection induced by the quotient homomorphism pQH/1 [4, E;] (cf. Definition
4.8, (ii), (iii)). Thus, we obtain a natural Ily (— II[A, E;] — G )-equivariant
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injection

pi: Fi[2, 15" EP™ 8] < RatMaps(Ds[4], K |%))

3

T — T(=) opy, |5, Eil.

Here, in the definition of “RatMaps(—,—)” (cf. Notation 1.12), we take the col-
lection of quotients to be the collection of quotients {pQD/I[%’, Eil}i=12,34,5- Next,
let us observe that the field structure of K[%)] induces a natural ring structure
on RatMaps(D2[4], K[#]). Moreover, it follows immediately from the scheme-
theoretic interpretation of this situation given in Theorem 5.2, (iii), (v), that
pi is a ring homomorphism, relative to the ring structure (just described) on
RatMaps(D;[2], K[#)]) and the field structure of Fy[%, 115" E;, ], and that the

image of p; is independent of the choice of the data (ngf, ). In particular, it

makes sense to write Fy[%, E;] for the image of p;. Finally, we observe that it fol-
lows immediately from the scheme-theoretic interpretation of this situation given
in Theorem 5.2, (iii), (v), that if we write R[] for the subring of

RatMaps(D2[ 4], K[4))
generated by the subrings
F[%, E]
for ¢ € {1,2,3,4,5}, then R[] is an integral domain on which the subgroup En C
II, acts trivially. In particular, it makes sense to speak of the quotient field
Frac(R[44])
of this integral domain R[%], which is equipped with an action by 5,1 [4].

Theorem 6.6. (From PGCS-collections of type (ng,n,EA,EGal) to cer-
tain function fields arising from tripods) We maintain the following notation
of Definition 4.2: (g,7%,n,Ya,Sca1); (In, G, Dy); p € Sa; k; ky GPov; X'og;
K;a:1I, > Myy, ; Dx,. Write # def (I1,,,G,D,,). Suppose that (X' n) is
tripodally ample, and that k is a number field or a p-adic local field. Then:
(i) For any sufficiently small open normal subgroup H of G, one may construct
a family (cf. the discussion of “choices” in the final portion of Remark 6.3)
of PGCS-collections {#A™! = (I, H, DPY)} of type (0,3°4,2,5A, Lgal)
associated to the intrinsic structure of the PGCS-collection 2.
(ii) Let Bx: B = B[X] o (HUXH,GfGa‘,DX") be an isomorphism of PGCS-
collections (cf. Definition 4.4) and 24 = (1P, H, DY) o PGCS-collection
of type (0,3°4, 2, YA, Xga1) associated to B (cf. (i)). Write H[X] def Ker (G
— G/H), where G}, — G/H denotes the composite of the natural quotient
G — G/H with the inverse of the isomorphism (Bx)g: G = G?G"“ deter-
mined by Bx (cf. Definition 4.4). Let Y'°% be a smooth log curve over k of
type (0,3°%) (cf. Remark 6.2); write

aer | m(Uy,)™  (if Ba = Bgal)
v m(Uy,)P (if Sa € Sca).

Then, for a suitable choice ™4 X] = (Ily,, , H[X], Dy,) of PGCS-collection
of type (0,3°74,2, Ya, Bqa1) associated to B[X] (cf. (i); Remarks 6.2, 6.3),
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Bx induces an isomorphism of PGCS-collections
6;’pd: %tpd = %tpd[X] = (HUY2 ) H[X]v DY2)'

(iii) One may construct a quotient group TIPS — thp_(fl [#P4] (cf. Definition 6.5)
and a field Frac(R[%™1]) (cf. Definition 6.5) equipped with an action by
Hg‘fl[%’tpd] associated to the intrinsic structure of the PG CS-collection %*9.

(iv) In the notation of (i), (iii), write Eo[BPY] = {Ei,...,Es} for the set of
generalized fiber subgroups C H;pd;

5
def
HUYQ_,l = HUYQ/m( ;;/pd)H(Ei)v
=1

where ( ;Pd)n: H;pd = Hy,, denotes the isomorphism determined by 5;°,pd
(cf. Definition 4.4). Then the isomorphism (ﬁg’d)n induces a commutative
diagram

;pd —= = p,,

i (B;pd)l'[ i

H;Iiil [%tpd] — HUYZHI ’
where the wvertical arrows are the natural projections, and H;‘fl [tPd] =
Hy,, , denotes a uniquely determined isomorphism of profinite groups.
(v) In the notation of (iv), write Z — Uy, for the profinite étale covering corre-
sponding to (Ily,, —) Iy, = and Fuct(Z) for the function field of Z. Then
one may construct a field isomorphism

Frac(R[#'P1]) & Fnct(Z)

associated to the intrinsic structure of the data (%4, #'*4[X], ﬂ;pd: Rrd 5
A*4X]), where the field isomorphism “=7” is equivariant with respect to

the respective natural actions of the profinite groups (thpd —) ngjl EZiP

(W, =) Wy, (cf. the display of (iv)).

Proof. Assertion (i) follows from Remark 6.3. Assertion (ii) follows from assertion
(i); Remarks 6.2, 6.3. Assertion (iii) follows from Definition 6.5. Assertion (iv)
follows from assertion (iii) and Definition 6.5. Assertion (v) follows from assertions
(i), (iii), (iv); Theorem 5.2, (iii). O
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