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Abstract. Let p be a prime number. In the present paper, we study geomet-
rically pro-p arithmetic fundamental groups of low-dimensional configuration

spaces associated to a given hyperbolic curve over an arithmetic field such as
a number field or a p-adic local field. Our main results concern the group-
theoretic reconstruction of the function field of certain tripods (i.e., copies
of the projective line minus three points) that lie inside such a configuration

space from the associated geometrically pro-p arithmetic fundamental group,
equipped with the auxiliary data constituted by the collection of decompo-
sition groups determined by the closed points of the associated compactified
configuration space.

0. Introduction

Let n ∈ Z>1; (g, r) a pair of nonnegative integers such that 2g − 2 + r > 0; p a
prime number; k a number field or a p-adic local field; X log a smooth log curve over
k of type (g, r) (cf. Notation 1.3, (iv)). WriteMg,r for the moduli stack (over k) of

pointed stable curves of type (g, r) (with ordered marked points), andMg,r ⊆Mg,r

for the open substack corresponding to the smooth curves (cf. Notation 1.3, (i)).
In the present paper, we study the n-th log configuration space X log

n associated to
X log → Spec(k) (cf. Definition 1.4). If Slog is a log scheme, then we shall write US

for the interior of the log scheme Slog (cf. Notation 1.2, (vi)). The log scheme X log
n

may be thought of as a compactification of the usual n-th configuration space UXn

associated to the smooth curve UX . It is known that the function field of UX may
be reconstructed group-theoretically

• from its profinite arithmetic fundamental group whenever UX is of strictly
Belyi type (cf. [AbsTpIII], Theorem 1.9; [AbsTpIII], Corollary 1.10) or,
• from its geometrically pro-Σ arithmetic fundamental group, where Σ is a
set of prime numbers of cardinality ≥ 2 that contains p, equipped with the
auxiliary data constituted by the collection of decomposition groups asso-
ciated to the closed points of UX (cf. [AbsTpII], Corollary 2.9), regardless
of whether or not UX is of strictly Belyi type.

By contrast, in the present paper, we reconstruct the function field of certain tripods
(i.e., copies of the projective line minus three points) that lie inside X log

n group-
theoretically from various geometrically pro-p arithmetic fundamental groups as-
sociated to UXn , equipped with the auxiliary data constituted by the collection of
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decomposition groups determined by the closed points of the underlying scheme
Xn of X log

n .
Our main results are as follows:

Theorem 0.1. (Semi-absolute bi-anabelian formulation) Let ∗ ∈ {†, ‡}; ∗n ∈
Z>1; (∗g, ∗r) a pair of nonnegative integers such that 2(∗g − 1) + ∗r > 0; ∗� ∈
{arb, ord} (cf. Notation 1.3, (iv)); Σ∆,ΣGal sets of prime numbers such that Σ∆ ⊆
ΣGal, and Σ∆,ΣGal are of cardinality 1 or equal to the set of prime numbers Primes;
p ∈ Σ∆;

∗k a generalized sub-p-adic local field (cf. [Topics], Definition 4.11); ∗k̄
an algebraic closure of ∗k; ∗X log a smooth log curve over ∗k of type (∗g, ∗r

∗�) (cf.
Notation 1.3, (iv)). Write ∗X log

∗n for the ∗n-th log configuration space associated
to ∗X log → Spec(∗k) (cf. Definition 1.4); ∗K ⊆ ∗k̄ for the maximal pro-ΣGal

subextension of ∗k̄/∗k;

ΠU∗X∗n

def
=

{
π1(U∗X∗n

)Σ∆ (if Σ∆ = ΣGal)

π1(U∗X∗n
)[p] (if Σ∆ ( ΣGal),

where π1(U∗X∗n
)Σ∆ denotes the maximal pro-Σ∆ quotient of π1(U∗X∗n

), and

π1(U∗X∗n
)[p]

denotes the maximal geometrically pro-p quotient of π1(U∗X∗n
) (cf. Notation 4.1);

∆U∗X∗n

def
= π1(U∗X∗n

×∗k
∗k̄)Σ∆ ; GΣGal

∗k
def
= Gal(∗k̄/∗k)ΣGal ;

D∗X∗n

def
= {D ⊆ ΠU∗X∗n

| D is a decomposition group

associated to some x ∈ ∗X∗n(
∗K)}.

Suppose that the sequence

1 // ∆U∗X∗n
// ΠU∗X∗n

// GΣGal
∗k

// 1

is exact (cf. Notation 4.1; Remark 4.3), and that (∗X log, ∗n) is tripodally ample (cf.
Definition 6.1). Thus,

B[∗X log
∗n ]

def
= (ΠU∗X∗n

, GΣGal
∗k ,D∗X∗n

)

is a PGCS-collection of type (∗g, ∗r
∗�, ∗n,Σ∆,ΣGal) (cf. Definition 4.2). Write

Isom(U†X†n
, U‡X‡n

)

for the set of isomorphisms of schemes U†X†n

∼→ U‡X‡n
and

IsomOut(B[†X log
†n

],B[‡X log
‡n

])

for the set of equivalence classes of isomorphisms of PGCS-collections B[†X log
†n

]
∼→

B[‡X log
‡n

] (cf. Definition 4.4) with respect to the equivalence relation given by com-
position with an inner automorphism arising from ΠU∗X∗n

. Then the natural mor-

phism

Isom(U†X†n
, U‡X‡n

)→ IsomOut(B[†X log
†n

],B[‡X log
‡n

])

is bijective (cf. Theorem 6.4).
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Theorem 0.2. (From PGCS-collections of type (g, r�, n,Σ∆,ΣGal) to cer-
tain function fields arising from tripods) Let n ∈ Z>1; (g, r) a pair of non-
negative integers such that 2g − 2 + r > 0; � ∈ {arb, ord}; Σ∆,ΣGal sets of prime
numbers such that Σ∆ ⊆ ΣGal, and Σ∆,ΣGal are of cardinality 1 or equal to the
set of prime numbers Primes. Let B = (Πn, G,Dn) be a PGCS-collection of type
(g, r�, n,Σ∆,ΣGal) (cf. Definition 4.2). That is to say, Πn is a profinite group; G
is a quotient of Πn; Dn is a set of subgroups of Πn; there exist a prime number
p ∈ Σ∆, a generalized sub-p-adic local field k, an algebraic closure k̄ of k, a smooth
log curve X log over k of type (g, r�), and an isomorphism

α : Πn
∼→ ΠUXn

def
=

{
π1(UXn)

Σ∆ (if Σ∆ = ΣGal)

π1(UXn)
[p] (if Σ∆ ( ΣGal)

such that, if we write Gk
def
= Gal(k̄/k) and K ⊆ k̄ for the maximal pro-ΣGal

subextension of k̄/k (so GΣGal

k = Gal(K/k)), then the natural outer action Gk
outy

π1(UXn ×k k̄)Σ∆ (cf. Notation 4.1) factors through the natural surjection Gk �
GΣGal

k , and α induces a commutative diagram

Πn
∼
α

//

����

ΠUXn

����
G

∼
αG

// GΣGal

k ,

�

where the lower horizontal arrow αG is an isomorphism, as well as a bijection

Dn
∼→ DXn

def
= {D ⊆ ΠUXn

| D is a decomposition group

associated to some x ∈ Xn(K)}.

Suppose that (X log, n) is tripodally ample, and that k is a number field or a p-adic
local field. Then:

(i) For any sufficiently small open normal subgroup H of G, one may construct
a family (cf. the discussion of “choices” in the final portion of Remark 6.3)

of a PGCS-collections {Btpd = (Πtpd
2 ,H,Dtpd

2 )} of type (0, 3ord, 2,Σ∆,ΣGal)
associated to the intrinsic structure of the PGCS-collection B (cf. Theorem
6.6, (i)).

(ii) Let βX : B
∼→ B[X]

def
= (ΠUXn

, GΣGal

k ,DXn
) be an isomorphism of PGCS-

collections and Btpd = (Πtpd
2 ,H,Dtpd

2 ) a PGCS-collection of type (0, 3ord, 2,Σ∆,

ΣGal) associated to B (cf. (i)). Write H[X]
def
= Ker(GΣGal

k → G/H), where

GΣGal

k → G/H denotes the composite of the natural quotient G → G/H with

the inverse of the isomorphism (βX)G : G
∼→ GΣGal

k determined by βX (cf.

Definition 4.4). Let Y log be a smooth log curve over k of type (0, 3ord); write

ΠUY2

def
=

{
π1(UY2)

Σ∆ (if Σ∆ = ΣGal)

π1(UY2)
[p] (if Σ∆ ( ΣGal).

Then, for a suitable choice Btpd[X] = (ΠUY2
,H[X],DY2) of PGCS-collection

of type (0, 3ord, 2,Σ∆,ΣGal) associated to B[X] (cf. (i); Remarks 6.2, 6.3),
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βX induces an isomorphism of PGCS-collections

βtpd
Y : Btpd ∼→ Btpd[X]

def
= (ΠUY2

,H[X],DY2)

(cf. Theorem 6.6, (ii)).

(iii) One may construct a quotient group Πtpd
2 � Πtpd

2→1[B
tpd] (cf. Definition 6.5)

and a field Frac(R[Btpd]) (cf. Definition 6.5) equipped with an action by

Πtpd
2→1[B

tpd] associated to the intrinsic structure of the PGCS-collection Btpd

(cf. Theorem 6.6, (iii)).
(iv) In the notation of (ii), (iii), write E2[Btpd] = {E1, . . . , E5} for the set of

generalized fiber subgroups ⊆ Πtpd
2 (cf. Definition 4.8, (ii));

ΠUY2→1

def
= ΠUY2

/
5∩

i=1

(βtpd
Y )Π(Ei),

where (βtpd
Y )Π : Πtpd

2
∼→ ΠUY2

denotes the isomorphism determined by βtpd
Y

(cf. Definition 4.4). Then the isomorphism (βtpd
Y )Π induces a commutative

diagram

Πtpd
2

����

∼

(βtpd
Y )Π

// ΠUY2

����
Πtpd

2→1[B
tpd]

∼ // ΠUY2→1
,

where the vertical arrows are the natural projections, and Πtpd
2→1[B

tpd]
∼→

ΠUY2→1
denotes a uniquely determined isomorphism of profinite groups (cf.

Theorem 6.6, (iv)).
(v) In the notation of (iv), write Z → UY2 for the profinite étale covering corre-

sponding to (ΠUY2
�) ΠUY2→1

and Fnct(Z) for the function field of Z. Then
one may construct a field isomorphism

Frac(R[Btpd])
∼→ Fnct(Z)

associated to the intrinsic structure of the data (Btpd,Btpd[X], βtpd
Y : Btpd ∼→

Btpd[X]), where the field isomorphism “
∼→” is equivariant with respect to

the respective natural actions of the profinite groups (Πtpd
2 �) Πtpd

2→1[B],
(ΠUY2

�) ΠUY2→1
(cf. the display of (iv); Theorem 6.6, (v)).

These main results are derived from the following results concerning tripods (i.e.,
the case where (g, r�) = (0, 3ord)):

Theorem 0.3. (From PGCS-collections of type (0, 3ord, 2,Σ∆,ΣGal) to CFS-
collections to base fields) We maintain the following notation of Theorem 0.2:

(g, r�, n, Σ∆,ΣGal); B = (Πn, G,Dn); k; k̄; GΣGal

k ; X log; K; α : Πn
∼→ ΠUXn

;

αG : G
∼→ GΣGal

k . Suppose that (g, r�, n) = (0, 3ord, 2). Let E be a generalized fiber
subgroup of Π2 (cf. Definition 4.8, (ii)). Such a B and E determine a collection
of data

A [B, E]
def
= (A[B], B[B, E], ∂B[B, E], H[B],M [B, E])

(cf. Definition 4.8; Theorem 4.9, (ii)). Then:
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(i) Let A = (A,B, ∂B,H,M) be a CFS-collection (cf. Definition 3.2). That is
to say, A,B are sets; ∂B ⊆ B is a subset of cardinality 3; H ⊆ Aut(A) is
a subgroup; M is a set of maps A → B; there exist a field †k, a smooth log
curve Y log over †k of type (0, 3ord), a bijection †α : A

∼→ Y2(
†k) (where Y2

denotes the underlying scheme of the 2-nd log configuration space Y log
2 ), and

a bijection †β : B
∼→ Y (†k) such that

(a) †β induces a bijection B \ ∂B ∼→ UY (
†k);

(b) the isomorphism of groups Aut(A)
∼→ Aut(Y2(

†k)) determined by †α in-

duces an isomorphism of groups H
∼→ Aut†k(UY2) (↪→ Aut(Y2(

†k)));
(c) if we write MY for the set of maps Y2(

†k)→ Y (†k) induced by the 30 nat-
ural morphisms Y2 → Y (cf. Proposition 2.1; Definition 2.3, (ii); Propo-

sition 2.6, (ii)), then there exists a bijection M
∼→MY such that if λ 7→ q

via this bijection, then

A
∼
†α

//

λ
����

Y2(
†k)

q
����

B
∼
†β

// Y (†k).

�

Write S5 for the symmetric group on 5 letters. Let ϕ : H
∼→ S5 be an isomor-

phism. Such an isomorphism ϕ determines a subset M1[ϕ] ⊆ M (cf. Defini-
tion 3.5). Let λ ∈ M1[ϕ]. Such an isomorphism ϕ and element λ ∈ M1[ϕ]
determine elements 0[ϕ, λ], 1[ϕ, λ], ∞[ϕ, λ] ∈ ∂B ⊆ B (cf. Definition 3.8).
Then:
(1) One may construct a field F [A , ϕ, λ] associated to the intrinsic structure

of the following collection of data: the CFS-collection A , the isomorphism
ϕ : H

∼→ S5, and the element λ ∈ M1[ϕ] (cf. Definition 3.12; Theorem
3.13, (i), (ii)).

(2) The bijection B
∼→ Y (†k)

∼→ †k ∪ {∞} given by the composite

t†β(0[ϕ,λ]),†β(1[ϕ,λ]),†β(∞[ϕ,λ]) ◦ †β

(cf. the notation of Proposition 2.8) determines a field isomorphism

F [A , ϕ, λ]
∼→ †k

(cf. Theorem 3.13, (i), (ii)).

(ii) The isomorphism α : Π2
∼→ ΠUX2

induces

(a) bijections (the latter two of which are compatible)

A[B]
∼→ X2(K), B[B, E]

∼→ X(K), ∂B[B, E]
∼→ X(K) \ UX(K),

(b) a group isomorphism H[B]
∼→ Autk(UX2),

(c) a bijection

M [B, E]
∼→ {the maps X2(K)→ X(K) induced by

projection morphisms UX2
� UX}

(cf. Theorem 4.9, (i)).
(iii) The above collection of data A [B, E] is a CFS-collection. In particular, one

may construct a CFS-collection A [B, E] associated to the intrinsic structure
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of the following collection of data: the PGCS-collection B of type (0, 3ord, 2,Σ∆,
ΣGal) and the generalized fiber subgroup E ⊆ Π2 (cf. Theorem 4.9, (ii)).

(iv) Let ϕ : H[B]
∼→ S5 be an isomorphism and λ ∈ M [B, E]1[ϕ] ⊆ M [B, E] (cf.

(i), (iii)). Write β : B[B, E]
∼→ X(K) for the second bijection of (ii), (a).

Such an isomorphism ϕ and element λ ∈ M [B, E]1[ϕ] determine elements
0[ϕ, λ], 1[ϕ, λ], ∞[ϕ, λ] ∈ ∂B[B, E] ⊆ B[B, E] (cf. (i)). Then the bijection

B[B, E]
∼→ X(K)

∼→ K ∪ {∞} given by the composite

tβ(0[ϕ,λ]),β(1[ϕ,λ]),β(∞[ϕ,λ]) ◦ β

(cf. (ii), (a); Propositions 2.1, 2.8) determines a field isomorphism

F [A [B, E], ϕ, λ]
∼→ K

(cf. (i), (1), (2)) that is equivariant with respect to the respective natural

actions of the profinite groups G, GΣGal

k , relative to the isomorphism αG : G
∼→

GΣGal

k (cf. Definition 4.8, (iii); Theorem 4.9, (iii)).

Theorem 0.4. (From PGCS-collections of type (0, 3ord, 2,Σ∆,ΣGal) to func-
tion fields of tripods) We maintain the following notation of Theorem 0.2:

(g, r�, n,Σ∆,ΣGal); B = (Πn, G,Dn); p ∈ Σ∆; k; k̄; GΣGal

k ; X log; K; α : Πn
∼→

ΠUXn
; DXn . Let Πprf

2 be a profinite group which is isomorphic to the étale funda-

mental group Πprf
UX2

def
= π1(UX2) (relative to a suitable choice of basepoint). Suppose

that (g, r�, n) def
= (0, 3ord, 2). Then:

(i) Let EB ∈ E2[B] (cf. Definition 4.8, (ii)), ϕ : H[B]
∼→ S5 an isomorphism, and

λ ∈ M [B, EB]1[ϕ] ⊆ M [B, EB]. Then one may construct from the PGCS-
collection B a collection of isomorphisms between the fields F [A [B, EB], ϕ, λ]
associated to any two choices of the data (EB, ϕ, λ) that is compatible with
composition, i.e., satisfies the “cocycle condition” that arises when one con-
siders three choices of the data (EB, ϕ, λ). In particular, one may construct

• a field K[B]
def
= F [A [B, EB], ϕ, λ] equipped with a natural action by G

(cf. Theorem 0.3, (iv)),

• k[B]
def
= K[B]G (cf. Notation 1.6)

associated to the intrinsic structure of the PGCS-collection B, i.e., which is
independent of the choice of data (EB, ϕ, λ) (cf. Theorem 5.2, (i)).

(ii) Suppose that k is a number field or a p-adic local field. Then there exists an

isomorphism of PGCS-collections B
∼→ B[Πprf

2 ] (cf. Theorem 5.1, (iv)). In
particular, there exists an isomorphism

Π2
∼→ Π�

2 [Πprf
2 ]

(cf. Theorem 5.1, (iv)). Let E ∈ E2[Πprf
2 ] (cf. Theorem 5.1, (v)) and β : B

∼→
B[Πprf

2 ] an isomorphism of PGCS-collections. Then the isomorphism β : B
∼→
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B[Πprf
2 ] induces a commutative diagram

Πprf
2

// //

����

Π�
2 [Πprf

2 ] Π2
∼oo

����
Πprf

1 [Πprf
2 , E] // //

����

Π1[B, E|Π2 ]

����
G[Πprf

2 ] // // G,

where Π2
∼→ Π�

2 [Πprf
2 ] denotes the isomorphism determined by β; Πprf

2 �
Π�

2 [Πprf
2 ] denotes the natural surjection (cf. Theorem 5.1, (iv)); E|Π2

⊆ Π2

denotes the generalized fiber subgroup of Π2 given by forming the image of

E via the composite of arrows Πprf
2 � Π�

2 [Πprf
2 ]

∼← Π2 in the upper line of

the diagram; the arrows Πprf
2 � Πprf

1 [Πprf
2 , E] � G[Πprf

2 ] denote the natural
surjections (cf. Theorem 5.1, (i), (v)); the arrows Π2 � Π1[B, E|Π2 ] � G

denote the natural surjections (cf. Definition 4.8, (i), (ii)); Πprf
1 [Πprf

2 , E] �
Π1[B, E|Π2 ], G[Πprf

2 ] � G denote the unique surjections that render the dia-
gram commutative. In particular, we obtain a field

F1[B,Πprf
2 , E, β]

def
= F1[Π

prf
2 , E]Ker(Πprf

1 [Πprf
2 ,E]�Π1[B,E|Π2 ])

equipped with a natural action by (Π2 �) Π1[B, E|Π2 ] (cf. Theorems 5.1, (vi);
5.2, (ii)).

(iii) In the notation of (ii), one may construct a field F1[B,Πprf
2 , E, β] (cf. (ii))

equipped with an action by Π2 associated to the intrinsic structure of the fol-
lowing collection of data:
• the PGCS-collection B;

• a profinite group Πprf
2 isomorphic to Πprf

UX2
;

• E ∈ E2[Πprf
2 ];

• an isomorphism β : B
∼→ B[Πprf

2 ];
such that if

βX : B
∼→ B[X]

def
= (ΠUX2

, GΣGal

k ,DX2)

is an isomorphism of PGCS-collections of type (0, 3ord, 2,Σ∆,ΣGal), then one
may construct a field isomorphism

F1[B,Πprf
2 , E, β]

∼→ Fnct(W )

associated to the intrinsic structure of the data (B,Πprf
2 , E, β, βX), where W

denotes the pro-finite étale covering of UX corresponding to ΠUX
(so ΠUX

=

Gal(W/UX)); Fnct(W ) denotes the function field of W ; the isomorphism “
∼→”

is equivariant with respect to the respective natural actions of the profinite
groups (Π2 �) Π1[B, E|Π2 ], ΠUX (cf. Theorem 5.2, (iii)).

(iv) In the notation of (i), (ii), (iii), suppose that EB = E|Π2 . Let ϕ : H[B]
∼→ S5

be an isomorphism, λ ∈M [B, EB]1[ϕ] ⊆M [B, EB], and

T ∈ F1[B,Πprf
2 , E, β].
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Then T induces, by restriction to decomposition groups (cf. also Proposition
4.7, (iv)), a map

T (−) : D1[B, EB]→ K[B,Πprf
2 , E, β] ∪ {∞} def

= k̄[Πprf
2 , E]Ker(G[Πprf

2 ]�G) ∪ {∞}

(cf. (ii); Theorem 5.1, (vii)); there exists a unique element T [B,Πprf
2 , E, β, ϕ, λ]

∈ F1[B,Πprf
2 , E, β]Π1[B,E|Π2 ] such that the zero divisor of T [B,Πprf

2 , E, β, ϕ, λ]
is of degree 1 (cf. [AbsTpIII], Proposition 1.6, (iii)) and supported on 0[ϕ, λ],

T [B,Πprf
2 , E, β, ϕ, λ](1[ϕ, λ]) = 1 ∈ K[B,Πprf

2 , E, β],

the divisor of poles of T [B,Πprf
2 , E, β, ϕ, λ] is of degree 1 (cf. [AbsTpIII],

Proposition 1.6, (iii)) and supported on ∞[ϕ, λ] (cf. Proposition 2.8). More-
over, the map

T [B,Πprf
2 , E, β, ϕ, λ](−) : D1[B, EB]→ K[B,Πprf

2 , E, β] ∪ {∞}

induces a field isomorphism

K[B]
∼→ K[B,Πprf

2 , E, β],

where the isomorphism “
∼→” is equivariant with respect to the respective nat-

ural actions of G (cf. Theorem 5.2, (iv)).
(v) In the notation of (i), (iii), (iv) (cf. also, Theorem 5.1, (vii)), the isomorphism

βX : B
∼→ B[X] induces a commutative diagram

F1[B,Πprf
2 , E, β]

∼ // Fnct(W )

K[B]
∼ // K[B,Πprf

2 , E, β]

∪
∼ // K

∪

associated to the intrinsic structure of the data (B,Πprf
2 , E, β, βX), where the

horizontal arrows are the isomorphisms discussed so far in (iii), (iv), and
Theorem 5.1, (vii); the ∪’s are the natural inclusions (cf. Theorem 5.2, (v)).

This paper is organized as follows: In §1, we explain some notations. In §2, we de-
scribe the field structure of a field k using the projectionsM0,5(k)→M0,4(k) (de-
termined by forgetting a marked point), together with certain elements τrf , τra, τcr ∈
S5 (cf. Definition 2.9) of the symmetric group on 5 letters S5, which we regard as
acting on M0,5, by permuting the 5 marked points (cf. Proposition 2.2, (i)). In
§3, we define the notion of a CFS-collection and construct a field associated to the
intrinsic structure of a CFS-collection — i.e.,

CFS-collection  field

(cf. Theorem 0.3, (i)). In §4, we define the notion of a PGCS-collection and con-
struct a CFS-collection (hence also a (base) field) associated to the intrinsic struc-
ture of a PGCS-collection — i.e.,

PGCS-collection  CFS-collection  (base) field

(cf. Theorem 0.3, (ii), (iii), (iv)). In §5, §6, we construct certain function fields
associated to the intrinsic structure of a PGCS-collection — i.e.,

PGCS-collection  certain function fields
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— first in the case of PGCS-collections of type (0, 3ord, 2,ΣGal,Σ∆) (cf. Theo-
rem 0.4, which is proven in §5), then in the case of PGCS-collections of type
(g, r�, n,ΣGal,Σ∆) (cf. Theorems 0.1, 0.2, which are proven in §6).

1. Notations

Notation 1.1. Let S be a scheme and X a scheme over S, whose structure mor-
phism X → S we denote by f .

(i) Write Aut(X) for the group of automorphisms of the scheme X.
(ii) Write Aut(X → S) ⊆ Aut(X)×Aut(S) for the subgroup of elements (αX , αS)

such that f ◦ αX = αS ◦ f .
(iii) Write AutS(X) ⊆ Aut(X → S) for the subgroup of elements (αX , αS) such

that αS is the identity automorphism of S. When S = Spec(A), where A is a

commutative ring with unity, we shall write AutA(X)
def
= AutS(X).

Notation 1.2. Let Slog be an fs log scheme (cf. [Nky], Definition 1.7).

(i) Write S for the underlying scheme of Slog.
(ii) WriteMS for the sheaf of monoids that defines the log structure of Slog.
(iii) Let s be a geometric point of S. Then we shall denote by I(s,MS) the ideal

of OS,s generated by the image of MS,s \ O×
S,s via the homomorphism of

monoids MS,s → OS,s induced by the morphism MS → OS which defines
the log structure of Slog.

(iv) Let s ∈ S and s a geometric point of S which lies over s. Write (MS,s/O×
S,s)

gp

for the groupification of MS,s/O×
S,s. Then we shall refer to the rank of the

finitely generated free abelian group (MS,s/O×
S,s)

gp as the log rank at s. Note
that one verifies easily that this rank is independent of the choice of s, i.e.,
depends only on s.

(v) Let m ∈ Z. Then we shall write

Slog≤m def
= {s ∈ S | the log rank at s is ≤ m}.

Note that since Slog≤m is open in S (cf. [MzTa], Proposition 5.2, (i)), we shall
also regard (by abuse of notation) Slog≤m as an open subscheme of S.

(vi) We shall write US
def
= Slog≤0 and refer to US as the interior of Slog. When

US = S, we shall often use the notation S to denote the log scheme Slog.

Notation 1.3. Let (g, r) be a pair of nonnegative integers such that 2g−2+ r > 0
and k a field.

(i) Write Mg,r for the moduli stack (over k) of pointed stable curves of type

(g, r), andMg,r ⊆ Mg,r for the open substack corresponding to the smooth
curves (cf. [Knu]). Here, we assume the marked points to be ordered.

(ii) Write

Cg,r →Mg,r

for the tautological curve overMg,r; Dg,r
def
= Mg,r \Mg,r for the divisor at

infinity.

(iii) Write Mlog

g,r for the log stack obtained by equipping the moduli stack Mg,r

with the log structure determined by the divisors with normal crossings Dg,r.
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(iv) The divisor of Cg,r given by the union of Cg,r ×Mg,r
Dg,r with the divisor of

Cg,r determined by the marked points determines a log structure on Cg,r; we
denote the resulting log stack by Clogg,r. Thus, we obtain a morphism of log
stacks

Clogg,r →M
log

g,r,

which we refer to as the tautological log curve overMlog

g,r. If S
log is an arbitrary

log scheme, then we shall refer to a morphism

C log → Slog

whose pull-back to some finite étale covering T → S is isomorphic to the pull-

back of the tautological log curve via some morphism T log def
= Slog ×S T →

Mlog

g,r as a stable log curve (of type (g, r)). If C → S is smooth, i.e., every

geometric fiber of C → S is free of nodes, then we shall refer to C log → Slog as
a smooth log curve (of type (g, r)). If C → S is smooth, and the marked points
of X log are equipped with an ordering, then we shall refer to C log → Slog as
a smooth log curve of type (g, rord). When it is necessary to distinguish “g, r”
from “g, rord”, we shall occasionally write “g, rarb” for “g, r”.

Definition 1.4. Let k be a field; � ∈ {arb, ord}; S def
= Spec(k); (g, r) a pair of

nonnegative integers such that 2g − 2 + r > 0;

X log → S

(cf. Notation 1.2, (vi)) a smooth log curve of type (g, r�); n ∈ Z>0. Suppose first
that � = ord. Then the smooth log curve X log over S determines a classifying

morphism S → Mlog

g,r. Thus, by pulling back via this morphism S → Mlog

g,r the

morphismMlog

g,r+n →M
log

g,r given by forgetting the last n marked points, we obtain
a morphism of log schemes

X log
n → S.

Observe that since the above construction is manifestly functorial with respect to
permutations of the marked points, we conclude, by an easy étale descent argument,
that one may, in fact, define X log

n even if � = arb. We shall refer to X log
n as the

n-th log configuration space associated to X log → S. Note that X log
1 = X log. Write

X log
0

def
= S.

Definition 1.5. Let n ∈ Z>0; � ∈ {arb, ord}; (g, r) a pair of nonnegative integers
such that 2g − 2 + r > 0; Σ a nonempty set of prime numbers; k a field of charac-
teristic ̸∈ Σ; X log a smooth log curve over k of type (g, r�); P a point of Xn; P a
geometric point of Xn which lies over P .

(i) P parametrizes a pointed stable curve of type (g, r + n) over some separably
closed field (cf. Notation 1.3, (iv)). Thus, P determines a semi-graph of
anabelioids of pro-Σ PSC-type (cf. [CmbGC], Definition 1.1, (i)), which is in
fact easily verified to be independent, up to (a non-unique!) isomorphism, of
the choice of the geometric point P lying over P . We shall write GP for this
semi-graph of anabelioids of pro-Σ PSC-type.

(ii) Suppose that � = ord. Let us fix an ordered set

Cr,n
def
= {c1, . . . , cr+n}.
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Thus, by definition, we have a natural bijection Cr,n
∼→ Cusp(GP ) that de-

termines a bijection between the subset {c1, . . . , cr} and the set of cusps of
X log (cf. [Hgsh], Definition 2.2, (v)). In the following, let us identify the set
Cusp(GP ) with Cr,n.

(iii) We shall refer to an irreducible divisor of Xn contained in the complement
Xn \ UXn of the interior UXn of Xn as a log divisor of X log

n . That is to
say, a log divisor of X log

n is an irreducible divisor of Xn whose generic point
parametrizes a pointed stable curve with precisely two irreducible components
(cf. [Hgsh], Definition 2.2, (vi)).

(iv) Let V be a log divisor of X log
n . Then we shall write GV for “GP ” in the case

where we take “P” to be the generic point of V , and V to be a geometric
point that lies over the generic point of V .

(v) Suppose that � = ord. Let m ∈ Z>1; y1, . . . , ym ∈ Cr,n distinct elements
such that ♯({y1, . . . , ym}∩{c1, . . . , cr}) ≤ 1. Then one verifies immediately —
by considering clutching morphisms (cf. [Knu], Definition 3.8) — that there
exists a unique log divisor V of X log

n , which we shall denote by V (y1, . . . , ym),
that satisfies the following condition: the semi-graph of anabelioids GV (for

some geometric point V that lies over V ) has precisely two vertices v1, v2 such
that v1 is of type (0,m + 1), v2 is of type (g, n + r −m + 1), and y1, . . . , ym
are cusps of GV |v1 (cf. [CbTpI], Definition 2.1, (iii)).

Notation 1.6. Let K be a field and G a group that acts on K. Then we write
KG for the subfield of G-invariants of K.

Notation 1.7. Write Primes for the set of prime numbers. Let G be a profinite
group and Σ ⊆ Primes. Then we shall write GΣ for the maximal pro-Σ quotient of
G.

Notation 1.8. Let G be a profinite group and H a closed normal subgroup of
G. Then we shall write Aut(G) for the group of automorphisms of G, Inn(G) ⊆
Aut(G) for the subgroup of inner automorphisms of G arising from elements of G,

Out(G)
def
= Aut(G)/Inn(G),

AutG/H(G)
def
= {σ ∈ Aut(G) | σ(H) = H, and σ lies over

the identity automorphism of G/H},

and InnH(G) ⊆ AutG/H(G) for the subgroup of inner automorphisms of G arising
from elements of H. Note that it follows immediately from the various definitions

involved that InnH(G) is a normal subgroup of AutG/H(G). Write OutG/H(G)
def
=

AutG/H(G)/InnH(G).

Notation 1.9. Let G be a profinite group and H a closed normal subgroup of
G such that H is center-free. Then the conjugation action of G on H induces a

natural outer action G/H
outy H of G/H on H. Since H is center-free, this outer

action G/H
outy H, in turn, induces a commutative diagram

1 // H // G //

��

G/H //

��

1

1 // H // Aut(H) // Out(H) // 1
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in which the rows are exact, hence also a natural isomorphism

G
∼→ Aut(H)×Out(H) G/H.

In particular, one may reconstruct the group G from the natural outer action

G/H
outy H.

Notation 1.10. Let G be a profinite group and H a subgroup of G. Then we shall
write

CG(H)
def
= {g ∈ G | (gHg−1) ∩H has finite index in H, gHg−1}

for the commensurator of H in G.

Notation 1.11. Let †Π, ‡Π, G be profinite groups, †ϵ : †Π � G, ‡ϵ : ‡Π � G

sujections. Then we shall write †∆
def
= Ker(†ϵ), ‡∆

def
= Ker(‡ϵ),

Isom(†Π, ‡Π)
def
= {σ : †Π

∼→ †Π: isomorphism},

IsomG(
†Π, ‡Π)

def
= {σ ∈ Isom(†Π, ‡Π) | σ(†∆) = ‡∆ and

σ lies over the identity automorphism of G},
and

IsomOut
G (†Π, ‡Π)

for the set of equivalence classes of σ ∈ IsomG(
†Π, ‡Π) with respect to the equiva-

lence relation given by composition with an inner automorphism arising from ‡∆.

Notation 1.12. Let E1, E2 be sets. Then we shall write

Maps(E1, E2)

for the set of maps E1 → E2. Let G be a topological group and

Q
def
= {pi;E1 � Qi}i∈I

a collection of quotients of E1 indexed by a nonempty set I. Suppose further that
each of the sets E1 and E2 is equipped with a topology and a continuous action
by G, and that the topology and continuous action of G on E1 induce a topology
and continuous action of G on each of the quotients Qi, for i ∈ I. For i ∈ I,
we shall refer to a subset F ⊆ Qi of Qi as G-cofinite if, for some open subgroup
H ⊆ G, the subset F ⊆ Qi is stabilized by H, and, moreover, the set F/H of
H-orbits of F is finite. We shall say that a subset F ⊆ E1 is pre-(G,Q)-cofinite if,
for some i ∈ I, the image pi(F ) of F in Qi is G-cofinite. We shall say that a subset
F ⊆ E1 is (G,Q)-cofinite if it is a finite union of pre-(G,Q)-cofinite subsets of E1.
Let us assume that E1 is not (G,Q)-cofinite. Observe that if †F ⊆ ‡F ⊆ E1 are
(G,Q)-cofinite subsets, then the inclusion E1 \ ‡F ⊆ E1 \ †F induces a natural map

Maps(E1 \ †F,E2)→ Maps(E1 \ ‡F,E2).

We shall write

RatMaps(E1, E2)
def
= lim−→

F⊆E1

Maps(E1 \ F,E2),

where F ranges over the (G,Q)-cofinite subsets of E1. Observe that, if F ⊆ E1 is
a (G,Q)-cofinite subset, then any σ ∈ G induces a natural bijection

Maps(E1 \ F,E2)
∼→ Maps(E1 \ σ−1(F ), E2)
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given by taking, for e1 ∈ E1\F , (fσ)(e1)
def
= (f(σ−1(e1)))

σ. These natural bijections
induce natural actions of G on Maps(E1, E2) and RatMaps(E1, E2).

2. Geometric description of the structure of a field

Let n ∈ Z>1. Write Sn for the symmetric group on n letters. In the present §2, we
describe the field structure of a field k using the projectionsM0,5(k) →M0,4(k),
together with certain elements τrf , τra, τcr ∈ S5 (cf. Definition 2.9 below).

Proposition 2.1. Let n ∈ Z>0, k a field, and X log a smooth log curve over k of
type (0, 3ord). Then there exist natural isomorphisms

UXn

∼→M0,3+n, X log
n

∼→Mlog

0,3+n

arising from the well-known modular interpretation of the moduli stacks in the
codomains of these isomorphisms.

Proof. This follows immediately from the definitions. �

Proposition 2.2. Let k be a field. Then the following hold:

(i) The homomorphism

S5 → Autk(M0,5)

obtained by considering the permutations of the labels (∈ {1, 2, 3, 4, 5}) on the
five marked points is an isomorphism. Let us identify S5 with Autk(M0,5) by

means of this isomorphism. Thus, S5 acts onM0,5 andM0,5(k).
(ii) The homomorphism

S3 → Autk(M0,4)

obtained by considering the permutations of the labels (∈ {1, 2, 3}) on the first
three marked points is an isomorphism. Let us identify S3 with Autk(M0,4)

by means of this isomorphism. Thus, S3 acts onM0,4 andM0,4(k).
(iii) By considering the permutations of the labels (∈ {1, 2, 3, 4}) on the four marked

points, we obtain a homomorphism

S4 → Autk(M0,4).

Let a, b, c, d ∈ {1, 2, 3, 4} be distinct elements such that a, b ∈ {1, 2, 3}. Then
the action of the transposition (a, b) ∈ S4 onM0,4(k), the action of the trans-

position (a, b) ∈ S3 onM0,4(k), and the action of the transposition (c, d) ∈ S4

onM0,4(k) coincide.

Proof. Assertions (i), (ii) follow immediately from [NaTa], Theorem D (cf. also
[NaTa], Theorem 4.4; [Nkm], Theorem A). Assertion (iii) follows immediately from
the definitions. �

Definition 2.3. Let k be a field.

(i) Let i ∈ {1, 2, 3, 4, 5}. Write ptpdi :M0,5(k)�M0,4(k) for the projection given
by forgetting the i-th marked pointM0,5 →M0,4.

(ii) By considering the composites of the projections of (i) with the automorphisms
arising from the action of S3 onM0,4(k), we obtain a set of surjective maps

M0,5(k)�M0,4(k). We shall write M
def
= {M0,5(k)�M0,4(k)} for this set

of morphisms. Note that the action of S5 onM0,5(k) induces an action of S5
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on M from the right; the action of S3 onM0,4(k) induces a free action of S3

on M from the left.
(iii) We define an equivalence relation on M as follows: For †q, ‡q ∈M ,

†q ∼ ‡q
def⇐⇒ {†q−1(z)}z∈M0,4(k)\M0,4(k)

= {‡q−1(z)}z∈M0,4(k)\M0,4(k)
.

Note that the action of S5 on M (cf. (ii)) induces an action of S5 on the set
M∼ of equivalence classes with respect to this equivalence relation, while the
action of S3 on M induces the trivial action of S3 on M∼.

(iv) Let i ∈ {1, 2, 3, 4, 5}. Then we shall write Mi ∈ M∼ for the equivalence class

(cf. (iii)) that contains ptpdi .

Proposition 2.4. Let k be a field. Then the following hold:

(i) It holds that

M0,4 \M0,4 =
⊔

V : a log divisor of Mlog
0,4

V

(cf. Definition 1.5, (iii), and Proposition 2.1).
(ii) It holds that

{log divisors ofMlog

0,4} = {V (c1, c4), V (c2, c4), V (c3, c4)}

where c1, c2, c3, c4 ∈ C3,1 = {c1, c2, c3, c4} (cf. Definition 1.5, (ii), (v), and
Proposition 2.1).

(iii) It holds that

♯(M0,4(k) \M0,4(k)) = 3.

(iv) Let z ∈ M0,4(k) \ M0,4(k) be an element. Then there exists a unique log

divisor V ofMlog

0,4 such that {z} = V (k) ⊆ M0,4(k).

We shall regard, by a slight abuse of notation, log divisors of Mlog

0,4 as elements

of M0,4(k) \ M0,4(k) (cf. (iv)) and write 0
def
= V (c1, c4), 1

def
= V (c2, c4), ∞

def
=

V (c3, c4) ∈M0,4(k) \M0,4(k).

Proof. Assertion (i) follows from Definition 1.5, (iii), and Proposition 2.1. Asser-
tion (ii) follows immediately (cf. Definition 1.5, (v)). Assertion (iii) follows from
Proposition 2.1. Assertion (iv) follows from assertions (i), (ii), (iii). �

Proposition 2.5. Let k be a field. Then the following hold:

(i) It holds that

M0,5 \M0,5 =
∪

V : a log divisor of Mlog
0,5

V

(cf. Definition 1.5, (iii), and Proposition 2.1).
(ii) It holds that

♯{log divisors ofMlog

0,5}
=♯{V (c4, c5), V (ci, c4, c5), V (ci, cj) | i ∈ {1, 2, 3}, j ∈ {4, 5}} = 10.
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(iii) It holds that

(ptpd5 )−1(0) = V (c1, c4) ∪ V (c1, c4, c5), (ptpd5 )−1(1) = V (c2, c4) ∪ V (c2, c4, c5),

(ptpd5 )−1(∞) = V (c3, c4) ∪ V (c3, c4, c5),

where c1, c2, c3, c4, c5 ∈ C3,2 = {c1, . . . , c5} (cf. Definition 1.5, (ii), (v); Propo-
sition 2.1). In particular,

ptpd5 (V (ci, c4)) = ptpd5 (V (ci, c4, c5)) = V (ci, c4),

where i ∈ {1, 2, 3}.
(iv) Let i ∈ {1, 2, 3, 4, 5}.

• If i ∈ {1, 2, 3}, write {i′, i′′} = {1, 2, 3} \ {i}; then

{(ptpdi )−1(z)}z∈M0,4(k)\M0,4(k)

={V (ci′ , c4) ∪ V (ci′′ , c5), V (ci′′ , c4) ∪ V (ci′ , c5), V (ci, c4, c5) ∪ V (c4, c5)}.

• If i ∈ {4, 5}, write {i′′′} = {4, 5} \ {i}; then

{(ptpdi )−1(z)}z∈M0,4(k)\M0,4(k)
= {V (cj , ci′′′) ∪ V (cj , c4, c5) | j ∈ {1, 2, 3}}.

Here, c1, c2, c3, c4, c5 ∈ C3,2 = {c1, . . . , c5} (cf. Definition 1.5, (ii)).
(v) It holds that

M0,5(k) \M0,5(k) =
∪

z∈M0,4(k)\M0,4(k),i∈{1,...,5}

(ptpdi )−1(z).

Proof. Assertion (i) follows from Definition 1.5, (iii), and Proposition 2.1. Assertion
(ii) follows from Definition 1.5, (v), and Proposition 2.1. Assertions (iii), (iv), (v)
follow immediately from the well-known modular interpretation of the moduli stacks
involved. �

Proposition 2.6. Let k be a field. Then the following hold:

(i) For each i ∈ {2, 3, 4, 5}, it holds that ptpdi = ptpdi−1 ◦ (i− 1, i), where (i− 1, i) ∈
S5

∼→ Autk(M0,5) denotes the permutation that maps i− 1 7→ i, i 7→ i− 1.
(ii) The assignment {1, 2, 3, 4, 5} ∋ i 7→Mi ∈M∼ determines a bijection

{1, 2, 3, 4, 5} ∼→M∼

(cf. Definition 2.3, (iii), (iv)). In particular, the fibers of the natural projec-
tion M �M∼ are S3-torsors (relative to the action of S3 from the left — cf.
Definition 2.3, (ii)); the set M is of cardinality 30.

(iii) Let a, b, c ∈ {1, 2, 3, 4, 5} be distinct elements. Then Ma = Ma ◦ (b, c) (cf.

Definition 2.3, (iv)), where (b, c) ∈ S5
∼→ Autk(M0,5) denotes the permutation

that maps b 7→ c, c 7→ b.
(iv) Note that the action of S5 on M0,5 induces an action of S5 on the set of log

divisors of Mlog

0,5 (cf. Definition 1.5, (iii), and Proposition 2.1). Let i, j ∈
{1, 2, 3, 4, 5} distinct elements such that {i, j} ̸⊆ {1, 2, 3} and σ ∈ S5. Then

σ(V (ci, cj)) =

{
V (cσ(i), cσ(j)) (if {σ(i), σ(j)} ̸⊆ {1, 2, 3})
V (cl, c4, c5) (if {l} ∪ {σ(i), σ(j)} = {1, 2, 3}),

where ci, cj , cσ(i), cσ(j), cl ∈ C3,2 = {c1, c2, c3, c4, c5} (cf. Definition 1.5, (ii)).
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(v) Let x, y ∈ M0,4(k) be distinct elements. Then there exists a unique element

z ∈ M0,5(k) such that ptpd5 (z) = x, ptpd4 (z) = y. We shall write (x, y) ∈
M0,5(k) for this unique element.

Proof. Assertion (i) follows from Proposition 2.2, (i), and Definition 2.3, (i). Next,
we consider assertion (ii). Let q ∈ M be an element. By Definition 2.3, (ii),

there exist τ ∈ S3 and i ∈ {1, 2, 3, 4, 5} such that q = τ ◦ ptpdi . In particular,

q ∼ ptpdi (cf. Definition 2.3, (iii)), so the map {1, 2, 3, 4, 5} →M∼ is surjective. The
injectivity of the map {1, 2, 3, 4, 5} → M∼ follows from Proposition 2.5, (ii), (iv).
This completes the proof of assertion (ii). Next, we consider assertion (iii). By
conjugating by S5, we may suppose that a = 5. Then it follows immediately that
Ma ◦ (b, c) = (b, c) ◦Ma = Ma (cf. Definition 2.3, (iii)). Assertions (iv), (v) follow
from the well-known modular interpretation of the moduli stacks involved. �

Proposition 2.7. Let k be a field, x ∈M0,4(k) \M0,4(k), and y ∈M0,4(k) \ {x}.
Then we obtain an element

ptpd5 ((i, j)(x, y)) = (i, j)(ptpd5 (x, y)) ∈ {0, 1,∞},

where i, j ∈ {1, 2, 3} are distinct elements and, by a slight abuse of notation, we

write (i, j) for the corresponding transpositions ∈ S5
∼→ Autk(M0,5), ∈ S3

∼→
Autk(M0,4) (cf. Proposition 2.2, (i), (ii)). Then the following hold:

(i) Let †y, ‡y ∈M0,4(k) \ {x}. Then

ptpd5 ((i, j)(x, †y)) = ptpd5 ((i, j)(x, ‡y)).

(ii) It holds that

x = 0⇐⇒ x = ptpd5 ((2, 3)(x, y)).

(iii) It holds that

x = 1⇐⇒ x = ptpd5 ((1, 3)(x, y)).

(iv) It holds that

x =∞⇐⇒ x = ptpd5 ((1, 2)(x, y)).

Proof. Assertions (i), (ii), (iii), (iv) follow immediately from the various definitions
involved. �

Proposition 2.8. Let k be a field. For every three distinct elements z1, z2, z3 ∈
M0,4(k)\M0,4(k), there exists a unique regular function tz1,z2,z3 ∈ Γ(M0,4,OM0,4)

(which may be regarded as a rational function onM0,4) such that

• tz1,z2,z3 induces a bijection

tz1,z2,z3 :M0,4(k)
∼→ k ∪ {∞};

• the zero divisor of tz1,z2,z3 is of degree 1 and supported on z1;
• tz1,z2,z3(z2) = 1;
• the divisor of poles of tz1,z2,z3 is of degree 1 and supported on z3.

Proof. This follows immediately from the well-known geometry of the projective
line (i.e.,M0,4). �
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In the remainder of the present §2, we suppose that (z1, z2, z3) = (0, 1,∞) (cf.
the final portion of Proposition 2.4) and consider the bijection

tz1,z2,z3 :M0,4(k)
∼→ k ∪ {∞}

of Proposition 2.8. In the following, we shall think of k as a subset ofM0,4(k) by
means of this bijection. Our goal will be to describe the field structure of k using

the projections ptpdi :M0,5(k)→M0,4(k) (i ∈ {1, 2, 3, 4, 5}) (cf. Definition 2.3, (i))
and τrf , τra, τcr ∈ S5 (cf. Definition 2.9 below).

Definition 2.9. Let k be a field and x, y ∈ M0,4(k) distinct elements. From a
computational point of view, it is often useful to recall that (x, y) ∈M0,5(k) corre-
sponds to the genus 0 curve with 5 ordered marked points given by (0, 1,∞, x, y).

(i) (Reflection) We write

τrf
def
=

(
1 2 3 4 5
1 2 4 3 5

)
∈ S5,

i.e.,

τrf :M0,5(k)
∼→M0,5(k) : (x, y) 7→

(
1− x, y(x−1)

x−y

)
.

(ii) (Ratio) We write

τra
def
=

(
1 2 3 4 5
1 4 3 2 5

)
∈ S5,

i.e.,

τra :M0,5(k) ≃M0,5(k) : (x, y) 7→
(

1
x ,

y
x

)
.

(iii) (Cross ratio) We write

τcr
def
=

(
1 2 3 4 5
4 5 1 2 3

)
∈ S5,

i.e.,

τcr :M0,5(k) ≃M0,5(k) : (x, y) 7→
(

y−x
y , y−x

y−1

)
.

Proposition 2.10. Let k be a field, τ ∈ S5, and x, y ∈M0,4(k) distinct elements.
Then the following hold:

(i) τ = τrf ⇐⇒

M4 ◦ τ = M3, M3 ◦ τ = M4, Mi ◦ τ = Mi (i ∈ {1, 2, 5}).

(ii) τ = τra ⇐⇒

M2 ◦ τ = M4, M4 ◦ τ = M2, Mj ◦ τ = Mj (j ∈ {1, 3, 5}).

(iii) τ = τcr ⇐⇒

M4 ◦ τ = M1, M5 ◦ τ = M2, M1 ◦ τ = M3,

M2 ◦ τ = M4, M3 ◦ τ = M5.

(iv)

ptpd5 (τrf(x, y)) = 1− x.

(v)

ptpd5 (τra(x, y)) =
1
x .
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(vi)

ptpd4 (τra(x, y)) =
y
x .

(vii)

ptpd5 (τcr(x, y)) =
y−x
y .

Proof. Assertions (i), (ii), (iii) follow from Proposition 2.6, (ii), together with the
various definitions involved. Assertions (iv), (v), (vi), (vii) follow from Definition
2.9, (i), (ii), (iii). �
Proposition 2.11. Let k be a field and x, y ∈ M0,4(k) distinct elements. Then
the following hold:

(i) 1
x = ptpd5 (τra(x, y)).

(ii) If y ̸= 1
x , then x · y = ptpd4 (τra(

1
x , y)).

Proof. Assertions (i), (ii) follow immediately from Proposition 2.10, (v), (vi). �
Proposition 2.12. Let k be a field such that ♯k ̸= 3. Then it holds that k is a field
of characteristic ̸= 2 ⇐⇒ there exists an element x ∈M0,4(k) such that 1

x = x.

Proof. Assertion follows immediately from the various definitions involved. �
Proposition 2.13. Let k be a field and x, y ∈ M0,4(k) distinct elements. We
suppose that k is a field of characteristic 2. Then the following hold:

(i) x+ 1 = ptpd5 (τrf(x, y)).
(ii) x+ y = y(x · 1y + 1).

Proof. Assertion (i) follows immediately from Proposition 2.10, (iv). Assertion (ii)
follows immediately from the various definitions involved. �
Proposition 2.14. Let k be a field and x, y ∈ M0,4(k) distinct elements. We
suppose that k is a field of characteristic ̸= 2. Then the following hold:

(i) x = −1 ⇐⇒ 1
x = x.

(ii) If x ̸= −1, then 1 + 1 = ptpd5 (τrf(−1, x)).
(iii) If x ̸= −1, then x+ 1 = ptpd5 (τcr(x,−1)).
(iv) x+ y = y(x · 1y + 1).

Proof. Assertions (i), (iv) follow immediately from the various definitions involved.
Assertions (ii), (iii) follow immediately from Proposition 2.10, (iv), (vii). �

3. Construction of a field associated to a CFS-collection

In the present §3, we introduce the notion of a CFS-collection (cf. Definition 3.2
below) and construct a field associated to the intrinsic structure of a CFS-collection
(cf. Theorem 3.13 below).

Definition 3.1. Let A,B, ∂B,H,M be sets. We shall refer to A = (A,B, ∂B,H,
M) as a model CFS-collection (“model configuration-theoretic field structure col-
lection”) if there exist a field k and a smooth log curve X log over k of type (0, 3ord)
such that A = X2(k); B = X(k); ∂B = X(k) \ UX(k); H is the set of automor-
phisms of X2(k) induced by automorphisms of UX2 over k (cf. Proposition 2.2, (i));
M is the set of maps X2(k)→ X(k) induced by the 30 natural morphisms X2 → X
(cf. Proposition 2.1; Definition 2.3, (ii); Proposition 2.6, (ii)).



PRO-P SEMI-ABSOLUTE ANABELIAN GEOMETRY 19

Definition 3.2. Let A,B be sets; ∂B ⊆ B a subset of cardinality 3; H ⊆ Aut(A) a
subgroup; M a set of maps A→ B. Then we shall say that A = (A,B, ∂B,H,M)
is a CFS-collection if it satisfies the following condition: There exist a field k, a
smooth log curve X log over k of type (0, 3ord), a bijection α : A

∼→ X2(k), and a

bijection β : B
∼→ X(k), such that

(i) β induces a bijection B \ ∂B ∼→ UX(k);

(ii) the isomorphism of groups Aut(A)
∼→ Aut(X2(k)) determined by α induces

an isomorphism of groups H
∼→ Autk(UX2) (↪→ Aut(X2(k))) (so H ∼= S5 (cf.

Propositions 2.1 and 2.2, (i)));
(iii) if we write MX for the set of maps X2(k)→ X(k) induced by the 30 natural

morphisms X2 → X (cf. Proposition 2.1; Definition 2.3, (ii); Proposition 2.6,

(ii)), then there exists a bijection M
∼→ MX such that if λ 7→ q via this

bijection, then

A
∼
α

//

λ
����

X2(k)

q
����

B
∼
β

// X(k).

�

Remark 3.3. It is immediate that any model CFS-collection is a CFS-collection.
Moreover, relative to the terminology introduced in Definition 3.9 below, the data
(α, β) that appears in Definition 3.2 may be regarded as an isomorphism of CFS-
collections between the CFS-collection under consideration in Definition 3.2 and
some model CFS-collection.

Definition 3.4. Let (A,B, ∂B,H,M) be a CFS-collection. Let †λ, ‡λ ∈ M . We
define an equivalence relation

†λ ∼ ‡λ
def⇐⇒ {†λ−1(b)}b∈∂B = {‡λ−1(b)}b∈∂B .

The set of equivalence classes of M is of cardinality 5 (cf. Remark 3.3; Proposition
2.6, (ii)).

Definition 3.5. Let (A,B, ∂B,H,M) be a CFS-collection and ϕ : H
∼→ S5 an iso-

morphism. Here, we remark that H acts naturally on M (cf. Remark 3.3; Definition
2.3, (ii)). Also, we recall the well-known elementary fact that every automorphism
of S5 is inner; thus, ϕ is unique up to composition with an inner automorphism
of S5. Let a ∈ {1, 2, 3, 4, 5} be an element. Write Ma[ϕ] for the unique equiv-
alence class as in Definiiton 3.4 such that Ma[ϕ] = Ma[ϕ] ◦ (ϕ−1(b, c)), for all
transpositions (b, c) ∈ S5 such that a ̸∈ {b, c} (cf, Remark 3.3; Proposition 2.6,

(ii), (iii)). Thus, M = M1[ϕ] ⊔ · · · ⊔M5[ϕ]. Let λ ∈ M1[ϕ]. Write p1[ϕ, λ]
def
= λ,

pi[ϕ, λ]
def
= pi−1[ϕ, λ] ◦ (ϕ−1(i− 1, i)), where i ∈ {2, 3, 4, 5} and (i− 1, i) ∈ S5.

Definition 3.6. Let (A,B, ∂B,H,M) be a CFS-collection, ϕ : H
∼→ S5 an isomor-

phism, and λ ∈M1[ϕ]. We define

HB [ϕ, λ]
def
= {γ ∈ Aut(B) | there exists an element σ ∈ S5

such that σ(1) = 1 and γ ◦ λ = λ ◦ ϕ−1(σ)}.

Let †ϕ : H
∼→ S5 be an isomorphism, and †λ ∈ M1[

†ϕ]. Then one verifies immedi-
ately (cf. Definition 2.2, (i), (ii); Remark 3.3) that HB [

†ϕ, †λ] = HB [ϕ, λ]. Write



20 KAZUMI HIGASHIYAMA

HB
def
= HB [ϕ, λ] ⊆ Aut(B). Finally, one verifies immediately (cf. Definition 2.2,

(i), (ii); Remark 3.3) that the assignment γ 7→ γ|∂B determines an isomorphism of

groups HB
∼→ Aut(∂B). Here, we recall that Aut(∂B) is isomorphic to S3.

Definition 3.7. Let (A,B, ∂B,H,M) be a CFS-collection, ϕ : H
∼→ S5 an isomor-

phism, and λ ∈ M1[ϕ]. Let x, y ∈ B be distinct elements. Then there exists an
unique element z ∈ A such that p5[ϕ, λ](z) = x, p4[ϕ, λ](z) = y (cf. Remark 3.3;

Proposition 2.6, (v)). Write (x, y)[ϕ, λ]
def
= z.

Definition 3.8. Let (A,B, ∂B,H,M) be a CFS-collection, ϕ : H
∼→ S5 an isomor-

phism, and λ ∈M1[ϕ]. Then (cf. Remark 3.3; Proposition 2.7, (ii), (iii), (iv)):

• We shall write 0[ϕ, λ] for the unique element x ∈ ∂B such that for every
y ∈ B \ {x}, it holds that x = p5[ϕ, λ]((ϕ

−1(2, 3))(x, y)[ϕ, λ]).
• We shall write 1[ϕ, λ] for the unique element x ∈ ∂B such that for every
y ∈ B \ {x}, it holds that x = p5[ϕ, λ]((ϕ

−1(1, 3))(x, y)[ϕ, λ]).
• We shall write ∞[ϕ, λ] for the unique element x ∈ ∂B such that for every
y ∈ B \ {x}, it holds that x = p5[ϕ, λ]((ϕ

−1(1, 2))(x, y)[ϕ, λ]).

Thus, {0[ϕ, λ], 1[ϕ, λ],∞[ϕ, λ]} = ∂B.

Definition 3.9. Let
†A = (†A, †B, †∂B, †H, †M), ‡A = (‡A, ‡B, ‡∂B, ‡H, ‡M)

be CFS-collections. We shall refer to (α, β) : †A
∼→ ‡A as an isomorphism of CFS-

collections if α : †A
∼→ ‡A, β : †B

∼→ ‡B are bijections of sets such that β(†∂B) =
‡∂B, α ◦ †H ◦ α−1 = ‡H, β ◦ †M ◦ α−1 = ‡M .

Definition 3.10. Let
†A = (†A, †B, †∂B, †H, †M), ‡A = (‡A, ‡B, ‡∂B, ‡H, ‡M)

be CFS-collections, (α, β) : †A
∼→ ‡A an isomorphism of CFS-collections, †ϕ : †H

∼→
S5 an isomorphism, and †λ ∈ †M1[

†ϕ] (cf. Definition 3.5). Write ‡λ
def
= β ◦ †λ ◦α−1;

‡ϕ : ‡H
∼→ S5 for the isomorphism obtained by composing †ϕ with the isomorphism

‡H
∼→ †H obtained by conjugating by α−1. In this situation, we shall write

(α, β)(†ϕ)
def
= ‡ϕ, (α, β)(†λ)

def
= ‡λ.

Then we have a commutative diagram

†A
α //

pi[
†ϕ,†λ]

����

‡A

pi[
‡ϕ,‡λ]

����
†B

β
// ‡B,

�

where i ∈ {1, 2, 3, 4, 5} (cf. Definition 3.5).

Definition 3.11. Let (A,B, ∂B,H,M) be a CFS-collection and ϕ : H
∼→ S5 an iso-

morphism. Let Mi[ϕ] be as in Definition 3.5. Then we shall write τrf [ϕ], τra[ϕ], τcr[ϕ]
∈ H for the unique elements of H such that

M4[ϕ] ◦ τrf [ϕ] = M3[ϕ], M3[ϕ] ◦ τrf [ϕ] = M4[ϕ], Mi[ϕ] ◦ τrf [ϕ] = Mi[ϕ],

M2[ϕ] ◦ τra[ϕ] = M4[ϕ], M4[ϕ] ◦ τra[ϕ] = M2[ϕ], Mj [ϕ] ◦ τra[ϕ] = Mj [ϕ],

M4[ϕ] ◦ τcr[ϕ] = M1[ϕ], M5[ϕ] ◦ τcr[ϕ] = M2[ϕ], M1[ϕ] ◦ τcr[ϕ] = M3[ϕ],
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M2[ϕ] ◦ τcr[ϕ] = M4[ϕ], M3[ϕ] ◦ τcr[ϕ] = M5[ϕ],

where i ∈ {1, 2, 5} and j ∈ {1, 3, 5} (cf. Remark 3.3; Proposition 2.10, (i), (ii), (iii)).

Definition 3.12. Let A = (A,B, ∂B,H,M) be a CFS-collection, ϕ : H
∼→ S5 an

isomorphism, and λ ∈M1[ϕ] an element. We shall say that a collection of maps

�,� : (B \ {∞[ϕ, λ]})× (B \ {∞[ϕ, λ]})→ (B \ {∞[ϕ, λ]}),

� : (B \ {∞[ϕ, λ]})→ (B \ {∞[ϕ, λ]}),� : (B \ {0[ϕ, λ],∞[ϕ, λ]})→ (B \ {0[ϕ, λ],∞[ϕ, λ]})
is CFS-admissible if the following conditions are satisfied:

(1) First, we consider general properties (cf. Proposition 2.11):
(a) �(0[ϕ, λ]) = 0[ϕ, λ], �(1[ϕ, λ]) = 1[ϕ, λ].
(b) For x, y ∈ B \ {∞[ϕ, λ]}, �(x, y) = �(y, x), �(x, y) = �(y, x).
(c) For x ∈ B\{∞[ϕ, λ]}, �(0[ϕ, λ], x) = x, �(0[ϕ, λ], x) = 0[ϕ, λ], �(x,�(x)) =

0[ϕ, λ].
(d) For x ∈ B \ {0[ϕ, λ],∞[ϕ, λ]}, �(1[ϕ, λ], x) = x, �(x,�(x)) = 1[ϕ, λ].
(e) Let x, y ∈ B \ ∂B such that x ̸= y. Then �(x) = p5[ϕ, λ](τra[ϕ, λ](x, y)).
(f) Let x, y ∈ B \ ∂B such that y ̸= �(x). Then

�(x, y) = p4[ϕ, λ](τra[ϕ, λ](�(x), y)).

(2) Suppose that ♯B = 4. Then we define the maps �,�,�,� for B \ {∞[ϕ, λ]} as
follows: write {a} = B \ {0[ϕ, λ], 1[ϕ, λ],∞[ϕ, λ]}; then

� 0[ϕ, λ] 1[ϕ, λ] a
0[ϕ, λ] 0[ϕ, λ] 1[ϕ, λ] a
1[ϕ, λ] 1[ϕ, λ] a 0[ϕ, λ]

a a 0[ϕ, λ] 1[ϕ, λ]

� 0[ϕ, λ] 1[ϕ, λ] a
0[ϕ, λ] 0[ϕ, λ] 0[ϕ, λ] 0[ϕ, λ]
1[ϕ, λ] 0[ϕ, λ] 1[ϕ, λ] a

a 0[ϕ, λ] a 1[ϕ, λ]

�(0[ϕ, λ]) = 0[ϕ, λ], �(1[ϕ, λ]) = a, �(a) = 1[ϕ, λ],�(1[ϕ, λ]) = 1[ϕ, λ], �(a) = a.

(3) Suppose that there does not exist x ∈ B \ ∂B such that�(x) = x

(cf. Proposition 2.12). Then (cf. Proposition 2.13):
(a) Let x ∈ B \ {∞[ϕ, λ]}. Then �(x) = x and �(x, x) = 0[ϕ, λ].
(b) Let x, y ∈ B \ ∂B such that x ̸= y. Then

�(x, 1[ϕ, λ]) = p5[ϕ, λ](τrf [ϕ, λ](x, y)).

(c) Let x, y ∈ B \ {∞[ϕ, λ]} such that y ̸= 0[ϕ, λ]. Then

�(x, y) = �(y,�(�(x,�(y)), 1[ϕ, λ])).

(4) Suppose that ♯B ̸= 4, and that there exists an element x ∈ B \ ∂B such that�(x) = x

(cf. Proposition 2.12). Then (cf. Proposition 2.14):
(a) Let x, y ∈ B \ ∂B such that �(x) = x. Then �(1[ϕ, λ]) = x ∈ B, and
�(y) = �(x, y).

(b) Let x ∈ B \ (∂B ⊔ {�(1[ϕ, λ])}). Then
�(1[ϕ, λ], 1[ϕ, λ]) = p5[ϕ, λ](τrf [ϕ, λ](�(1[ϕ, λ]), x)).
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(c) Let x ∈ B \ (∂B ⊔ {�(1[ϕ, λ])}). Then

�(x, 1[ϕ, λ]) = p5[ϕ, λ](τcr[ϕ, λ](x,�(1[ϕ, λ]))).

(d) Let x, y ∈ B \ {∞[ϕ, λ]} such that y ̸= 0[ϕ, λ]. Then

�(x, y) = �(y,�(�(x,�(y)), 1[ϕ, λ])).

Observe that it follows formally from the above conditions (1), (2), (3), (4) that if
one fixes the data (A , ϕ, λ), then any CFS-admissible collection of maps is unique.
Thus, if the data (A , ϕ, λ) admits a CFS-admissible collection of maps, then we shall

write F [A , ϕ, λ]
def
= (B \ {∞[ϕ, λ]},�,�,�,�) for the set B \ {∞[ϕ, λ]}, equipped

with the maps �, �, �, �.

Theorem 3.13. (From CFS-collections to fields) Let A = (A,B, ∂B,H,M)

be a CFS-collection (cf. Definition 3.2); ϕ : H
∼→ S5 an isomorphism; i ∈ {1, 2, 3, 4, 5};

Mi[ϕ] as in Definition 3.5; λ ∈ M1[ϕ]; pi[ϕ, λ] ∈ Mi[ϕ] as in Definition 3.5;
0[ϕ, λ], 1[ϕ, λ],∞[ϕ, λ] ∈ ∂B as in Definition 3.8; τrf [ϕ], τra[ϕ], τcr[ϕ] ∈ H as in
Definition 3.11. Then:

(i) Suppose, further, that the following conditions hold: A = (A,B, ∂B,H,M)

is a model CFS-collection; k and X log are as in Definition 3.1; ϕ : H
∼→ S5 is

the composite of the natural isomorphisms

H
∼→ Autk(UX2)

∼→ Autk(M0,5)
∼← S5

(cf. Propositions 2.1; 2.2, (i)); λ = ptpd1 ∈M1[ϕ]. Then the bijection

B = X(k)
∼→M0,4(k)

∼→ k ∪ {∞}

induced by t0,1,∞ (cf. Proposition 2.1, the final portion of Proposition 2.4, and
Proposition 2.8), together with

the operations of addition, multiplication, additive inversion, and
multiplicative inversion arising from the field structure on k,

determines a CFS-admissible collection of maps for (A , ϕ, λ) (cf. Definition
3.12). In particular, the resulting object F [A , ϕ, λ] of Definition 3.12 may be
regarded as a field structure on the set B \ {∞[ϕ, λ]}.

(ii) Let

†A = (†A, †B, †∂B, †H, †M), ‡A = (‡A, ‡B, ‡∂B, ‡H, ‡M)

be CFS-collections; †ϕ : †H
∼→ S5 an isomorphism; ‡ϕ : ‡H

∼→ S5 an isomor-
phism; †λ ∈ †M1[

†ϕ]; ‡λ ∈ ‡M1[
‡ϕ]; (α, β) : †A

∼→ ‡A an isomorphism of
CFS-collections. Suppose that

(α, β)(†ϕ) = ‡ϕ, (α, β)(†λ) = ‡λ

(cf. Definition 3.10), and that (†A , †ϕ, †λ) admits a CFS-admissible collec-
tion of maps. Then (‡A , ‡ϕ, ‡λ) admits a CFS-admissible collection of maps.
Moreover, F [†A , †ϕ, †λ], F [‡A , ‡ϕ, ‡λ] may be regarded, respectively, as field
structures on the sets †B \{∞[†ϕ, †λ]}, ‡B \{∞[‡ϕ, ‡λ]} (cf. (i)), with respect

to which β induces a field isomorphism F [†A , †ϕ, †λ]
∼→ F [‡A , ‡ϕ, ‡λ].
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(iii) Let †ϕ, ‡ϕ : H
∼→ S5 be isomorphisms and †λ ∈ M1[

†ϕ], ‡λ ∈ M1[
‡ϕ]. Then

there exists a unique element γ ∈ Aut(∂B) such that γ(z[†ϕ, †λ]) = z[‡ϕ, ‡λ]

and γ ∈ Aut(∂B)
∼← HB ⊆ Aut(B) (cf. Definition 3.6) determines a field

isomorphism

F [A , †ϕ, †λ]
∼→ F [A , ‡ϕ, ‡λ]

relative to the field structures discussed in (i), (ii).

Proof. First, we consider assertion (i). Since we suppose that ϕ : H(= Autk(UX2))
∼→

S5 is the composite of the natural isomorphisms

Autk(UX2
)

∼→ Autk(M0,5)
∼← S5,

by Proposition 2.6, (ii), (iii), and Definitions 2.3, (iv); 3.5, it holds that Mi[ϕ] =

S3 ◦ ptpdi (i ∈ {1, 2, 3, 4, 5}). Recall that λ = ptpd1 ∈M1[ϕ]. Thus, by Definition 3.5,
and Proposition 2.6, (i),

p1[ϕ, λ]
def
= λ = ptpd1 ,

pi[ϕ, λ]
def
= pi−1[ϕ, λ] ◦ (ϕ−1(i− 1, i)) = ptpdi−1 ◦ (i− 1, i) = ptpdi ,

where i ∈ {2, 3, 4, 5}.
Next, observe that, relative to the identifications induced by the natural iso-

morphisms X(k)
∼→ M0,4(k), X2(k)

∼→ M0,5(k) (cf. Definition 2.1), the following
hold:

• Let x, y ∈ B be distinct elements. Then by Proposition 2.6, (v), and
Definition 3.7, it holds that (x, y)[ϕ, λ] = (x, y).
• By the final portion of Proposition 2.4, Proposition 2.7, (ii), (iii), (iv), and
Definition 3.8, it holds that z[ϕ, λ] = z for z ∈ {0, 1,∞}.
• By Definitions 2.9, 3.11, and Proposition 2.10, (i), (ii), (iii), it holds that
τrf [ϕ] = τrf , τra[ϕ] = τra, τcr[ϕ] = τcr.

Thus, assertion (i) follows from Definition 3.12 and Propositions 2.11, 2.12, 2.13,
2.14.

Assertion (ii) follows formally from assertion (i); Definitions 3.2, 3.5, 3.6, 3.12
(cf., especially, the uniqueness of a CFS-collection of maps associated to a given
“(A , ϕ, λ)”); Remark 3.3; Proposition 2.2, (i), (ii); Proposition 2.6, (ii). (More
details may be found in the (essentially similar) argument given in the final portion
of the proof of assertion (iii).)

Next, we consider assertion (iii). Since Aut(∂B) is isomorphic to S3, it follows
immediately from the various definitions involved that there exists a unique element
γ ∈ Aut(∂B) such that γ(z[†ϕ, †λ]) = z[‡ϕ, ‡λ] for z ∈ {0, 1,∞}. By Definition 3.2
and Remark 3.3, we may assume without loss of generality that A is a model CFS-
collection. Moreover, by Definitions 3.5, 3.6; Proposition 2.2, (i), (ii); Proposition
2.6, (ii), we may assume without loss of generality that †ϕ, †λ are, respectively, the
“ϕ”, “λ” of assertion (i). (More details may be found in the (essentially similar)
argument given in the following paragraph.)

Next, observe that there exists a unique element α ∈ H ⊆ Aut(A) such that
‡ϕ : H

∼→ S5 is the isomorphism obtained by composing †ϕ with the isomorphism
H

∼→ H obtained by conjugating by α−1 (cf. Definition 3.5). Write β ∈ HB ⊆
Aut(B) for the unique element such that ‡λ = β ◦ †λ ◦ α−1 (cf. Proposition 2.6,
(ii); Definition 3.6). Thus, the pair (α, β) may be regarded as an isomorphism of

collections of data (A , †ϕ, †λ)
∼→ (A , ‡ϕ, ‡λ) (cf. Definition 3.10). In particular,
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β|∂B = γ (cf. Definitions 3.6, 3.8). By assertion (ii), we may regard the field struc-
ture on F [A , ‡ϕ, ‡λ] as the result of transporting the field structure on F [A , †ϕ, †λ]
via β. In particular, β determines a field isomorphism

F [A , †ϕ, †λ]
∼→ F [A , ‡ϕ, ‡λ],

as desired. �

4. Construction of a CFS-collection associated to a PGCS-collection

In the present §4, we introduce the notion of a PGCS-collection (cf. Definition 4.2
below) and construct a CFS-collection (cf. §3) associated to the intrinsic structure
of a PGCS-collection (cf. Theorem 4.9 below).

Notation 4.1. Let n ∈ Z>0; (g, r) a pair of nonnegative integers such that
2g−2+r > 0; p a prime number; k a generalized sub-p-adic local field (cf. [Topics],
Definition 4.11); k̄ an algebraic closure of k; X log a smooth log curve over k of
type (g, r). Write Gk = Gal(k̄/k). In the following, we shall consider the commu-
tative diagram of étale fundamental groups “π1(−)” (relative to suitable choices of
basepoints) and their quotients:

1 // π1(UXn ×k k̄) //

����

π1(UXn) //

����

Gk
// 1

1 // π1(UXn ×k k̄)(p) // π1(UXn)
[p] //

����

Gk
//

����

1

π1(UXn ×k k̄)(p) // π1(UXn)
(p) // G(p)

k
// 1,

where we append the superscript (p) to a profinite group to denote its maximal
pro-p quotient, and we write

π1(UXn)
[p] def

= π1(UXn)/Ker(π1(UXn ×k k̄)→ π1(UXn ×k k̄)(p)).

Definition 4.2. Let n ∈ Z>1; (g, r) a pair of nonnegative integers such that 2g −
2 + r > 0; � ∈ {arb, ord}; Σ∆,ΣGal sets of prime numbers such that Σ∆ ⊆ ΣGal,
and Σ∆,ΣGal are of cardinality 1 or equal to Primes; Πn a profinite group; G a
quotient of Πn; Dn a set of subgroups of Πn. We shall refer to (Πn, G,Dn) as
a PGCS-collection (“point-theoretic Galois configuration space collection”) of type
(g, r�, n,Σ∆,ΣGal) if there exists a collection of data as follows:

• a prime number p ∈ Σ∆; a generalized sub-p-adic local field k; an algebraic
closure k̄ of k; a smooth log curve X log over k of type (g, r�);
• an isomorphism

α : Πn
∼→ ΠUXn

def
=

{
π1(UXn)

Σ∆ (if Σ∆ = ΣGal)

π1(UXn)
[p] (if Σ∆ ( ΣGal)

such that, if we write Gk for the Galois group Gal(k̄/k) of k and K ⊆ k̄ for the

maximal pro-ΣGal subextension of k̄/k (so GΣGal

k = Gal(K/k)), then the natural
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outer action Gk
outy ∆UXn

def
= π1(UXn×k k̄)

Σ∆ factors through the natural surjection

Gk � GΣGal

k , and α induces a commutative diagram

Πn
∼
α

//

����

ΠUXn

����
G

∼
αG

// GΣGal

k ,

�

where the lower horizontal arrow αG is an isomorphism, as well as a bijection

Dn
∼→ DXn

def
= {D ⊆ ΠUXn

| D is a decomposition group

associated to some x ∈ Xn(K)}.

Remark 4.3. Let p be a prime number. Then, in the situation of Definition
4.2, if one takes (g, r�, n,Σ∆,ΣGal) to be (0, rord, n, {p},Primes), then one verifies

immediately (cf. [MzTa], Proposition 2.2, (i)) that the natural outer action Gk
outy

π1(UXn ×k k̄)Σ∆ factors through the natural surjection Gk � G
(p)
k if and only if k

contains a primitive p-th root of unity.

Definition 4.4. Let †B = (†Πn,
†G, †Dn),

‡B = (‡Πn,
‡G, ‡Dn) be PGCS-collections

of type (g, r�, n,Σ∆,ΣGal). We shall refer to β = (βΠ, βG, βD) :
†B

∼→ ‡B as
an isomorphism of PGCS-collections if βΠ is an isomorphism of profinite groups
†Πn

∼→ ‡Πn such that βΠ induces a commutative diagram of homomorphisms of
profinite groups

†Πn
∼
βΠ

//

����

‡Πn

����
†G

∼
βG

// ‡G,

�

where †Πn → †G, ‡Πn → ‡G are the natural quotient homomorphisms, and
βG : †G

∼→ ‡G is an isomorphism, as well as a bijection

†Dn
∼
βD

// ‡Dn.

Definition 4.5. Let B = (Πn, G,Dn) be a PGCS-collection of type (g, r�, n,Σ∆,
ΣGal). Then we shall write Aut(B) for the group of automorphisms of B, AutG(B)
⊆ Aut(B) for the subgroup of automorphisms of B lying over the identity auto-
morphism of G,

Out(B)

for the group of equivalence classes of automorphisms of the PGCS-collection B
with respect to the equivalence relation given by composition with an inner auto-
morphism arising from Πn, and

OutG(B)

for the quotient of AutG(B) by the normal subgroup of inner automorphisms arising
from Ker(Πn → G).

Definition 4.6. Let †B = (†Πn, G, †Dn),
‡B = (‡Πn, G, ‡Dn) be PGCS-collections

of type (g, r�, n,Σ∆, ΣGal). Then we shall write

Isom(†B, ‡B) ⊆ Isom(†Πn,
‡Πn)
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for the set of isomorphisms †B
∼→ ‡B of PGCS-collections,

IsomG(
†B, ‡B)

def
= IsomG(

†Πn,
‡Πn) ∩ Isom(†B, ‡B),

and
IsomOut

G (†B, ‡B)

for the image of IsomG(
†B, ‡B) via the natural surjection

IsomG(
†Πn,

‡Πn)� IsomOut
G (†Πn,

‡Πn)

(cf. Notation 1.11).

Proposition 4.7. Let n ∈ {1, 2}; Σ∆, ΣGal sets of prime numbers such that Σ∆ ⊆
ΣGal, and Σ∆, ΣGal are of cardinality 1 or equal to Primes; p ∈ Σ∆; k a generalized
sub-p-adic local field; k̄ an algebraic closure of k; X log a smooth log curve of type
(0, 3ord). Write K ⊆ k̄ for the maximal pro-ΣGal subextension of k̄/k and

∆UXn

def
= π1(UXn ×k k̄)Σ∆ , ΠUXn

def
=

{
π1(UXn)

Σ∆ (if Σ∆ = ΣGal)

π1(UXn)
[p] (if Σ∆ ( ΣGal).

For x ∈ Xn(K), let Dx ⊆ ΠUXn
be a decomposition group of ΠUXn

at x. Write
[Dx] for the ∆UXn

-conjugacy class of Dx. If ΣGal = {p}, suppose that k contains
a primitive p-th root of unity. Then the following hold:

(i) The natural morphism UX2 ×k k̄ → UX2 → Spec(k) induces an isomorphism

∆UX2

∼→ Ker(ΠUX2
� GΣGal

k ).

(ii) We shall refer to a subgroup of ∆UX2
as a generalized fiber subgroup if

it coincides with the subgroup Ker(∆UX2
→ ∆UX

) associated to one of the 30
projection morphisms

(UX2

∼→)M0,5 →M0,4 (
∼→ UX)

(cf. Proposition 2.1) given, up to pre-/post-composition with automorphisms
ofM0,5,M0,4 (cf. Proposition 2.2, (i), (ii)), by forgetting one of the marked
points (cf. [HMM], Definition 2.1, (ii)). Then there exists a group-theoretic
characterization of the set EX2 of generalized fiber subgroups (cf. [HMM], The-
orem 2.5, (iv)).

(iii) Let E be a generalized fiber subgroup of ∆UX2
(cf. (ii)). Then there exists a

projection morphism pX2/1 : UX2 → UX as in (ii) that induces isomorphisms

(∆UX2
�) ∆UX2

/E
∼→ ∆UX , (ΠUX2

�) ΠUX2
/E

∼→ ΠUX .

(iv) Write

DXn

def
= {D ⊆ ΠUXn

| D is a decomposition group

associated to some x ∈ Xn(K)}
and [DXn ] for the set of ∆UXn

-conjugacy classes of subgroups ∈ DXn . Then
the map

Xn(K)→ [DXn ] : x 7→ [Dx]

is bijective.
(v) Write pΠ2/1 : ΠUX2

� ΠUX
for the surjection of (iii). Then it holds that

DX = {CΠUX
(pΠ2/1(D)) | D ∈ DX2}

(cf. Notation 1.10).
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(vi) For each x ∈ X(K), it holds that

x ∈ UX(K)⇐⇒ Dx ∩∆UX = {1}.
(vii) The natural morphism

(S5
∼=) Autk(UX2)→ Out

G
ΣGal
k

(ΠUX2
)

(cf. Notation 1.8; Proposition 2.2, (i)) is bijective.
(viii) Let pX2/1 : UX2 → UX be a projection morphism as in (iii). Then the set of

composite morphisms pX2/1 ◦ Autk(UX2) coincides with the set of projection

morphisms UX2 → UX as in (ii).

Proof. Assertion (i) follows from [MzTa], Proposition 2.2, (i). Assertions (ii), (iii)
follow from [HMM], Theorem 2.5, (iv).

Next, we consider assertion (iv). Since the surjectivity of the map under con-
sideration follows immediately from the various definitions involved, it suffices to
verify injectivity. First, we consider the case where ΣGal = Primes. Then assertion
(iv) follows from [Topics], Theorem 4.12 (i.e., via the same argument as the argu-
ment applied in the proof of [LocAn], Theorem 19.1, to derive [LocAn], Theorem
19.1, from [LocAn], Theorem A — cf. also the Remark following the statement
of [Topics], Theorem 4.12). Next, we consider the case where ΣGal = {p}. Let

x ∈ Xn(K) and D
[p]
x ⊆ π1(UXn)

[p], D
(p)
x ⊆ ΠUX2

= π1(UXn)
(p) decomposition

groups associated to x such that (π1(UXn)
[p] → π1(UXn)

(p))(D
[p]
x ) = D

(p)
x . Then

one verifies easily that the composite morphism D
[p]
x ⊆ π1(UXn)

[p] → Gk is injec-

tive, and that the image Im(D
[p]
x ) of this composite morphism is Gκ(x) ⊆ Gk, where

κ(x) denotes the residue field of x ∈ Xn. Since K ⊇ κ(x), and

Ker(Im(D[p]
x )� Im(D(p)

x )) = Im(D[p]
x ) ∩Ker(Gk � G

(p)
k ),

where Im(D
[p]
x ) denotes the image of the composite morphism D

(p)
x ⊆ π1(UXn)

(p) →
G

(p)
k , it holds that

Im(D[p]
x ) ∩Ker(Gk � G

(p)
k ) = Gκ(x) ∩GK = GK = Ker(Gk � G

(p)
k ).

Thus, the composite morphism D
(p)
x ⊆ π1(UXn)

(p) → G
(p)
k is injective, and we have

a natural isomorphism, together with equalities of subgroups, as follows:

Ker(π1(UXn)
[p] � π1(UXn)

(p)) = Ker(D[p]
x � D(p)

x )

∼→ Ker(Im(D[p]
x )� Im(D(p)

x )) = Ker(Gk � G
(p)
k ) = GK .

Now let x, y ∈ Xn(K) be distinct elements. If it holds that D
(p)
x = D

(p)
y (where

we use similar notation for “y” to the notation already introduced for “x”), then it
holds that

D[p]
y ⊆ D[p]

x ·Ker(π1(UXn)
[p] → π1(UXn)

(p))

= D[p]
x ·Ker(D[p]

x → D(p)
x ) = D[p]

x ,

and hence, by symmetry, that D
[p]
x = D

[p]
y . Thus, we conclude that x = y by apply-

ing assertion (v) in the case where “ΣGal = Primes” (which has already been veri-
fied). This completes the proof of assertion (iv). Assertion (v) follows immediately
from assertion (iv). Assertion (vi) follows immediately from the various definitions
involved (cf. also, e.g., [CmbGC], Remark 1.1.3). Assertion (vii) follows immedi-
ately, in light of assertion (ii), from [Topics], Theorem 4.12 (applied successively
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to the second and first arrows of the composite morphisms UX2 → UX → Spec(k)
arising from the natural projections). Assertion (viii) follows immediately from the
various definitions involved. �

Definition 4.8. Let Σ∆, ΣGal be sets of prime numbers such that Σ∆ ⊆ ΣGal,
and Σ∆, ΣGal are of cardinality 1 or equal to Primes; B = (Π2, G,D2) a PGCS-
collection of type (0, 3ord, 2,Σ∆, ΣGal).

(i) Write Π2 → G for the natural quotient homomorphism (cf. Definition 4.2),

∆2[B]
def
= Ker(Π2 → G), and

A[B]

for the set of ∆2[B]-conjugacy classes of subgroups ∈ D2.
(ii) There exists a group-theoretic characterization of the set E2[B] of general-

ized fiber subgroups ⊆ Π2 (cf. Proposition 4.7, (ii)). Let E be a generalized

fiber subgroup of Π2. Write ∆1[B, E]
def
= ∆2[B]/E, Π1[B, E]

def
= Π2/E, and

pΠ2/1[B, E] : Π2 → Π1[B, E] for the natural quotient homomorphism.

(iii) Write D1[B, E]
def
= {CΠ1[B,E](p

Π
2/1[B, E](D)) | D ∈ D2} and

B[B, E]

for the set of ∆1[B, E]-conjugacy classes of subgroups ∈ D1[B, E]. Thus,
B[B, E] is equipped with a natural action by G (= Π1[B, E]/∆1[B, E]).

(iv) Write

∂B[B, E]
def
= {[D] ∈ B[B, E] | D ∩∆1[B, E] ̸= {1}} ⊆ B[B, E],

where D ∈ D1[B, E], and [D] denotes the ∆1[B, E]-conjugacy class of D ∈
D1[B, E].

(v) Write

H[B] ⊆ Aut(A[B])

for the group of bijections A[B]
∼→ A[B] induced by the group of ∆2[B]-outer

automorphisms (i.e., equivalence classes of automorphisms, relative to the
equivalence relation given by composition with inner automorphisms arising
from elements of ∆2[B]) of the profinite group Π2 lying over the identity
automorphism of G.

(vi) Write pA/B [B, E] : A[B] → B[B, E] for the map induced by the quotient
homomorphism pΠ2/1[B, E] : Π2 → Π1[B, E] and

M [B, E]

for the H[B]-orbit of pA/B [B, E], relative to the tautological action of H[B]
on A[B] (i.e., the domain of pA/B [B, E]).

Theorem 4.9. (From PGCS-collections of type (0, 3ord, 2,Σ∆,ΣGal) to CFS-
collections to base fields) We maintain the following notation of Definition

4.2: (g, r�, n,Σ∆, ΣGal); (Πn, G,Dn); k; k̄; GΣGal

k ; X log; K; α : Πn
∼→ ΠUXn

;

αG : G
∼→ GΣGal

k . Write B
def
= (Πn, G,Dn). Suppose that (g, r�, n) = (0, 3ord, 2).

Let E be a generalized fiber subgroup of Π2 (cf. Definition 4.8, (ii)). Then:

(i) The isomorphism α : Π2
∼→ ΠUX2

induces



PRO-P SEMI-ABSOLUTE ANABELIAN GEOMETRY 29

(a) bijections (the latter two of which are compatible)

A[B]
∼→ X2(K), B[B, E]

∼→ X(K), ∂B[B, E]
∼→ X(K) \ UX(K),

(b) a group isomorphism H[B]
∼→ Autk(UX2

),
(c) a bijection

M [B, E]
∼→{the maps X2(K)→ X(K) induced by

projection morphisms UX2 � UX as in Proposition 4.7, (ii)}.

(ii) The above collection of data

A [B, E]
def
= (A[B], B[B, E], ∂B[B, E], H[B],M [B, E])

is a CFS-collection. In particular, one may construct a CFS-collection A [B, E]
associated to the intrinsic structure of the following collection of data: the
PGCS-collection B of type (0, 3ord, 2,Σ∆,ΣGal) and the generalized fiber sub-
group E ⊆ Π2.

(iii) Let ϕ : H[B]
∼→ S5 be an isomorphism and λ ∈ M [B, E]1[ϕ] ⊆ M [B, E] (cf.

(ii); Definition 3.5). Write β : B[B, E]
∼→ X(K) for the second bijection of

(i), (a). Such an isomorphism ϕ and element λ ∈ M [B, E]1[ϕ] determine
elements 0[ϕ, λ], 1[ϕ, λ], ∞[ϕ, λ] ∈ ∂B[B, E] ⊆ B[B, E] (cf. Definition 3.8).

Then the bijection B[B, E]
∼→ X(K)

∼→ K ∪ {∞} given by the composite

tβ(0[ϕ,λ]),β(1[ϕ,λ]),β(∞[ϕ,λ]) ◦ β

(cf. (i), (a); Propositions 2.1, 2.8) determines a field isomorphism

F [A [B, E], ϕ, λ]
∼→ K

(cf. Definition 3.12; Theorem 3.13, (i)) that is equivariant with respect to

the respective natural actions of the profinite groups G, GΣGal

k , relative to the

isomorphism αG : G
∼→ GΣGal

k (cf. Definition 4.8, (iii)).

Proof. Assertion (i) follows immediately from Proposition 4.7, (iv), (v), (vi), (vii),
(viii), and Definition 4.8, (i), (iii), (iv), (v), (vi) (cf. also, in the case of (b), Propo-
sition 2.6, (ii)). Assertion (ii) follows immediately from assertion (i) and Definition
3.2. Assertion (iii) follows from Theorem 3.13, (i), (ii). �

5. Construction of a function field for a tripod associated to a PGCS-
collection

In the present §5, we construct a certain function field associated to the intrinsic
structure of a PGCS-collection of type (0, 3ord, 2,Σ∆,ΣGal) (cf. Theorem 5.2 below).

Theorem 5.1. (Review of known results) Let Σ∆,ΣGal be sets of prime num-
bers such that Σ∆ ⊆ ΣGal, and Σ∆,ΣGal are of cardinality 1 or equal to Primes;
p ∈ Σ∆; k a number field or a p-adic local field; k̄ an algebraic closure of k; X log a

smooth log curve over k of type (0, 3ord); Πprf
2 a profinite group which is isomorphic

to the étale fundamental group π1(UX2) (relative to a suitable choice of basepoint).

Write Gk
def
= Gal(k̄/k). Then:
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(i) One may construct a surjection Πprf
2 � G[Πprf

2 ] associated to the intrinsic

structure of the profinite group Πprf
2 such that the following property is satis-

fied: Any isomorphism Πprf
2

∼→ π1(UX2) of profinite groups induces a commu-
tative diagram

Πprf
2

∼ //

����

π1(UX2)

����
G[Πprf

2 ]
∼ // Gk,

where π1(UX2) � Gk denotes the natural surjection; Πprf
2

∼→ π1(UX2) de-

notes the given isomorphism; G[Πprf
2 ]

∼→ Gk denotes a uniquely determined
isomorphism.

(ii) One may construct a set of subgroups D2[Π
prf
2 ] of Πprf

2 associated to the in-

trinsic structure of the profinite group Πprf
2 such that the following property

is satisfied: Any isomorphism Πprf
2

∼→ π1(UX2) of profinite groups induces a
bijection

D2[Π
prf
2 ]

∼→ Dprf
X2

def
= {D ⊆ π1(UX2) | D is a decomposition group

associated to some x ∈ X2(k̄)}.

(iii) One may construct a PGCS-collection

(Πprf
2 , G[Πprf

2 ],D2[Π
prf
2 ])

of type (0, 3ord, 2,Primes,Primes) associated to the intrinsic structure of the

profinite group Πprf
2 .

(iv) If ΣGal = {p}, then we suppose further that k contains a primitive p-th root
of unity (cf. Remark 4.3). Write

Π�
2 [Πprf

2 ]
def
=

{
Πprf,Σ∆

2 (if Σ∆ = ΣGal)

Π
prf,[p]
2 (if Σ∆ ( ΣGal)

(cf. (i); Notation 4.1),

D�
2 [Πprf

2 ]
def
= (Πprf

2 � Π�
2 [Πprf

2 ])(D2[Π
prf
2 ]),

and GΣGal [Πprf
2 ] for the maximal pro-ΣGal quotient of G[Πprf

2 ]. Then one may
construct a PGCS-collection

B[Πprf
2 ]

def
= (Π�

2 [Πprf
2 ], GΣGal [Πprf

2 ],D�
2 [Πprf

2 ])

of type (0, 3ord, 2,Σ∆,ΣGal) associated to the intrinsic structure of the profinite

group Πprf
2 .

(v) One may construct a collection E2[Πprf
2 ] of (“generalized fiber”) subgroups of

Πprf
2 associated to the intrinsic structure of the profinite group Πprf

2 such that

the following property is satisfied: Any isomorphism Πprf
2

∼→ π1(UX2) of profi-
nite groups induces a bijection

E2[Πprf
2 ]

∼→ EX2

def
= {generalized fiber subgroups of π1(UX2)}

(cf. Proposition 4.7, (ii)). For E ∈ E2[Πprf
2 ], write Πprf

1 [Πprf
2 , E]

def
= Πprf

2 /E.
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(vi) Let E ∈ E2[Πprf
2 ]. Then one may construct a field F1[Π

prf
2 , E] equipped with

an action by Πprf
1 [Πprf

2 , E] associated to the intrinsic structure of the profinite

group Πprf
1 [Πprf

2 , E] such that the following property is satisfied: Any isomor-

phism Πprf
1 [Πprf

2 , E]
∼→ π1(UX) of profinite groups induces an isomorphism

F1[Π
prf
2 , E]

∼→ Fnct(Z),

where Z denotes the pro-finite étale covering of UX corresponding to π1(UX)
(so π1(UX) = Gal(Z/UX)); Fnct(Z) denotes the function field of Z; the iso-

morphism “
∼→” is equivariant with respect to the respective actions of the

profinite groups Πprf
1 [Πprf

2 , E], π1(UX).

(vii) Let E ∈ E2[Πprf
2 ]. Then one may construct a subfield

k̄[Π2, E] ⊆ F1[Π
prf
2 , E]

equipped with an action by Πprf
1 [Πprf

2 , E]� G[Πprf
2 ] associated to the intrinsic

structure of the profinite group Πprf
1 [Πprf

2 , E] such that the following property

is satisfied: Any isomorphism Πprf
1 [Πprf

2 , E]
∼→ π1(UX) of profinite groups

induces a commutative diagram

F1[Π
prf
2 , E]

∼ // Fnct(Z)

k̄[Πprf
2 , E]

∪
∼ // k̄,

∪

where the horizontal arrows are isomorphisms; the vertical arrows are the
natural inclusions, i.e., k̄ ⊆ Fnct(Z) is the subfield of constant functions; the

isomorphisms “
∼→” are equivariant with respect to the respective actions of the

profinite groups Πprf
1 [Πprf

2 , E]� G[Πprf
2 ], π1(UX)� Gk.

Proof. Assertion (i) follows from [AbsTpI], Theorem 2.6, (ii), (iii), (iv), (v), (vi).
Assertion (ii) follows, by applying Proposition 4.7, (ii); [CmbGC], Corollary 2.7,
(i); [NodNon], Theorem A; [NodNon], Remark 2.4.2, from [AbsTpIII], Theorem 1.9,
(a); [AbsTpIII], Corollary 1.10, (e), applied successively to the morphisms induced
on étale fundamental groups by the composite morphism UX2

→ UX → Spec(k)
(where the first arrow is a projection morphism as in Proposition 4.7, (ii)), i.e., by
the second arrow and the fibers over closed points of the first arrow. Assertion (iii)
follows from assertions (i), (ii). Assertion (iv) follows immediately from assertion
(iii). Assertion (v) follows from Proposition 4.7, (ii). Assertions (vi), (vii) follow
from [AbsTpIII], Theorem 1.9, (e); [AbsTpIII], Corollary 1.10, (h). �

Theorem 5.2. (From PGCS-collections of type (0, 3ord, 2,Σ∆,ΣGal) to func-
tion fields of tripods) We maintain the following notation of Definition 4.2:

(g, r�, n,Σ∆,ΣGal); (Πn, G,Dn); p ∈ Σ∆; k; k̄; G
ΣGal

k ; X log; K; α : Πn
∼→ ΠUXn

;

DXn
. Let Πprf

2 be a profinite group which is isomorphic to the étale fundamen-

tal group Πprf
UX2

def
= π1(UX2

) (relative to a suitable choice of basepoint). Write

B
def
= (Πn, G,Dn). Suppose that (g, r�, n) def

= (0, 3ord, 2). Then:

(i) Let EB ∈ E2[B] (cf. Definition 4.8, (ii)), ϕ : H[B]
∼→ S5 an isomorphism, and

λ ∈ M [B, EB]1[ϕ] ⊆ M [B, EB]. Then one may construct from the PGCS-
collection B a collection of isomorphisms between the fields F [A [B, EB], ϕ, λ]
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associated to any two choices of the data (EB, ϕ, λ) that is compatible with
composition, i.e., satisfies the “cocycle condition” that arises when one con-
siders three choices of the data (EB, ϕ, λ). In particular, one may construct

• a field K[B]
def
= F [A [B, EB], ϕ, λ] equipped with a natural action by G

(cf. Theorem 4.9, (iii)),

• k[B]
def
= K[B]G

associated to the intrinsic structure of the PGCS-collection B, i.e., which is
independent of the choice of data (EB, ϕ, λ).

(ii) Suppose that k is a number field or a p-adic local field. Then there exists an

isomorphism of PGCS-collections B
∼→ B[Πprf

2 ]. In particular, there exists
an isomorphism

Π2
∼→ Π�

2 [Πprf
2 ].

Let E ∈ E2[Πprf
2 ] (cf. Theorem 5.1, (v)) and β : B

∼→ B[Πprf
2 ] an isomor-

phism of PGCS-collections. Then the isomorphism β : B
∼→ B[Πprf

2 ] induces
a commutative diagram

Πprf
2

// //

����

Π�
2 [Πprf

2 ] Π2
∼oo

����
Πprf

1 [Πprf
2 , E] // //

����

Π1[B, E|Π2 ]

����
G[Πprf

2 ] // // G,

where Π2
∼→ Π�

2 [Πprf
2 ] denotes the isomorphism determined by β; Πprf

2 �
Π�

2 [Πprf
2 ] denotes the natural surjection (cf. Theorem 5.1, (iv)); E|Π2 ⊆ Π2

denotes the generalized fiber subgroup of Π2 given by forming the image of

E via the composite of arrows Πprf
2 � Π�

2 [Πprf
2 ]

∼← Π2 in the upper line of

the diagram; the arrows Πprf
2 � Πprf

1 [Πprf
2 , E] � G[Πprf

2 ] denote the natural
surjections (cf. Theorem 5.1, (i), (v)); the arrows Π2 � Π1[B, E|Π2

] � G

denote the natural surjections (cf. Definition 4.8, (i), (ii)); Πprf
1 [Πprf

2 , E] �
Π1[B, E|Π2 ], G[Πprf

2 ] � G denote the unique surjections that render the dia-
gram commutative. In particular, we obtain a field

F1[B,Πprf
2 , E, β]

def
= F1[Π

prf
2 , E]Ker(Πprf

1 [Πprf
2 ,E]�Π1[B,E|Π2 ])

equipped with a natural action by (Π2 �) Π1[B, E|Π2 ] (cf. Theorem 5.1, (vi)).

(iii) In the notation of (ii), one may construct a field F1[B,Πprf
2 , E, β] (cf. (ii))

equipped with an action by Π2 associated to the intrinsic structure of the fol-
lowing collection of data:
• the PGCS-collection B;

• a profinite group Πprf
2 isomorphic to Πprf

UX2
;

• E ∈ E2[Πprf
2 ];

• an isomorphism β : B
∼→ B[Πprf

2 ];
such that if

βX : B
∼→ B[X]

def
= (ΠUX2

, GΣGal

k ,DX2)
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is an isomorphism of PGCS-collections of type (0, 3ord, 2,Σ∆,ΣGal), then one
may construct a field isomorphism

F1[B,Πprf
2 , E, β]

∼→ Fnct(W )

associated to the intrinsic structure of the data (B,Πprf
2 , E, β, βX), where W

denotes the pro-finite étale covering of UX corresponding to ΠUX (so ΠUX =

Gal(W/UX)); Fnct(W ) denotes the function field of W ; the isomorphism “
∼→”

is equivariant with respect to the respective natural actions of the profinite
groups (Π2 �) Π1[B, E|Π2 ], ΠUX

.

(iv) In the notation of (i), (ii), (iii), suppose that EB = E|Π2 . Let ϕ : H[B]
∼→ S5

be an isomorphism, λ ∈M [B, EB]1[ϕ] ⊆M [B, EB], and

T ∈ F1[B,Πprf
2 , E, β].

Then T induces, by restriction to decomposition groups (cf. also Proposition
4.7, (iv)), a map

T (−) : D1[B, EB]→ K[B,Πprf
2 , E, β] ∪ {∞} def

= k̄[Πprf
2 , E]Ker(G[Πprf

2 ]�G) ∪ {∞}

(cf. (ii); Theorem 5.1, (vii)); there exists a unique element T [B,Πprf
2 , E, β, ϕ, λ]

∈ F1[B,Πprf
2 , E, β]Π1[B,E|Π2 ] such that the zero divisor of T [B,Πprf

2 , E, β, ϕ, λ]
is of degree 1 (cf. [AbsTpIII], Proposition 1.6, (iii)) and supported on 0[ϕ, λ],

T [B,Πprf
2 , E, β, ϕ, λ](1[ϕ, λ]) = 1 ∈ K[B,Πprf

2 , E, β],

the divisor of poles of T [B,Πprf
2 , E, β, ϕ, λ] is of degree 1 (cf. [AbsTpIII],

Proposition 1.6, (iii)) and supported on ∞[ϕ, λ] (cf. Proposition 2.8). More-
over, the map

T [B,Πprf
2 , E, β, ϕ, λ](−) : D1[B, EB]→ K[B,Πprf

2 , E, β] ∪ {∞}

induces a field isomorphism

K[B]
∼→ K[B,Πprf

2 , E, β],

where the isomorphism “
∼→” is equivariant with respect to the respective nat-

ural actions of G.
(v) In the notation of (i), (iii), (iv) (cf. also, Theorem 5.1, (vii)), the isomorphism

βX : B
∼→ B[X] induces a commutative diagram

F1[B,Πprf
2 , E, β]

∼ // Fnct(W )

K[B]
∼ // K[B,Πprf

2 , E, β]

∪
∼ // K

∪

associated to the intrinsic structure of the data (B,Πprf
2 , E, β, βX), where the

horizontal arrows are the isomorphisms discussed so far in (iii), (iv), and
Theorem 5.1, (vii); the ∪’s are the natural inclusions.

Proof. First, we consider assertion (i). Let †E, ‡E ∈ E2[B], †ϕ, ‡ϕ : H[B]
∼→ S5

isomorphisms, †λ ∈ M [B, †E]1[
†ϕ] ⊆ M [B, †E], ‡λ ∈ M [B, ‡E]1[

‡ϕ] ⊆ M [B, ‡E].
Consider the subset of OutG(B) (cf. Definition 4.5)

Out∗G(B)
def
= {σ ∈ OutG(B) | σ(†E) = ‡E} ⊆ OutG(B).
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Let σ ∈ Out∗G(B). Then σ induces an isomorphism of CFS-collections A [B, †E]
∼→

A [B, ‡E] (cf. Definition 3.9; Theorem 4.9, (ii)), hence, in particular, a bijection

σB : B[B, †E]
∼→ B[B, ‡E] (cf. Definition 4.8, (iii)). By Theorem 3.13, (ii), σB

induces a field isomorphism σB|F
(B[B, †E] ⊇) F [A [B, †E], †ϕ, †λ]

∼→ F [A [B, ‡E], σ(†ϕ), σ(†λ)] (⊆ B[B, ‡E]).

By Theorem 3.13, (iii), the data (A [B, ‡E], σ(†ϕ), σ(†λ), ‡ϕ, ‡λ) determines a field
isomorphism

σF : F [A [B, ‡E], σ(†ϕ), σ(†λ)]
∼→ F [A [B, ‡E], ‡ϕ, ‡λ].

Thus, the data (B, †E, †ϕ, †λ, ‡E, ‡ϕ, ‡λ, σ) determines a field isomorphism

σ∗ def
= σF ◦ σB |F : F [A [B, †E], †ϕ, †λ]

∼→ F [A [B, ‡E], ‡ϕ, ‡λ].

One verifies easily that this construction is compatible with “composition of σ’s”
in the evident sense. In particular, (one verifies easily that) by applying these field
isomorphisms “σ∗”, to complete the proof of assertion (i), it suffices to verify the
following assertions:

(a) OutG(B) acts transitively on the set of generalized fiber subgroups of Π2 (i.e.,
the set Out∗G(B) is always nonempty).

(b) The field isomorphism “σ∗” is completely determined by the data

(B, †E, †ϕ, †λ, ‡E, ‡ϕ, ‡λ).

Now suppose that †E = ‡E, †ϕ = ‡ϕ, and †λ = ‡λ. By Propositions 2.2, (i), (ii);
4.7, (ii), (vii), there exists a commutative diagram

OutG(B)
∼ // S5

Out∗G(B)
∼ //

∪
S4,

∪

where the horizontal arrows are isomorphism of groups; the vertical arrows are
the natural inclusions. In particular, we conclude that assertion (a) holds. Since

σ ∈ Out∗G(B)
∼→ S4, it holds that

σB ∈ H[B]B[B,†E] (
∼→ S3)

(cf. Definitions 3.6; 4.8, (v)). Thus, (cf. Theorem 3.13, (iii)) the field isomorphism

σ∗ : F [A [B, †E], †ϕ, †λ]
∼→ F [A [B, ‡E], ‡ϕ, ‡λ]

constructed above arises from an element ∈ H[B]B[B,†E] (
∼→ S3). This implies

that σ∗ = id. Assertion (b) then follows formally. This completes the proof of
assertion (i). Assertion (ii) follows immediately from our construction.

Next, we consider assertion (iii). First, observe that the PGCS-collection B[X] =

(ΠUX2
, GΣGal

k ,DX2) may be naturally identified with the PGCS-collection B[Πprf
UX2

]

of Theorem 5.1, (iv). Let σ ∈ Aut(B[Πprf
UX2

]) (cf. Definition 4.5). By assertion (i),

σ induces an field isomorphism

(K
∼←) K[B[Πprf

UX2
]]

∼→ K[B[Πprf
UX2

]] (
∼→ K)

that is equivariant, relative to the isomorphism

(Gal(K/k) =) GΣGal

k
∼→ GΣGal

k (= Gal(K/k))
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induced by σ, with respect to the respective natural actions of the profinite groups.
In particular, the isomorphism GΣGal

k
∼→ GΣGal

k induced by σ arises from an isomor-

phism of fields K
∼→ K. Since the natural morphism

Autk(UX2)→ Out
G

ΣGal
k

(B[Πprf
UX2

])

is bijective (cf. Definition 4.5; Proposition 4.7, (vii)), we thus conclude that the
natural morphism

Aut(UX2)→ Out(B[Πprf
UX2

])

is bijective. In particular, it follows that the composite isomorphism of PGCS-
collections

βX ◦ β−1 : B[Πprf
2 ]

∼← B
∼→ B[X] = B[Πprf

UX2
]

is induced by some isomorphism of profinite groups

Πprf
2

∼→ Πprf
UX2

which is unique up to composition with an inner automorphism arising from an

element of Ker(Πprf
UX2

� ΠUX2
) (where we recall that ΠUX2

is center-free — cf.

Remark 4.3; Lemma 5.3 below; [MzTa], Proposition 2.2, (ii)). Thus, by assertion
(ii); Theorem 5.1, (iv), (vi), the isomorphism of PGCS-collections

βX : B
∼→ B[X]

determines an isomorphism of profinite groups

Π1[B, E|Π2 ]
∼→ ΠUX

and a compatible isomorphism of fields

F1[B,Πprf
2 , E, β]

∼→ Fnct(W ).

This complete the proof of assertion (iii). Assertions (iv), (v) follow from assertions
(i), (iii); Theorem 5.1, (vii). �
Lemma 5.3. Let p ∈ Primes, ΣGal a set of prime numbers such that ΣGal = {p}
or equal to Primes, k a generalized sub-p-adic local field, and σ an automorphism
of the field k. Suppose that σ induces the identity outer automorphism of GΣGal

k .
If ΣGal ̸= Primes, then suppose that k contains a primitive p-th root of unity (cf.

Remark 4.3). Then σ is the identity automorphism of k. In particular, GΣGal

k is
center-free.

Proof. Suppose that σ is not the identity automorphism of k. Thus, there exists
an element α ∈ k such that σ(α) ̸= α. Let X be the complement of the points
0, 1,∞, α in the projective line P1

k. Thus, X is a hyperbolic curve over k. Let Y
be the result of base-changing X by σ : k → k. Thus, it follows that X and Y
are isomorphic as schemes over Q. Moreover, conjugating by σ defines an outer
isomorphism π1(X)ΣGal ≃ π1(Y )ΣGal (cf. Remark 4.3) which lies over the identity

outer automorphism of GΣGal

k (cf. our assumption on σ). Thus, we obtain that
this outer isomorphism arises from an k-isomorphism of X with Y (cf. [Topics],
Theorem 4.12). But since conjugation by σ preserves the points 0, 1,∞ of P1

k, this

implies that σ(α) = α ∈ k, a contradiction. The fact that GΣGal

k is center-free now
follows by considering automorphisms of finite Galois extensions of k arising from
open subgroups of GΣGal

k that arise from elements of the center of GΣGal

k (cf. the
proof of [LocAn], Lemma 15.8). �
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6. Construction of a function field associated to a PGCS-collection

In the present §6, we apply the theory developed thus far in the present paper
to prove a semi-absolute bi-anabelian result (cf. Theorem 6.4 below) and also to
construct a certain function field associated to the intrinsic structure of a PGCS-
collection of type (g, r�, n,Σ∆,ΣGal) (cf. Theorem 6.6 below).

Definition 6.1. Let n ∈ Z>1; Σ∆,ΣGal be sets of prime numbers such that Σ∆ ⊆
ΣGal, and Σ∆,ΣGal are of cardinality 1 or equal to Primes; p ∈ Σ∆; � ∈ {arb, ord};
k a generalized sub-p-adic local field; k̄ an algebraic closure of k; X log a smooth
log curve over k of type (g, r�). Write K for the maximal pro-ΣGal subextension
of k̄/k. Then we shall say that (X log, n) is tripodally ample (resp. tripodally very
ample) if one of the following conditions (i), (ii), (iii) holds:

(i) ♯(X(K) \UX(K)) = 3 (resp. ♯(X(k) \UX(k)) = 3) and (g, r�, n) = (0, 3�, 2);
(ii) X(K) \ UX(K) ̸= ∅ (resp. X(k) \ UX(k) ̸= ∅), n ∈ Z>2, and r ̸= 0;
(iii) UX(K) ̸= ∅ (resp. UX(k) ̸= ∅) and n ∈ Z>3.

Remark 6.2. We maintain the following notation of Definition 6.1: (g, r�, n,Σ∆,
ΣGal); p ∈ Σ∆; k; k̄; X

log; K. Let Y log be a smooth log curve over k of type (0, 3ord).

Write Y log
2 for the second log configuration space associated to Y log → Spec(k).

Suppose that (X log, n) is tripodally very ample. Then:

(i) If n = 2, then there exists an isomorphism of k-log schemes X log
2

∼→ Y log
2 .

(ii) If n > 2, r ̸= 0, and X(k) \ UX(k) ̸= ∅, then there exist projections X log
n →

X log
3 → X log

2 → X log given by forgetting the respective final factors. Denote

the last two of these arrows by pX3/2 : X
log
3 → X log

2 , pX2/1 : X
log
2 → X log. Write

Vdiag ⊆ X2 for the diagonal divisor, i.e., the strict transform of the diagonal
divisor in X × X, relative to the morphism ι : X2 → X × X determined by
the projections to the first and second factors. Let c ∈ X(k) \ UX(k). Then
one verifies easily that

(pX2/1)
−1(c) = VY ∪ VX ,

where VY , VX are log divisors of X log
2 , VY is a (g, r)-divisor (cf. [Hgsh], Defini-

tion 3.1, (iii)) such that VY ∩Vdiag ̸= ∅, and VX is a tripodal divisor (cf. [Hgsh],

Definition 3.1, (ii)) such that VX ∩ Vdiag = ∅. In particular, VY ∩X log≤1
2 (cf.

Notation 1.2, (v)) is naturally isomorphic to UY , and VX ∩X log≤1
2 is naturally

isomorphic to UX . Moreover, one verifies easily that

(pX3/2)
−1(VY ) = WY Y ∪WXY ,

where WY Y ,WXY are log divisors of X log
3 , and WY Y is a (g, r)-divisor. Here,

we have natural isomorphisms as follows (cf. [Hgsh], Lemma 6.1, (ii), (iii)):

WY Y ∩X log≤1
3

∼→ UY2 , WY Y
∼→ Y2,

WXY ∩X log≤1
3

∼→ UX × UY , WXY
∼→ X × Y.

Finally, we observe that

WY Y = X3 ×X×X×X (c, c, c),

where X3 → X×X×X denotes the morphism determined by the projections
to the first, second, and third factors.
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(iii) If n > 3, and UX(k) ̸= ∅, then there exist projections X log
n → X log

4 →
X log

3 → X log
2 → X log given by forgetting the respective final factors. Denote

the last three of these arrows by pX4/3 : X
log
4 → X log

3 , pX3/2 : X
log
3 → X log

2 ,

pX2/1 : X
log
2 → X log. Write Vdiag ⊆ X2 for the diagonal divisor, i.e., the strict

transform of the diagonal divisor in X×X, relative to the morphism ι : X2 →
X × X determined by the projections to the first and second factors. Let
c ∈ UX(k). Write (c, c) ∈ Vdiag ⊆ X2(k) for the unique element such that

ι(c, c) = (c, c); X log
c

def
= X log

2 ×X c, where the morphism X log
2 → X is the

morphism determined by pX2/1. Then one verifies easily that

X log
c,n−1 = X log

n ×X c,

(X log
c , n− 1) is tripodally very ample, and

(pX3/2)
−1(c, c) = VY ∪ VXc .

Here, the morphism X log
n → X is the morphism determined by the composite

of the projections considered above; X log
c,n−1 denotes the (n − 1)-th log con-

figuration space associated to the smooth log curve X log
c → Spec(k) of type

(g, (r+1)�); VY , VXc are irreducible components of (pX3/2)
−1(c, c); VY ∩X log≤1

3

is naturally isomorphic to UY ; VXc ∩X log≤1
3 is naturally isomorphic to UXc .

Moreover, one verifies easily that

(pX4/3)
−1(VY ) = WY Y ∪WXcY ,

where WY Y ,WXcY are irreducible components of (pX4/3)
−1(VY ), and we have

natural isomorphisms as follows (cf. [Hgsh], Lemma 6.1, (ii), (iii)):

WY Y ∩X log≤1
4

∼→ UY2 , WY Y
∼→ Y2

WXcY ∩X log≤1
4

∼→ UXc × UY , WXcY
∼→ Xc × Y.

Finally, we observe that

WY Y = X4 ×X×X×X×X (c, c, c, c),

where X4 → X × X × X × X denotes the morphism determined by the
projections to the first, second, third, and fourth factors.

Remark 6.3. We maintain the following notation of Definition 4.2: (g, r�, n,Σ∆,

ΣGal); (Πn, G,Dn); p ∈ Σ∆; k; k̄; X
log; K; α : Πn

∼→ ΠUXn
. Let Y log be a smooth

log curve over k of type (0, 3ord). Write Y log
2 for the second log configuration space

associated to Y log → Spec(k). Suppose that (X log, n) is tripodally very ample.
Then:

(i) Suppose that n = 2. Then Πtpd
2

def
= Π2, Dtpd

2
def
= D2.

(ii) Suppose that n > 2, r ̸= 0, and X(k) \ UX(k) ̸= ∅.
(a) By [HMM], Theorem 2.5, (v), it makes sense to speak of the generalized

fiber subgroups of length one associated to the profinite group Πn. Fix

such a subgroup EΠn of Πn. Write Πn−1
def
= Πn/EΠn . Similarly, as i

ranges from n − 1 to 2, by applying [HMM], Theorem 2.5, (v), to Πi, it
makes sense to (speak of and hence, in particular, to) fix a generalized

fiber subgroup of length one EΠi of Πi and write Πi−1
def
= Πi/EΠi . For i ∈
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{1, . . . , n}, write Π0
def
= G; pΠi/i−1 : Πi → Πi−1 for the natural surjection;

∆i/i−1
def
= Ker(pi/i−1)

Π; ∆i
def
= Ker(Πi → G). (Note that ∆1 = ∆1/0.)

Thus, we obtain projections

Πn → Π3 → Π2 → Π1,

which induce surjections Dn → Dj
def
= {CΠj ((Πn → Πj)(D)) | D ∈ Dn},

where j ∈ {1, 2, . . . , n−1}. Let †EΠ2 ⊆ Π2, be a generalized fiber subgroup
of length one such that †EΠ2 ̸= EΠ2 . Write pΠ1\2 : Π2 → Π2/

†EΠ2 for the

natural surjection and ∆1\2
def
= Ker(pΠ1\2).

(b) Let i ∈ {1, . . . , n}. Write

Ii
def
= {I ⊆ ∆i | ∃D ∈ Di such that I = D ∩∆i ̸= {1}};

Ii/i−1
def
= {I ⊆ ∆i/i−1 | I ∈ Ii}.

Then it follows from [HMM], Proposition 1.3, (i), (iii), (iv) (cf. also the
surjectivity of “∆xn � ∆xn−1” in the proof of [HMM], Proposition 1.3);
[HMM], Lemma 1.5, that α maps Ii to the set of decomposition groups in
α(∆i) of closed points of Xi \UXi and Ii/i−1 to the set of cuspidal inertia

groups of α(∆i/i−1). Let Ic ∈ I1, Dc ∈ D1 be such that Ic
def
= Dc ∩∆1 ̸=

{1} (so α maps Dc to a decomposition group in α(Π1) of a closed point c
of X \ UX).

(c) One verifies easily that α maps I ∈ I2/1 to a decomposition group of
α(∆2/1) associated to the diagonal divisor Vdiag (cf. Remark 6.2, (ii)) if
and only if I ⊆ ∆2/1 ∩∆1\2. Let Idiag ∈ I2/1 be such an element of I2/1.

(d) Consider the extensions

1 // ∆2/1 // ΠIc
def
= Π2 ×Π1 Ic

// Ic // 1,

1 // ∆2/1 // ΠDc

def
= Π2 ×Π1 Dc

// Dc
// 1.

By applying (the algorithms of) [NodNon], Theorem A (cf. also [NodNon],
Remark 2.4.2) to the data (ΠIc � Ic, I2/1), we obtain a group-theoretic
construction of a verticial subgroup IVY ⊆ ΠIc (unique up to ∆2/1-

conjugacy) such that DVY

def
= CΠDc

(IVY
) contains some ∆2/1-conjugate

of Idiag. Write ΠVY

def
= DVY /IVY . One verifies easily that α maps IVY to

a decomposition group in ΠUX2
associated to VY (cf. Remark 6.2, (ii)).

(e) Consider the extensions

1 // ∆3/2 // ΠIVY

def
= Π3 ×Π2 IVY

// IVY
// 1,

1 // ∆3/2 // ΠDVY

def
= Π3 ×Π2 DVY

// DVY
// 1.

By applying (the algorithms of) [NodNon], Theorem A (cf. also [NodNon],
Remark 2.4.2) to the data (ΠIVY

� IVY
, I3/2), we obtain a group-theoretic

construction of a verticial subgroup IWY Y
⊆ ΠIVY

(unique up to ∆3/2-

conjugacy) such that if we write

DWY Y

def
= CΠDVY

(IWY Y
), ΠWY Y

def
= DWY Y

/IWY Y
,
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∆WY Y

def
= Ker(ΠWY Y � G),

then ∆WY Y
is indecomposable (cf. Remark 6.2, (ii); [Hgsh], Definition

6.2; [Hgsh], Remark 6.3). One verifies easily that α maps IWY Y to a
decomposition group in ΠUX3

associated to WY Y (cf. Remark 6.2, (ii))
and induces a natural isomorphism

ΠWY Y

∼→ ΠUY2
,

where we write

ΠUY2

def
=

{
π1(UY2)

Σ∆ (if Σ∆ = ΣGal)

π1(UY2)
[p] (if Σ∆ ( ΣGal).

(f) Write Πtpd
2

def
= ΠWY Y

and

Dtpd
2

def
= {Dtpd ⊆ Πtpd

2 | ∃D3 ∈ D3 such that

IWY Y
⊆ D3 ⊆ DWY Y

, Dtpd = D3/IWY Y
}.

Note that it follows immediately from the equality

WY Y = X3 ×X×X×X (c, c, c)

(cf. Remark 6.2, (ii)), together with Proposition 4.7, (iv), that α induces

an isomorphism Πtpd
2

∼→ ΠUY2
that maps Dtpd

2 to the set of decomposition

groups of closed points of WY Y
∼→ Y2 (cf. Remark 6.2, (ii)).

(iii) By [HMM], Theorem 2.5, (iv), it makes sense to speak of the generalized fiber
subgroups of co-length one associated to the profinite group Πn. Fix such a

subgroup E of Πn. Write Π1
def
= Πn/E; ∆1

def
= Ker(Π1 → G). Thus, we obtain

a projection

Πn → Π1,

which induces a surjection Dn → D1
def
= {CΠ1(Πn → Π1)(D) | D ∈ Dn}. Let

Dc ∈ D1 be such that Dc∩∆1 = {1} (so α maps Dc to a decomposition group

in α(Π1) of a closed point c of UX — cf. (ii), (b)). Write Πc,n−1
def
= Πn×Π1 Dc

and

Dc,n−1
def
= {D ⊆ Πc,n−1 | D ∈ Dn}.

Note that it follows immediately from the equality X log
c,n−1 = X log

n ×X c (cf.

Remark 6.2, (iii)), together with Proposition 4.7, (iv), that α induces an
isomorphism

Πc,n−1
∼→ ΠUXc,n−1

def
=

{
π1(UXc,n−1)

Σ∆ (if Σ∆ = ΣGal)

π1(UXc,n−1)
[p] (if Σ∆ ( ΣGal).

that mapsDc,n−1 to the set of decomposition groups of closed points ofXc,n−1.

Thus, we obtain a PGCS-collection of type (g, (r + 1)�, n− 1,Σ∆,ΣGal)

(Πc,n−1, G,Dc,n−1)

(well-defined up to Πn-conjugacy) associated to the intrinsic structure of the
PGCS-collection of type (g, r�, n,Σ∆,ΣGal)

(Πn, G,Dn)
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and the choices of the generalized fiber subgroup E and the decomposition
group Dc. Finally, by applying the algorithms of (ii) to the data (Πc,n−1, G,

Dc,n−1), we obtain a group-theoretic construction of Πtpd
2 ,Dtpd

2 .

Thus, in summary, in either of the situations discussed in (i), (ii), (iii), we obtain
a PGCS-collection of type (0, 3ord, 2,Σ∆,ΣGal)

(Πtpd
2 , G,Dtpd

2 )

(well-defined up to Πn-conjugacy) associated to the intrinsic structure of the PGCS-
collection of type (g, r�, n,Σ∆,ΣGal)

(Πn, G,Dn)

and the choices of generalized fiber subgroups (cf. (ii), (a); (iii)) and the decomposi-
tion group Dc (cf. (ii), (b); (iii)).

Theorem 6.4. (Semi-absolute bi-anabelian formulation) Let ∗ ∈ {†, ‡}; ∗n ∈
Z>1; (∗g, ∗r) a pair of nonnegative integers such that 2(∗g − 1) + ∗r > 0; ∗� ∈
{arb, ord}; Σ∆,ΣGal sets of prime numbers such that Σ∆ ⊆ ΣGal, and Σ∆,ΣGal are
of cardinality 1 or equal to Primes; p ∈ Σ∆;

∗k a generalized sub-p-adic local field;
∗k̄ an algebraic closure of ∗k; ∗X log a smooth log curve over ∗k of type (∗g, ∗r

∗�).
Write ∗X log

∗n for the ∗n-th log configuration space associated to ∗X log → Spec(∗k);
∗K ⊆ ∗k̄ for the maximal pro-ΣGal subextension of ∗k̄/∗k;

ΠU∗X∗n

def
=

{
π1(U∗X∗n

)Σ∆ (if Σ∆ = ΣGal)

π1(U∗X∗n
)[p] (if Σ∆ ( ΣGal);

∆U∗X∗n

def
= π1(U∗X∗n

×∗k
∗k̄)Σ∆ ; GΣGal

∗k
def
= Gal(∗k̄/∗k)ΣGal ;

D∗X∗n

def
= {D ⊆ ΠU∗X∗n

| D is a decomposition group

associated to some x ∈ ∗X∗n(
∗K)}

(cf. Notation 4.1). Suppose that the sequence

1 // ∆U∗X∗n
// ΠU∗X∗n

// GΣGal
∗k

// 1

is exact (cf. Notation 4.1; Remark 4.3), and that (∗X log, ∗n) is tripodally ample (cf.
Definition 6.1). Thus,

B[∗X log
∗n ]

def
= (ΠU∗X∗n

, GΣGal
∗k ,D∗X∗n

)

is a PGCS-collection of type (∗g, ∗r
∗�, ∗n,Σ∆,ΣGal) (cf. Definition 4.2). Write

Isom(U†X†n
, U‡X‡n

)

for the set of isomorphisms of schemes U†X†n

∼→ U‡X‡n
and

IsomOut(B[†X log
†n

],B[‡X log
‡n

])

for the set of equivalence classes of isomorphisms of PGCS-collections B[†X log
†n

]
∼→

B[‡X log
‡n

] (cf. Definition 4.4) with respect to the equivalence relation given by com-
position with an inner automorphism arising from ΠU∗X∗n

. Then the natural mor-

phism

Isom(U†X†n
, U‡X‡n

)→ IsomOut(B[†X log
†n

],B[‡X log
‡n

])

is bijective.
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Proof. First, observe that we may assume without loss of generality that

IsomOut(B[†X log
†n

],B[‡X log
‡n

]) ̸= ∅.

Then it follows from [HMM], Theorem A, (i), that (†g, †r
†�, †n) = (‡g, ‡r

‡�, ‡n).
Thus, we shall write

(∗g, ∗r
∗�, ∗n) = (g, r�, n).

Next, recall that it follows from Lemma 5.3 (cf. also Remark 4.3; the final con-
clusion of Remark 6.3); [MzTa], Proposition 2.2, (ii), that ΠU∗Xn

is center-free.
Thus, by applying Notation 1.9 to a suitable open normal subgroup of ΠU∗Xn

that

arises from a open normal subgroup of GΣGal
∗k , we conclude that, after replacing ∗k

by a suitable finite Galois subextension of ∗k in ∗K, we may assume that (∗X log, n)
is tripodally very ample.

Next, observe that the injectivity of the natural morphism

Isom(U†X†n
, U‡X‡n

)→ IsomOut(B[†X log
†n

],B[‡X log
‡n

])

follows immediately from Lemma 5.3 (cf. also Remark 4.3; the final conclusion
of Remark 6.3); the injectivity portion of [Topics], Theorem 4.12 (applied to the
hyperbolic curves that arise as the codomains of the various natural projections
U∗Xn → U∗X).

Let σ ∈ Isom(B[†X log
n ], B[‡X log

n ]). By Definition 4.4, σ induces a commutative
diagram of homomorphisms of profinite groups

ΠU†Xn

∼
σΠ

//

����

ΠU‡Xn

����
GΣGal

†k

∼
σG

// GΣGal
‡k

,

�

as well as a bijection

D†Xn

∼
σD

// D‡Xn
.

Since (∗X log, n) is tripodally very ample, by applying Remark 6.3 to suitable choices
of generalized fiber subgroups and decomposition groups, we obtain, for each ∗ ∈
{†, ‡}, a PGCS-collection of type (0, 3ord, 2,Σ∆,ΣGal)

∗Btpd
2

def
= (∗Πtpd

2 , GΣGal
∗k , ∗Dtpd

2 )

associated to the intrinsic structure of the PGCS-collection B[∗X log
n ] (together with

the suitable choices of generalized fiber subgroups and decomposition groups) such
that σ ∈ Isom(B[†X log

n ],B[‡X log
n ]) induces an isomorphism

σtpd ∈ Isom(†Btpd
2 , ‡Btpd

2 ).

By Theorem 5.2, (i), σ induces a field isomorphism

(†K
∼←) K[†Btpd

2 ]
∼→ K[‡Btpd

2 ] (
∼→ ‡K)

that is equivariant, relative to the isomorphism σG

(Gal(†K/†k) =) GΣGal
†k

∼→ GΣGal
‡k

(= Gal(‡K/‡k)),

with respect to the respective natural actions ofGΣGal
†k

, GΣGal
‡k

onK[†Btpd
2 ],K[‡Btpd

2 ].

In particular, the isomorphism σG : GΣGal
†k

∼→ GΣGal
‡k

arises from an isomorphism of

fields †K
∼→ ‡K that induces an isomorphism of fields †k

∼→ ‡k. In the following,
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to simplify the notation, we shall identify †K with ‡K and †k with ‡k via these
isomorphisms and denote the resulting fields by K, k.

Write Isomk(U†Xn
, U‡Xn

) for the set of isomorphisms of schemes U†Xn

∼→ U‡Xn

that lie over the field k. Next, observe that it follows from Definition 4.6; [HMM],
Theorem 2.5, (v); [Topics], Theorem 4.12 (applied successively to the various arrows
of the composite morphisms U∗Xn → U∗Xn−1 → · · · → U∗X → Spec(k) arising from
the natural projections), that the natural morphism

Isomk(U†Xn
, U‡Xn

)→ IsomOut

G
ΣGal
k

(B[†X log
n ],B[‡X log

n ])

is bijective. We thus conclude that the natural morphism

Isom(U†Xn
, U‡Xn

)→ IsomOut(B[†X log
n ],B[‡X log

n ])

is bijective. �

Definition 6.5. Wemaintain the following notation of Definition 4.2: (g, r�, n,Σ∆,

ΣGal); (Πn, G,Dn); X log. Write B
def
= (Πn, G,Dn). Suppose that (g, r�, n) =

(0, 3ord, 2). Let Πprf
2 be a profinite group which is isomorphic to the étale funda-

mental group Πprf
UX2

def
= π1(UX2) (relative to a suitable choice of basepoint) and

β : B
∼→ B[Πprf

2 ] an isomorphism of PGCS-collections (cf. Theorem 5.2, (ii)). Re-
call from Definition 4.8, (ii), that there exists a group-theoretic characterization of
the set E2[B] = {E1, . . . , E5} of generalized fiber subgroups ⊆ Π2. Write

E∩
def
=

5∩
i=1

Ei, Π2→1[B]
def
= Π2/E∩.

By Theorem 5.2, (i), one may construct a field K[B] equipped with a natural action
by G associated to the intrinsic structure of the PGCS-collection B. Let Ei ∈ E2[B]

and Eprf
i ∈ E2[Πprf

2 ] (cf. Theorem 5.1, (v)) be such that Eprf
i |Π2 = Ei (cf. Theo-

rem 5.2, (ii)). By Theorem 5.2, (ii), one may construct a field F1[B,Πprf
2 , Eprf

i , β]
equipped with a natural action by (Π2 �)Π1[B, Ei] associated to the intrinsic struc-

ture of the data (B,Πprf
2 , Eprf

i , β). Let T ∈ F1[B,Πprf
2 , Eprf

i , β]. Then T induces,
by restriction to decomposition groups (cf. also Proposition 4.7, (iv)), a map

T (−) : D1[B, Ei]→ K[B] ∪ {∞}

(cf. Theorem 5.2, (iv)). Thus, it follows immediately from the scheme-theoretic
interpretation of this situation given in Theorem 5.2, (iii), (v), that we obtain a
natural Π1[B, Ei] (� G)-equivariant injection

F1[B,Πprf
2 , Eprf

i , β] ↪→ RatMaps(D1[B, Ei],K[B])

(cf. Notation 1.12; Definition 4.8, (iii); Theorem 5.2, (i)). Here, in the definition of
“RatMaps(−,−)” (cf. Notation 1.12), we take the collection of quotients to be the
single “identity quotient” D1[B, Ei]→ D1[B, Ei]. Write

pD2/1[B, Ei] : D2 → D1[B, Ei]

for the surjection induced by the quotient homomorphism pΠ2/1[B, Ei] (cf. Definition

4.8, (ii), (iii)). Thus, we obtain a natural Π2 (� Π1[B, Ei] � G)-equivariant
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injection

ρi : F1[B,Πprf
2 , Eprf

i , β] ↪→ RatMaps(D2[B],K[B])

T 7→ T (−) ◦ pD2/1[B, Ei].

Here, in the definition of “RatMaps(−,−)” (cf. Notation 1.12), we take the col-
lection of quotients to be the collection of quotients {pD2/1[B, Ei]}i=1,2,3,4,5. Next,

let us observe that the field structure of K[B] induces a natural ring structure
on RatMaps(D2[B],K[B]). Moreover, it follows immediately from the scheme-
theoretic interpretation of this situation given in Theorem 5.2, (iii), (v), that
ρi is a ring homomorphism, relative to the ring structure (just described) on

RatMaps(D2[B],K[B]) and the field structure of F1[B,Πprf
2 , Ei, β], and that the

image of ρi is independent of the choice of the data (Πprf
2 , β). In particular, it

makes sense to write F1[B, Ei] for the image of ρi. Finally, we observe that it fol-
lows immediately from the scheme-theoretic interpretation of this situation given
in Theorem 5.2, (iii), (v), that if we write R[B] for the subring of

RatMaps(D2[B],K[B])

generated by the subrings

F1[B, Ei]

for i ∈ {1, 2, 3, 4, 5}, then R[B] is an integral domain on which the subgroup E∩ ⊆
Π2 acts trivially. In particular, it makes sense to speak of the quotient field

Frac(R[B])

of this integral domain R[B], which is equipped with an action by Π2→1[B].

Theorem 6.6. (From PGCS-collections of type (g, r�, n,Σ∆,ΣGal) to cer-
tain function fields arising from tripods) We maintain the following notation

of Definition 4.2: (g, r�, n,Σ∆,ΣGal); (Πn, G,Dn); p ∈ Σ∆; k; k̄; GΣGal

k ; X log;

K; α : Πn
∼→ ΠUXn

; DXn . Write B
def
= (Πn, G,Dn). Suppose that (X log, n) is

tripodally ample, and that k is a number field or a p-adic local field. Then:

(i) For any sufficiently small open normal subgroup H of G, one may construct
a family (cf. the discussion of “choices” in the final portion of Remark 6.3)

of PGCS-collections {Btpd = (Πtpd
2 ,H,Dtpd

2 )} of type (0, 3ord, 2,Σ∆,ΣGal)
associated to the intrinsic structure of the PGCS-collection B.

(ii) Let βX : B
∼→ B[X]

def
= (ΠUXn

, GΣGal

k ,DXn) be an isomorphism of PGCS-

collections (cf. Definition 4.4) and Btpd = (Πtpd
2 , H,Dtpd

2 ) a PGCS-collection

of type (0, 3ord, 2, Σ∆,ΣGal) associated to B (cf. (i)). Write H[X]
def
= Ker(GΣGal

k

→ G/H), where GΣGal

k → G/H denotes the composite of the natural quotient

G → G/H with the inverse of the isomorphism (βX)G : G
∼→ GΣGal

k deter-

mined by βX (cf. Definition 4.4). Let Y log be a smooth log curve over k of
type (0, 3ord) (cf. Remark 6.2); write

ΠUY2

def
=

{
π1(UY2)

Σ∆ (if Σ∆ = ΣGal)

π1(UY2)
[p] (if Σ∆ ( ΣGal).

Then, for a suitable choice Btpd[X] = (ΠUY2
,H[X],DY2) of PGCS-collection

of type (0, 3ord, 2, Σ∆,ΣGal) associated to B[X] (cf. (i); Remarks 6.2, 6.3),
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βX induces an isomorphism of PGCS-collections

βtpd
Y : Btpd ∼→ Btpd[X] = (ΠUY2

,H[X],DY2).

(iii) One may construct a quotient group Πtpd
2 � Πtpd

2→1[B
tpd] (cf. Definition 6.5)

and a field Frac(R[Btpd]) (cf. Definition 6.5) equipped with an action by

Πtpd
2→1[B

tpd] associated to the intrinsic structure of the PGCS-collection Btpd.
(iv) In the notation of (ii), (iii), write E2[Btpd] = {E1, . . . , E5} for the set of

generalized fiber subgroups ⊆ Πtpd
2 ;

ΠUY2→1

def
= ΠUY2

/
5∩

i=1

(βtpd
Y )Π(Ei),

where (βtpd
Y )Π : Πtpd

2
∼→ ΠUY2

denotes the isomorphism determined by βtpd
Y

(cf. Definition 4.4). Then the isomorphism (βtpd
Y )Π induces a commutative

diagram

Πtpd
2

����

∼

(βtpd
Y )Π

// ΠUY2

����
Πtpd

2→1[B
tpd]

∼ // ΠUY2→1
,

where the vertical arrows are the natural projections, and Πtpd
2→1[B

tpd]
∼→

ΠUY2→1
denotes a uniquely determined isomorphism of profinite groups.

(v) In the notation of (iv), write Z → UY2 for the profinite étale covering corre-
sponding to (ΠUY2

�) ΠUY2→1
and Fnct(Z) for the function field of Z. Then

one may construct a field isomorphism

Frac(R[Btpd])
∼→ Fnct(Z)

associated to the intrinsic structure of the data (Btpd,Btpd[X], βtpd
Y : Btpd ∼→

Btpd[X]), where the field isomorphism “
∼→” is equivariant with respect to

the respective natural actions of the profinite groups (Πtpd
2 �) Πtpd

2→1[B],
(ΠUY2

�) ΠUY2→1
(cf. the display of (iv)).

Proof. Assertion (i) follows from Remark 6.3. Assertion (ii) follows from assertion
(i); Remarks 6.2, 6.3. Assertion (iii) follows from Definition 6.5. Assertion (iv)
follows from assertion (iii) and Definition 6.5. Assertion (v) follows from assertions
(ii), (iii), (iv); Theorem 5.2, (iii). �
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