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ABSTRACT. In the present paper, we establish a “group-theoretic” algorithm for reconstructing,
from the étale fundamental group of a suitable proper normal variety over a real closed field, the
geometric subgroup of the étale fundamental group of the proper normal variety.
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INTRODUCTION

In the present Introduction, let k be a field of characteristic zero, k an algebraic closure of k,
and X an algebraic variety over k. Write Gk

def
= Gal(k/k) for the absolute Galois group [determined

by the algebraic closure k] of k and π1(X), π1(X ×k k) for the respective étale fundamental groups
[relative to appropriate choices of basepoints] of X , X ×k k. Thus, we have a natural exact sequence
of profinite groups

1 // π1(X ×k k) // π1(X) // Gk // 1

[cf. [5], Exposé IX, Théorème 6.1].
Anabelian geometry is, in a word, an area of arithmetic geometry in which one studies the ge-

ometry of geometric objects of interest from the point of view of purely group-theoretic properties
of the étale fundamental groups. Put another way, roughly speaking, anabelian geometry discusses
the issue of how much information concerning the geometry of geometric objects of interest [e.g.,
“X” as above] is included in the knowledge of the étale fundamental groups [e.g., “π1(X)” as
above].

Here, let us recall that one form of anabelian geometry is “relative anabelian geometry”, in
which instead of starting from the profinite group π1(X), one starts from the profinite group π1(X)
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equipped with the surjective homomorphism π1(X)↠Gk that appears in the above displayed exact
sequence. By contrast, “absolute anabelian geometry”, that is one form of anabelian geometry,
refers to the study of the geometry of X as reflected solely in the profinite group π1(X) [cf. [2],
Introduction].

In various studies of absolute anabelian geometry, as the “first step” of the argument of the
“reconstruction” of the geometry of the variety X that starts from the profinite group π1(X), one
often attempts to give a “group-theoretic” characterization of the geometric subgroup of π1(X),
i.e., the closed subgroup π1(X ×k k) ⊆ π1(X) of π1(X) that appears in the above displayed exact
sequence. In [2], S. Mochizuki has established a “group-theoretic” algorithm for reconstructing —
from the étale fundamental group of a smooth variety over a finite extension of either the field Q
of rational numbers [cf. [2], Theorem 2.6, (vi)] or the p-adic completion Qp of Q for some prime
number p [cf. [2], Theorem 2.6, (v)] — the geometric subgroup of the étale fundamental group of
the smooth variety. The main purpose of the present paper is the establishment of a similar “group-
theoretic” reconstruction algorithm for a suitable proper normal variety over a real closed field.

In the remainder of the present Introduction, suppose that k is real closed [i.e., is a field such
that the k-algebra k[t]/(t2 + 1) is an algebraically closed field], and that X is a proper normal
variety over k [cf. Definition 2.1]. In the present paper, the condition (I ) defined in Definition 3.3
plays a central role. We shall say that the proper normal variety X satisfies the condition (I )
if qY ̸= 2qX for each connected finite étale double covering Y → X of X , where we write “q(−)”
for the irregularity [cf. Definition 3.1] of the proper normal variety “(−)” [i.e., over the algebraic
closure of k in the function field of “(−)” — cf. Remark 2.1.1]. In §4 of the present paper, we
prove that, for instance, each of

• a fiber product of finitely many proper smooth curves of positive genus over a real closed
field,

• a torsor over an abelian variety of positive dimension over a real closed field, and
• a proper normal variety over the field R of real numbers such that if we write Xan for the

complex analytic space associated to the proper normal variety X ×RC over the field C
of complex numbers, then the first homology group H1(Xan,Z) with integer coefficients
of the topological space Xan is infinite and has no nontrivial 2-torsion element

satisfies the condition (I ) [cf. Proposition 4.1, Remark 4.1.1].
Some portion of the main result of the present paper may be summarized as follows [cf. Theo-

rem 3.7].
There exists a “group-theoretic” algorithm

Π ⇝ ∆(Π)⊆ Π

for constructing — from a profinite group Π isomorphic to the étale fundamen-
tal group of a proper normal variety over a real closed field which satisfies the
condition (I ) — a closed subgroup ∆(Π) ⊆ Π of Π that satisfies the follow-
ing condition: In the above situation, if the proper normal variety X over the
real closed field k satisfies the condition (I ), and one then applies this “group-
theoretic” algorithm to the profinite group π1(X), then the equality

∆(π1(X)) = π1(X ×k k)

of closed subgroups of π1(X) holds.
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Moreover, one immediate application of the “group-theoretic” reconstruction algorithm established
in the present paper is as follows [cf. Corollary 3.8, Corollary 4.2].

Theorem. For each □ ∈ {◦,•}, let k□ be a real closed field, k□ an algebraic closure of k□,
and X□ a proper normal variety over k□; write π1(X□×k□ k□) ⊆ π1(X□) for the respective étale
fundamental groups [relative to appropriate choices of basepoints] of X□×k□ k□, X□. Suppose
that, for each □ ∈ {◦,•}, one of the following three conditions is satisfied:

(1) The proper normal variety X□ satisfies the condition (I ), i.e., it holds that qY□ ̸= 2qX□
for each connected finite étale double covering Y□→ X□ of X□.

(2) The abelianization of the maximal pro-2 quotient of the profinite group π1(X□×k□ k□) is
torsion-free.

(3) The field k□ is isomorphic to R. Moreover, if we write Xan
□ for the complex analytic

space associated to the proper normal variety X□×RC over C, then the first homology
group H1(Xan

□ ,Z) with integer coefficients of the topological space Xan
□ has no nontrivial

2-torsion element.

Let

α : π1(X◦)
∼ // π1(X•)

be an isomorphism of profinite groups. Then the equality α(π1(X◦×k◦ k◦)) = π1(X•×k• k•) holds.

Finally, in §4 of the present paper, we verify that there exists a proper normal variety (respec-
tively, nonproper smooth curve) over a real closed field such that the geometric subgroup of the
étale fundamental group of the proper normal variety (respectively, nonproper smooth curve) is
not characteristic as the subgroup of the étale fundamental group [i.e., is not preserved by some
automorphism of the étale fundamental group]. In particular, one may conclude that

it is impossible to establish any “group-theoretic” reconstruction algorithm as
above, i.e., for reconstructing the geometric subgroup of the étale fundamental
group of the proper normal variety (respectively, nonproper smooth curve)

[cf. Remark 4.2.1] (respectively, [cf. Remark 4.2.2]).
The present paper is organized as follows: In §1, we discuss the Galois representations that arise

from abelian varieties over real closed fields. In §2, we introduce and discuss the geometrically pro-
C étale fundamental groups of proper normal varieties over real closed fields. In §3, we establish a
“group-theoretic” algorithm for reconstructing — from [a profinite group isomorphic to] the étale
fundamental group of a suitable proper normal variety over a real closed field — the [normal closed
subgroup that corresponds to the] geometric subgroup of the étale fundamental group of the proper
normal variety. In §4, we give some examples of proper normal varieties that satisfy the condition
(I ). Moreover, we also discuss necessity of some conditions that appear in the statement of the
main result of the present paper.
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1. THE TATE MODULES OF ABELIAN VARIETIES OVER REAL CLOSED FIELDS

In the present §1, we discuss the Galois representations that arise from abelian varieties over
real closed fields [cf. Proposition 1.4 below]. Let k be a real closed field [i.e., a field such that
the k-algebra k[t]/(t2 + 1) is an algebraically closed field] and k an algebraic closure of k. Write

Gk
def
= Gal(k/k) for the absolute Galois group [determined by the algebraic closure k] of k.

Proposition 1.1. Let p be a prime number. Then the p-adic cyclotomic character Gk → Z×
p deter-

mines an isomorphism Gk
∼→ {±1} ⊆ Z×

p . In particular, the group Gk is isomorphic to the group
Z/2Z.

Proof. This assertion follows from the assumption that the field k is real closed. □
Lemma 1.2. Let R be a Z[1/2]-algebra and M a finitely generated R-module equipped with an ac-
tion of Gk over R. Then there exists a unique decomposition M = M+⊕M− of M by R-submodules
such that this decomposition is compatible with the action of Gk, and, moreover, the resulting ac-
tion Gk → AutR(M+) (respectively, Gk → AutR(M−)) is trivial (respectively, determines an iso-
morphism Gk

∼→{±1} ⊆ AutR(M−) whenever the R-submodule M− is nontrivial).

Proof. Since Gk is isomorphic to Z/2Z [cf. Proposition 1.1], this assertion follows from elementary
algebra. □
Lemma 1.3. Let M be a finitely generated free Z2-module equipped with an action of Gk over Z2.
Thus, by applying Lemma 1.2 to the Q2-module V def

= M ⊗Z2 Q2 (⊇ M) equipped with the action
of Gk [i.e., determined by the action of Gk on M], one obtains a decomposition V =V+⊕V− as in
Lemma 1.2. Then there exists an exact sequence of Z2-modules equipped with actions of Gk over
Z2

1 // Z2(1)⊕dimQ2(V−) // M // Z
⊕dimQ2(V+)

2
// 1

— where “(1)” denotes a Tate twist.

Proof. This assertion is immediate from the condition imposed on the decomposition of Lemma 1.2.
□

Proposition 1.4. Let g be a positive integer, A an abelian variety over k of dimension g, and p a
prime number. Write TpA for the p-adic Tate module of A [on which Gk acts naturally]. Then the
following hold:

(i) Suppose that p ̸= 2. Then there exists a Gk-equivariant isomorphism

TpA ∼ // Z⊕g
p ⊕Zp(1)⊕g

— where “(1)” denotes a Tate twist.
(ii) Suppose that p = 2. Then there exists an exact sequence of Z2-modules equipped with

actions of Gk over Z2

1 // Z2(1)⊕g // T2A // Z⊕g
2

// 1

— where “(1)” denotes a Tate twist.
(iii) Write TpA↠ Q for the maximal Gk-stable torsion-free quotient of TpA on which Gk acts

trivially. Then the equality rankZp(Q) = g holds.
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Proof. First, we verify assertions (i), (ii). Let us first recall that it is well-known [cf. the discussion
following [5], Exposé XI, Théorème 2.1] that the Zp-module TpA is free of rank 2g. Thus, it follows
from Lemma 1.2 and Lemma 1.3 that, to verify assertions (i), (ii), it suffices to verify that the Qp-
module (TpA⊗Zp Qp)+ [cf. Lemma 1.2] is of dimension g. On the other hand, again by Lemma 1.2
and Lemma 1.3, this assertion follows immediately from the existence of a Gk-equivariant isomor-
phism TpA⊗Zp Qp

∼→ HomZp(TpA,Qp)(1) obtained by, for instance, considering a polarization on
the abelian variety A over k. This completes the proofs of assertions (i), (ii). Assertion (iii) follows
from assertions (i), (ii). This completes the proof of Proposition 1.4. □

2. THE ÉTALE FUNDAMENTAL GROUPS OF VARIETIES OVER REAL CLOSED FIELDS

In the present §2, we introduce and discuss the geometrically pro-C étale fundamental groups
[cf. Definition 2.3, (ii), below] of proper normal varieties [cf. Definition 2.1 below] over real closed
fields.

Definition 2.1. We shall say that a scheme V over a field F of characteristic zero is a proper normal
variety over F if the scheme V is normal, and, moreover, the structure morphism V → Spec(F) is
proper and geometrically connected.

Remark 2.1.1. Let V be a proper normal variety over a field F of characteristic zero and W →V
a connected finite étale covering of V . Then one verifies easily that W is a proper normal variety
over a(n) [necessarily finite] extension of F obtained by forming the algebraic closure of F in the
function field of W .

Definition 2.2. Let G be a profinite group. Then we shall write (G↠) Gab for the abelianization
of the profinite group G [i.e., the maximal abelian quotient of G whose kernel is closed in G] and
(G↠) Gab/tor for the maximal abelian torsion-free quotient of G whose kernel is closed in G:

G // // Gab // // Gab/tor.

In the remainder of the present §2, let k be a real closed field, k an algebraic closure of k, and X a
proper normal variety over k. Write Gk

def
= Gal(k/k) for the absolute Galois group [determined by

the algebraic closure k] of k. Write, moreover, π1(X), π1(X ×k k) for the étale fundamental groups
[relative to appropriate choices of basepoints] of X , X ×k k, respectively. Thus, we have an exact
sequence of profinite groups

1 // π1(X ×k k) // π1(X) // Gk // 1

[cf. [5], Exposé IX, Théorème 6.1]. Moreover, in the remainder of the present §2, let C be a
full formation of finite groups, i.e., a family of finite groups that is closed under taking quotients,
subgroups, and extensions.

Definition 2.3.
(i) We shall write ∆X for the pro-C geometric étale fundamental group of X , i.e., the maximal

pro-C quotient of π1(X ×k k).
(ii) We shall write ΠX for the geometrically pro-C étale fundamental group of X , i.e., the

quotient of π1(X) by the normal closed subgroup of π1(X) obtained by forming the kernel
of the natural surjective homomorphism (π1(X) ⊇) π1(X ×k k)↠ ∆X . Thus, the exact
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sequence preceding the present Definition 2.3 determines an exact sequence of profinite
groups

1 // ∆X // ΠX // Gk // 1,

which thus determines, by conjugation, an action of Gk on ∆ab
X , hence also an action of Gk

on ∆ab/tor
X . We shall always regard ∆ab

X , ∆ab/tor
X as Gk-modules by means of these actions,

respectively.
(iii) We shall write

1 // 2∆X // 2ΠX // Gk // 1

for the exact sequence of (ii) in the case where we take the full formation “C ” to be the
full formation consisting of 2-groups.

Remark 2.3.1. Let us recall from [5], Exposé X, Théorème 2.9, that the profinite group ∆X , hence
also [cf. Proposition 1.1] the profinite group ΠX , is topologically finitely generated. In particular,
the Ẑ-modules ∆ab

X , Πab
X , 2∆ab

X , 2Πab
X are finitely generated. Moreover, the Z2-modules 2∆ab/tor

X ,

2Πab/tor
X [cf. also Lemma 2.4, (i), below] are finitely generated and free.

Lemma 2.4. The following hold:
(i) Suppose that the full formation C contains [a group isomorphic to] Z/2Z. Write T for

the maximal pro-2 quotient of the profinite group ΠX . Then the natural surjective homo-
morphism π1(X)↠ T determines an isomorphism 2ΠX

∼→ T .
(ii) The restriction of the natural surjective homomorphism ΠX ↠Πab

X to the closed subgroup
∆X ⊆ ΠX determines an isomorphism of
• the maximal Gk-stable quotient of ∆ab

X on which Gk acts trivially
with
• the image of ∆X ⊆ ΠX in Πab

X .
(iii) Write 2∆ab

X ↠Q for the maximal Gk-stable torsion-free quotient of 2∆ab
X on which Gk acts

trivially. Then the equality rankZ2(Q) = rankZ2(2Πab/tor
X ) holds.

Proof. Assertions (i), (ii) follow immediately from the fact that Gk is an abelian 2-group [cf. Propo-
sition 1.1]. Assertion (iii) follows from assertion (ii). This completes the proof of Lemma 2.4. □

Lemma 2.5. The following hold:
(i) The following two conditions are equivalent:

(1) Either that the full formation C does not contain [any group isomorphic to] Z/2Z,
or that the pro-2 group 2∆X is trivial.

(2) The maximal pro-2 quotient of ∆X is trivial.
(ii) Suppose that conditions (1), (2) of (i) are satisfied. Then the following condition is satis-

fied:
(3) The set of open subgroups of ΠX of index 2 consists of a single element.

(iii) Suppose that condition (3) of (ii) is satisfied [which is the case if, for instance, conditions
(1), (2) of (i) are satisfied — cf. (ii)]. Then the open subgroup ∆X ⊆ ΠX of ΠX is the
unique [cf. condition (3)] open subgroup of ΠX of index 2.

Proof. These assertions follow immediately from the fact that Gk is isomorphic to Z/2Z [cf. Propo-
sition 1.1]. □
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Definition 2.6. Let Π be a profinite group.
(i) We shall say that the profinite group Π satisfies (U ) if the set of open subgroups of Π of

index 2 consists of a single element.
(ii) Suppose that the profinite group Π satisfies the condition (U ). Then we shall write

∆(Π)⊆ Π for the unique open subgroup of Π of index 2.

3. THE GEOMETRIC SUBGROUPS FOR VARIETIES OVER REAL CLOSED FIELDS

In the present §3, we establish a “group-theoretic” algorithm for reconstructing — from [a
profinite group isomorphic to] the étale fundamental group of a suitable proper normal variety over
a real closed field — the [normal closed subgroup that corresponds to the] geometric subgroup of
the étale fundamental group of the proper normal variety [cf. Theorem 3.7 below]. Let k be a real
closed field, k an algebraic closure of k, X a proper normal variety over k [cf. Definition 2.1], and C

a full formation of finite groups. Write Gk
def
= Gal(k/k) for the absolute Galois group [determined

by the algebraic closure k] of k. Now let us recall the exact sequence of profinite groups

1 // ∆X // ΠX // Gk // 1

of Definition 2.3, (ii).

Definition 3.1. Let F be a field of characteristic zero and V a proper normal variety over F . Then
we shall write qV

def
= dimF H1(V,OV ) for the irregularity of V .

Remark 3.1.1. In the situation of Definition 3.1, let F be an algebraic closure of F . Then it is
well-known [cf., e.g., [2], Proposition A.6, (iii), and its proof; also our assumption that F is of
characteristic zero] that the irregularity qV of V coincides with the dimension of the Albanese va-
riety of the proper normal variety V ×F F over F [cf., e.g., [2], Definition A.1, (ii); [2], Proposition
A.6, (i)].

One main technical observation of the present paper is as follows.

Lemma 3.2. The following hold:
(i) There exist an abelian variety A over k of dimension qX and a Gk-equivariant isomor-

phism ∆ab/tor
X

∼→ ∆ab
A [cf. Definition 2.3, (ii)].

(ii) The free Z2-module 2∆ab/tor
X [cf. Remark 2.3.1] is of rank 2qX .

(iii) The free Z2-module 2Πab/tor
X [cf. Remark 2.3.1] is of rank qX .

Proof. Assertion (i) follows immediately — in light of [2], Remark A.11.1 — from [2], Proposition
A.6, (iv) [cf. also Remark 3.1.1 of the present paper]. Assertion (ii) follows from assertion (i),
together with the well-known [cf. the discussion following [5], Exposé XI, Théorème 2.1] fact
that if one writes ẐC for the pro-C completion of Ẑ, then the ẐC -module ∆ab

B is free of rank 2g
whenever B is an abelian variety over k of dimension g.

Finally, we verify assertion (iii). Write 2∆ab
X ↠Q for the maximal Gk-stable torsion-free quotient

of 2∆ab
X on which Gk acts trivially. Then it follows from Lemma 2.4, (iii), that, to verify assertion

(iii), it suffices to verify that rankZ2(Q) = qX . On the other hand, this follows from assertion (i) and
Proposition 1.4, (iii). This completes the proof of assertion (iii), hence also of Lemma 3.2. □
Definition 3.3. We shall say that the proper normal variety X over k satisfies (I ) if qY ̸= 2qX for
each connected finite étale double covering Y → X of X [cf. also Remark 2.1.1].
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Remark 3.3.1. It follows immediately from Lemma 3.2, (ii), together with the fact that Gk is
isomorphic to Z/2Z [cf. Proposition 1.1], that the following two conditions are equivalent:

(1) The proper normal variety X over k satisfies the condition (I ).
(2) It holds that rankZ2(H

ab/tor) ̸= 2 · rankZ2(2∆ab/tor
X ) for each open subgroup H ⊆ 2∆X of

2∆X of index either 1 or 2.

Definition 3.4. We shall say that a profinite group Π satisfies (I ) if there exist a proper normal
variety V over a real closed field and a full formation F of finite groups such that the proper
normal variety V satisfies the condition (I ), and, moreover, the profinite group Π is isomorphic
to the geometrically pro-F étale fundamental group of V .

Lemma 3.5. Suppose that the proper normal variety X over k satisfies the condition (I ). Let
J ⊆ 2ΠX be a normal open subgroup of 2ΠX . Then the following two conditions are equivalent:

(1) The equality J = 2∆X holds.
(2) The open subgroup J is of index 2 in 2ΠX , and, moreover, the equality rankZ2(J

ab/tor) =

2 · rankZ2(2Πab/tor
X ) holds.

Proof. The implication (1) ⇒ (2) follows from Lemma 3.2, (ii), (iii), together with the fact that Gk
is isomorphic to Z/2Z [cf. Proposition 1.1]. Next, to verify the implication (2) ⇒ (1), suppose that
condition (2) is satisfied, but condition (1) is not satisfied. Write Y → X for the connected finite
étale covering of X [necessarily of degree 2 — cf. condition (2)] that corresponds to the normal
open subgroup J ⊆ 2ΠX of 2ΠX . Then since [we have assumed that] J ̸= 2∆X , or, alternatively, the
composite J ↪→ 2ΠX ↠ Gk is surjective [cf. Proposition 1.1], it follows that Y is a proper normal
variety over k, which thus implies [cf. Lemma 3.2, (iii)] that the free Z2-module Jab/tor is of rank
qY . In particular, again by Lemma 3.2, (iii), it follows from condition (2) that the equality qY = 2qX
holds. Thus, since [we have assumed that] the proper normal variety X over k satisfies the condition
(I ), we obtain a contradiction. This completes the proof of the implication (2) ⇒ (1), hence also
of Lemma 3.5. □
Definition 3.6. Let Π be a profinite group that satisfies the condition (I ).

(i) We shall write Q(Π) for the maximal pro-2 quotient of Π.
(ii) It follows immediately — in light of Lemma 2.4, (i), and Lemma 2.5, (i), (ii), (iii) —

from Lemma 3.5 that the set of normal open subgroups J ⊆ Q(Π) of Q(Π) that satisfy the
following condition consists of a single element: The normal open subgroup J is of index
2 in Q(Π), and, moreover, the equality rankZ2(J

ab/tor) = 2 · rankZ2(Q(Π)ab/tor) holds. We
shall write ∆(Q(Π))⊆ Q(Π) for the unique element of this set.

(iii) We shall write ∆(Π) ⊆ Π for the normal open subgroup of Π obtained by forming the
pull-back of ∆(Q(Π))⊆ Q(Π) by the natural surjective homomorphism Π↠ Q(Π).

Remark 3.6.1. Let Π be a profinite group. Suppose that Π satisfies either the condition (U ) [cf.
Definition 2.6, (i)] or the condition (I ). Then, by applying Definition 2.6, (ii), or Definition 3.6,
(iii), to Π, we obtain an open subgroup ∆(Π)⊆ Π of Π [i.e., of index 2].

The main result of the present paper is as follows.

Theorem 3.7. Let X be a proper normal variety over a real closed field [cf. Definition 2.1] and C
a full formation of finite groups. Write ΠX for the geometrically pro-C étale fundamental group
of X [cf. Definition 2.3, (ii)] and ∆X ⊆ ΠX for the pro-C geometric étale fundamental group of X
[cf. Definition 2.3, (i)]. Suppose that one of the following two conditions is satisfied:
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(1) The set of open subgroups of ΠX of index 2 consists of a single element [which thus
implies that the profinite group ΠX satisfies the condition (U ) — cf. Definition 2.6, (i)].

(2) It holds that qY ̸= 2qX [cf. Definition 3.1] for each connected finite étale double covering
Y → X of X [which thus implies that the profinite group ΠX satisfies the condition (I ) —
cf. Definition 3.4].

Then the equality ∆X = ∆(ΠX) [cf. Remark 3.6.1] holds.

Proof. This assertion follows from Lemma 2.5, (iii), and Lemma 3.5. □

Remark 3.7.1. The main result of the present paper, i.e., Theorem 3.7, may be summarized as
follows:

For suitable choices of a proper normal variety X over a real closed field and a
full formation C of finite groups, there exists a “group-theoretic” algorithm

ΠX ⇝ ∆X ⊆ ΠX

for reconstructing — from [a profinite group isomorphic to] the geometrically
pro-C étale fundamental group ΠX of X — the [normal closed subgroup that
corresponds to the] geometric subgroup ∆X ⊆ ΠX of ΠX .

An immediate application of the main result of the present paper is as follows.

Corollary 3.8. For each □ ∈ {◦,•}, let k□ be a real closed field, X□ a proper normal variety
over k□, and C□ a full formation of finite groups; write Π□ for the geometrically pro-C□ étale
fundamental group of X□ and ∆□ ⊆ Π□ for the pro-C□ geometric étale fundamental group of
X□. Suppose that, for each □ ∈ {◦,•}, one of the following two conditions is satisfied:

(1) The set of open subgroups of Π□ of index 2 consists of a single element.
(2) It holds that qY□ ̸= 2qX□ for each connected finite étale double covering Y□→ X□ of X□.

Let
α : Π◦

∼ // Π•

be an isomorphism of profinite groups. Then the equality α(∆◦) = ∆• holds.

Proof. This assertion follows from Theorem 3.7. □

4. SOME EXAMPLES

In the present §4, we give some examples of proper normal varieties that satisfy the condition
(I ) [cf. Proposition 4.1 and Remark 4.1.1 below]. Moreover, we also discuss necessity of some
conditions that appear in the statement of Theorem 3.7 [cf. Remark 4.2.1 and Remark 4.2.2 below].
Write R for the field of real numbers [that is, as is well-known, a real closed field], C for the field

of complex numbers [that is, as is well-known, an algebraic closure of R], and GR
def
= Gal(C/R)

for the absolute Galois group [determined by the algebraic closure C] of R.

Proposition 4.1. Let k be a real closed field and X a proper normal variety over k [cf. Defini-
tion 2.1]. Suppose that one of the following three conditions is satisfied:

(1) The pro-2 group 2∆X [cf. Definition 2.3, (iii)] is abelian and infinite.
(2) The Z2-module 2∆ab

X is nontrivial and torsion-free.
9



(3) The field k is isomorphic to R. Moreover, if we write Xan for the complex analytic space
associated to the proper normal variety X ×RC over C, then the first homology group
H1(Xan,Z) with integer coefficients of the topological space Xan is infinite and has no
nontrivial 2-torsion element.

Then the proper normal variety X satisfies the condition (I ) [cf. Definition 3.3].

Proof. Write d def
= rankZ2(2∆ab/tor

X ). Let H ⊆ 2∆X be an open subgroup of 2∆X of index either 1
or 2. Thus, it follows from Remark 3.3.1 that, to verify the desired assertion [i.e., that the proper
normal variety X satisfies the condition (I )], it suffices to verify that rankZ2(H

ab/tor) ̸= 2d.
First, we verify Proposition 4.1 in the case where condition (1) is satisfied. Suppose that condi-

tion (1) is satisfied. Then since 2∆X is abelian [cf. condition (1)], the equality rankZ2(H
ab/tor) = d

holds [cf. also Remark 2.3.1]. Thus, since d > 0 [cf. condition (1)], we obtain that rankZ2(H
ab/tor)=

d < 2d, as desired. This completes the proof of Proposition 4.1 in the case where condition (1) is
satisfied.

Next, we verify Proposition 4.1 in the case where condition (2) is satisfied. Suppose that con-
dition (2) is satisfied. Let Fd

2 be a free pro-2 group of rank d. Then it follows from condition
(2) that d = rankZ/2Z(2∆ab

X ⊗Z2 (Z/2Z))> 0. Thus, it follows from [3], Theorem 7.8.1, that there
exists a surjective homomorphism Fd

2 ↠ 2∆X . Now since d > 0, if H is of index 1 in 2∆X [i.e.,
H = 2∆X ], then it follows that rankZ2(H

ab/tor) = d ̸= 2d. Thus, in the remainder of the proof of
Proposition 4.1 in the case where condition (2) is satisfied, we may assume without loss of gener-
ality that H is of index 2 in 2∆X . Write H̃ ⊆ Fd

2 for the open subgroup of Fd
2 obtained by forming

the pull-back of H ⊆ 2∆X by the surjective homomorphism Fd
2 ↠ 2∆X . Then since H̃ is of index

2 in Fd
2 , it follows from [3], Theorem 3.6.2, that the pro-2 group H̃ is isomorphic to a free pro-2

group of rank 2d−1. Thus, we conclude that 2d > 2d−1 = rankZ2(H̃
ab/tor)≥ rankZ2(H

ab/tor), as
desired. This completes the proof of Proposition 4.1 in the case where condition (2) is satisfied.

Finally, we verify Proposition 4.1 in the case where condition (3) is satisfied. Suppose that
condition (3) is satisfied. Write π top

1 (Xan) for the topological fundamental group [relative to an
appropriate choice of basepoint] of the topological space Xan. Then it follows from [5], Exposé
XII, Corollaire 5.2, that π1(X ×RC) is isomorphic to the profinite completion of π top

1 (Xan). In
particular, it follows from the Hurewicz theorem that the Z2-module 2∆ab

X is isomorphic to the Z2-
module H1(Xan,Z)⊗ZZ2. Thus, since [we have assumed that] the [necessarily finitely generated]
module H1(Xan,Z) is infinite and has no nontrivial 2-torsion element, we conclude that the Z2-
module 2∆ab

X is nontrivial and torsion-free. In particular, the proper normal variety X satisfies
condition (2), hence also the condition (I ), as desired. This completes the proof of Proposition 4.1
in the case where condition (3) is satisfied, hence also Proposition 4.1. □
Remark 4.1.1.

(i) It follows from [5], Exposé X, Théorème 2.6, together with [5], Exposé X, Corollaire 1.7,
that every fiber product of finitely many proper smooth curves of positive genus over a
real closed field satisfies condition (2) in the statement of Proposition 4.1, hence also [cf.
Proposition 4.1] the condition (I ). Thus, again by [5], Exposé X, Théorème 2.6, together
with [5], Exposé X, Corollaire 1.7 [cf. also Lemma 2.5, (ii), of the present paper], every
fiber product of finitely many proper smooth curves over a real closed field satisfies either
condition (1) or condition (2) in the statement of Theorem 3.7 [i.e., for an arbitrary choice
of “C ”].
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(ii) It follows from the discussion following [5], Exposé XI, Théorème 2.1, that every torsor
over an abelian variety of positive dimension over a real closed field satisfies condition
(2) in the statement of Proposition 4.1, hence also [cf. Proposition 4.1] the condition (I ).
Thus, it follows from Lemma 2.5, (ii), that every torsor over an abelian variety over a real
closed field satisfies either condition (1) or condition (2) in the statement of Theorem 3.7
[i.e., for an arbitrary choice of “C ”].

Corollary 4.2. For each □ ∈ {◦,•}, let k□ be a real closed field, X□ a proper normal variety
over k□, and C□ a full formation of finite groups; write Π□ for the geometrically pro-C□ étale
fundamental group of X□ [cf. Definition 2.3, (ii)] and ∆□ ⊆ Π□ for the pro-C□ geometric étale
fundamental group of X□ [cf. Definition 2.3, (i)]. Suppose that, for each □ ∈ {◦,•}, one of the
following seven conditions is satisfied:

(1) The full formation C□ does not contain [any group isomorphic to] Z/2Z.
(2) The maximal pro-2 quotient of ∆X□ is trivial.
(3) The maximal pro-2 quotient of ∆X□ is abelian and infinite.
(4) The abelianization [cf. Definition 2.2] of the maximal pro-2 quotient of ∆X□ is torsion-free.
(5) The field k□ is isomorphic to R. Moreover, if we write Xan

□ for the complex analytic
space associated to the proper normal variety X□×RC over C, then the first homology
group H1(Xan

□ ,Z) with integer coefficients of the topological space Xan
□ has no nontrivial

2-torsion element.
(6) The proper normal variety X□ is isomorphic to the fiber product of finitely many proper

smooth curves over k□.
(7) The proper normal variety X□ is isomorphic to a torsor over an abelian variety over k□.

Let
α : Π◦

∼ // Π•

be an isomorphism of profinite groups. Then the equality α(∆◦) = ∆• holds.

Proof. Let us recall from [3], Theorem 7.8.1, that, for a given pro-2 group G, it holds that the pro-2
group G is trivial if and only if the Z2-module Gab is trivial. Thus, Corollary 4.2 follows — in
light of Lemma 2.5, (ii); Proposition 4.1; Remark 4.1.1 — from Corollary 3.8. □

Remark 4.2.1. In Theorem 3.7, we have established a “group-theoretic” reconstruction algorithm

π1(X) ⇝ π1(X ×k k)⊆ π1(X)

for a proper normal variety X over a real closed field k that satisfies either condition (1) or condition
(2) in the statement of Theorem 3.7 [cf. Remark 3.7.1]. Here, let us observe that

there exists a proper normal variety over a real closed field such that it is im-
possible to establish a similar “group-theoretic” reconstruction algorithm for the
proper normal variety.

An example of such a proper normal variety is given as follows: Let X be a(n) [necessarily projec-
tive smooth] Enriques surface over R that has an R-rational point. [Note that one verifies easily
that such an Enriques surface exists.] Now let us recall from [5], Exposé IX, Théorème 6.1, that
the sequence of profinite groups

1 // π1(X ×RC) // π1(X) // GR // 1
11



is exact. Moreover, it is well-known [cf., e.g., [1], Chapter VIII, Lemma 15.1, (ii); [5], Exposé XII,
Corollaire 5.2] that the group π1(X ×RC) is isomorphic to the group Z/2Z. In particular, since the
group GR is isomorphic to the group Z/2Z [cf. Proposition 1.1], and an R-rational point of X gives
rise to a splitting of the above exact sequence, we conclude that the group π1(X) is isomorphic
to the group Z/2Z×Z/2Z. Thus, one verifies immediately that there exists an automorphism of
π1(X) that does not preserve the open subgroup π1(X ×RC) ⊆ π1(X) of π1(X). In particular, it
is impossible to establish a “group-theoretic” reconstruction algorithm as in Theorem 3.7 for the
Enriques surface X over R.

Remark 4.2.2. As discussed in Remark 4.1.1, (i), a proper smooth curve X over a real closed field
k is subject to the “group-theoretic” reconstruction algorithm

π1(X) ⇝ π1(X ×k k)⊆ π1(X)

of Theorem 3.7 [cf. Remark 3.7.1]. On the other hand,
there exists a nonproper smooth curve over a real closed field such that it is
impossible to establish a similar “group-theoretic” reconstruction algorithm for
the nonproper smooth curve.

An example of such a nonproper smooth curve is given as follows: Write X for the spectrum of the
R-algebra

R[x,y,z]/(x2 + y2 +1,xz−1).

Then one verifies easily that X is a smooth curve over R that satisfies condition (2) in the statement
of Lemma 4.3, (i), below, which thus implies [cf. Lemma 4.3, (i), below] that the étale fundamental
group π1(X) of X is a free profinite group. In particular, since [one also verifies easily that] the
scheme X ×RC is isomorphic to the complement in the projective line over C of distinct 4 closed
points, it follows from Lemma 4.3, (ii), below that π1(X) is a free profinite group of rank 2. Thus,
it follows from Lemma 4.4, (i), (ii), below that there exists an automorphism of π1(X) that does
not preserve the open subgroup π1(X ×RC) ⊆ π1(X) of π1(X). In particular, it is impossible to
establish a “group-theoretic” reconstruction algorithm as in Theorem 3.7 for the smooth curve X
over R.

Lemma 4.3. Let X be a smooth curve over R. Then the following hold:
(i) The following two conditions are equivalent:

(1) The étale fundamental group π1(X) of X is a free profinite group.
(2) The smooth curve X is not proper over R and, moreover, has no R-rational point.

(ii) Let d be a positive integer. Suppose that the smooth curve X has no R-rational point, and
that X ×RC is isomorphic to the complement in the projective line over C of distinct 2d
closed points. Then the étale fundamental group π1(X) of X is a free profinite group of
rank d.

Proof. Let us recall from [5], Exposé IX, Théorème 6.1, that the sequence of profinite groups

1 // π1(X ×RC) // π1(X) // GR // 1

is exact.
First, we verify the implication (1) ⇒ (2) in assertion (i). Suppose that condition (1) is satisfied.

Then since π1(X ×RC) is of index 2 in the free profinite group π1(X) [cf. Proposition 1.1], the
profinite group π1(X ×RC) is free. Thus, it follows immediately from [5], Exposé X, Théorème
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2.6, that X is not proper over R. Moreover, if X has an R-rational point, then the natural surjective
homomorphism π1(X)↠ GR has a splitting; in particular, since the group GR is nontrivial and
finite [cf. Proposition 1.1], the free profinite group π1(X) has a nontrivial torsion element, which
thus implies that we obtain a contradiction. This completes the proof of the implication (1) ⇒ (2)
in assertion (i).

Next, we verify the implication (2) ⇒ (1) in assertion (i). Suppose that condition (2) is satisfied.
Write Xan for the complex analytic space associated to the smooth curve X ×R C over C and
Q def
= Xan/GR for the quotient space of Xan by the natural action of GR. Write, moreover, π top

1 (Xan),
π top

1 (Q) for the topological fundamental groups [relative to appropriate choices of basepoints] of
the topological spaces Xan, Q, respectively. Then since the natural action of the group GR of order
2 [cf. Proposition 1.1] on Xan has no fixed point [cf. condition (2)], the natural surjective map
Xan↠ Q is a double covering map, which thus determines an exact sequence of groups

1 // π top
1 (Xan) // π top

1 (Q) // GR // 1.

Moreover, since Xan, hence also Q, is a noncompact [cf. condition (2); [5], Exposé XII, Proposition
3.2] topological surface, it is well-known [cf., e.g., [4], §4.2.2] that π top

1 (Q) is a free group.
Next, let us observe that it follows from [5], Exposé XII, Corollaire 5.2, that π1(X ×R C) is

isomorphic to the profinite completion of π top
1 (Xan). Moreover, it follows immediately from the

various definitions involved [cf., especially, the definition of Q] that an isomorphism of π1(X ×RC)
with the profinite completion of π top

1 (Xan) extends to an isomorphism of π1(X) with the profinite
completion of π top

1 (Q). Thus, since π top
1 (Q) is a free group, the étale fundamental group π1(X) of

X is a free profinite group, as desired. This completes the proof of the implication (2) ⇒ (1) in
assertion (i), hence also of assertion (i).

Finally, we verify assertion (ii). Suppose that the smooth curve X has no R-rational point,
and that X ×R C is isomorphic to the complement in the projective line over C of distinct 2d
closed points. Let us observe that it follows from assertion (i) that π1(X) is a free profinite group.
Moreover, it follows immediately from [5], Exposé XII, Corollaire 5.2, that π1(X ×RC) is a free
profinite group of rank 2d−1. Thus, since π1(X ×RC) is of index 2 in π1(X) [cf. Proposition 1.1],
it follows from [3], Theorem 3.6.2, that π1(X) is a free profinite group of rank d, as desired. This
completes the proof of assertion (ii), hence also of Lemma 4.3. □
Lemma 4.4. Let d be a positive integer and G a free profinite group of rank d. Then the following
hold:

(i) Suppose that d ≥ 2. Then the set of open subgroups of G of index 2 is of cardinality ≥ 2.
(ii) Let H1, H2 ⊆ G be open subgroups of G of index 2. Then there exists an automorphism α

of the profinite group G such that α(H1) = H2.

Proof. Let {g1, . . . ,gd} ⊆ G be a free generator of G. Write π : G↠ V def
= Gab ⊗Ẑ (Z/2Z) for the

natural surjective homomorphism. Then it is immediate that V has a natural structure of Z/2Z-
module of dimension d; moreover, the subset {π(g1), . . . ,π(gd)} ⊆V forms a basis of the Z/2Z-
module V . For a subset S ⊆ {1, . . . ,d}, write χS : V → Z/2Z for the Z/2Z-linear homomorphism
given by, for each i ∈ {1, . . . ,d}, mapping π(gi) ∈V to 1 ∈ Z/2Z (respectively, 0 ∈ Z/2Z) if i ∈ S
(respectively, i ̸∈ S). Then one verifies easily that, for an arbitrary open subgroup of G of index 2,
there exists a unique nonempty subset S ⊆ {1, . . . ,d} such that the open subgroup coincides with
π−1(Ker(χS)). Thus, assertion (i) holds.
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Next, to verify assertion (ii), let us observe that it follows from the proof of assertion (i) that,
for each i ∈ {1,2}, there exists a nonempty subset Si ⊆ {1, . . . ,d} such that Hi = π−1(Ker(χSi)).
Moreover, let us also observe that one verifies easily that, for a nonempty subset S = {i1, . . . , i]S} ⊆
{1, . . . ,d}, the automorphism of G given by, for each i ∈ {1, . . . ,d}, mapping gi ∈ G to gi ∈ G
(respectively, to gi · gi1 ∈ G) if i ̸∈ S \ {i1} (respectively, i ∈ S \ {i1}) maps π−1(Ker(χS)) ⊆ G
bijectively onto π−1(Ker(χ{i1})) ⊆ G. Thus, to verify assertion (ii), we may assume without loss
of generality that, for each i∈{1,2}, the subset Si ⊆{1, . . . ,d} is of cardinality 1, i.e., that S1 = {a}
and S2 = {b} for some a, b ∈ {1, . . . ,d}. Thus, one verifies immediately that the automorphism of
G given by, for each i ∈ {1, . . . ,d}, mapping gi ∈ G to gi ∈ G (respectively, to ga ∈ G; to gb ∈ G)
if i ̸∈ {a,b} (respectively, i = b; i = a) maps H1 ⊆ G bijectively onto H2 ⊆ G, as desired. This
completes the proof of assertion (ii), hence also of Lemma 4.4. □
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