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REMARKS ON THE PERIODIC ZAKHAROV SYSTEM

NOBU KISHIMOTO

ABSTRACT. We consider the Cauchy problem associated with the Zakharov system on the torus:
10u + Au = nu, a”?9in — An = A([u)?), (t,z) € R x T%

(u,n,atn)‘t:O = (uo,no,m1) € H° x H' x H'"™.

Here, u and n are C- and R-valued unknown functions, respectively, « is a positive constant, and
H? denotes Sobolev space on the torus. We obtain unconditional uniqueness result in a range of
(s,1), which includes the energy space (s,l) = (1,0) in one and two dimensions, and also prove
convergence of solutions in the energy space to the solution of a cubic nonlinear Schrédinger
equation as a tends to oo for dimensions one and two. Our proof of unconditional uniqueness is
based on the method of infinite iteration of the Poincaré-Dulac normal form reduction; actually,
we simply show a certain set of multilinear estimates, which was presented as a criterion for
unconditional uniqueness in [Kishimoto, 2019 (preprint)]. The convergence result is obtained
by a similar argument to the non-periodic case [Masmoudi and Nakanishi, 2008], which exploits

conservation laws and unconditional uniqueness for the limit equation.

1. INTRODUCTION

We consider the Cauchy problem associated with the Zakharov system under the periodic
boundary condition:

1
10 + Au = nu, —zﬁfn—An: A(|ul?); teR, zeT¢,
a (1.1)

(u, n, 8tn) ‘t:() = (u07 no, nl) € HS’Z(Tg{)?

where a > 0 is a constant, A € (0,00)%, and T¢ := RY/(27r\1Z) x -+ x (2m\4Z) is the torus
with period 27\ = (27A,...,271)\g). We treat the torus of arbitrary period and (by rescaling)
normalize the coefficient of the Laplace operator; A := 8%1 +- 02 - Write Zf\ to denote the
lattice %Z X oo X /\idZ corresponding to ’]I‘gl\. The unknown functions u,n are C- and R-valued,
respectively, and H>!(T{) := H*(T¢; C) x H(T%;R) x H'"}(T{;R) for s, € R. For an interval
I C R, we denote by C(I; H*!(T4)) the space of all functions (u,n) such that

we O(I; H(TY; €©)), ne O H(TE;R)) N O (1; HY(TY; R)).

If I = [0, 7], we further abbreviate as CrH*!(T4).

The (vector-valued) Zakharov system was derived as a model for propagation of Langmuir
waves in a plasma; see, e.g., [17] for more details. There is a wealth of literature on local and
global well-posedness, as well as asymptotic behavior of global solutions, of the Cauchy problem
(1.1) on R? and on T9; we refer to the recent article [5] and references therein. The aim of this
note is to give two results on the property of the solutions to the periodic Cauchy problem (1.1);
unconditional uniqueness and convergence to a cubic nonlinear Schrédinger equation as o — 00
(subsonic limit). These properties have also been studied in the non-periodic case, while there
seems no result in the periodic setting.
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Let us recall existing results on local well-posedness of the periodic Cauchy problem (1.1) in
Sobolev spaces, which were given by Takaoka [18] for d = 1 and the author [9] for d > 2 (see
also an earlier work of Bourgain [3]):

Theorem 1.1 ([18, 9]). The Cauchy problem (1.1) is locally well-posed in H5 (T$) in the
following cases:

ed=1,aA¢Z, —3<1<2s—1 0<s—1<1;

ed=1,a e€Z,0<1<2s—-1,0<s-1<1;

e d=2, a,\ are arbitrary, 0 <1 <2s—1,0<s—-1<1;

e d >3, a,\ are arbitrary, % <l§2s—%, 0<s—1<1.

These results were obtained by the iteration argument using the Fourier restriction norm
(Bourgain norm), and thus uniqueness is ensured only for those solutions with such an auxiliary
norm being finite. In very low regularities (e.g., the case d = 1, aX € Z, and (s,1) = (0,—3)
in the theorem), one has to impose some additional requirement on solutions (not only to be
in CrH*!) to ensure that both of the nonlinear terms nu, A(|u|?) are well-defined in a certain
sense. However, at least when s + 1 > 0 and s > 0, these nonlinear terms make sense in the
framework of distribution for any (u,n) € H*!, so that one can ask uniqueness within the class
of all (distributional) solutions in C7H*!, which we refer to as unconditional uniqueness.

Our result on unconditional uniqueness reads as follows:

Theorem 1.2. Let T' > 0. For any (ug,ng,n1) € H>'(TS), there is at most one solution (in the
sense of distribution) to the Cauchy problem (1.1) in CrHS (T$) in the following cases:

e d=1, aAQZ,s>%,l>—% and s +1>0;

e ([10, Theorem 6.1])) d =1, aA € Z, s > 3 and | > 0;

e d=2, a,\ are arbitrary, s > % andl > 0;

e d >3, a,\ are arbitrary, s > % and [ > %.

A result on unconditional uniqueness for the non-periodic problem was obtained in [14] by
means of various estimates in Strichartz- and Bourgain-type norms. We prove the theorem by a
different approach; infinite iteration of the Poincaré-Dulac normal form reduction. In [10], the
author developed this methodology for unconditional uniqueness, which had been introduced
in the work of Guo, Kwon, and Oh [6] for the cubic nonlinear Schréodinger equation on T, in
an abstract setting and proved that the overall argument can be reduced to a certain set of
multilinear estimates associated with the nonlinearity of the equation. In this note, we employ
the abstract theory and simply show these multilinear estimates. The case d =1, a = A =1 of
Theorem 1.2 was treated in [10] as a demonstration of the method, and the same proof works in
the case e\ € Z. Note that, in the above theorem, we only consider (s,[) satisfying s > 0 and
s+ 1> 0, so that the nonlinear terms make sense in the framework of distribution.

Combining it with Theorem 1.1, we obtain unconditional well-posedness of (1.1). In particu-
lar, when d = 1,2, the energy space (s,1) = (1,0) is included for arbitrary a, A.

Corollary 1.3. The Cauchy problem (1.1) is unconditionally locally well-posed in ’HS’Z(Ti) if:
ed=1,a\g7Z, —s§l§23—%, 0<s—1<1and (s,1)# (%,—%),(%,—%);
ed=1,aMe€Z,0<1<2s—1,0<s—-1<1;

e d=2, a,\ are arbitrary, 0 <[ <2s—1,0<s—-1<1;
e d >3, a, A are arbitrary, % <l§25—%, 0<s—1<1.
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Next, we study convergence of the solutions (u®, n®) of the periodic Zakharov system

1
i0u® + Au® = n®u”, —28,527#” — An® = A(Ju®?), teR, zeT¢, (1.2)
a :
(u,n®,0m)|,_y = (uf,n§, nf)

as o — 0o. This problem has also been well studied in the R? case; in principle, the Schrodinger
part u® of the solution converges to the unique solution u of the focusing cubic nonlinear
Schrodinger equation

i+ Au = —|ul?u, teR, zeR? (1.3)

with initial condition u(0) = ah—>Holo ug, and the wave part n® converges to —|u|%. In the non-
compatible case nf+|uf |2 4 0, the strong convergence of the wave part is verified after correction
by a fast oscillating linear wave solution; this is called the initial layer. The strong convergence
in Sobolev spaces was first proved in [16] for the compatible data, and then the initial layer
phenomenon and the rate of convergence were investigated in subsequent works [1, 15, 8]. While a
certain amount of regularity (H®, for instance) had been assumed in the above results, Masmoudi
and Nakanishi [13] proved the strong convergence in the energy class H' x L? x H~'(R%).
Their proof is substantially simpler than the previous ones, only using local well-posedness
(conservation laws) of (1.2), (1.3) and unconditional uniqueness for the limit equation (1.3) in
the energy class, though the rate of convergence is difficult to obtain by it.

We aim here to give an analogous result of [13] in the periodic setting. We focus on one
and two dimensions, because local well-posedness for (1.2) in the energy class has been shown
only in one and two dimensions. In the limit o — oo, we formally obtain A(n® + |u®|?) ~ 0,
namely, P..(n® + |u®|?) ~ 0, where P. and P.. denote the orthogonal projections onto zero
and non-zero frequency modes, respectively. In contrast to the non-periodic (spatially decaying)
case, one cannot determine the asymptotic behavior of the zero mode (spatial mean) of n® from
the relation A(n® + [u®|?) ~ 0. In the periodic case, however, the zero mode of the wave part

of the system (1.2) can be decoupled and explicitly solved as

O} P =0, (1) o o )
= P.n%(t) = P.ng +tP.n t € R).
(Pcnaa az‘,PcnO[) ’t:O = (Pcnga Pent') ‘ o o

This suggests that
n®(t,x) = Pzen®(t,x) + Pen®(t) ~ —Pye([u®?)(t, ) + Pen§ + tPon§
as o — 00, and that the Schrodinger part u® converges to the solution of a “shifted” cubic NLS:
i0u + Au = —(|u\2 — P.(|u*) - Otli_)ngo [Penf + tPCn‘f‘Du.

Note that, even in the case of mean-zero wave initial data P.nf = P.n{ = 0, the expected limit
equation in the periodic setting differs by P.(|u|?) from the usual focusing cubic NLS (1.3).! We
also remark that, if the initial data (u§,n§) do not satisfy the condition P.(n§ + |u§|?) =0 in
the limit o — oo (i.e., non-compatible), the initial layer should appear as o — 0.

We denote by P<p, P~g the projection in spatial frequency onto {|k| < R} and {|k| > R},
respectively. Here is our theorem on convergence:

IThis is also different from the renormalized (or Wick-ordered) cubic NLS, where 2P, (|u|?) is subtracted.
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Theorem 1.4. Let d = 1,2 and A € (0,00)" be arbitrary. Let {u,n§,n$}o C H2(TY) be a
family of initial data satisfying
Jug® := lim ug in HY(T9),
a—0o0
sup H(Pfcngv ‘OéV|_1P7écn?)HL2><L2 < o0,
(0%

. . -1 _
Jim tim sup || (P g, oV 7 Po )| 2, 2 = 0.

and
3 (vo, 1) :== lim (Peng, Penf). (1.4)
a—r00

Let (u®,n%) € C([0,T%); HYO(T$)) be the (forward-in-time) mazimal-lifespan solution of (1.2),
and let u € C([0,T°); H') be the (forward-in-time) mazimal-lifespan solution® of

i0pu + Au = —(\u|2 — Po(|uf?) — vp — Vﬂf)u, (t,x) € (0,7%) x T¢,

(1.5)
u(0,z) = ug®(x), z € TY.
Then, we have T < lianii@gf T%, and for any T € (0,T°),
u = u in C([0,T); HY),
Pyen® = — —Pge(|ul?) in O([0, T); L?),
1aV |10y (Pyen® —n) — 0 in C([0,T]; L?),
P.n® — vyg+ it in C1([0,T])

as a — 00, where the initial layer nj; is given by
sin (t|aV])

ng(t) := cos (t|aV|) Pec(nf + [uf|*) + V]

Pyent

Remark 1.5. The assumptions trivially hold if the initial data are independent of «; (uf, n§, n{) =
(uo,no,n1) € HEY. In this case, one can simply take n§ = cos (t{aV|) Prc(n§ + |ug|?) as the
initial layer, since the remaining part is of O(a~!). On the other hand, (non-zero modes of) the
initial data n¢ € H~! is allowed to diverge with growth order at most O(a) as a — oco. For
instance, the data n{ = aPx.n; + Peng for a fixed ny € H —1 also satisfy the assumptions. In

this case, one needs to modify the initial layer depending on n{ as in the theorem.

Remark 1.6. The first three assumptions on initial data in the theorem are the same as those
in the R? case [13]. The last one (1.4), which was not assumed in [13], is necessary for the
convergence of u® in the periodic case. To see this, we first note that, in the periodic case, for

any solution (u®,n®) of (1.2) in the energy class, the transformation

. 1 2
(u®,n%) (u“e’(00t+201t ) n® — ¢y — cat), co,c1 ER

gives another energy-class solution of (1.2). Then, consider three families of solutions

( a itsina , « o it’sina , o

(u,n%), ue ,n® —sina), (u®e ,n® — 2tsin a).

We observe that the first three assumptions are equivalent for all of them. However, the claimed

convergence cannot hold for any two of them at the same time, unless u = 0.

2The maximal-lifespan solution is uniquely defined in the energy class CyHL° by the existence result given in
[18, 9] and the uniqueness result established in Theorem 1.2.
3This is also uniquely defined in C;H;. See Remark 3.4 (i) below.
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The rest of this note is devoted to the proofs of Theorems 1.2 and 1.4, which will be given in
Sections 2 and 3, respectively. Throughout this note, we often use the notation

X~Y, X<Y X>Y

~

as abbreviations for
cly < X < ¢y, X < Qv, X > CY

with a suitably large positive constant C.

2. PROOF OF UNCONDITIONAL UNIQUENESS

2.1. Reduction to the fundamental bilinear estimates. For p € [1,00] and s € R, let /£ =
(8(Z$) be the weighted 2 space on Z§ with the norm || fi||zz = ||(k)® fi||v, where (k) := 1+ |k].

We employ the infinite normal form reduction machinery. As discussed in [10, Sections 1 and
6], unconditional uniqueness of solutions to (1.1) in H*!(T¢) is established once we have the
following bilinear estimates with some ¢ > 0:

f0h2
|y e

2((29) ) ~ ||f”e2Hth2
k12k0+k2< +

h
kol >° i’cl)f;up 2y S lallalblle,
ko=k1—ko \F'=E

(ko) + (k2) EJ%Q Sl lble
I > gy el S Mlzlhle

<k1> + <k2> 9k hk2
H|k0| Z <k0> <M:|:> HEQ (Zd

Lf % Rllz_ S N fllezllBlles,
lg =l < llgllezl|Pllez

for any non-negative sequences f € (3(Z$), g, h € (2(Z4), where*

) S llgllelPllez,

ko=k1—ka

= |k1|* — |k2|? £ alko|

and * denotes the convolution.
We see that the first four estimates are equivalent by duality to the trilinear estimates

Y Wilko ki ko) frogimhie S Ifllellgllellble, — j=1,....4

ko,k1,k2 GZi
ko=k1—ko

(2.1)

for non-negative sequences f, g, h € 62(23{), where

- (1)® Wy — (ko)'[kol
() (ko) (k)™ () (k)" (k)™
(k)" (ko) + (k) W, — (ko)™ ko| ((k1) + (k2))
()5 (o) (Ra)® (pa) T (k) (R2)*

The next proposition is the main ingredient of the proof of Theorem 1.2:

Y [10], fix = |k1|? — |ka|? & (ako) was used instead of p+ (and o was taken to be 1). Since (u+) ~ (fit),

there is no difference in the above estimates.
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Proposition 2.1. The estimate (2.1) holds with some € > 0 in the following cases:
(i) d =1, a)\g'N,é<s<%, and |l = —s.
(i) d =2, (s,1) = (2,0).
(i) d >3, s> 42, 1=5—

[N

We observe that the last two estimates on the convolution, which are equivalent to the Sobolev
estimates on the product, hold if and only if

d

Ay :=min{l —s+1,s+1} >0, Blzzl+l—§20 with (A1, B1) # (0,0)
d

and Az :=min{s —1,2s} >0, DBs ::23—1—520 with (Ag, By) # (0,0).

These conditions are satisfied in each of the cases (i)—(iii) in Proposition 2.1. Finally, note that
uniqueness of solution in CpH*! implies that in CpH* ! for any s’ > s and I > I. Therefore, to
establish Theorem 1.2 it suffices to show Proposition 2.1.

2.2. One dimensional case. In this subsection, we shall prove Proposition 2.1 (i).

It is easy to check W; < 1 when kg = 0, which implies (2.1) in this case. Assume ko # 0, then
it holds (u+) = (ko(ko + 2ko £+ asgn(ko))) under the relation kg = k1 — k2. If e\ € N, we have
|ko + 2ka + asgn(ko)| > dist(}Z, o) > 0, and in particular,

<M:|:> ~ <k0><ko + 2ko + asgn(ko)> ~ <ko><l€0 + 2k2>. (2.2)

Let | = —s. Using this factorization, for W1 and Ws, we see that

Wy ~ (ko + k2)” < Liko+ha[> k| n Liko+ka| S [hol
<k0>1/2fs<k;0+2k2>1/2<k2>8 ~ <k0>1/27s<k0+2k2>1/27s<k2>s <k0>1/278<k0+2k2>1/2
N (ko) < Lo +2k3 2 kol Lo +2ka <[ ko

(ko + 2ko) 2 (kg + ko) *(ko)® ™ (Ko + 2k2) (ko + k2)*(k2)” (kg + 2ko) Y2 (p) > H/2

where 14 denotes the characteristic function of the set A or the set of variables satisfying the
condition A. For W3, we take ¢ = %;

(ko) + (k2)
W3 ~ 1/2—s 1/2 1-s,, \s
(ko) (ko 4 2k2) " (ko + k2) " (k2)
< Lkotha>lhol Ljko-+ha || o) Liko-ka|< ksl

™ (ko) T (k) (ko) P (ko + 2ko) P (Ko + ko) T

and for Wy we take € = %,
<k0 + k‘2> + <k2>
(ko)*/¥+ o + 2ka) ™ (ko + ko) (ko)
L g+ 2k 3 o | L ko +2ka |~ |o Lo +2kz < ko
~ <k0>2/3+s<k2>25—1/3 <k0>1/3+8<k0+k’2>8<k2>8 <k’0+2k’2>2/3<k'2>38_1/3

Wy ~

If é <s < %, we deduce from these estimates that
< 1 n 1 n 1 n 1

for some § > 0. We then apply the Holder inequality to obtain (2.1).
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2.3. Two and higher dimensional cases. In this subsection, we shall prove Proposition 2.1
(ii), (iii). The main difficulty comes from the fact that we do not have a factorization like (2.2).
We divide the analysis into three cases according to the size of |uy|. Let kpax and kpin be the
largest and the smallest quantities among |ko|, |k1[, |k2|, respectively.

2.3.1. High modulation interactions. We begin with the case |u+| > k2., and prove (2.1) with
€= % Under the condition [ = s — %, it holds that

1
(kmax) /% (kmin)®
This and the Sobolev inequality imply (2.1); in fact, the desired estimate
SreoGiy P
> oI s < | fllellglelible

1/2
ko, k1 k2 €2 (Fmax) "~ (Kmin)
ko=k1—ko

. j=1,...,4.

J~S

is the dual of the product estimate

lwvllz2enay S llwll gz eray 10l s cng)

which holds true if d > 2 and s > %

2.3.2. Middle modulation interactions. Hereafter, we assume |u+| < k2 This in particular

implies |ko| < |k1| ~ |ko|. Taking s =1+ 1 (> 3) and € = 3,
1

() /2 (ko)

If |ko| < 1, then the left-hand side of (2.1) is bounded by |1, <1fl|etllglle2[|Pl¢2, which is

sufficient. It then suffices to prove

max-*

we see that

j=1,...,4.

J o~

ko 9k Pk
inths s il el
ko=k1—k2 </.Li> <k0> (23)
1<<|/’40|<|/’€1| k2]

for [ =0ifd=2and > %2 ifd > 3.

Here, we consider the middle-modulation case kmax < |p+| < k2.5, following the idea in [9,

max?’
Section 3.2] for the corresponding bilinear estimates in Bourgain spaces. First, restrict ko, k1, k2
to (k;) ~ Nj for dyadic numbers No, N1, No with N1 ~ Ny 2 Ny > 1, and then restrict py+ to

(ug) ~ M for a dyadic N1 < M < N2, so that

LHS. of 23)5 > > m Z TroGter Pty -

N1~N2 1< No<Ny 0 —ka
N1SM N2 <k >~N
(px)~M
Since in the last sum we have
p+ F alkol M
il = ool = LeFloll_ g AT
|k1| + | k2| Ny

decomposition into annuli:

gklh’kQ - Z (1A7nlg)kl(1A7n2h)k27

mi,m2

A, = {keZd

M M
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exhibits almost orthogonality. If Ny < N7, we make further decomposition into cubes:

Geihy = D (100, 9k (1Quy Pk

ni,n2
Qui={keZi|lk—nlcO.N"},  neMz), In|~M

and make use of its almost orthogonality. Hence,

EERT R YD W 3 SR SR AR

Ni,N2 1« NoSNy 0 my,mz n1,no ko=k1—ko
N1SM<N? </€0>~N07 (/&)NM
kl EA'ml anl
kQEAmg ﬂQnQ

where Y stand for almost orthogonal sums (i.e., one index determines the other up to O(1)
ambiguity). Now, we recall another identity

o (1o kol + 1) = 5 (1ol? = el + O (5.

W'l

2!k‘ |
which restricts I k; ko] -COMponent of k; into an interval of length O( ) for each k¢ fixed. Therefore,

for fixed kg, k1 is confined to the intersection of a cube, an annulus and a plate. An elementary
computation (see [9, Lemma 2.9 (i)]) evaluates the number of frequencies k; € Zg\l in such a

region by
Cmin{Nd MNd 1 My Ng- 2} < MNZ- Q(No)é {i Ml/z}é
0 Ny " No M’ Ny J °
By the Cauchy-Schwarz inequality in k1, we have (for d > 2 and | > d—22)
L.H.S. of (2.3)
Noy & N2 M1/2 1.1
d—2 0\2 . 0 22
Y Y i O Z[ N () min {57 )]
Nl,NQ N(), M / N mlme ni,n2 Nl M NO
1
X Z fro ( > (1,00, Dy (L0 h)ﬁl_ko) ’
k1
% 1 2 /2,1
Ny . (N M
Sfle Y Igemglellgnblle Yo (52)" D min {50, =01
Nl M NO
N1,N2 NoSN1 M
S I flle2 lgll ezl e2-

2.3.3. Low modulation interactions. The remaining case |put| < kmax can also be treated by
mimicking the proof of the corresponding bilinear estimates in [9, Section 3.3]. Note that we need
more delicate analysis including decomposition with respect to the angles between frequencies.
Here, we take a different approach. It was mentioned in [10, Remark 1.2] that some of the
multilinear estimates required for the normal form reduction argument have close relationship
with the standard multilinear estimates in Bourgain spaces, which are used to prove conditional
well-posedness. In our setting, the desired estimate (2.3) corresponds to the bilinear estimate

1 / ~ ~
Hib Z w(’i'(],ko)u<7'1—7'0,k1 k‘() dTOHL2
(1 + k12 Jr koeZd 1.k
1] ko|S|k1 |~[k1—Fol (2.4)
|,ufi‘<<kmax
< l bo ~ 2\ b2~
< (ko) (70 F erlkol) ™ w (7o, ko) || . . (| (2 + [k2|?) (72, k2)|| 2 .
70-k0 72:k2
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with bg = b1 = by = % It is not clear whether the equivalence of these estimates holds in a
general setting. Nevertheless, we will see that (2.4) implies (2.3) if by + by + b2 < 1:

Lemma 2.2. Let s1,89,l €R, v >0, and Q be a subset of {(ko, k1,k2) € (Z$)? | ko = k1 — ka}.
Assume that there exist by, b)), b1, ba, by > 0 with by + by + ba, by + by + by < % + 7 such that

k)™ o u
zplibl/ > Lalko k1 K2) L)< ()< or)~ ) (70, Ko) (72, ) dro| .
1 T

=T10+T T1,k1
1=To0+T2 ko,k2€Z§

S [[¢ko) (po) @i(ro, ko) 2, N Cke)™{p2) ilras ko) 2
70,70

T9,ko

(2.5)

k1)®t -
H< >b1/ > Lalko, kis k2)L(p)< (o) <tor)u) @ (70, ko )(72, ko) dro| -
<Pl> TI=TOVT2 | 4 rd T1.k1
0, QGZA

< ko) (o) 0@ (o, ko)l 2 | 0h2)™ (o) S, o) 2
70,70

T9,ko

where po := 10 F alkol|, p1 := 11 + |k1|?, and pa := 12 + |k2|®. Then, we have

Lo(ko, k1, k2) fih
B> a(ko <;ii>%y)fk0 k2H(£2 S flelblle,.

ko,ko €7
Proof. Let
I:={({%)"|neZ n>0},
Qpo = {(ko, k1, k2) € Q|1+ |ps| € [L,1%L), opsr >0} (L €T, o€ {£1}).
Take arbitrary non-negative sequences f € £2, h € 632, and define

Fo(r k) =1 2 (T Falk)fe  Gn(nk) =1 o (M (LED).

10’10

We observe that, for (ko, ki, k2) € Q1 , and 71 € R,

/1[_ L](T():Fa|k0|) = L L](Tl—T0+|]€2| )dTO
R 10

L
107
L
1ol &) (1 Ral® = pa) >

10’

> (11 + [k1]* = o(L — 1)),

Ly
=10 3535

and

10°

[ 1 T aliodl_g g —no+RaPdn 20 = (o)~ Gu) ~ L
R

Hence, for each L € Z and o € {£1}, we have

1o, (ko, k1, k2) froha
|5 tosallns bt

(Zgl )kl
ko,ko €74

-3 $ 1QL,0—fk‘0hk‘2
~ LTk I g = o (D=1l D0 e
ko k2 €28

|| (k1) / Z wL7'0>k0)uL( — 70, k2) d7o| ;2

T1,k1
ko,k2€ Zd

e,

< I~ 5—tb H (k)™

(o)1 Z 10, Lpo) (p2)< (1)) WL (705 Ko ) UL (72, k) dro| o

d T1,k1
T1=T0+T2 ko,k2 GZ)\
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and then, using (2.5),

5L_%_7+b1<”<ko>l<ﬂ0>boiﬁL(Toako)HLz . H<k2>82<l’2>b25L(7'2vk2)HL2
70,k0 =

ko
l b/ ~ b/~
+ || (ko) (po) 0w (0, o) || .2 ) [ (ka2 {p2) 2 (72, k) | .2 k )
700 m2,k2
S flallhll g, (L2 +botbitbe =5yt +bitby),
l 59
From the assumption on by, bj), b1, b, b, we have

1o froh 1o, , frohk
I > e, = X 1 X —em e, S Mlelhle,

ko,ko€Z LeT,oce{+1} ko kocZd

as desired. O

From [9, Propositions 3.9, 3.6], we can easily deduce the bilinear estimates (2.5) for s; = s9 =
0,l=0ifd=2and > % if d > 3, and Q = {(ko, k1, k2) | ko = k1 — k2, |p+| < kmax, |ko| > 1},
under the condition that by = by = b > %, bp = by > 0. In view of Lemma 2.2, the desired
estimate (2.3) is obtained.

This completes the proof of Proposition 2.1.

3. PROOF OF CONVERGENCE AS a — 00O

3.1. Preliminaries. Before the proof, we first reduce the problem to the case of mean-zero
wave part. As mentioned in Section 1, any solution (u®,n®) € C7H? to (1.2) (in the sense of

distribution) is also a solution to
10 + Au® = (P;,gcno‘ + Pong + tPcn‘f‘)uo‘,
1
gﬁfP#no‘ — APz = A([u®?), (t,z) € (0,T) x TY,
(ua) Pfcnav atP#Cna) ‘t:O = (u87 P#Cngu P#Cn?)

We introduce

which solves

1
10 4+ AU = nu”, Fafﬁa — AR = A(|a®f?),  (t,z) € (0,T) x TY, 31)

(u®, 7, &n®) (ug, 7, 75) == (u§, Peen§, Peen) € Hy'(TY),

‘t:O =
where

1,0 o . . - .
HY(TS) = PeH'(TS), My (T) == H'(T§; C) x L§(T§; R) x Hy ' (TS; R).

Conversely, for any (uf, Pzcng, Prcnf) € 7—[(1)’0 the maximal-lifespan solution of (3.1) exists
uniquely in C([0,T%); Hé’o), and (with P.nf, P.n{ € R given) the maximal-lifespan solution of
the original equation (1.2) (with the same maximal existence time) is given by

. «a 2 AN
(u®,n®)(t) = (ﬂo‘(t)e_’(tpcno +%Pc”1)7no‘(t, x) + Png + tPcn‘f‘).

Clearly, Theorem 1.4 follows once we prove the following;:
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Proposition 3.1. Let {uf,n§,n{'}ts C ’H(l)’O(Ti) be a family of initial data satisfying

Fug® = li_)rn ug in HY(TY), (3.2)
Sllp”(ﬁ%,‘av‘_lﬁ?)HL2xL2 < 00, (33)
1 3 joge] -1 ~q _
lim limsup ||(Psgng, |aV|~ Pspns )HLng2 = 0. (3.4)

R—00 a—o0

Let (u“,n%) € C([O,T“);H(l)’o('ﬂ‘&l)) be the (unique) mazimal-lifespan solution of (3.1), and let
u € C([0,T); HY) be the (unique) mazimal-lifespan solution of the Cauchy problem

i0f+ AT = —Pu([u®)a,  (t,x) € (0,T%) x T,

u(0, ) = ug®(z), x € TY. (35)

Then, we have

T < liminf T¢, (3.6)

a—00

and for any T € (0,T°°),
(u*, n* = ng, [aV| 1o, (n* —ng)) — (4, —Pe(|@l?), 0) in C([0,T); H' x L§ x L§) (3.7)

as o — oo, where 1§ € C(R; L(T4;R)) N CH(R; Hy *(TY;R)) s the solution of the following
linear wave equation:
1 oo ~
Edgnfj — Ang =0, (t,z) € R x TY,
(75, 0m§)|,_g = (7§ + Pre(lug?), n).
For the solution of (3.1) in CTHé’O, with the property P.0;n®(t) = 0, the mass and the energy
~ - 2
M@(t)) = [[a*(@t)| ;2
1
2

(@ (0).7(1) = |V 0} + 517 Ol + 5l eV @l + [ a @

A
are well-defined and formally conserved. The solution of (3.5) (as well as that of the standard

NLS (1.3)) in the energy class u € H! also (formally) conserves the mass M (%(t)) and the energy
~ N Ly~ 4
E(u(t)) == ||va(t)||7. — iHu(t)HL4
It is worth noticing that the energy functionals for (3.1) and (3.5) have the following relation:
QS0 o ~o 1 ~o ~a|2 - —19~al|2
E¥(u*,n%) = E(u™) + iHn + |a%* —i|laV| " om HLQ.

We recall the result on local well-posedness of these Cauchy problems in the energy space
including (rigorous) conservation laws, which is a crucial tool to prove Proposition 3.1.

Lemma 3.2 (Local well-posedness; [18, 9, 2, 4]). Let d = 1,2 for (3.1) and d = 1,2, 3 for (3.5),
A € (0,00) be arbitrary. Then, the initial value problems for (3.1) (with any o > 0) and (3.5)
on Tg\l are locally well-posed in the energy space H = 'H(l)’o(’]l“i) and Hl(']I‘i), respectively. In
particular, for any initial data in H, there exists a local-in-time solution in C([0,T];H), with
existence time T > 0 depending only on the size of the initial data in H (and also on « in
the case of (3.1)), which depends continuously on the initial data. Moreover, the mass and the

energy are conserved for these solutions.”

5This can be deduced from the local well-posedness result in the energy space by a standard approximation

argument based on persistence of regularity and continuous dependence of solutions upon initial data.
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Another important ingredient of the proof is the following:

Lemma 3.3 (Unconditional uniqueness; [7]). Let d = 1,2,3, A € (0,00)? be arbitrary, and
T > 0. For any ug € H'(TY), there are at most one solution (in the sense of distribution) of
(3.5) in L>=(0,T; HY(TY)) satisfying u(0) = ug.°

Remark 3.4. (i) The known results [2, 4, 7] on local well-posedness and unconditional uniqueness
in the energy space for the cubic NLS (1.3) on T¢ are transformed into the same results for shifted
NLS (3.5) and (1.5) by the changes of unknown function

t
) 1
u(t,z) +—  u(t,r)exp {Z/O WHU(#)H%Q(M) dt'} for (3.5),
t
) 1
u(t,z) +—  u(t,z)exp {2/0 (m‘g‘]u(t’)HQLQ(Ti) + v+ Vlt/) dt’} for (1.5).

As easily seen, these maps are homeomorphisms on L>(0,7; HY(T$)) or C([0,T]; H(T$)) for
any 7' > 0 and transform a solution (in the sense of distribution) of (3.5) and (1.5), respectively,
to a solution of (1.3).

(ii) In [7], uniqueness of solutions to (1.3) on T¢, d = 2,3, was shown in the class of mild
H*-solutions (see [7, Definition 1.1]) for some s < 1. First, we see that any distributional
solution in C([0,T]; H®) turns out to be a mild H*-solution if d = 2,3 and s is close to 1;
see [11, Remark 1.3] for details. Then, any distributional solution in L>(0,7; H') belongs to
Whee(0,T; H=1) C C([0,T]; H™') by the equation and hence to C([0,T]; H®) for any s < 1 by
interpolation. Consequently, we can deduce uniqueness in L>°(0,T; H') from the result in [7]. In
the one-dimensional case, uniqueness holds in C([0,T]; H®) for s > % by the Sobolev inequality,
which implies uniqueness in L°°(0,T; H!) as above.

(iii) To prove Proposition 3.1 we need uniqueness of the solution to (3.5) in L°°(0,T; H');
in fact, uniqueness in C([0,T]; H') is not sufficient. For the Zakharov system (1.2), we have
proved uniqueness in C([0, T]; H*') as “unconditional uniqueness” in Theorem 1.2. Concerning
the energy-space regularity, uniqueness in a wider class L>(0, T; H!:?) follows from Theorem 1.2
in the case d = 1 and a\ € Z by the same argument as above, whereas it does not follow if
@\ € Z or in the two-dimensional case, since we do not have uniqueness in C([0, T, H*!) with
I < 0. Note, however, that uniqueness in L>(0,T;H"%) for (1.2) will not be required in our
proof of Proposition 3.1.

3.2. Proof. Now, we present a proof of Proposition 3.1. We follow closely the argument for the

non-periodic case given in [13, Section 6].

Proof of Proposition 3.1. We focus on the two-dimensional case; the one-dimensional case can
be treated by the same argument with some modifications on exponents related to the Sobolev

embedding. We proceed in several steps.

Step 1: We shall show uniform-in-a a priori bound on the energy norm of (u®,n%): There
exists Ty > 0 and C > 0 independent of « such that
1 1 2
X = max(ﬂat 2 ROl ~|l|aV|~tone(t )<C. 3.8
ary = s (T O3 + 51701 + 5oV 0)]}) < (38)
6Any distributional solution u(t) in L°(0,T; H') belongs to W (0,T; H™') by the equation, and thus has
limits in H~* at endpoints ¢t — 0,7 and is extended to a function in C([0,T]; H~'). The initial condition then

makes sense in H L.
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In particular, by Lemma 3.2, it holds that T“ > Ty for any «a.

By the conservation laws and (3.2), (3.3), together with the Hélder inequality and the Sobolev
embedding, the conserved quantities M (u®(t)) and E“(u*(t),n*(t)) are bounded uniformly in
« as long as the solution exists. Since

_ ~x o/~ ~q . ~q ~ 2
Xar = s (M@ (1) + €@ (0.7°(0) ~ [0 0F),

it suffices to control the cubic term [ n®u®|?. By the Holder inequality, the Sobolev embedding,

interpolation and the Duhamel formula, we see that, for ¢ € [0, 7],
~ ~ ~ ; 2 ~ ; 2
| [ @ ©F] S 1A Ol (1 . + 10 - 2 ,.)

1 . 4 2
S Xo%,T(HIU’gH?{lm + Haa(t) - €ZtAu8H[:i[1 HﬁaﬂaHzl(07T;H71/2)),

which is, by Sobolev and interpolation again as well as the mass conservation law, bounded by

1 2 4 2 2
= 2 = = 2 — = — =
S X2 (112 + (X3 + 1§15 TR e 0 ) W )
1 2 4 2 1 1 1
S X2 (0§13 + (X2 1+ g 13) TEXE 1 XE £ 1B 2
< a2 % 2 [ 3 2 « % 3
S llug ”H1/2Xa,T + T ||U0HH1Xa,T +T3HU0”L2XQ,T-
Using (3.2) again, we have
2 2 8
Xar <Co(1+T3)+CiT3X2

for some constants Cp,C; > 0 independent of o. Since X, 7 is continuous in 7', a bootstrap
argument shows X, 7 < 2Cy if T is sufficiently small depending on Cy, C, which yields (3.8).

Step 2: Let Tp be as in Step 1. We shall show that for any sequence aj — oo there exist a
subsequence ag, and 1> € L>(0, Ty; H) N C([0, Tp); H'/?) such that

% — > in C([0,Tp]; w-H' N HY?),
n% 4 a2 — P.(|a™*)  weakly in L*((0,Tp) x T3).

Here, convergence in C([0, To); w-H') means that

sup [(@% () — @°(1), $()) ;| =0, ¥ € C(0, Ty HY).
0<t<Ty
In particular, by the Sobolev embedding, u* — 4> strongly in C([0, Tp]; L*).

Let us first establish the convergence of u®. By Step 1, {(u®, %)} is bounded in C ([0, Tp]; H' x
L?), so that {9,u® = i(AU® — n®U*)}, is bounded in C([0, Tp]; H~1). This implies that {u%},
is equicontinuous in H~! at any t € [0,Tp], and thus in H* for any s < 1 by interpolation.
Since {u(t)}q is relatively compact in H* for s < 1 by the compact embedding H' — H?,
Ascoli’s theorem (cf. [12, Chapter III, Theorem 3.1]) shows that {u®}, is relatively compact
in C(]0,Tp); H?) for s < 1. The case of s = 1/2 implies, for any {ay}x, existence of a sub-
sequence {u“t}; converging to some u* strongly in C([0, Tp); H'/?). Moreover, since for each
t € [0, Tp] (any subsequence of) the bounded sequence {u™* (¢)}; C H' has a weakly convergent
subsequence, we see the sequence itself converges to u™(t) weakly in H'. The weak lower semi-
continuity of the norm and the bound from Step 1 then show that u°>° € L>°(0, Tp; H'). Finally,
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for any ¢ € C([0,Tp]; H'), we use strong convergence in C([0, Tp]; H'/?) and boundedness of
u>(t) in H' obtained so far and notice P}im | P> R Loo (0,1; 11y = O to have
—00

limsup sup }<€Z°‘kl (t) —u™(t), ¢(t)>H1‘
lsoo  0<t<Tp,

< (@ = | o 0,712 | PR | oo om0
+ (sup 1% e 0.ty + 17 e .ttty ) 1P e oz
-0 (R — 0),

which shows convergence in C([0, Tp]; w-H?!).

Next, we derive weak convergence of n® + [u®|2. We see A(n® + [a®|?) = a,;zﬁfﬁo"“l -0
in D'((0,7p) x T%) by the uniform bound on n* from Step 1. This particularly implies that
n + Py([a“*|*) — 0 in D'((0,Tp) x T3). Moreover, strong convergence of {u** }; obtained
above shows P.(|u™|?) — P.(|a*°|?) in C([0,Tp]). Consequently, we have n®* + |[u“|> —
P.(|a>[?) in D'((0,Tp) x T%). On the other hand, (any subsequence of) {n®% + [a™|?}, is
bounded in L2((0,Ty) x ']I’i) and therefore has a weakly convergent subsequence. Hence, the
sequence {n“ + [a* |2}, itself converges to P.(|u™|?) weakly in L2((0,Ty) x T3).”

Step 3: We shall show that T > Ty and a® — u in C([0, To]; w-H' N HY/?) as a — oc.

We first prove that 4> given in Step 2 is a solution of (3.5) on (0,7p) x T3 in the sense of
distribution. The initial condition is easily verified from strong convergence in Step 2 and (3.2),
so it suffices to show that

i — —Puo([a®)?)u™  in D'((0,Tp) x T3) (I — o0).

For any ¢ € C§°((0,Tp) x T3), we see that
To
‘/ / (AT + Po(|T)2)a ) da dt‘
o J12
TO TO
< ‘/ / RO (T — )4 dxdt’ + )/ / (7% + @ 2 — Py(ja*[2))a>y da:dt’
0 JT% 0 JT%

To
+\/ / (72 — [ )y dor |
o JT2

< [k ”LOO(O,TO;L?)Hﬂakl - EZOO||L<><>(0,TO;L2)||¢||L1(0,TO;L°<>)

| @es e - pgEeR), )

L2((0,T5)xT3)
+ [[u™ — ™t ”LOO(O,TO;L4) <HﬂOOHL°°(O,To;L4) + [[u ||L°°(O,T0;L4)>
X ||ﬁOOHL°°(0,T0;L2)“w“Ll(O,TO;Loo)-
By the uniform bound given in Step 1 and the convergence results proved in Step 2, the right-
hand side vanishes as | — co. Hence, u* satisfies (3.5).
Now, we invoke Lemma 3.3 to conclude that > = @ € C([0, Tp]; H'). In particular, u“ — @

in C([0,Tp); w-H' N H'/?) as | — oco. This is true for any sequence aj — 0o, so that {u®}, itself

converges to U as a — 00.

7In the non-periodic case [13], A(n™1 4 |u®*[?) = 0in D' ((0, To) x R?) and weak convergence of a subsequence
in L2((0,To) x R?) imply that n®* 4 |u®1|? — 0 weakly in L*((0,Tp) x R?). That is why u®* converges to a
solution of the standard NLS (1.3).
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Step 4: We shall show (3.7) with 7" = Tj.
Let N := n®—i|aV|~19;n* and N := ng—ilaV|~'9;ng. Note that P.N*(t) = P.N(t) = 0.
N and N solve the following inhomogeneous and homogeneous linear Cauchy problems:
N = i|aV|N® +ilaV|(|Ju%|?), NG =i|laV|NF,
N(0) = i — ilaV|~'ng, N (0) = 0§ — ilaV|7'af + Pre(lug]?).

In particular, we have |[NJ(t)||z2 = ||[N§(0)| 2. To prove the claim, it suffices to show that

s (Hv(aa(t) —a)|2, + %HNO‘(t) — NG (t) + Pee([u(t) )Hm) 50 (a— o).

By a direct calculation, we have

_ _ 1
I U)Hig + §HNa Nij + Pe( ’“ﬁHi?

~o o ~ « 1 ~
= (@7 — £@) ~ 3 |NG |2 — 5 | (3.9)
+Re(N®, [a]* — [u*|?),» + 2Re(V(u — u%), Vi), , (3.10)
—Re(N® = Nif + Pye(|uf*), N) .. (3.11)

The first line (3.9) consists of conserved quantities, and hence for any ¢,

1 1
(39) = £0ug) + 5 |IN(O) + G PI[72 — £GE) — SINGOa = S| PP

=(a%>—awm)+§MRﬂ%pr—nawmFmp)
which vanishes as @ — oo by (3.2). The second line (3.10) vanishes uniformly in ¢ by the
uniform-in-a bound from Step 1 and the convergence result from Step 3. Therefore, we only

have to show that the last line (3.11) vanishes uniformly in ¢.
By the condition (3.4) and the Sobolev inequality;

1P e (6P| 2 S B2l P g S B2l |50

~ ~

we see lim sup |PsrNG(t)|| L2 = lim sup | P~rN7(0)|| 2 = 0 as R — co. Hence, the uniform-in-o

bound from Step 1 implies that for any ¢ there exist R > 0 and «g > 0 such that for any o > g

sup |(N*(t) = Nj (t) + Pee(|a(t)|?), P>rNG(t)) 2| <e.
0<t<Typ
We fix such an R > 0 and estimate the low-frequency part. Noticing
sup |((N(t) = N (t) + Pre([u(t) ), P<rN (1)) 2
0<t<Tp
5
SN = N+ Prcl[TP)| oo o g5y B [ NG O] 12

we shall estimate the H~°/2 norm of N® — N§ + P.([a|?).
By the Duhamel formula and an integration by parts in ¢, we have

N () = N (1) + Pe([u(t)]?)
= Pre([a(t)?) — VI Pe(|ug]?) —/0 NN (i) av|(|a® (s)?) ds
= Pre([a(t)?) — VI P4e(|ug]?) t
— @) + "Vl (jug ) +/O e=eVlgg(ja* (s)?) ds
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= Pfi®)2) — Pac([T(H]2) + /0 =)0V 1, ([7%(5)[?) ds,

where we have used the L? conservation for u® at the last equality. The Sobolev embedding
gives a bound for the first two terms as
H|U’ — [u?| HLoo((LTO;H—S/Q) N <||UHL°°(O,T0;L2) + ||ua||L°°(0,To;L2)) l|u — ua||L°°(O,To;L2)-

On the other hand, by the equation for u® we have 8t(|u ) = 2V -Re(iu*Va®). We shall apply
integration by parts once more to deal with this term.® Since (in the two-dimensional case) the
high-frequency components will be difficult to control after integration by parts, we first remove
them and then perform integration by parts, as follows: For t € [0, Ty| and R> 0, we use the
2D Sobolev estimate || fg|-s/2 S || fll g2l gr-1/2 to have

|2v - /O I R [ (5] Vit () — 1P (5)V P ()] ] .o

< 2T0H67‘J‘Vﬁa — PgﬁﬁavpgféﬂaHLoo(o,TO;H*/?)

< 1 o001/ 1P 58 oo sty
SR TN Z 0 (0,701 -

On the other hand, using the equation for u® again we have

Oy (iP_zueVP_gu®) = AP_pucVP_gu® — P_pueVAP_gu

- P<R<W>vp PV P_ ).
so the Sobolev inequality yields that
|0, (iP_z"V P_gu®)|| yysje S RT3 + RIF 215312

Then, integration by parts implies that

t . e —
|2v - /0 IR [{P_ i (5)V P51 (5)] | e 1052

<2||av|'V - (Re[z‘P —ie (VP ~aa(t)} . ”'WlRe[zP SVP_; DHLW(QTO;HWZ)
+2H!W\ 1y . / i(t=s)laVIRed, [ZP (s )VP u*(s )] dSHLDO(O,TO;H*WQ)

- ~ D3| Dl ~a2
S (RHuaHLOO(O,TO;L2) +ToR “ua”LOO(O,TO;L2) + TORH”aHLN(o,TO;B)Hua‘|Loo(07TmH1/z)>-
Using the above estimates and the uniform-in-a bound from Step 1, we obtain

HNQ - +P7£C |’LL’ HL‘X’(OTQ,H 5/2) S ||’LL - UHLOQ (0,To;L2?) +R 2 +R3 -

for any R > 1, with the implicit constant independent of R,a. We set R largely enough
depending on € > 0 and R > 0 fixed above, and recall strong convergence of u® shown in Step

3, to verify

(N (t) = Nii(t) + Pre([a(t)*), N(1))

sup
0<t<Tp

for all sufficiently large «, as desired.

8In the non-periodic case [13], the integral term was dealt with by the Strichartz estimate for the reduced wave
equation, which yields some negative power of a. Although the same argument may be valid in the periodic case

as well, we take a different approach here.
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Step 5: We shall show (3.6) and (3.7) for any 7" € (0,7°°), concluding the proof.

This follows once we can show the following: Let T' € [Ty, min{7*°, liminf 7%}) be such that
(3.7) holds on the time interval [0,7]. Then, there exists 71 = Ti(||u(T)||z1) > 0 such that
min{7*, liminf 7} > T+ T} and (3.7) holds on [0,7" 4 T1]. Note that the hypothesis is true
for T = Ty by the previous steps.

If (3.7) holds for some T' € [T, min{7"°, lim inf 7*}), then T > T for sufficiently large o and
u*(T) — u(T) in H'. A similar argument as Step 1 then gives a uniform a priori bound as (3.8)
on the time interval [T, T 4 T;|, where T7 depends only on sup,, ||[u®(T")|| g1, which is bounded
by 2||a(T)||z for sufficiently large . Hence, we have liminf 7% > T + T} and a uniform a
priori bound on the interval [0,7 4 T1], and then repeat the arguments in Steps 2—4 to show
T°° >T +1T; and (3.7) on [0,T + T1]. O
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