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REMARKS ON THE PERIODIC ZAKHAROV SYSTEM

NOBU KISHIMOTO

Abstract. We consider the Cauchy problem associated with the Zakharov system on the torus:

i∂tu+ ∆u = nu, α−2∂2
t n−∆n = ∆(|u|2), (t, x) ∈ R× Td;

(u, n, ∂tn)
∣∣
t=0

= (u0, n0, n1) ∈ Hs ×Hl ×Hl−1.

Here, u and n are C- and R-valued unknown functions, respectively, α is a positive constant, and

Hs denotes Sobolev space on the torus. We obtain unconditional uniqueness result in a range of

(s, l), which includes the energy space (s, l) = (1, 0) in one and two dimensions, and also prove

convergence of solutions in the energy space to the solution of a cubic nonlinear Schrödinger

equation as α tends to∞ for dimensions one and two. Our proof of unconditional uniqueness is

based on the method of infinite iteration of the Poincaré-Dulac normal form reduction; actually,

we simply show a certain set of multilinear estimates, which was presented as a criterion for

unconditional uniqueness in [Kishimoto, 2019 (preprint)]. The convergence result is obtained

by a similar argument to the non-periodic case [Masmoudi and Nakanishi, 2008], which exploits

conservation laws and unconditional uniqueness for the limit equation.

1. Introduction

We consider the Cauchy problem associated with the Zakharov system under the periodic

boundary condition: i∂tu+ ∆u = nu,
1

α2
∂2
t n−∆n = ∆(|u|2); t ∈ R, x ∈ Tdλ,

(u, n, ∂tn)
∣∣
t=0

= (u0, n0, n1) ∈ Hs,l(Tdλ),
(1.1)

where α > 0 is a constant, λ ∈ (0,∞)d, and Tdλ := Rd/(2πλ1Z) × · · · × (2πλdZ) is the torus

with period 2πλ = (2πλ1, . . . , 2πλd). We treat the torus of arbitrary period and (by rescaling)

normalize the coefficient of the Laplace operator; ∆ := ∂2
x1 + · · ·+ ∂2

xd
. Write Zdλ to denote the

lattice 1
λ1
Z× · · · × 1

λd
Z corresponding to Tdλ. The unknown functions u, n are C- and R-valued,

respectively, and Hs,l(Tdλ) := Hs(Tdλ;C)×H l(Tdλ;R)×H l−1(Tdλ;R) for s, l ∈ R. For an interval

I ⊂ R, we denote by C(I;Hs,l(Tdλ)) the space of all functions (u, n) such that

u ∈ C(I;Hs(Tdλ;C)), n ∈ C(I;H l(Tdλ;R)) ∩ C1(I;H l−1(Tdλ;R)).

If I = [0, T ], we further abbreviate as CTHs,l(Tdλ).

The (vector-valued) Zakharov system was derived as a model for propagation of Langmuir

waves in a plasma; see, e.g., [17] for more details. There is a wealth of literature on local and

global well-posedness, as well as asymptotic behavior of global solutions, of the Cauchy problem

(1.1) on Rd and on Td; we refer to the recent article [5] and references therein. The aim of this

note is to give two results on the property of the solutions to the periodic Cauchy problem (1.1);

unconditional uniqueness and convergence to a cubic nonlinear Schrödinger equation as α→∞
(subsonic limit). These properties have also been studied in the non-periodic case, while there

seems no result in the periodic setting.
1
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Let us recall existing results on local well-posedness of the periodic Cauchy problem (1.1) in

Sobolev spaces, which were given by Takaoka [18] for d = 1 and the author [9] for d ≥ 2 (see

also an earlier work of Bourgain [3]):

Theorem 1.1 ([18, 9]). The Cauchy problem (1.1) is locally well-posed in Hs,l(Tdλ) in the

following cases:

• d = 1, αλ 6∈ Z, −1
2 ≤ l ≤ 2s− 1

2 , 0 ≤ s− l ≤ 1;

• d = 1, αλ ∈ Z, 0 ≤ l ≤ 2s− 1, 0 ≤ s− l ≤ 1;

• d = 2, α, λ are arbitrary, 0 ≤ l ≤ 2s− 1, 0 ≤ s− l ≤ 1;

• d ≥ 3, α, λ are arbitrary, d−2
2 < l ≤ 2s− d

2 , 0 ≤ s− l ≤ 1.

These results were obtained by the iteration argument using the Fourier restriction norm

(Bourgain norm), and thus uniqueness is ensured only for those solutions with such an auxiliary

norm being finite. In very low regularities (e.g., the case d = 1, αλ 6∈ Z, and (s, l) = (0,−1
2)

in the theorem), one has to impose some additional requirement on solutions (not only to be

in CTHs,l) to ensure that both of the nonlinear terms nu, ∆(|u|2) are well-defined in a certain

sense. However, at least when s + l ≥ 0 and s ≥ 0, these nonlinear terms make sense in the

framework of distribution for any (u, n) ∈ Hs,l, so that one can ask uniqueness within the class

of all (distributional) solutions in CTHs,l, which we refer to as unconditional uniqueness.

Our result on unconditional uniqueness reads as follows:

Theorem 1.2. Let T > 0. For any (u0, n0, n1) ∈ Hs,l(Tdλ), there is at most one solution (in the

sense of distribution) to the Cauchy problem (1.1) in CTHs,l(Tdλ) in the following cases:

• d = 1, αλ 6∈ Z, s > 1
6 , l > −

1
2 and s+ l ≥ 0;

• ([10, Theorem 6.1]) d = 1, αλ ∈ Z, s ≥ 1
2 and l ≥ 0;

• d = 2, α, λ are arbitrary, s ≥ 1
2 and l ≥ 0;

• d ≥ 3, α, λ are arbitrary, s > d−1
2 and l > d−2

2 .

A result on unconditional uniqueness for the non-periodic problem was obtained in [14] by

means of various estimates in Strichartz- and Bourgain-type norms. We prove the theorem by a

different approach; infinite iteration of the Poincaré-Dulac normal form reduction. In [10], the

author developed this methodology for unconditional uniqueness, which had been introduced

in the work of Guo, Kwon, and Oh [6] for the cubic nonlinear Schrödinger equation on T, in

an abstract setting and proved that the overall argument can be reduced to a certain set of

multilinear estimates associated with the nonlinearity of the equation. In this note, we employ

the abstract theory and simply show these multilinear estimates. The case d = 1, α = λ = 1 of

Theorem 1.2 was treated in [10] as a demonstration of the method, and the same proof works in

the case αλ ∈ Z. Note that, in the above theorem, we only consider (s, l) satisfying s ≥ 0 and

s+ l ≥ 0, so that the nonlinear terms make sense in the framework of distribution.

Combining it with Theorem 1.1, we obtain unconditional well-posedness of (1.1). In particu-

lar, when d = 1, 2, the energy space (s, l) = (1, 0) is included for arbitrary α, λ.

Corollary 1.3. The Cauchy problem (1.1) is unconditionally locally well-posed in Hs,l(Tdλ) if:

• d = 1, αλ 6∈ Z, −s ≤ l ≤ 2s− 1
2 , 0 ≤ s− l ≤ 1 and (s, l) 6= (1

6 ,−
1
6), (1

2 ,−
1
2);

• d = 1, αλ ∈ Z, 0 ≤ l ≤ 2s− 1, 0 ≤ s− l ≤ 1;

• d = 2, α, λ are arbitrary, 0 ≤ l ≤ 2s− 1, 0 ≤ s− l ≤ 1;

• d ≥ 3, α, λ are arbitrary, d−2
2 < l ≤ 2s− d

2 , 0 ≤ s− l ≤ 1.
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Next, we study convergence of the solutions (uα, nα) of the periodic Zakharov system i∂tu
α + ∆uα = nαuα,

1

α2
∂2
t n

α −∆nα = ∆(|uα|2), t ∈ R, x ∈ Tdλ,

(uα, nα, ∂tn
α)
∣∣
t=0

= (uα0 , n
α
0 , n

α
1 )

(1.2)

as α→∞. This problem has also been well studied in the Rd case; in principle, the Schrödinger

part uα of the solution converges to the unique solution u of the focusing cubic nonlinear

Schrödinger equation

i∂tu+ ∆u = −|u|2u, t ∈ R, x ∈ Rd (1.3)

with initial condition u(0) = lim
α→∞

uα0 , and the wave part nα converges to −|u|2. In the non-

compatible case nα0 +|uα0 |2 6→ 0, the strong convergence of the wave part is verified after correction

by a fast oscillating linear wave solution; this is called the initial layer. The strong convergence

in Sobolev spaces was first proved in [16] for the compatible data, and then the initial layer

phenomenon and the rate of convergence were investigated in subsequent works [1, 15, 8]. While a

certain amount of regularity (H5, for instance) had been assumed in the above results, Masmoudi

and Nakanishi [13] proved the strong convergence in the energy class H1 × L2 × Ḣ−1(Rd).
Their proof is substantially simpler than the previous ones, only using local well-posedness

(conservation laws) of (1.2), (1.3) and unconditional uniqueness for the limit equation (1.3) in

the energy class, though the rate of convergence is difficult to obtain by it.

We aim here to give an analogous result of [13] in the periodic setting. We focus on one

and two dimensions, because local well-posedness for (1.2) in the energy class has been shown

only in one and two dimensions. In the limit α → ∞, we formally obtain ∆(nα + |uα|2) ∼ 0,

namely, P 6=c(n
α + |uα|2) ∼ 0, where Pc and P 6=c denote the orthogonal projections onto zero

and non-zero frequency modes, respectively. In contrast to the non-periodic (spatially decaying)

case, one cannot determine the asymptotic behavior of the zero mode (spatial mean) of nα from

the relation ∆(nα + |uα|2) ∼ 0. In the periodic case, however, the zero mode of the wave part

of the system (1.2) can be decoupled and explicitly solved as{
∂2
t Pcn

α = 0,(
Pcn

α, ∂tPcn
α
)∣∣
t=0

= (Pcn
α
0 , Pcn

α
1 )

=⇒ Pcn
α(t) = Pcn

α
0 + tPcn

α
1 (t ∈ R).

This suggests that

nα(t, x) = P 6=cn
α(t, x) + Pcn

α(t) ∼ −P 6=c(|uα|2)(t, x) + Pcn
α
0 + tPcn

α
1

as α→∞, and that the Schrödinger part uα converges to the solution of a “shifted” cubic NLS:

i∂tu+ ∆u = −
(
|u|2 − Pc(|u|2)− lim

α→∞

[
Pcn

α
0 + tPcn

α
1

])
u.

Note that, even in the case of mean-zero wave initial data Pcn
α
0 = Pcn

α
1 ≡ 0, the expected limit

equation in the periodic setting differs by Pc(|u|2) from the usual focusing cubic NLS (1.3).1 We

also remark that, if the initial data (uα0 , n
α
0 ) do not satisfy the condition P6=c(n

α
0 + |uα0 |2) = 0 in

the limit α→∞ (i.e., non-compatible), the initial layer should appear as α→∞.

We denote by P≤R, P>R the projection in spatial frequency onto {|k| ≤ R} and {|k| > R},
respectively. Here is our theorem on convergence:

1This is also different from the renormalized (or Wick-ordered) cubic NLS, where 2Pc(|u|2) is subtracted.
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Theorem 1.4. Let d = 1, 2 and λ ∈ (0,∞)d be arbitrary. Let {uα0 , nα0 , nα1 }α ⊂ H1,0(Tdλ) be a

family of initial data satisfying

∃ u∞0 := lim
α→∞

uα0 in H1(Tdλ),

sup
α

∥∥(P 6=cn
α
0 , |α∇|−1P 6=cn

α
1 )
∥∥
L2×L2 <∞,

lim
R→∞

lim sup
α→∞

∥∥(P>Rn
α
0 , |α∇|−1P>Rn

α
1 )
∥∥
L2×L2 = 0,

and

∃ (ν0, ν1) := lim
α→∞

(
Pcn

α
0 , Pcn

α
1

)
. (1.4)

Let (uα, nα) ∈ C([0, Tα);H1,0(Tdλ)) be the (forward-in-time) maximal-lifespan solution of (1.2),2

and let u ∈ C([0, T∞);H1) be the (forward-in-time) maximal-lifespan solution3 of i∂tu+ ∆u = −
(
|u|2 − Pc(|u|2)− ν0 − ν1t

)
u, (t, x) ∈ (0, T∞)× Tdλ,

u(0, x) = u∞0 (x), x ∈ Tdλ.
(1.5)

Then, we have T∞ ≤ lim inf
α→∞

Tα, and for any T ∈ (0, T∞),

uα → u in C([0, T ];H1),

P 6=cn
α − nαil → −P 6=c(|u|2) in C([0, T ];L2),

|α∇|−1∂t(P 6=cn
α − nαil) → 0 in C([0, T ];L2),

Pcn
α → ν0 + ν1t in C1([0, T ])

as α→∞, where the initial layer nαil is given by

nαil(t) := cos
(
t|α∇|

)
P6=c(n

α
0 + |uα0 |2) +

sin
(
t|α∇|

)
|α∇|

P 6=cn
α
1 .

Remark 1.5. The assumptions trivially hold if the initial data are independent of α; (uα0 , n
α
0 , n

α
1 ) ≡

(u0, n0, n1) ∈ H1,0. In this case, one can simply take nαil = cos
(
t|α∇|

)
P 6=c(n

α
0 + |uα0 |2) as the

initial layer, since the remaining part is of O(α−1). On the other hand, (non-zero modes of) the

initial data nα1 ∈ H−1 is allowed to diverge with growth order at most O(α) as α → ∞. For

instance, the data nα1 = αP6=cn1 + Pcn1 for a fixed n1 ∈ H−1 also satisfy the assumptions. In

this case, one needs to modify the initial layer depending on nα1 as in the theorem.

Remark 1.6. The first three assumptions on initial data in the theorem are the same as those

in the Rd case [13]. The last one (1.4), which was not assumed in [13], is necessary for the

convergence of uα in the periodic case. To see this, we first note that, in the periodic case, for

any solution (uα, nα) of (1.2) in the energy class, the transformation

(uα, nα) 7→ (uαei(c0t+
1
2
c1t2), nα − c0 − c1t), c0, c1 ∈ R

gives another energy-class solution of (1.2). Then, consider three families of solutions

(uα, nα), (uαeit sinα, nα − sinα), (uαeit
2 sinα, nα − 2t sinα).

We observe that the first three assumptions are equivalent for all of them. However, the claimed

convergence cannot hold for any two of them at the same time, unless u ≡ 0.

2The maximal-lifespan solution is uniquely defined in the energy class CtH1,0
x by the existence result given in

[18, 9] and the uniqueness result established in Theorem 1.2.
3This is also uniquely defined in CtH

1
x. See Remark 3.4 (i) below.
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The rest of this note is devoted to the proofs of Theorems 1.2 and 1.4, which will be given in

Sections 2 and 3, respectively. Throughout this note, we often use the notation

X ∼ Y, X . Y, X � Y

as abbreviations for

C−1Y ≤ X ≤ CY, X ≤ CY, X > CY

with a suitably large positive constant C.

2. Proof of unconditional uniqueness

2.1. Reduction to the fundamental bilinear estimates. For p ∈ [1,∞] and s ∈ R, let `ps =

`ps(Zdλ) be the weighted `p space on Zdλ with the norm ‖fk‖`ps := ‖〈k〉sfk‖`p , where 〈k〉 := 1 + |k|.
We employ the infinite normal form reduction machinery. As discussed in [10, Sections 1 and

6], unconditional uniqueness of solutions to (1.1) in Hs,l(Tdλ) is established once we have the

following bilinear estimates with some ε > 0:∥∥ ∑
k1=k0+k2

fk0hk2

〈µ±〉1/2
∥∥
`2s((Zdλ)k1 )

. ‖f‖`2l ‖h‖`2s ,

∥∥|k0|
∑

k0=k1−k2

gk1hk2

〈µ±〉1/2
∥∥
`2l ((Z

d
λ)k0 )

. ‖g‖`2s‖h‖`2s ,

∥∥ ∑
k1=k0+k2

〈k0〉+ 〈k2〉
〈k1〉

fk0hk2
〈µ±〉1−ε

∥∥
`2s((Zdλ)k1 )

. ‖f‖`2l ‖h‖`2s ,

∥∥|k0|
∑

k0=k1−k2

〈k1〉+ 〈k2〉
〈k0〉

gk1hk2
〈µ±〉1−ε

∥∥
`2l ((Z

d
λ)k0 )

. ‖g‖`2s‖h‖`2s ,

‖f ∗ h‖`2s−1
. ‖f‖`2l ‖h‖`2s ,

‖g ∗ h‖`2l . ‖g‖`2s‖h‖`2s
for any non-negative sequences f ∈ `2l (Zdλ), g, h ∈ `2s(Zdλ), where4

µ± := |k1|2 − |k2|2 ± α|k0|

and ∗ denotes the convolution.

We see that the first four estimates are equivalent by duality to the trilinear estimates∑
k0,k1,k2∈Zdλ
k0=k1−k2

Wj(k0, k1, k2)fk0gk1hk2 . ‖f‖`2‖g‖`2‖h‖`2 , j = 1, . . . , 4
(2.1)

for non-negative sequences f, g, h ∈ `2(Zdλ), where

W1 =
〈k1〉s

〈µ±〉1/2〈k0〉l〈k2〉s
, W2 =

〈k0〉l|k0|
〈µ±〉1/2〈k1〉s〈k2〉s

,

W3 =
〈k1〉s−1(〈k0〉+ 〈k2〉)
〈µ±〉1−ε〈k0〉l〈k2〉s

, W4 =
〈k0〉l−1|k0|(〈k1〉+ 〈k2〉)
〈µ±〉1−ε〈k1〉s〈k2〉s

.

The next proposition is the main ingredient of the proof of Theorem 1.2:

4In [10], µ̃± = |k1|2 − |k2|2 ± 〈αk0〉 was used instead of µ± (and α was taken to be 1). Since 〈µ±〉 ∼ 〈µ̃±〉,
there is no difference in the above estimates.
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Proposition 2.1. The estimate (2.1) holds with some ε > 0 in the following cases:

(i) d = 1, αλ 6∈ N, 1
6 < s < 1

2 , and l = −s.
(ii) d = 2, (s, l) = (1

2 , 0).

(iii) d ≥ 3, s > d−1
2 , l = s− 1

2 .

We observe that the last two estimates on the convolution, which are equivalent to the Sobolev

estimates on the product, hold if and only if

A1 := min{1− s+ l, s+ l} ≥ 0, B1 := 1 + l − d

2
≥ 0 with (A1, B1) 6= (0, 0)

and A2 := min{s− l, 2s} ≥ 0, B2 := 2s− l − d

2
≥ 0 with (A2, B2) 6= (0, 0).

These conditions are satisfied in each of the cases (i)–(iii) in Proposition 2.1. Finally, note that

uniqueness of solution in CTHs,l implies that in CTHs
′,l′ for any s′ ≥ s and l′ ≥ l. Therefore, to

establish Theorem 1.2 it suffices to show Proposition 2.1.

2.2. One dimensional case. In this subsection, we shall prove Proposition 2.1 (i).

It is easy to check Wj . 1 when k0 = 0, which implies (2.1) in this case. Assume k0 6= 0, then

it holds 〈µ±〉 = 〈k0(k0 + 2k2 ± α sgn(k0))〉 under the relation k0 = k1 − k2. If αλ 6∈ N, we have

|k0 + 2k2 ± α sgn(k0)| ≥ dist( 1
λZ, α) > 0, and in particular,

〈µ±〉 ∼ 〈k0〉〈k0 + 2k2 ± α sgn(k0)〉 ∼ 〈k0〉〈k0 + 2k2〉. (2.2)

Let l = −s. Using this factorization, for W1 and W2, we see that

W1 ∼
〈k0 + k2〉s

〈k0〉1/2−s〈k0 + 2k2〉1/2〈k2〉s
.

1|k0+k2|�|k2|

〈k0〉1/2−s〈k0 + 2k2〉1/2−s〈k2〉s
+

1|k0+k2|.|k2|

〈k0〉1/2−s〈k0 + 2k2〉1/2
,

W2 ∼
〈k0〉1/2−s

〈k0 + 2k2〉1/2〈k0 + k2〉s〈k2〉s
.

1|k0+2k2|&|k0|

〈k0 + 2k2〉s〈k0 + k2〉s〈k2〉s
+

1|k0+2k2|�|k0|

〈k0 + 2k2〉1/2〈k2〉3s−1/2
,

where 1A denotes the characteristic function of the set A or the set of variables satisfying the

condition A. For W3, we take ε = 1
2 ;

W3 ∼
〈k0〉+ 〈k2〉

〈k0〉1/2−s〈k0 + 2k2〉1/2〈k0 + k2〉1−s〈k2〉s

.
1|k0+k2|�|k2|

〈k0〉1−2s〈k2〉s
+

1|k0+k2|∼|k2|

〈k0〉1/2−s〈k0 + 2k2〉1/2
+

1|k0+k2|�|k2|

〈k0 + k2〉1−s
,

and for W4 we take ε = 1
3 , so that

W4 ∼
〈k0 + k2〉+ 〈k2〉

〈k0〉2/3+s〈k0 + 2k2〉2/3〈k0 + k2〉s〈k2〉s

.
1|k0+2k2|�|k0|

〈k0〉2/3+s〈k2〉2s−1/3
+

1|k0+2k2|∼|k0|

〈k0〉1/3+s〈k0 + k2〉s〈k2〉s
+

1|k0+2k2|�|k0|

〈k0 + 2k2〉2/3〈k2〉3s−1/3
.

If 1
6 < s < 1

2 , we deduce from these estimates that

Wj .
1

〈k0〉1/2+δ
+

1

〈k0 + 2k2〉1/2+δ
+

1

〈k0 + k2〉1/2+δ
+

1

〈k2〉1/2+δ
, j = 1, . . . , 4

for some δ > 0. We then apply the Hölder inequality to obtain (2.1).
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2.3. Two and higher dimensional cases. In this subsection, we shall prove Proposition 2.1

(ii), (iii). The main difficulty comes from the fact that we do not have a factorization like (2.2).

We divide the analysis into three cases according to the size of |µ±|. Let kmax and kmin be the

largest and the smallest quantities among |k0|, |k1|, |k2|, respectively.

2.3.1. High modulation interactions. We begin with the case |µ±| & k2
max and prove (2.1) with

ε = 1
2 . Under the condition l = s− 1

2 , it holds that

Wj .
1

〈kmax〉1/2〈kmin〉s
, j = 1, . . . , 4.

This and the Sobolev inequality imply (2.1); in fact, the desired estimate∑
k0,k1,k2∈Zdλ
k0=k1−k2

fk0gk1hk2

〈kmax〉1/2〈kmin〉s
. ‖f‖`2‖g‖`2‖h‖`2

is the dual of the product estimate

‖uv‖L2(Tdα) . ‖u‖H1/2(Tdα)‖v‖Hs(Tdα),

which holds true if d ≥ 2 and s ≥ d−1
2 .

2.3.2. Middle modulation interactions. Hereafter, we assume |µ±| � k2
max. This in particular

implies |k0| . |k1| ∼ |k2|. Taking s = l + 1
2 (≥ 1

2) and ε = 1
2 , we see that

Wj .
1

〈µ±〉1/2〈k0〉l
, j = 1, . . . , 4.

If |k0| . 1, then the left-hand side of (2.1) is bounded by ‖1|n0|.1f‖`1‖g‖`2‖h‖`2 , which is

sufficient. It then suffices to prove∑
k0=k1−k2

1�|k0|.|k1|∼|k2|
|µ±|�k2max

fk0gk1hk2

〈µ±〉1/2〈k0〉l
. ‖f‖`2‖g‖`2‖h‖`2

(2.3)

for l = 0 if d = 2 and l > d−2
2 if d ≥ 3.

Here, we consider the middle-modulation case kmax . |µ±| � k2
max, following the idea in [9,

Section 3.2] for the corresponding bilinear estimates in Bourgain spaces. First, restrict k0, k1, k2

to 〈kj〉 ∼ Nj for dyadic numbers N0, N1, N2 with N1 ∼ N2 & N0 � 1, and then restrict µ± to

〈µ±〉 ∼M for a dyadic N1 .M � N2
1 , so that

L.H.S. of (2.3) .
∑

N1∼N2

∑
1�N0.N1

N1.M�N2
1

1

M1/2N l
0

∑
k0=k1−k2
〈kj〉∼Nj
〈µ±〉∼M

fk0gk1hk2 .

Since in the last sum we have∣∣|k1| − |k2|
∣∣ =

∣∣µ± ∓ α|k0|
∣∣

|k1|+ |k2|
= O

(M
N1

)
,

decomposition into annuli:

gk1hk2 =
∑
m1,m2

(1Am1
g)k1(1Am2

h)k2 ,

Am :=

{
k ∈ Zdλ

∣∣∣∣mM

N1
≤ |k| ≤ (m+ 1)

M

N1

}
, m ∈ Z, m ∼ N2

1

M
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exhibits almost orthogonality. If N0 � N1, we make further decomposition into cubes:

gk1hk2 =
∑
n1,n2

(1Qn1g)k1(1Qn2h)k2 ,

Qn :=
{
k ∈ Zdλ

∣∣∣ |k − n| ∈ [0, N0]d
}
, n ∈ (N0Z)d, |n| ∼ N1

and make use of its almost orthogonality. Hence,

L.H.S. of (2.3) .
∗∑

N1,N2

∑
1�N0.N1

N1.M�N2
1

1

M1/2N l
0

∗∑
m1,m2

∗∑
n1,n2

∑
k0=k1−k2

〈k0〉∼N0, 〈µ±〉∼M
k1∈Am1∩Qn1
k2∈Am2∩Qn2

fk0gk1hk2 ,

where
∑∗ stand for almost orthogonal sums (i.e., one index determines the other up to O(1)

ambiguity). Now, we recall another identity

k0

|k0|
· k1 =

1

2|k0|

(
|k0|2 ∓ α|k0|+ µ±

)
=

1

2|k0|

(
|k0|2 ∓ α|k0|

)
+O

(M
N0

)
,

which restricts k0
|k0| -component of k1 into an interval of length O(MN0

) for each k0 fixed. Therefore,

for fixed k0, k1 is confined to the intersection of a cube, an annulus, and a plate. An elementary

computation (see [9, Lemma 2.9 (i)]) evaluates the number of frequencies k1 ∈ Zdλ in such a

region by

C min
{
Nd

0 ,
M

N1
Nd−1

0 ,
M

N0
M

1
2Nd−2

0

}
.MNd−2

0

(N0

N1

) 1
2

min
{N2

0

M
,
M1/2

N0

} 1
2
.

By the Cauchy-Schwarz inequality in k1, we have (for d ≥ 2 and l ≥ d−2
2 )

L.H.S. of (2.3)

.
∗∑

N1,N2

∑
N0,M

1

M1/2N l
0

∗∑
m1,m2

∗∑
n1,n2

[
MNd−2

0

(N0

N1

) 1
2

min
{N2

0

M
,
M1/2

N0

} 1
2
] 1

2

×
∑
k0

fk0

(∑
k1

(1Am1∩Qn1g)2
k1(1Am2∩Qn2h)2

k1−k0

) 1
2

. ‖f‖`2
∗∑

N1,N2

‖1〈k1〉∼N1
g‖`2‖1〈k2〉∼N2

h‖`2
∑

N0.N1

(N0

N1

) 1
4
∑
M

min
{N2

0

M
,
M1/2

N0

} 1
4

. ‖f‖`2‖g‖`2‖h‖`2 .

2.3.3. Low modulation interactions. The remaining case |µ±| � kmax can also be treated by

mimicking the proof of the corresponding bilinear estimates in [9, Section 3.3]. Note that we need

more delicate analysis including decomposition with respect to the angles between frequencies.

Here, we take a different approach. It was mentioned in [10, Remark 1.2] that some of the

multilinear estimates required for the normal form reduction argument have close relationship

with the standard multilinear estimates in Bourgain spaces, which are used to prove conditional

well-posedness. In our setting, the desired estimate (2.3) corresponds to the bilinear estimate∥∥ 1

〈τ1 + |k1|2〉b1

∫
R

∑
k0∈Zdλ

1�|k0|.|k1|∼|k1−k0|
|µ±|�kmax

w̃(τ0, k0)ũ(τ1 − τ0, k1 − k0) dτ0

∥∥
L2
τ1,k1

.
∥∥〈k0〉l〈τ0 ∓ α|k0|〉b0w̃(τ0, k0)

∥∥
L2
τ0,k0

∥∥〈τ2 + |k2|2〉
b2 ũ(τ2, k2)

∥∥
L2
τ2,k2

(2.4)
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with b0 = b1 = b2 = 1
2 . It is not clear whether the equivalence of these estimates holds in a

general setting. Nevertheless, we will see that (2.4) implies (2.3) if b0 + b1 + b2 < 1:

Lemma 2.2. Let s1, s2, l ∈ R, γ ≥ 0, and Ω be a subset of {(k0, k1, k2) ∈ (Zdλ)3 | k0 = k1 − k2}.
Assume that there exist b0, b

′
0, b1, b2, b

′
2 ≥ 0 with b0 + b1 + b2, b

′
0 + b1 + b′2 <

1
2 + γ such that∥∥〈k1〉s1

〈ρ1〉b1

∫
τ1=τ0+τ2

∑
k0,k2∈Zdλ

1Ω(k0, k1, k2)1〈ρ0〉≤〈ρ2〉.〈ρ1〉∼〈µ±〉w̃(τ0, k0)ũ(τ2, k2) dτ0

∥∥
L2
τ1,k1

.
∥∥〈k0〉l〈ρ0〉b0w̃(τ0, k0)

∥∥
L2
τ0,k0

∥∥〈k2〉s2〈ρ2〉b2 ũ(τ2, k2)
∥∥
L2
τ2,k2

,

∥∥〈k1〉s1

〈ρ1〉b1

∫
τ1=τ0+τ2

∑
k0,k2∈Zdλ

1Ω(k0, k1, k2)1〈ρ2〉≤〈ρ0〉.〈ρ1〉∼〈µ±〉w̃(τ0, k0)ũ(τ2, k2) dτ0

∥∥
L2
τ1,k1

.
∥∥〈k0〉l〈ρ0〉b

′
0w̃(τ0, k0)

∥∥
L2
τ0,k0

∥∥〈k2〉s2〈ρ2〉b
′
2 ũ(τ2, k2)

∥∥
L2
τ2,k2

,

(2.5)

where ρ0 := τ0 ∓ α|k0|, ρ1 := τ1 + |k1|2, and ρ2 := τ2 + |k2|2. Then, we have∥∥ ∑
k0,k2∈Zdλ

1Ω(k0, k1, k2)fk0hk2
〈µ±〉γ

∥∥
(`2s1 )k1

. ‖f‖`2l ‖h‖`2s2 .

Proof. Let

I :=
{

(101
100)n

∣∣n ∈ Z, n ≥ 0
}
,

ΩL,σ :=
{

(k0, k1, k2) ∈ Ω
∣∣ 1 + |µ±| ∈ [L, 101

100L), σµ± ≥ 0
}

(L ∈ I, σ ∈ {±1}).

Take arbitrary non-negative sequences f ∈ `2l , h ∈ `2s2 , and define

w̃L(τ, k) := 1[− L
10
, L
10

](τ ∓ α|k|)fk, ũL(τ, k) := 1[− L
10
, L
10

](τ + |k|2)hk (L ∈ I).

We observe that, for (k0, k1, k2) ∈ ΩL,σ and τ1 ∈ R,∫
R
1[− L

10
, L
10

](τ0 ∓ α|k0|)1[− L
10
, L
10

](τ1 − τ0 + |k2|2) dτ0

≥ L

10
1[− L

10
, L
10

](τ1 + |k1|2 − µ±) ≥ L

10
1[− L

20
, L
20

](τ1 + |k1|2 − σ(L− 1)),

and ∫
R
1[− L

10
, L
10

](τ0 ∓ α|k0|)1[− L
10
, L
10

](τ1 − τ0 + |k2|2) dτ0 6= 0 ⇒ 〈ρ1〉 ∼ 〈µ±〉 ∼ L.

Hence, for each L ∈ I and σ ∈ {±1}, we have∥∥ ∑
k0,k2∈Zdλ

1ΩL,σ(k0, k1, k2)fk0hk2
〈µ±〉γ

∥∥
(`2s1 )k1

∼ L−
1
2

∥∥〈k1〉s1‖1[− L
20
, L
20

](ρ1 − σ(L− 1))‖L2
τ1

∑
k0,k2∈Zdλ

1ΩL,σfk0hk2
〈µ±〉γ

∥∥
(`2)k1

. L−
3
2

∥∥〈k1〉s1
∫
R

∑
k0,k2∈Zdλ

1ΩL,σ

〈µ±〉γ
w̃L(τ0, k0)ũL(τ1 − τ0, k2) dτ0

∥∥
L2
τ1,k1

. L−
3
2
−γ+b1

∥∥〈k1〉s1

〈ρ1〉b1

∫
τ1=τ0+τ2

∑
k0,k2∈Zdλ

1ΩL,σ1〈ρ0〉,〈ρ2〉.〈ρ1〉∼〈µ±〉w̃L(τ0, k0)ũL(τ2, k2) dτ0

∥∥
L2
τ1,k1

,
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and then, using (2.5),

. L−
3
2
−γ+b1

(∥∥〈k0〉l〈ρ0〉b0w̃L(τ0, k0)
∥∥
L2
τ0,k0

∥∥〈k2〉s2〈ρ2〉b2 ũL(τ2, k2)
∥∥
L2
τ2,k2

+
∥∥〈k0〉l〈ρ0〉b

′
0w̃L(τ0, k0)

∥∥
L2
τ0,k0

∥∥〈k2〉s2〈ρ2〉b
′
2 ũL(τ2, k2)

∥∥
L2
τ2,k2

)
. ‖f‖`2l ‖h‖`2s2

(
L−

1
2
−γ+b0+b1+b2 + L−

1
2
−γ+b′0+b1+b′2

)
.

From the assumption on b0, b
′
0, b1, b2, b

′
2, we have∥∥ ∑

k0,k2∈Zdλ

1Ωfk0hk2
〈µ±〉γ

∥∥
(`2s1 )k1

≤
∑

L∈I, σ∈{±1}

∥∥ ∑
k0,k2∈Zdλ

1ΩL,σfk0hk2
〈µ±〉γ

∥∥
(`2s1 )k1

. ‖f‖`2l ‖h‖`2s2 ,

as desired. �

From [9, Propositions 3.9, 3.6], we can easily deduce the bilinear estimates (2.5) for s1 = s2 =

0, l = 0 if d = 2 and l > d−2
2 if d ≥ 3, and Ω = {(k0, k1, k2) | k0 = k1−k2, |µ±| � kmax, |k0| � 1},

under the condition that b1 = b2 = b′0 >
3
8 , b0 = b′2 > 0. In view of Lemma 2.2, the desired

estimate (2.3) is obtained.

This completes the proof of Proposition 2.1.

3. Proof of convergence as α→∞

3.1. Preliminaries. Before the proof, we first reduce the problem to the case of mean-zero

wave part. As mentioned in Section 1, any solution (uα, nα) ∈ CTH1,0 to (1.2) (in the sense of

distribution) is also a solution to
i∂tu

α + ∆uα =
(
P 6=cn

α + Pcn
α
0 + tPcn

α
1

)
uα,

1

α2
∂2
t P6=cn

α −∆P 6=cn
α = ∆(|uα|2), (t, x) ∈ (0, T )× Tdλ,(

uα, P6=cn
α, ∂tP 6=cn

α
)∣∣
t=0

= (uα0 , P6=cn
α
0 , P6=cn

α
1 ).

We introduce

(ũα, ñα)(t) :=
(
uα(t)ei(tPcn

α
0 + t2

2
Pcnα1 ), P6=cn

α(t)
)
,

which solves i∂tũ
α + ∆ũα = ñαũα,

1

α2
∂2
t ñ

α −∆ñα = ∆(|ũα|2), (t, x) ∈ (0, T )× Tdλ,(
ũα, ñα, ∂tñ

α
)∣∣
t=0

= (uα0 , ñ
α
0 , ñ

α
1 ) := (uα0 , P6=cn

α
0 , P6=cn

α
1 ) ∈ H1,0

0 (Tdλ),
(3.1)

where

H l
0(Tdλ) := P 6=cH

l(Tdλ), H1,0
0 (Tdλ) := H1(Tdλ;C)× L2

0(Tdλ;R)×H−1
0 (Tdλ;R).

Conversely, for any (uα0 , P6=cn
α
0 , P6=cn

α
1 ) ∈ H1,0

0 the maximal-lifespan solution of (3.1) exists

uniquely in C([0, Tα);H1,0
0 ), and (with Pcn

α
0 , Pcn

α
1 ∈ R given) the maximal-lifespan solution of

the original equation (1.2) (with the same maximal existence time) is given by

(uα, nα)(t) =
(
ũα(t)e−i(tPcn

α
0 + t2

2
Pcnα1 ), ñα(t, x) + Pcn

α
0 + tPcn

α
1

)
.

Clearly, Theorem 1.4 follows once we prove the following:
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Proposition 3.1. Let {uα0 , ñα0 , ñα1 }α ⊂ H
1,0
0 (Tdλ) be a family of initial data satisfying

∃ u∞0 := lim
α→∞

uα0 in H1(Tdλ), (3.2)

sup
α

∥∥(ñα0 , |α∇|−1ñα1 )
∥∥
L2×L2 <∞, (3.3)

lim
R→∞

lim sup
α→∞

∥∥(P>Rñ
α
0 , |α∇|−1P>Rñ

α
1 )
∥∥
L2×L2 = 0. (3.4)

Let (ũα, ñα) ∈ C([0, Tα);H1,0
0 (Tdλ)) be the (unique) maximal-lifespan solution of (3.1), and let

ũ ∈ C([0, T∞);H1) be the (unique) maximal-lifespan solution of the Cauchy problem i∂tũ+ ∆ũ = −P 6=c(|ũ|2)ũ, (t, x) ∈ (0, T∞)× Tdλ,

ũ(0, x) = u∞0 (x), x ∈ Tdλ.
(3.5)

Then, we have

T∞ ≤ lim inf
α→∞

Tα, (3.6)

and for any T ∈ (0, T∞),(
ũα, ñα − ñαil, |α∇|−1∂t(ñ

α − ñαil)
)
→

(
ũ, −P 6=c(|ũ|2), 0

)
in C([0, T ];H1 × L2

0 × L2
0) (3.7)

as α → ∞, where ñαil ∈ C(R;L2
0(Tdλ;R)) ∩ C1(R;H−1

0 (Tdλ;R)) is the solution of the following

linear wave equation: 
1

α2
∂2
t ñ

α
il −∆ñαil = 0, (t, x) ∈ R× Tdλ,(

ñαil, ∂tñ
α
il

)∣∣
t=0

=
(
ñα0 + P6=c(|uα0 |2), ñα1

)
.

For the solution of (3.1) in CTH1,0
0 , with the property Pc∂tñ

α(t) ≡ 0, the mass and the energy

M(ũα(t)) :=
∥∥ũα(t)

∥∥2

L2 ,

Eα(ũα(t), ñα(t)) :=
∥∥∇ũα(t)

∥∥2

L2 +
1

2

∥∥ñα(t)
∥∥2

L2 +
1

2

∥∥|α∇|−1∂tñ
α(t)

∥∥2

L2 +

∫
Tdλ
ñα(t)|ũα(t)|2

are well-defined and formally conserved. The solution of (3.5) (as well as that of the standard

NLS (1.3)) in the energy class ũ ∈ H1 also (formally) conserves the mass M(ũ(t)) and the energy

E(ũ(t)) :=
∥∥∇ũ(t)

∥∥2

L2 −
1

2

∥∥ũ(t)
∥∥4

L4 .

It is worth noticing that the energy functionals for (3.1) and (3.5) have the following relation:

Eα(ũα, ñα) = E(ũα) +
1

2

∥∥ñα + |ũα|2 − i|α∇|−1∂tñ
α
∥∥2

L2 .

We recall the result on local well-posedness of these Cauchy problems in the energy space

including (rigorous) conservation laws, which is a crucial tool to prove Proposition 3.1.

Lemma 3.2 (Local well-posedness; [18, 9, 2, 4]). Let d = 1, 2 for (3.1) and d = 1, 2, 3 for (3.5),

λ ∈ (0,∞)d be arbitrary. Then, the initial value problems for (3.1) (with any α > 0) and (3.5)

on Tdλ are locally well-posed in the energy space H = H1,0
0 (Tdλ) and H1(Tdλ), respectively. In

particular, for any initial data in H, there exists a local-in-time solution in C([0, T ];H), with

existence time T > 0 depending only on the size of the initial data in H (and also on α in

the case of (3.1)), which depends continuously on the initial data. Moreover, the mass and the

energy are conserved for these solutions.5

5This can be deduced from the local well-posedness result in the energy space by a standard approximation

argument based on persistence of regularity and continuous dependence of solutions upon initial data.
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Another important ingredient of the proof is the following:

Lemma 3.3 (Unconditional uniqueness; [7]). Let d = 1, 2, 3, λ ∈ (0,∞)d be arbitrary, and

T > 0. For any u0 ∈ H1(Tdλ), there are at most one solution (in the sense of distribution) of

(3.5) in L∞(0, T ;H1(Tdλ)) satisfying u(0) = u0.
6

Remark 3.4. (i) The known results [2, 4, 7] on local well-posedness and unconditional uniqueness

in the energy space for the cubic NLS (1.3) on Tdλ are transformed into the same results for shifted

NLS (3.5) and (1.5) by the changes of unknown function

u(t, x) 7→ u(t, x) exp
{
i

∫ t

0

1

|Tdλ|
‖u(t′)‖2

L2(Tdλ)
dt′
}

for (3.5),

u(t, x) 7→ u(t, x) exp
{
i

∫ t

0

( 1

|Tdλ|
‖u(t′)‖2

L2(Tdλ)
+ ν0 + ν1t

′
)
dt′
}

for (1.5).

As easily seen, these maps are homeomorphisms on L∞(0, T ;H1(Tdλ)) or C([0, T ];H1(Tdλ)) for

any T > 0 and transform a solution (in the sense of distribution) of (3.5) and (1.5), respectively,

to a solution of (1.3).

(ii) In [7], uniqueness of solutions to (1.3) on Tdλ, d = 2, 3, was shown in the class of mild

Hs-solutions (see [7, Definition 1.1]) for some s < 1. First, we see that any distributional

solution in C([0, T ];Hs) turns out to be a mild Hs-solution if d = 2, 3 and s is close to 1;

see [11, Remark 1.3] for details. Then, any distributional solution in L∞(0, T ;H1) belongs to

W 1,∞(0, T ;H−1) ⊂ C([0, T ];H−1) by the equation and hence to C([0, T ];Hs) for any s < 1 by

interpolation. Consequently, we can deduce uniqueness in L∞(0, T ;H1) from the result in [7]. In

the one-dimensional case, uniqueness holds in C([0, T ];Hs) for s > 1
2 by the Sobolev inequality,

which implies uniqueness in L∞(0, T ;H1) as above.

(iii) To prove Proposition 3.1 we need uniqueness of the solution to (3.5) in L∞(0, T ;H1);

in fact, uniqueness in C([0, T ];H1) is not sufficient. For the Zakharov system (1.2), we have

proved uniqueness in C([0, T ];Hs,l) as “unconditional uniqueness” in Theorem 1.2. Concerning

the energy-space regularity, uniqueness in a wider class L∞(0, T ;H1,0) follows from Theorem 1.2

in the case d = 1 and αλ 6∈ Z by the same argument as above, whereas it does not follow if

αλ ∈ Z or in the two-dimensional case, since we do not have uniqueness in C([0, T ],Hs,l) with

l < 0. Note, however, that uniqueness in L∞(0, T ;H1,0) for (1.2) will not be required in our

proof of Proposition 3.1.

3.2. Proof. Now, we present a proof of Proposition 3.1. We follow closely the argument for the

non-periodic case given in [13, Section 6].

Proof of Proposition 3.1. We focus on the two-dimensional case; the one-dimensional case can

be treated by the same argument with some modifications on exponents related to the Sobolev

embedding. We proceed in several steps.

Step 1: We shall show uniform-in-α a priori bound on the energy norm of (ũα, ñα): There

exists T0 > 0 and C > 0 independent of α such that

Xα,T0 := max
0≤t≤T0

(
‖ũα(t)‖2H1 +

1

2
‖ñα(t)‖2L2 +

1

2

∥∥|α∇|−1∂tñ
α(t)

∥∥2

L2

)
≤ C. (3.8)

6Any distributional solution u(t) in L∞(0, T ;H1) belongs to W 1,∞(0, T ;H−1) by the equation, and thus has

limits in H−1 at endpoints t → 0, T and is extended to a function in C([0, T ];H−1). The initial condition then

makes sense in H−1.
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In particular, by Lemma 3.2, it holds that Tα > T0 for any α.

By the conservation laws and (3.2), (3.3), together with the Hölder inequality and the Sobolev

embedding, the conserved quantities M(ũα(t)) and Eα(ũα(t), ñα(t)) are bounded uniformly in

α as long as the solution exists. Since

Xα,T = max
0≤t≤T

(
M(ũα(t)) + Eα(ũα(t), ñα(t))−

∫
ñα(t)|ũα(t)|2

)
,

it suffices to control the cubic term
∫
ñα|ũα|2. By the Hölder inequality, the Sobolev embedding,

interpolation and the Duhamel formula, we see that, for t ∈ [0, T ],∣∣∣ ∫ ñα(t)|ũα(t)|2
∣∣∣ . ‖ñα(t)‖L2

(∥∥eit∆uα0∥∥2

H1/2 +
∥∥ũα(t)− eit∆uα0

∥∥2

H1/2

)
. X

1
2
α,T

(
‖uα0 ‖2H1/2 +

∥∥ũα(t)− eit∆uα0
∥∥ 4

3

H1

∥∥ñαũα∥∥ 2
3

L1(0,T ;H−1/2)

)
,

which is, by Sobolev and interpolation again as well as the mass conservation law, bounded by

. X
1
2
α,T

(
‖uα0 ‖2H1/2 +

(
X

2
3
α,T + ‖uα0 ‖

4
3

H1

)
T

2
3 ‖ñα‖

2
3

L∞(0,T ;L2)
‖ũα‖

2
3

L∞(0,T ;H1/2)

)
. X

1
2
α,T

(
‖uα0 ‖2H1/2 +

(
X

2
3
α,T + ‖uα0 ‖

4
3

H1

)
T

2
3X

1
3
α,TX

1
6
α,T ‖u

α
0 ‖

1
3

L2

)
. ‖uα0 ‖2H1/2X

1
2
α,T + T

2
3 ‖uα0 ‖

5
3

H1Xα,T + T
2
3 ‖uα0 ‖

1
3

L2X
5
3
α,T .

Using (3.2) again, we have

Xα,T ≤ C0(1 + T
2
3 ) + C1T

2
3X

5
3
α,T

for some constants C0, C1 > 0 independent of α. Since Xα,T is continuous in T , a bootstrap

argument shows Xα,T ≤ 2C0 if T is sufficiently small depending on C0, C1, which yields (3.8).

Step 2: Let T0 be as in Step 1. We shall show that for any sequence αk → ∞ there exist a

subsequence αkl and ũ∞ ∈ L∞(0, T0;H1) ∩ C([0, T0];H1/2) such that

ũαkl → ũ∞ in C([0, T0]; w-H1 ∩H1/2),

ñαkl + |ũαkl |2 ⇀ Pc(|ũ∞|2) weakly in L2((0, T0)× T2
λ).

Here, convergence in C([0, T0]; w-H1) means that

sup
0≤t≤T0

∣∣〈ũαkl (t)− ũ∞(t), ψ(t)
〉
H1

∣∣→ 0, ψ ∈ C([0, T0];H1).

In particular, by the Sobolev embedding, ũαkl → ũ∞ strongly in C([0, T0];L4).

Let us first establish the convergence of ũα. By Step 1, {(ũα, ñα)}α is bounded in C([0, T0];H1×
L2), so that {∂tũα = i(∆ũα − ñαũα)}α is bounded in C([0, T0];H−1). This implies that {ũα}α
is equicontinuous in H−1 at any t ∈ [0, T0], and thus in Hs for any s < 1 by interpolation.

Since {ũα(t)}α is relatively compact in Hs for s < 1 by the compact embedding H1 ↪→ Hs,

Ascoli’s theorem (cf. [12, Chapter III, Theorem 3.1]) shows that {ũα}α is relatively compact

in C([0, T0];Hs) for s < 1. The case of s = 1/2 implies, for any {αk}k, existence of a sub-

sequence {ũαkl}l converging to some ũ∞ strongly in C([0, T0];H1/2). Moreover, since for each

t ∈ [0, T0] (any subsequence of) the bounded sequence {ũαkl (t)}l ⊂ H1 has a weakly convergent

subsequence, we see the sequence itself converges to ũ∞(t) weakly in H1. The weak lower semi-

continuity of the norm and the bound from Step 1 then show that ũ∞ ∈ L∞(0, T0;H1). Finally,
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for any ψ ∈ C([0, T0];H1), we use strong convergence in C([0, T0];H1/2) and boundedness of

ũ∞(t) in H1 obtained so far and notice lim
R→∞

‖P>Rψ‖L∞(0,T0;H1) = 0 to have

lim sup
l→∞

sup
0≤t≤T0

∣∣〈ũαkl (t)− ũ∞(t), ψ(t)
〉
H1

∣∣
≤ lim

l→∞
‖ũαkl − ũ∞‖L∞(0,T0;H1/2)‖P≤Rψ‖L∞(0,T0;H3/2)

+
(

sup
l
‖ũαkl‖L∞(0,T0;H1) + ‖ũ∞‖L∞(0,T0;H1)

)
‖P>Rψ‖L∞(0,T0;H1)

→ 0 (R→∞),

which shows convergence in C([0, T0]; w-H1).

Next, we derive weak convergence of ñα + |ũα|2. We see ∆(ñαkl + |ũαkl |2) = α−2
kl
∂2
t ñ

αkl → 0

in D′((0, T0) × T2
λ) by the uniform bound on ñα from Step 1. This particularly implies that

ñαkl + P 6=c(|ũαkl |2) → 0 in D′((0, T0) × T2
λ). Moreover, strong convergence of {ũαkl}l obtained

above shows Pc(|ũαkl |2) → Pc(|ũ∞|2) in C([0, T0]). Consequently, we have ñαkl + |ũαkl |2 →
Pc(|ũ∞|2) in D′((0, T0) × T2

λ). On the other hand, (any subsequence of) {ñαkl + |ũαkl |2}l is

bounded in L2((0, T0) × T2
λ) and therefore has a weakly convergent subsequence. Hence, the

sequence {ñαkl + |ũαkl |2}l itself converges to Pc(|ũ∞|2) weakly in L2((0, T0)× T2
λ).7

Step 3: We shall show that T∞ > T0 and ũα → ũ in C([0, T0]; w-H1 ∩H1/2) as α→∞.

We first prove that ũ∞ given in Step 2 is a solution of (3.5) on (0, T0) × T2
λ in the sense of

distribution. The initial condition is easily verified from strong convergence in Step 2 and (3.2),

so it suffices to show that

ñαkl ũαkl → −P 6=c(|ũ∞|2)ũ∞ in D′((0, T0)× T2
λ) (l→∞).

For any ψ ∈ C∞0 ((0, T0)× T2
λ), we see that∣∣∣ ∫ T0

0

∫
T2
λ

(
ñαkl ũαkl + P6=c(|ũ∞|2)ũ∞

)
ψ dx dt

∣∣∣
≤
∣∣∣ ∫ T0

0

∫
T2
λ

ñαkl
(
ũαkl − ũ∞

)
ψ dx dt

∣∣∣+
∣∣∣ ∫ T0

0

∫
T2
λ

(
ñαkl + |ũαkl |2 − Pc(|ũ∞|2)

)
ũ∞ψ dx dt

∣∣∣
+
∣∣∣ ∫ T0

0

∫
T2
λ

(
|ũ∞|2 − |ũαkl |2

)
ũ∞ψ dx dt

∣∣∣
≤ ‖ñαkl‖L∞(0,T0;L2)‖ũαkl − ũ∞‖L∞(0,T0;L2)‖ψ‖L1(0,T0;L∞)

+
∣∣∣〈ñαkl + |ũαkl |2 − Pc(|ũ∞|2), ũ∞ψ

〉
L2((0,T0)×T2

λ)

∣∣∣
+ ‖ũ∞ − ũαkl‖L∞(0,T0;L4)

(
‖ũ∞‖L∞(0,T0;L4) + ‖ũαkl‖L∞(0,T0;L4)

)
× ‖ũ∞‖L∞(0,T0;L2)‖ψ‖L1(0,T0;L∞).

By the uniform bound given in Step 1 and the convergence results proved in Step 2, the right-

hand side vanishes as l→∞. Hence, ũ∞ satisfies (3.5).

Now, we invoke Lemma 3.3 to conclude that ũ∞ = ũ ∈ C([0, T0];H1). In particular, ũαkl → ũ

in C([0, T0]; w-H1∩H1/2) as l→∞. This is true for any sequence αk →∞, so that {ũα}α itself

converges to ũ as α→∞.

7In the non-periodic case [13], ∆(nαkl +|uαkl |2)→ 0 in D′((0, T0)×Rd) and weak convergence of a subsequence

in L2((0, T0) × Rd) imply that nαkl + |uαkl |2 ⇀ 0 weakly in L2((0, T0) × Rd). That is why uαkl converges to a

solution of the standard NLS (1.3).
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Step 4: We shall show (3.7) with T = T0.

Let Nα := ñα−i|α∇|−1∂tñ
α and Nα

il := ñαil−i|α∇|−1∂tñ
α
il. Note that PcN

α(t) = PcN
α
il (t) ≡ 0.

Nα and Nα
il solve the following inhomogeneous and homogeneous linear Cauchy problems:∂tNα = i|α∇|Nα + i|α∇|(|ũα|2),

Nα(0) = ñα0 − i|α∇|−1ñα1 ,

∂tNα
il = i|α∇|Nα

il ,

Nα
il (0) = ñα0 − i|α∇|−1ñα1 + P 6=c(|uα0 |2).

In particular, we have ‖Nα
il (t)‖L2 ≡ ‖Nα

il (0)‖L2 . To prove the claim, it suffices to show that

sup
0≤t≤T0

(∥∥∇(ũα(t)− ũ(t)
)∥∥2

L2 +
1

2

∥∥Nα(t)−Nα
il (t) + P6=c

(
|ũ(t)|2

)∥∥2

L2

)
→ 0 (α→∞).

By a direct calculation, we have∥∥∇(ũα − ũ)
∥∥2

L2 +
1

2

∥∥Nα −Nα
il + P 6=c(|ũ|2)

∥∥2

L2

= Eα(ũα, ñα)− E(ũ)− 1

2

∥∥Nα
il

∥∥2

L2 −
1

2

∥∥Pc(|ũ|2)
∥∥2

L2 (3.9)

+ Re
〈
Nα, |ũ|2 − |ũα|2

〉
L2 + 2Re

〈
∇(ũ− ũα), ∇ũ

〉
L2 (3.10)

− Re
〈
Nα −Nα

il + P 6=c(|ũ|2), Nα
il

〉
L2 . (3.11)

The first line (3.9) consists of conserved quantities, and hence for any t,

(3.9) = E(uα0 ) +
1

2

∥∥Nα(0) + |uα0 |2
∥∥2

L2 − E(u∞0 )− 1

2

∥∥Nα
il (0)

∥∥2

L2 −
1

2

∥∥Pc(|u∞0 |2)
∥∥2

L2

=
(
E(uα0 )− E(u∞0 )

)
+

1

2

(∥∥Pc(|uα0 |2)
∥∥2

L2 −
∥∥Pc(|u∞0 |2)

∥∥2

L2

)
,

which vanishes as α → ∞ by (3.2). The second line (3.10) vanishes uniformly in t by the

uniform-in-α bound from Step 1 and the convergence result from Step 3. Therefore, we only

have to show that the last line (3.11) vanishes uniformly in t.

By the condition (3.4) and the Sobolev inequality;∥∥P>R(|uα0 |2)
∥∥
L2 . R

−1/2
∥∥|uα0 |2∥∥H1/2 . R

−1/2
∥∥uα0∥∥2

H1 ,

we see lim sup
α→∞

‖P>RNα
il (t)‖L2 = lim sup

α→∞
‖P>RNα

il (0)‖L2 → 0 as R→∞. Hence, the uniform-in-α

bound from Step 1 implies that for any ε there exist R > 0 and α0 > 0 such that for any α ≥ α0

sup
0≤t≤T0

∣∣∣〈Nα(t)−Nα
il (t) + P 6=c(|ũ(t)|2), P>RN

α
il (t)

〉
L2

∣∣∣ < ε.

We fix such an R > 0 and estimate the low-frequency part. Noticing

sup
0≤t≤T0

∣∣∣〈Nα(t)−Nα
il (t) + P 6=c(|ũ(t)|2), P≤RN

α
il (t)

〉
L2

∣∣∣
.
∥∥Nα −Nα

il + P6=c(|ũ|2)
∥∥
L∞(0,T0;H−5/2)

R
5
2

∥∥Nα
il (0)

∥∥
L2 ,

we shall estimate the H−5/2 norm of Nα −Nα
il + P 6=c(|ũ|2).

By the Duhamel formula and an integration by parts in t, we have

Nα(t)−Nα
il (t) + P 6=c(|ũ(t)|2)

= P 6=c(|ũ(t)|2)− eit|α∇|P 6=c(|uα0 |2)−
∫ t

0
ei(t−s)|α∇|(−i)|α∇|(|ũα(s)|2) ds

= P 6=c(|ũ(t)|2)− eit|α∇|P 6=c(|uα0 |2)

− |ũα(t)|2 + eit|α∇|(|uα0 |2) +

∫ t

0
ei(t−s)|α∇|∂s(|ũα(s)|2) ds
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= P 6=c(|ũ(t)|2)− P 6=c(|ũα(t)|2) +

∫ t

0
ei(t−s)|α∇|∂s(|ũα(s)|2) ds,

where we have used the L2 conservation for ũα at the last equality. The Sobolev embedding

gives a bound for the first two terms as∥∥|ũ|2 − |ũα|2∥∥
L∞(0,T0;H−5/2)

.
(
‖ũ‖L∞(0,T0;L2) + ‖ũα‖L∞(0,T0;L2)

)
‖ũ− ũα‖L∞(0,T0;L2).

On the other hand, by the equation for ũα we have ∂t(|ũα|2) = 2∇·Re
(
iũα∇ũα

)
. We shall apply

integration by parts once more to deal with this term.8 Since (in the two-dimensional case) the

high-frequency components will be difficult to control after integration by parts, we first remove

them and then perform integration by parts, as follows: For t ∈ [0, T0] and R̃ > 0, we use the

2D Sobolev estimate ‖fg‖H−3/2 . ‖f‖H1/2‖g‖H−1/2 to have∥∥2∇ ·
∫ t

0
ei(t−s)|α∇|Re

[
iũα(s)∇ũα(s)− iP≤R̃ũα(s)∇P≤R̃ũ

α(s)
]
ds
∥∥
L∞(0,T0;H−5/2)

≤ 2T0

∥∥ũα∇ũα − P≤R̃ũα∇P≤R̃ũα∥∥L∞(0,T0;H−3/2)

. ‖ũα‖L∞(0,T0;H1/2)‖P>R̃ũ
α‖L∞(0,T0;H1/2)

. R̃−
1
2 ‖ũα‖2L∞(0,T0;H1).

On the other hand, using the equation for ũα again we have

∂t
(
iP≤R̃ũ

α∇P≤R̃ũ
α
)

= ∆P≤R̃ũ
α∇P≤R̃ũ

α − P≤R̃ũα∇∆P≤R̃ũ
α

− P≤R̃
(
ñαũα

)
∇P≤R̃ũ

α + P≤R̃ũ
α∇P≤R̃

(
ñαũα

)
,

so the Sobolev inequality yields that∥∥∂t(iP≤R̃ũα∇P≤R̃ũα)∥∥H−5/2 . R̃
3‖ũα‖2L2 + R̃‖ñα‖L2‖ũα‖2H1/2 .

Then, integration by parts implies that∥∥2∇ ·
∫ t

0
ei(t−s)|α∇|Re

[
iP≤R̃ũ

α(s)∇P≤R̃ũ
α(s)

]
ds
∥∥
L∞(0,T0;H−5/2)

≤ 2
∥∥|α∇|−1∇ ·

(
Re
[
iP≤R̃ũ

α(t)∇P≤R̃ũ
α(t)

]
− eit|α∇|Re

[
iP≤R̃u

α
0∇P≤R̃u

α
0

])∥∥
L∞(0,T0;H−5/2)

+ 2
∥∥|α∇|−1∇ ·

∫ t

0
ei(t−s)|α∇|Re∂s

[
iP≤R̃ũ

α(s)∇P≤R̃ũ
α(s)

]
ds
∥∥
L∞(0,T0;H−5/2)

. α−1
(
R̃‖ũα‖2L∞(0,T0;L2) + T0R̃

3‖ũα‖2L∞(0,T0;L2) + T0R̃‖ñα‖L∞(0,T0;L2)‖ũα‖2L∞(0,T0;H1/2)

)
.

Using the above estimates and the uniform-in-α bound from Step 1, we obtain∥∥Nα −Nα
il + P 6=c(|ũ|2)

∥∥
L∞(0,T0;H−5/2)

. ‖ũα − ũ‖L∞(0,T0;L2) + R̃−
1
2 + R̃3α−1

for any R̃ > 1, with the implicit constant independent of R̃, α. We set R̃ largely enough

depending on ε > 0 and R > 0 fixed above, and recall strong convergence of ũα shown in Step

3, to verify

sup
0≤t≤T0

∣∣∣〈Nα(t)−Nα
il (t) + P 6=c(|ũ(t)|2), Nα

il (t)
〉
L2

∣∣∣ ≤ 2ε

for all sufficiently large α, as desired.

8In the non-periodic case [13], the integral term was dealt with by the Strichartz estimate for the reduced wave

equation, which yields some negative power of α. Although the same argument may be valid in the periodic case

as well, we take a different approach here.
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Step 5: We shall show (3.6) and (3.7) for any T ∈ (0, T∞), concluding the proof.

This follows once we can show the following: Let T ∈ [T0,min{T∞, lim inf Tα}) be such that

(3.7) holds on the time interval [0, T ]. Then, there exists T1 = T1(‖ũ(T )‖H1) > 0 such that

min{T∞, lim inf Tα} > T + T1 and (3.7) holds on [0, T + T1]. Note that the hypothesis is true

for T = T0 by the previous steps.

If (3.7) holds for some T ∈ [T0,min{T∞, lim inf Tα}), then Tα > T for sufficiently large α and

ũα(T )→ ũ(T ) in H1. A similar argument as Step 1 then gives a uniform a priori bound as (3.8)

on the time interval [T, T + T1], where T1 depends only on supα ‖ũα(T )‖H1 , which is bounded

by 2‖ũ(T )‖H1 for sufficiently large α. Hence, we have lim inf Tα > T + T1 and a uniform a

priori bound on the interval [0, T + T1], and then repeat the arguments in Steps 2–4 to show

T∞ > T + T1 and (3.7) on [0, T + T1]. �
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