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Abstract. We construct a hook-content formula and its q-analog using ex-
cited Young diagrams analogous to Naruse’s hook-length formula for skew

shapes. Furthermore, we show that our hook-content formula has a simple

factorization and give some conjectures and questions related to its q-analog.

1. Introduction

The hook-length formula for the number of standard Young tableaux of skew
shape λ/µ

fλ/µ := |λ/µ|!
∑

D∈E(λ/µ)

∏
d∈λ\D

1

h(d)
, (1.1)

where E(λ/µ) is the set of excited Young diagrams [Kre05, IN09] and h(d) is
the hook length of d in λ, was discovered by Naruse [Nar14] from his study of
the equivariant cohomology of the Grassmannian. Combinatorial proofs of Equa-
tion (1.1) have also been given in [Kon18, MPP18]. When µ = ∅, Equation (1.1)
reduces to the classical hook-length formula for standard tableaux first proven by
Frame, Robinson, and Thrall [FRT54] and has since seen numerous proofs (see,
e.g., [Ban08, MPP18, Sag90] and references therein).

In [MPP18], a q-analog of Equation (1.1) was given as

sλ/µ(1, q, q2, . . .) =
∑

D∈E(λ/µ)

∏
(i,j)∈λ\D

qλ
′
j−i

1− qh(i,j)
, (1.2)

where the left hand side is the principal specialization of the (skew) Schur function
and λ′ is the conjugate partition to λ. When taking µ = ∅, we obtain the q-analog
of the hook-length formula due to Stanley [Sta71]:

sλ(1, q, q2, . . .) = qb(λ)
∏
d∈λ/µ

1

1− qh(d)
, (1.3)

where b(λ) =
∑`
i=1(i−1)λi. After removing the qb(λ) factor, Equation (1.3) is equal

to the number of reverse plane partitions graded by their size, where a combinatorial
proof is given by the Hillman–Grassl correspondence [HG76].

To count the number of semistandard Young tableaux of shape λ and maximum
entry n, we instead use the hook-content formula with its natural q-analog given by

sλ(1, q, . . . , qn−1, 0, 0, . . .) = qb(λ)
∏
d∈λ

[n+ c(d)]q
[h(u)]q

, (1.4)

where [x]q = 1−qx
1−q is the natural q-analog of x (see,e.g., [Sta99, Thm 7.21.2]) and

c(d) is the content of d. Indeed, we see that when taking the limit q → 1, we
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obtain a formula for the number of semistandard Young tableaux of shape λ and
maximum entry n.

The goal of this note is examine a natural hook-content generalization of Naruse’s
hook-length formula by combining Equation (1.1) and Equation (1.4). We show
that the result has a simple factorization as a product of q-integers of binomials in
n. Our result gives rise to many interesting conjectures and questions related to our
formula, the natural q-analog of fλ/µ, and results related to representation theory.
In particular, we note that our formula (when q → 1) does not count the number of
semistandard skew tableaux of shape λ/µ. Thus, finding a combinatorial formula
(in particular using excited Young diagrams) for the principal specializations of
skew Schur functions

sλ/µ(1, q, . . . , qn−1, 0, 0, . . .)

remains an open problem. Yet, our results might aid in understanding the re-
lationship between excited Young diagrams and the representation theory of the
symmetric group Sn and/or gln as

sλ/µ =
∑
ν

cλµ,νsν , fλ/µ =
∑
ν

cλµ,νf
ν ,

where cλµ,ν are the Littlewood–Richardson coefficients.

Acknowledgements. AK grateful to the RIMS and the IPMU for fruitful atmo-
sphere and conditions for research, and financial support. TS would like to thank
Kyoto University for its hospitality during his visit in March, 2019. The authors
thank Jang Soo Kim for his interest in our work and for informing us of [CK19].
This work has also been supported by JSPS KAKENHI 1605057. This work bene-
fited from computations using SageMath [Sag19, SCc08].

2. Preliminaries

A partition is a weakly decreasing sequence of positive integers. We equate a
partition λ = (λ1, λ2, . . . , λ`) with a set of cells {(i, j) | 1 ≤ j ≤ `, 1 ≤ i ≤ λj}
via the Young diagram of λ. We will consider our Young diagrams using English
convention. For a partition µ ⊆ λ, we form the skew partition λ/µ as the set of
cells λ \ µ. More generally, we call any finite set of cells D ⊆ Z2

>0 a diagram. The
size of a diagram |D| is the number of cells in D.

Let λ′ = (λ′1, λ
′
2, . . . , λ

′
m) = {(j, i) | (i, j) ∈ λ}, where m = λ1, be the conjugate

partition to λ. Let

c(d) := j − i, h(d) := λi − j + λ′j − i+ 1,

be the content and hook length, respectively, of a cell d ∈ λ. Recall that the content
of a cell d is the diagonal the cell lies on and the hook length is the number of boxes
in the row and column to the right and below, respectively, d, including also d (i.e.,
the size of the largest hook shape whose corner is at d).

Let λ/µ be a skew partition with |λ/µ| = n. A standard tableau of (skew)
shape λ/µ is a bijection T : λ/µ→ {1, . . . , n} such that every row (resp. column) is
increasing when read left to right (resp. top to bottom). Let fλ/µ denote the number
of standard tableau of shape λ/µ. A semistandard tableau of (skew) shape λ/µ is
a function T : λ/µ → Z>0 such that rows are weakly increasing and columns are
strictly increasing. Let SSTn(λ/µ) denote the set of semistandard Young tableaux
of shape λ/µ with maximum entry n, and we simply write SST(λ/µ) when n =∞.
We will simply write λ for λ/µ when µ = ∅.

Following [IN09], define an elementary excitation on a diagram D to take a cell
(i, j) ∈ D such that (i+1, j), (i, j+1), (i+1, j+1) /∈ D and forming a new diagram
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by (D \ {(i, j)}) ∪ {(i+ 1, j + 1)}. Pictorially, an elementary excitation moves the
cell in (i, j) (locally) as

−→ .

Define the set of excited Young diagrams E(λ/µ) to be all diagrams obtained from
µ using a sequence of elementary excitations such that the resulting diagram is
contained inside λ.

3. Hook-content formula using excited Young diagrams

Let [n]q! = [n]q[n− 1]q · · · [1]q denote the q-factorial. We define

fλ/µq := [|λ/µ|]q!
∑

D∈E(λ/µ)

∏
d∈λ\D

1

[h(d)]q

as the natural q-analog of fλ/µ. Note that limq→1 f
λ/µ
q = fλ/µ by Equation (1.1).

Theorem 3.1. Let µ ⊆ λ. We have

Hλ/µ(n; q) := [|λ/µ|]q!
∑

D∈E(λ/µ)

∏
d∈λ\D

1− qn+c(d)

1− qh(d)
= fλ/µq

∏
d∈λ/µ

[n+ c(d)]q.

Proof. We first note that

Cλ/µ(q) :=
∏

d∈λ\D

[n+ c(d)]q

does not depend on the choice of excited Young diagram D ∈ E(λ/µ) as an ele-
mentary excitation moves a box along a diagonal j − i, which does not change its
content. Thus, we take Cλ/µ(q) to be with D = µ. Hence, we have

Hλ/µ(n; q) = [|λ/µ|]q!
∑

D∈E(λ/µ)

∏
d∈λ\D

1− qn+c(d)

1− qh(d)

= [|λ/µ|]q!
∑

D∈E(λ/µ)

∏
d∈λ\D

[n+ c(d)]q
[h(d)]q

= Cλ/µ(q)[|λ/µ|]q!
∑

D∈E(λ/µ)

∏
d∈λ\D

1

[h(d)]q
= Cλ/µ(q)fλ/µq

as desired. �

As a special case of Theorem 3.1 when µ = ∅, Equation (1.4) implies that

sλ(1, q, . . . , qn−1, 0, 0, . . .) = qb(λ)
Hλ(n; q)

[|λ|]q!
. (3.1)

Corollary 3.2. Let µ ⊆ λ. Then we have

Hλ/µ(n; 1) = |λ/µ|!
∑

D∈E(λ/µ)

∏
d∈λ\D

n+ c(d)

h(d)
= fλ/µ

∏
d∈λ/µ

n+ c(d).

Proof. This follows from Theorem 3.1 by taking the limit q → 1 with applying
L’Hôpital’s rule and Naruse’s hook-length formula (Equation (1.1)). �

We note that we could have proven Corollary 3.2 directly using a similar argu-
ment to Theorem 3.1 and Naruse’s hook-length formula. Furthermore, Corollary 3.2
is equivalent to Naruse’s hook-length formula. To simplify our notation, we write
Hλ/µ(n) := Hλ/µ(n; 1).
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Corollary 3.3. Assume Corollary 3.2 holds, then we have

lim
n→∞

Hλ/µ(n)

n|λ/µ|
= fλ/µ.

Proof. Note that (n + c(d))/n → 1 as n → ∞, and the claim follows from Corol-
lary 3.2 and the degree of Hλ/µ(n) (which is a polynomial in n) is |λ/µ|. �

To obtain the classical hook-content formula for λ and µ = ∅, we must divide
Hλ/µ(n) by |λ|! as in Equation (3.1). Therefore, we define the polynomial

Hλ/µ(n) :=
Hλ/µ(n)

|λ/µ|!
,

and note that Hλ(n) = |SSTn(λ)| by the hook-content formula.

Example 3.4. The excited Young diagrams E(3321/21) are

First, we compute

f3321/21q = q10 + 2q9 + 3q8 + 6q7 + 8q6 + 8q5 + 9q4 + 10q3 + 5q2 + 4q + 5. (3.2)

Completing the computation and factoring the result, we see that

H3321/21(n; q) = f3321/21q [n− 3]q[n− 2]q[n− 1]q[n]q[n+ 1]q[n+ 2]q.

We remark that f
3321/21
q = H3321/21(4; q)/[6]q!. By taking q → 1, we obtain

H3321/21(n) =
61

720
(n− 3)(n− 2)(n− 1)n(n+ 1)(n+ 2).

as f3321/21 = 61.

Example 3.5. There are five excited diagrams of type (553, 321):

which yields the q-standard tableau number of

f553/321q =
(q6 + q5 + q4 + q3 + q2 + q + 1) · a(q)

(q + 1) · (q4 + q3 + q2 + q + 1)
, (3.3)
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where

a(q) = q12 + 2q11 + 4q10 + 7q9 + 12q8 + 14q7

+ 17q6 + 18q5 + 18q4 + 14q3 + 11q2 + 7q + 5,

and a hook-content formula (and q → 1 version) of

H553/321(n; q) = f553/321q [n− 1]q[n]q[n+ 1]q[n+ 2]q[n+ 3]2q[n+ 4]q,

H553/321(n) =
91

5040
(n− 1)n(n+ 1)(n+ 2)(n+ 3)2(n+ 4).

It is not obvious that Hλ/µ(n) is an integer for all integers n ≥ `, where ` is
the length of λ. However, we have verified this in numerous cases and have the
following conjecture.

Conjecture 3.6. Let λ = (λ1, λ2, . . . , λ`) be a partition. Let n ≥ ` be an integer.
Then Hλ/µ(n) ∈ Z≥0.

Thus, if Conjecture 3.6 is true, a natural question to ask is what does Hλ/µ(n)
count? A first guess would likely be semistandard skew tableaux of shape λ/µ and
maximum entry n, but this is not the case. Indeed, we have H3321/21(4) = 61, but
there are 204 semistandard skew tableaux of shape 3321/21 and maximum entry 4.
Therefore, we suggest the following problem.

Problem 3.7. Assuming Conjecture 3.6, determine what objects count Hλ/µ(n).

We note that the principal specialization sλ/µ(1, q, . . . , qn−1, 0, . . .) was consid-
ered in [MPP18, Sec. 8]. Yet this cannot be related to our q-hook-content formula
as they have different q → 1 limits as noted above.

We note that f
λ/µ
q (and hence Hλ/µ(n; q)/[|λ/µ|]q for a fixed integer n ∈ Z>0) is

not symmetric nor unimodal as seen in Equation (3.2). In fact, f
λ/µ
q is not always

polynomial by Equation (3.3) in contrast to Conjecture 3.6. Furthermore, even

when f
λ/µ
q ∈ Z≥0[q], the value Hλ/µ(n; q)/[|λ/µ|]q! is not always a polynomial for

a fixed integer n ≥ `:
H3322/21(4; q)

[7]q!
=

f(q)

q4 + q3 + q2 + q + 1
,

where

f(q) = q12+2q11+4q10+7q9+12q8+14q7+17q6+18q5+18q4+14q3+11q2+7q+5.

Note also that f(q) is an irreducible polynomial over Q. Yet, we do have the
following conjectures based on experimental evidence.

Conjecture 3.8. Let µ ⊆ λ be partitions. We have f
λ/µ
q = a(q)/b(q), where

a, b ∈ Z≥0[q] such that a(−1) ∈ Z≥0.

Conjecture 3.9. Let µ ⊆ λ be partitions. Fix some integer n ≥ `, where ` is the
length of λ. We have Hλ/µ(n; q)/[|λ/µ|]q! = a(q)/b(q), where a, b ∈ Z≥0[q] such
that a(−1) ∈ Z≥0.

Note that g in both conjectures must be a product of cyclotomic polynomials
since the denominator is a product of q-integers. The examples above also suggests
the following problems.

Problem 3.10. Determine which partitions µ ⊆ λ such that f
λ/µ
q ∈ Z≥0[q] and

also for which n ∈ Z>0 such that Hλ/µ(n; q)/[|λ/µ|]q ∈ Z≥0[q].

Problem 3.11. For which partitions µ ⊂ λ the all terms in Naruse’s hook-length
formula and its q-analog are integers and in Z≥0[q], respectively?
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After the completion of our paper, we were informed that Conjecture 3.6 and
Problem 3.7 were answered affirmatively in [CK19], where Hλ/µ(n) counts the
number of semistandard n-content tableaux of shape λ/µ.
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