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Abstract
We focus on a new class of discrete 2-convex functions, which forms a sub-

class of integrally convex functions. The discrete 2-convexity generalizes existing
special integrally convex functions such as the well-established M-/M♮-convex and
L-/L♮-convex functions by Murota et al., the recently investigated globally/locally
discrete midpoint convex functions by Moriguchi, Murota, Tamura, and Tardella,
the directed discrete midpoint convex functions by Tamura and Tsurumi, and BS∗-
convex and UJ-convex functions by one of the authors. We provide a unifying view
of all these functions within the class of integrally convex functions having discrete
2-convexity. We also consider discrete 2-convex functions with a locally hereditary
orientation property and show parallelogram inequalities, scalability, and proximity
results, which extend the results recently established by Moriguchi, Murota, Tamura,
and Tardella and Tamura and Tsurumi for special cases of discrete 2-convex func-
tions.

Keywords: Discrete convex functions, integrally convex functions, discrete 2-convexity,
parallelogram inequality, scalability, proximity

MSC: 90C27 · 90C25

1. Introduction
Ordinary convexity in Rn is based on the classical convexity inequality relating the value
of a function f at a single internal point of the segment joining two endpoints x and y
with the values of the function at the two endpoints as

f(x) + f(y) ≥ 2f(1
2
(x+ y)) (x, y ∈ Rn). (1.1)
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Hence it suffices to consider all triples (x, y, 1
2
(x + y)) (x, y ∈ Rn) for the definition of

ordinary convexity.
For a discrete function f defined on the integer lattice Zn the function f is discrete

convex if its lower envelope f̄ is a convex function on Rn with f̄(x) = f(x) for all x ∈ Zn.
Triples (x, y, 1

2
(x + y)) (x, y ∈ Rn) do not work for discrete functions since x and y are

restricted on Zn and 1
2
(x + y) may not be integral. For an integrally convex function f ,

which is a special discrete convex function introduced by Favati and Tardella [1], we need
values of f(z) on at most n+1 integer points z from an integer neighborhood of 1

2
(x+y)

to get alternative inequalities of (1.1) (its more precise description is given in Section 3).
On the other hand, most notions of discrete convexity proposed in the literature for

functions defined on the integer lattice Zn are based on what we call a discrete 2-convexity
inequality, where the values of the function f at x, y ∈ Zn are compared to the values of
f at two (not necessarily distinct) points u, v ∈ Zn somehow “intermediate” between x
and y (see examples given in Section 5).

In this paper we formalize the notion of discrete 2-convexity and we show that it ex-
tends several notions of discrete convexity over Zn including the recent notions of discrete
midpoint convexity by Moriguchi, Murota, Tamura, and Tardella [8] and its directed vari-
ant developed by Tamura and Tsurumi [13]. Other classes of functions that can be viewed
as special cases of discrete 2-convex functions include the well-established M-/M♮-convex
and L-/L♮-convex functions by Murota et al. (see [2, 9, 10, 11, 12]), and BS∗-convex and
UJ-convex functions by Fujishige [3].

Discrete 2-convex functions form a subclass of the integrally convex functions intro-
duced by Favati and Tardella [1] in general, and they coincide with this very general class
of discrete convex functions under some additional assumptions, which always hold in di-
mensions smaller than 4 (to be discussed in Section 3). Moreover, we propose a subclass
of discrete 2-convex functions, which extends the classes of discrete midpoint convex and
directed discrete midpoint convex functions while keeping most of their structural and
algorithmic properties such as parallelogram inequalities, scaling, and proximity, which
were examined in [8, 13] for special cases.

The present paper is organized as follows. We give definitions of basic concepts in
discrete convexity in Section 2. Section 3 deals with integral convexity and discrete mid-
point convexity, which leads us to the concept of discrete 2-convexity to be investigated
in Section 4. Examples of existing discrete 2-convex functions are shown in Section 5.
Under a plausible condition that requires a locally hereditary orientation property, we
prove parallelogram inequalities, scalability, and proximity results for discrete 2-convex
functions, which extend the results of [8, 13]. Section 7 gives some concluding remarks.
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2. Definitions
We denote by Z the set of integers and by R the set of reals. Also Z>0 denotes the set of
positive integers and Z≥0 that of nonnegative integers.

Throughout this paper let n be a positive integer and consider a function f : Zn →
R ∪ {+∞} on the n-dimensional integer lattice Zn that has a nonempty effective domain
dom(f) = {x ∈ Zn | f(x) < +∞}. Define [n] = {1, 2, · · · , n}. For any x ∈ Rn define
⌈x⌉ and ⌊x⌋ to be the integer vectors, respectively, obtained by rounding up and down
each component x(i) (i ∈ [n]) so that ⌊x⌋ ≤ x ≤ ⌈x⌉. For any x, y ∈ Zn with x ≤ y
define real and integral intervals, respectively, by

[x, y]R = {z ∈ Rn | ∀i ∈ [n] : x(i) ≤ z(i) ≤ y(i)},

[x, y]Z = {z ∈ Zn | ∀i ∈ [n] : x(i) ≤ z(i) ≤ y(i)}.

For any x ∈ Rn define ||x||∞ = max{|x(i)| | i ∈ [n]}. For any A ⊆ [n] define xA ∈ Rn

to be xA(i) = x(i) for i ∈ A and xA(i) = 0 for i ∈ [n] \ A. For any A ⊆ [n] denote
the characteristic vector, in Rn, of A by χA, where χA(i) = 1 for i ∈ A and χA(i) = 0
for i ∈ [n] \ A. We write χ{i} as χi for any singleton {i} with i ∈ [n]. Also we define
(+∞) + (+∞) = +∞ and +∞ ≥ +∞.

2.1. Discrete convexity
Denote by f̄ : Rn → R ∪ {+∞} the lower envelope of f , which has the epi-graph
{(x, α) | x ∈ dom(f̄), α ∈ R, f̄(x) ≤ α} that coincides with the convex hull of {(x, α) |
x ∈ dom(f), α ∈ R, f(x) ≤ α}. If f̄(x) = f(x) for all x ∈ Zn, then f is called a discrete
convex function.

For any discrete convex function f : Zn → R ∪ {+∞} and any vector w ∈ Rn

Argmin{f(x)− ⟨w, x⟩ | x ∈ Zn}

(the set of all the minimizers of f(x)− ⟨w, x⟩ in x ∈ Zn) is called an affinity domain (or
linearity domain) of f , where ⟨w, x⟩ =

∑
i∈[n]w(i)x(i).

2.2. Integral convexity
For a discrete convex function f : Zn → R ∪ {+∞}, if the restriction of f̄ on every unit
hypercube [z, z + 1]R for z ∈ Zn coincides with the lower envelope of the restriction of
f on [z, z + 1]Z, then we call f an integrally convex function ([1]). Another equivalent
description of integrally convex function is given in Section 3.1.
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3. Integral Convexity and Discrete Midpoint Convexity

3.1. Weak discrete midpoint convexity
For any x ∈ Rn the integer neighborhood N(x) of x is defined by

N(x) = {z ∈ Zn | ∀i ∈ [n] : |z(i)− x(i)| < 1}. (3.1)

For any x ∈ Rn denote by fN(x) the restriction of f : Zn → R ∪ {+∞} on N(x).
(Here we allow dom(fN(x)) = ∅.) Also let fN(x) be the lower envelope of fN(x). (When
dom(fN(x)) = ∅, we have fN(x)(y) = +∞ for all y ∈ Rn.) Moreover, define

f̃(x) = fN(x)(x) (∀x ∈ Rn). (3.2)

If f̃ is convex, then f is integrally convex ([1]) as defined in Section 2.
For any function f : Zn → R ∪ {+∞} with dom(f) ̸= ∅, if f satisfies

f(x) + f(y) ≥ 2fN(z)(z) (3.3)

for all x, y ∈ Zn with z = 1
2
(x+ y), f is said to satisfy weak discrete midpoint convexity

([8, 13]).
A nonempty set Q ⊆ Zn is called integrally convex if its indicator function 1Q, defined

by 1Q(x) = 0 for x ∈ Q and = +∞ for x ∈ Zn \Q, is integrally convex.
The following two facts due to [1, Proposition 3.3], [8, Theorem A.1], and [7, Theo-

rem 2.4] are fundamental.

Proposition 3.1 ([1, 8]): For an arbitrary function f : Zn → R∪{+∞} with dom(f) ̸=
∅, f is integrally convex if and only if f satisfies the weak midpoint convexity (3.3) for all
x, y ∈ Zn and z = 1

2
(x+ y).

Proposition 3.2 ([1, 7]): For an arbitrary function f : Zn → R ∪ {+∞}, if dom(f) is
a nonempty integrally convex set, then f is integrally convex if and only if f satisfies the
weak midpoint convexity (3.3) for all x, y ∈ Zn with ||x− y||∞ = 2 and z = 1

2
(x+ y).

It should be noted that the inequality (3.3) always holds for any x, y ∈ Zn with ||x−
y||∞ ≤ 1. Hence it suffices to consider x, y ∈ Zn with ||x− y||∞ ≥ 2.

We now show that, under appropriate assumptions, integral convexity can be charac-
terized by means of inequalities involving only the values of f at suitable quadruples of
points in Zn.

Theorem 3.3: For an arbitrary discrete function f : Zn → R∪{+∞} with dom(f) ̸= ∅
let f̄ be the lower envelope of f and suppose that for any half-integer point z ∈ 1

2
Zn ∩
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dom(f̄) there exists an affinity domain of f̄ containing two opposite vertices of the hyper-
cube N(z).

Then, f is integrally convex if and only if it satisfies

f(x) + f(y) ≥ min{f(w1) + f(w2) | w1, w2 ∈ N(1
2
(x+ y)), w1 + w2 = x+ y} (3.4)

for all x, y ∈ Zn.
Moreover, if dom(f) is a nonempty integrally convex set, then f is integrally convex

if and only if it satisfies inequality (3.4) for all x, y ∈ Zn with ||x− y||∞ = 2.

Proof. The “if” part follows easily by Propositions 3.1 and 3.2 by observing that f̄(1
2
(x+

y)) is bounded above by the right-hand side of inequality (3.4). For the “only if” part, take
any x, y ∈ Zn and let w1, w2 be two opposite points in the hypercube N(1

2
(x + y)) that

belong to an affinity domain of f̄ . Then clearly 1
2
(x + y) = 1

2
(w1 + w2) also belongs to

the same affinity domain of f̄ . Hence,

f̄(1
2
(x+ y)) = 1

2
(f̄(w1) + f̄(w2)) =

1
2
(f(w1) + f(w2)),

so that integral convexity of f implies condition (3.4).
Moreover, suppose that dom(f) is a nonempty integrally convex set. Note that we

have
f(w1) + f(w2) ≥ 2fN(z)(z) (3.5)

for any w1, w2 appearing in (3.4) and z = 1
2
(x + y), and the minimum of the left-hand

side of (3.5) is equal to the right-hand side of (3.5) because of the assumption that for
any half-integer point z ∈ 1

2
Zn ∩ dom(f̄) there exists an affinity domain of f̄ containing

two opposite vertices of the hypercube N(z). Hence it follows from Proposition 3.2 that
f is integrally convex if and only if it satisfies inequality (3.4) for all x, y ∈ Zn with
||x− y||∞ = 2. 2

In the case of small dimensions, it can easily be seen that condition (3.4) becomes
equivalent to integral convexity.

Corollary 3.4: Condition (3.4) is equivalent to integral convexity of f when n = 2 or
when n = 3 and dom(f) is nonempty and integrally convex.

Proof. Note that N(1
2
(x + y)) always has dimension at most 2 when x, y ∈ Z2 or when

x, y ∈ Z3 and ||x − y||∞ = 2. In this case, the affinity domains of f̄ on N(1
2
(x + y))

always contain two opposite vertices and thus the conclusion follows from Theorem 3.3.
2

The above theorem, Theorem 3.3, seems to be new to the authors’ knowledge. In
Example 1 given below we show an integrally convex function that does not satisfy (3.4)
for all x, y ∈ Zn.
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Figure 1: An integrally convex but not discrete 2-convex function.

Example 1: In Figure 1 we show the values of an integrally convex function f : Z4 →
R ∪ {+∞} with effective domain S = {z ∈ Z4 | (0, 0, 0, 0) ≤ z ≤ (1, 1, 1, 2)}. The val-
ues are represented on the three 3-dimensional cubes corresponding to the intersections
of S with the hyperplanes z(4) = 0, z(4) = 1, and z(4) = 2. We can see that f is inte-
grally convex, which can also be seen by a characterization given in [4, Theorem 2.2]. For
this function and for the points x = (0, 0, 0, 0) and y = (1, 1, 1, 2) we observe that 0 =
f(x) + f(y) = 2f̄(x+y

2
), but f(w1) + f(w2) > 0 for all w1, w2 ∈ N(x+y

2
) such that w1 +

w2 = x+ y. Observe that the affinity domain that includes 1
2
(x+ y) is given by the sim-

plex formed by the convex hull of four points (0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1), (1, 1, 1, 1)
lying on the hyperplane z(4) = 1.

The class of functions f satisfying (3.4) for all x, y ∈ Zn is thus a proper subclass
of the class of integrally convex functions when n ≥ 4. In the next section we name
them discrete 2-convex functions and, in Section 5, we show that they provide a common
generalization of several well-known and recently introduced classes of discrete convex
functions (see, e.g., [7, 8, 13]).

4. Discrete 2-convex Functions
We use the following notation. For any α ∈ R define its signed upper and lower rounding
to integers as follows.

⌈α⌉+ = ⌊α⌋− = ⌈α⌉, ⌊α⌋+ = ⌈α⌉− = ⌊α⌋. (4.1)

Also for any z ∈ Zn and any sign vector (or orientation) σ ∈ {+,−}n define ⌈z⌉σ, ⌊z⌋σ ∈
Zn by

⌈z⌉σ = (⌈z(i)⌉σ(i) | i ∈ [n]), ⌊z⌋σ = (⌊z(i)⌋σ(i) | i ∈ [n]). (4.2)
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We describe here three new classes of discrete convex functions with decreasing levels
of generality ranging from integrally convex to discrete midpoint convex functions: the
class FD2 of discrete 2-convex functions, the class FRD2 of regular discrete 2-convex
functions, and the class FOD2 of oriented discrete 2-convex functions. All classes are
defined by means of the following discrete 2-convexity inequality

f(x) + f(y) ≥ f(⌈1
2
(x+ y)⌉σ(x,y)) + f(⌊1

2
(x+ y)⌋σ(x,y)) (4.3)

with respect to a sign vector σ(x,y) ∈ {+,−}n. The difference among the classes is based
on how the sign vector (or orientation) σ(x,y) depends on the points x and y and on the
function f .

(D2) For all f ∈ FD2 and x, y ∈ Zn with ||x − y||∞ ≥ 2, there exist σ ∈ {+,−}n such
that (4.3) holds.

(RD2) For all x, y ∈ Zn with ||x − y||∞ ≥ 2, there exist σ ∈ {+,−}n such that for all
f ∈ FRD2 (4.3) holds.

(OD2) There exist σ ∈ {+,−}n such that for all x, y ∈ Zn with ||x− y||∞ ≥ 2, and for all
f ∈ FOD2 (4.3) holds.

We now show that discrete 2-convexity is equivalent to a seemingly much more gen-
eral condition where the values of f at x and y are compared to those at a pair of (not
necessarily distinct) points u and v belonging to the smallest box containing x and y and
satisfying u+ v = x+ y and {u, v} ∩ {x, y} = ∅. More precisely, we consider the box

B◦(x, y) = {z ∈ Zn \ {x, y} | ∀i ∈ [n] : x(i) ≤ z(i) ≤ y(i) or x(i) ≥ z(i) ≥ y(i)}
(4.4)

and we obtain the following result.

Theorem 4.1: A function f : Zn → R ∪ {+∞} with dom(f) ̸= ∅ is discrete 2-convex if
and only if for all x, y ∈ Zn with ||x− y||∞ ≥ 2 there exist u, v ∈ B◦(x, y) such that

x+ y = u+ v and f(x) + f(y) ≥ f(u) + f(v). (4.5)

Proof. If f is discrete 2-convex, then for any x, y ∈ Zn with ||x− y||∞ ≥ 2 there exists
a sign vector σ ∈ {+,−}n such that (4.3) holds. Hence (4.5) holds with u = ⌈1

2
(x+ y)⌉σ

and v = ⌊1
2
(x + y)⌋σ. Conversely, suppose that for all x, y ∈ Zn with ||x − y||∞ ≥ 2

there exist u, v ∈ B◦(x, y) such that (4.5) holds. Then, repeating x ← u and y ← v for
such u, v from x, y, we eventually obtain u, v such that ||u − v||∞ = 1 and (4.5) holds.
The obtained u and v can be expressed as u = ⌈1

2
(x+ y)⌉σ and v = ⌊1

2
(x+ y)⌋σ with an

appropriate sign vector σ. 2
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In the next section we will show that the class FRD2 of regular 2-convex functions
contains the class of directed discrete midpoint convex functions of Tamura and Tsu-
rumi, while the class FOD2 of oriented discrete 2-convex functions contains the class of
discrete midpoint convex functions of Moriguchi, Murota, Tamura, and Tardella. More
precisely, the class FOD2 coincides with the class of those functions f such that fσ(x) =
f(σ(1)x(1), · · · , σ(n)x(n)) is discrete midpoint convex for some σ ∈ {+,−}n.

5. Special Cases of Discrete 2-convex Functions
We present here an overview of known classes of discrete convex functions from the
literature that are discrete 2-convex.

5.1. Discrete midpoint-convex functions [1, 9]
If f satisfies

f(x) + f(y) ≥ f(⌈1
2
(x+ y)⌉) + f(⌊1

2
(x+ y)⌋) (5.1)

for all x, y ∈ Zn, then f is said to satisfy discrete midpoint convexity ([1, 9]). These func-
tions satisfying (5.1) for all x, y ∈ Zn are called submodular integrally convex functions
[1] and L♮-convex functions [9]. Since both ⌈1

2
(x + y)⌉, ⌊1

2
(x + y)⌋ ∈ N(1

2
(x + y)) and

⌈1
2
(x + y)⌉ + ⌊1

2
(x + y)⌋ = x + y, (5.1) implies (3.3), i.e., discrete midpoint convexity

implies weak discrete midpoint convexity.
Moriguchi, Murota, Tamura, and Tardella [8] further investigated discrete convex

functions satisfying (5.1) for all x, y ∈ Zn with (a) ||x− y||∞ = 2 and (b) ||x− y||∞ ≥ 2.
The discrete midpoint convexity with (a) is called local discrete midpoint convexity, and
the latter with (b) is called global discrete midpoint convexity. Note that globally discrete
midpoint-convex functions are discrete 2-convex functions, while this may not be the
case for locally discrete midpoint-convex functions (see [8]). Also note that local discrete
midpoint convexity and global discrete midpoint convexity do not require the inequality
(5.1) for x, y ∈ Zn with ||x − y||∞ = 1, so that they lose the underlying submodularity
structure that L♮-convex functions have. In [8] it is shown that the classes of L♮-convex
functions, of globally midpoint-convex functions, of locally midpoint-convex functions,
and of integrally convex functions strictly expand in this order.

5.2. Directed discrete midpoint-convex functions [13]
Very recently, Tamura and Tsurumi [13] have analyzed the concept of directed discrete
midpoint convexity1 defined as follows. For any ordered pair (x, y) of x, y ∈ Zn define

1It is mentioned in [13] that the concept of directed discrete midpoint convexity was suggested by Fabio
Tardella.
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µ(x, y) ∈ Zn by

µ(x, y)(i) =

{
⌈1
2
(x+ y)(i)⌉ if x(i) ≥ y(i)
⌊1
2
(x+ y)(i)⌋ if x(i) < y(i)

(∀i ∈ [n]). (5.2)

We say that f satisfies directed discrete midpoint convexity [13] if

f(x) + f(y) ≥ f(µ(x, y)) + f(µ(y, x)) (5.3)

for all x, y ∈ Zn. Note that µ(x, y), µ(y, x) ∈ N(1
2
(x+y)) and µ(x, y)+µ(y, x) = x+y.

Hence f is a discrete 2-convex function. Note that (5.3) holds with equality for any
x, y ∈ Zn with ||x− y||∞ = 1 since {x, y} = {µ(x, y), µ(y, x)}.

Tamura and Tsurumi [13] investigated directed discrete midpoint-convex functions
and revealed that they share nice properties with globally or locally discrete midpoint-
convex functions such as proximity and scaling properties (see [8, 13]).

5.3. M-/M♮-convex functions [9, 11]
By definition ([11]) an M♮-convex function f : Zn → R ∪ {+∞} satisfies the condition
that for any distinct x, y ∈ Zn the following (i) or (ii) holds:

(i) For any i ∈ [n] with x(i) < y(i) there exist j ∈ [n] such that x(j) > y(j) and
f(x) + f(y) ≥ f(x+ χi − χj) + f(y − χi + χj).

(ii) There exists i ∈ [n] such that f(x) + f(y) ≥ f(x+ χi) + f(y − χi).

M-convex functions satisfy the condition with (i) alone (without (ii)) (see [9, 10, 11, 12]
for more details).

We easily see that M-/M♮-convex functions satisfy the characterization of discrete 2-
convex functions shown by Theorem 4.1.

5.4. BS∗-convex functions and UJ-convex functions [3]
One of the authors [3] investigated a class of discrete convex functions related to bisub-
modular functions.

For the unit hypercube [0, 1]n a Freudenthal cell is defined as follows. Let λ =
(v1, · · · , vn) be a permutation of [n]. For each i = 0, 1, · · · , n denote by Si the set of the
first i elements of λ. Then the simplex formed by χSi

(i = 0, 1, · · · , n) is a Freudenthal
cell. The collection of the n! such Freudenthal cells corresponding to the permutations of
[n] gives us the (standard) Freudenthal simplicial division of the unit hypercube [0, 1]n.
For each integer lattice point z ∈ Zn consider the simplicial division of the unit hypercube
{z}+[0, 1]n by translation of the standard Freudenthal simplicial division of [0, 1]n. Then

9



this gives us a simplicial division of Rn, called the Freudenthal simplicial division of Rn.
Note that L♮-convex functions on Zn are exactly those functions whose lower envelopes
are convex extensions on the Freudenthal simplicial division of Rn (see [2, 6]).

For each z ∈ Zn denote by Iz the integral unit hypercube {z} + [0, 1]n. Suppose
that for each z ∈ Zn we are given a subset Tz ⊆ [n]. Consider the reflection of the
Freudenthal simplicial division of the unit hypercube {z} + [0, 1]n by a subset Tz ⊆ [n],
which is obtained by making points z+χX correspond to points z+χ(X\Tz)∪(Tz\X) for all
X ⊆ [n]. Also suppose that the collection of such simplicial divisions of the reflections
of {z} + [0, 1]n with subsets Tz ⊆ [n] for all z ∈ Zn forms a simplicial division S
of Rn. Then, a discrete convex function f on Zn is called a BS∗-convex function with
respect to the simplicial division S if the extension of f on the simplicial division S is
convex in Rn. The discrete conjugate convex function of a BS∗-convex function is called
a BS-convex function (see [3]). UJ-convex functions are BS∗-convex functions whose
underlying simplicial divisions bring up the image of Union Jack (Union Flag) when
n = 2 (see [3, Fig. 3]).

For any BS∗-convex function f on Zn, we have for any x, y ∈ Zn

f(x) + f(y) ≥ f(µ1(x, y)) + f(µ2(x, y)), (5.4)

where putting z = 1
2
(x + y), z− = ⌊z⌋, and z+ = ⌈z⌉, µ1(x, y) and µ2(x, y) are given

by

µ1(x, y)(i) =

{
z+(i) if i ∈ [n] \ Tz−

z−(i) if i ∈ Tz−

(i ∈ [n]), (5.5)

µ2(x, y)(i) =

{
z−(i) if i ∈ [n] \ Tz−

z+(i) if i ∈ Tz−

(i ∈ [n]). (5.6)

Like L♮-convex functions, for any x, y ∈ Zn the exact function value of the lower
envelope f̄ at the midpoint 1

2
(x+ y) is given by

f̄(1
2
(x+ y)) = 1

2
{f(µ1(x, y)) + f(µ2(x, y))}. (5.7)

Hence (5.4) characterizes BS∗-convex functions, which belong to the class of discrete
2-convex functions that give exact values of (5.7).

It should be noted that for BS∗-convex functions µ1(x, y) and µ2(x, y) both depend
only on 1

2
(x + y) (under a given family of Tz (z ∈ Zn) for reflections), which is not the

case for directed midpoint-convex functions of Tamura and Tsurumi [13].
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6. Discrete 2-convex Functions with Locally Hereditary
Orientation Property

6.1. Locally hereditary orientation
For any ordered pair (x, y) of distinct x, y ∈ dom(f) define

S(x,y) = {i ∈ [n] | x(i) > y(i)}, T(x,y) = {i ∈ [n] | x(i) < y(i)}. (6.1)

We are given an orientation σ(x,y) : [n] → {+,−}. For simplicity we often write S, T ,
and σ without the suffix (x, y). Also define

S+ = {i ∈ S | σ(i) = +}, S− = {i ∈ S | σ(i) = −},
T+ = {i ∈ T | σ(i) = +}, T− = {i ∈ T | σ(i) = −}, (6.2)

where we omitted the suffix (x, y). Signed integer roundings of any half-integer α ∈ 1
2
Z

are given as follows:

⌈α⌉+ = ⌊α⌋− = ⌈α⌉, ⌊α⌋+ = ⌈α⌉− = ⌊α⌋, (6.3)

and we note that 1
2
(⌈α⌉τ + ⌊α⌋τ ) = α for τ ∈ {+,−}. For any half-integral vector

u ∈ (1
2
Z)n recall that

⌈u⌉σ = (⌈u(i)⌉σ(i) | i ∈ [n]), ⌊u⌋σ = (⌊u(i)⌋σ(i) | i ∈ [n]) (6.4)

(see (4.1) and (4.2)). It should be noted that

(a) when S−
(x,y) = T−

(x,y) = ∅ for all x, y ∈ dom(f), we have the rounding for oriented
discrete 2-convex functions in FOD2 and

(b) when S−
(x,y) = T+

(x,y) = ∅ for all x, y ∈ dom(f), we have the rounding for directed
discrete midpoint convex functions in FRD2.

Let us consider a discrete function f : Zn → R ∪ {+∞} that satisfies

f(x) + f(y) ≥ f(⌈1
2
(x+ y)⌉σ(x,y)) + f(⌊1

2
(x+ y⌋σ(x,y)) (6.5)

for all x, y ∈ Zn. As in Section 4 such a function f is called a regular discrete 2-convex
function.

For any x, y ∈ dom(f) we have a box B(x, y) defined by

B(x, y) = {z ∈ Zn | ∀i ∈ [n] : x(i) ≤ z(i) ≤ y(i) or x(i) ≥ z(i) ≥ y(i)}. (6.6)

For any ordered pair (w, z) of w, z ∈ dom(f) we write (w, z) ⪯ (x, y) if w, z ∈ B(x, y)
and (0 ≤ (w − z)(i) ≤ (x− y)(i) or 0 ≥ (w − z)(i) ≥ (x− y)(i)) for all i ∈ [n].

11



Suppose that ||x− y||∞ = m ≥ 1. The difference x− y can be expressed in terms of
{0,±1}-vectors di = χAi

− χBi
(i ∈ [m]) as

x− y =
∑
i∈[m]

di =
∑
i∈[m]

(χAi
− χBi

) (6.7)

in such a way that
A1 ∩ S+ ⊇ A2 ∩ S+ ⊇ · · · ⊇ Am ∩ S+, (6.8)

A1 ∩ S− ⊆ A2 ∩ S− ⊆ · · · ⊆ Am ∩ S−, (6.9)

B1 ∩ T− ⊇ B2 ∩ T− ⊇ · · · ⊇ Bm ∩ T−, (6.10)

B1 ∩ T+ ⊆ B2 ∩ T+ ⊆ · · · ⊆ Bm ∩ T+. (6.11)

Under the condition (6.8)–(6.11) the expression (6.7) is unique, where some sets are pos-
sibly empty but at least one of the four sequences (regarded as multisets) consist of m
non-empty sets. Put

d1 = χA1∩S+ + χA1∩S− − χB1∩T− − χB1∩T+(= χA1∩S − χB1∩T ) (6.12)

and denote d1 by η(x, y). Note that d1 is a non-zero {0,±1}-vector. We consider η(x, y)
as a mapping from an ordered pair (x, y) of distinct x, y ∈ dom(f) to a non-zero {0,±1}-
vector.

It should be noted that we have

di = η(x, y + d1 + · · ·+ di−1) = χAi∩S − χBi∩T (i = 1, · · · ,m) (6.13)

and
x = y + d1 + · · ·+ dm. (6.14)

Let us denote by D(x,y)(x − y) the family (di | i ∈ [m]) of non-zero {0,±1}-vectors di
(i ∈ [m]) defined by (6.13).

Moreover, we consider a locally hereditary condition on the orientation σ described
as follows.

(H) Given x, y ∈ dom(f), for any w, z ∈ B(x, y) such that (w, z) ⪯ (x, y) we have
σ(w,z) = σ(x,y).

(Here we can slightly relax the condition (H) in such a way that instead of σ(w,z) = σ(x,y)

we impose σ(w,z)(i) = σ(x,y)(i) for all i ∈ Sσ(w,z)
∪ Tσ(w,z)

.)
The following lemma is crucial in the arguments about parallelogram inequalities to

be examined in the next subsection.
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Lemma 6.1: Suppose (H). Then, for any x, y ∈ dom(f) with D(x,y)(x − y) = (di | i ∈
[m]) satisfying (6.8)–(6.11) and for any w, z ∈ B(x, y) such that w = y +

∑
i∈J1 di and

z = y+
∑

i∈J2 di for some J1, J2 ⊆ [m] with J1 ⊇ J2, we have D(w,z)(w− z) = (di | i ∈
J1 \ J2) ⊆ D(x,y)(x− y) as a multiset inclusion.

Proof. The present lemma follows from the hereditary assumption (H) and the definition
of the mapping η. 2

Also we have the following lemma.

Lemma 6.2: Suppose (H). Then, for any distinct j, k ∈ [m] we have as multisets

{⌈1
2
(dj + dk)⌉σ(x,y) , ⌊1

2
(dj + dk)⌋σ(x,y)} = {dj, dk}. (6.15)

Proof. Let w = y + dj + dk and z = y. Then we have w, z ∈ B(x, y) and w − z =
dj + dk ⪯ x − y, which implies σ(w,z) = σ(x,y) under assumption (H) and hence (6.15)
holds. 2

We call a regular discrete 2-convex function with a locally hereditary σ a hereditary
regular discrete 2-convex function or HRD2-convex function with respect to σ. Lem-
mas 6.1 and 6.2 are used explicitly or implicitly in the following arguments. Note that di-
rected discrete midpoint convex functions [13] and L♮-convex functions are HRD2-convex
functions while M♮-convex functions and BS∗-convex functions are not in general.

6.2. Parallelogram inequalities for HRD2-convex functions
Let f : Zn → R ∪ {+∞} be an HRD2-convex function with respect to an orientation σ.
Choose distinct arbitrary x, y ∈ dom(f) with ||x − y||∞ = m ≥ 1 and let D(x − y) =
(di | i ∈ [m]) which satisfies (6.7)–(6.11). For any J ⊆ [m] define dJ =

∑
i∈J dj .

We first show the following lemma. Because of (H) every σ appearing below should
be regarded as σ(x,y).

Lemma 6.3: For any J ⊆ [m] we have x− dJ , y + dJ ∈ dom(f).

Proof. Our proof consists of the following three steps (I), (II), and (III).
(I) Put z = y and repeat

z ← ⌊1
2
(x+ z)⌋σ (6.16)

until we get ||x − z||∞ = 1, where we see that for all z computed during the execution
we keep

z ∈ dom(f), d1 ∈ D(x− z) (6.17)
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because of HRD2-convexity and of the definition of the dis. Hence the finally obtained z
satisfies z = x− d1 ∈ dom(f). Moreover, put x(1) = x− d1 and z = y, and repeat

z ← ⌊1
2
(x(1) + z)⌋σ (6.18)

until we get ||x(1) − z||∞ = 1. Then, the finally obtained z satisfies z = x(1) − d2 =
x− d1 − d2 ∈ dom(f). Repeating this argument yields

x− d1 − · · · − di ∈ dom(f) (∀i = 1, · · · ,m− 1). (6.19)

Similarly by adapting the arguments in (6.16)–(6.19) we can also show the following:

y + d1 + · · ·+ di ∈ dom(f) (∀i = 1, · · · ,m− 1). (6.20)

(II) Next, for any k ∈ [m] put z = y + d1 + · · ·+ dk−1. Then repeat

z ← ⌊1
2
(x+ z)⌋σ (6.21)

until we get ||x− z||∞ = 1, where any z computed during this process satisfies

dk ∈ D(x− z). (6.22)

Then, the finally obtained z satisfies z = x− dk ∈ dom(f). Similarly, we can also show
y + dk ∈ dom(f).

(III) Now, for any J ⊆ [m] suppose that J = {ji | i = 1, · · · , ℓ} with j1 < · · · < jℓ.
From the arguments in (I) and (II) we have x − dj1 ∈ dom(f) and hence, starting from
x−dj1 and y, we further obtain x−dj1−dj2 ∈ dom(f). Repeating this argument, we get
x− dj1 − · · · − djℓ = x− dJ ∈ dom(f). Similarly, we can also show y + dJ ∈ dom(f).

2

Finally we show the following theorem. The proof given below is a straightforward
adaptation of the one in [8] (also see [13]).

Theorem 6.4 (Parallelogram Inequality): For any J ⊆ [m] we have

f(x) + f(y) ≥ f(x− dJ) + f(y + dJ). (6.23)

Proof. Choose any J ⊆ [m]. Suppose that J = {j1, · · · , jp} with j1 < · · · < jp and
K ≡ [m] \ J = {k1, · · · , kq} with k1 < · · · < kq. If J = [m] or J = ∅, then (6.23)
trivially holds with equality. Hence we assume p, q ≥ 1 (and p+q = m). Note that (6.23)
can be rewritten as

f(x) + f(x− dJ − dK) ≥ f(x− dJ) + f(x− dK). (6.24)
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Now, adapting the proof in [8, Theorem7], we show (6.24). For all s ∈ {0} ∪ [p] and
t ∈ {0} ∪ [q] define

x(s,t) = x−
s∑

i=1

dji −
t∑

i=1

dki , (6.25)

which belongs to dom(f) due to Lemma 6.3. We first show

f(x(s,t)) + f(x(s−1,t−1)) ≥ f(x(s,t−1)) + f(x(s−1,t)) (s ∈ [p], t ∈ [q]). (6.26)

Because of the definition (6.25), of HRD2-convexity, and of Lemma 6.2 we have

f(x(s,t)) + f(x(s−1,t−1))

= f(x(s−1,t−1) − djs − dkt) + f(x(s−1,t−1))

≥ f(x(s−1,t−1) − ⌈12(djs + dkt)⌉σ) + f(x(s−1,t−1) − ⌊12(djs + dkt)⌋σ)
= f(x(s−1,t−1) − djs) + f(x(s−1,t−1) − dkt)

= f(x(s,t−1)) + f(x(s−1,t)), (6.27)

which validates (6.26).
Next, by summing up (6.26) for all s ∈ [p] and t ∈ [q] we obtain (6.24). 2

Remark: Defining F (s, t) = f(x(s,t)) for all s ∈ {0} ∪ [p] and t ∈ {0} ∪ [q], F :
({0}∪ [p])×({0}∪ [q])→ R is an ordinary submodular function in the orthant ({1}, {2})
(or orientation (σ(1), σ(2)) = (+,−)). The proof technique to show (6.24) from (6.26)
is a well-known technique to show the submodularity of set functions from their local
submodularity.

6.3. Scalability of HRD2-convex functions
Here we provide a proof of the scalability of HRD2-convex functions based on two lem-
mas given below. Let x ∈ (Z≥0)

n be an arbitrary nonnegative vector, which is uniquely
expressed as

x =
ℓ∑

i=1

piχAi
(6.28)

with positive integers ℓ and pi (i ∈ [ℓ]) and sets Ai (i ∈ [ℓ]) satisfying

[n] ⊇ A1 ⊃ A2 ⊃ · · · ⊃ Aℓ ̸= ∅. (6.29)

Now let us consider the upper-rounding ⌈1
2
x⌉ of the half-integral vector 1

2
x. Defining

qj =

⌈
1
2

j∑
i=1

pi

⌉
−

⌈
1
2

j−1∑
i=1

pi

⌉
(j ∈ [ℓ]), (6.30)
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the upper-rounding of the half-integral vector 1
2
x can be rewritten as

⌈1
2
x⌉ =

ℓ∑
i=1

qiχAi
. (6.31)

It follows from (6.30) that integers qi (i ∈ [ℓ]) satisfy

0 ≤ qi ≤ pi (∀i ∈ [ℓ]). (6.32)

Similarly, we can show that the lower-rounding ⌊1
2
x⌋ is expressed as

⌊1
2
x⌋ =

ℓ∑
i=1

riχAi
(6.33)

with integers ri (i ∈ [ℓ]) satisfying

0 ≤ ri ≤ pi (∀i ∈ [ℓ]). (6.34)

Since ⌈1
2
x⌉+ ⌊1

2
x⌋ = x, we have

qi + ri = pi (∀i ∈ [ℓ]). (6.35)

Summing up, we have the following lemma.

Lemma 6.5: For any nonzero vector x ∈ (Z≥0)
n expressed as

x =
ℓ∑

i=1

piχAi

with positive integers pi (i ∈ [ℓ]) and sets Ai (i ∈ [ℓ]) satisfying

[n] ⊇ A1 ⊃ A2 ⊃ · · · ⊃ Aℓ ̸= ∅,

the upper-rounding ⌈1
2
x⌉ and the lower-rounding ⌊1

2
x⌋ are, respectively, expressed as

⌈1
2
x⌉ =

ℓ∑
i=1

qiχAi
, ⌊1

2
x⌋ =

ℓ∑
i=1

riχAi

with integers qi (i ∈ [ℓ]) and ri (i ∈ [ℓ]) satisfying

0 ≤ qi ≤ pi, 0 ≤ ri ≤ pi, qi + ri = pi (∀i ∈ [ℓ]).
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More generally, for any non-zero vector x ∈ Zn and an orientation σ, vector x can be
expressed as

x =
ℓ∑

i=1

pi(χAi
− χBi

) (6.36)

for a positive integer ℓ in such a way that, putting S = {i ∈ [n] | x(i) > 0}, T = {i ∈
[n] | x(i) < 0}, S± = {i ∈ S | σ(i) = ±}, and T± = {i ∈ T | σ(i) = ±}, we have

A1 ∩ S+ ⊇ A2 ∩ S+ ⊇ · · · ⊇ Aℓ ∩ S+, (6.37)
A1 ∩ S− ⊆ A2 ∩ S− ⊆ · · · ⊆ Aℓ ∩ S−, (6.38)
B1 ∩ T− ⊇ B2 ∩ T− ⊇ · · · ⊇ Bℓ ∩ T−, (6.39)
B1 ∩ T+ ⊆ B2 ∩ T+ ⊆ · · · ⊆ Bℓ ∩ T+, (6.40)

and for each i ∈ [ℓ − 1] at least one of the following four relations hold with strict
inclusion:

Ai ∩ S+ ⊇ Ai+1 ∩ S+, Ai ∩ S− ⊆ Ai+1 ∩ S−,

Bi ∩ T− ⊇ Bi+1 ∩ T−, Bi ∩ T+ ⊆ Bi+1 ∩ T+. (6.41)

We can now show the following lemma that generalizes Lemma 6.5.

Lemma 6.6: For any non-zero vector z ∈ Zn and an orientation σ, z is uniquely ex-
pressed for some positive integers pi (i ∈ [ℓ]) as

z =
ℓ∑

i=1

pi(χAi
− χBi

) (6.42)

with sets Ai and Bi (i ∈ [ℓ]) satisfying the conditions described above ((6.37)–(6.41)).
Furthermore, the signed upper-rounding ⌈1

2
z⌉σ is expressed as

⌈1
2
z⌉σ =

ℓ∑
i=1

qi(χAi∩S − χBi∩T ) (6.43)

with integers qi (i ∈ [m]) such that 0 ≤ qi ≤ pi. Also, the signed lower-rounding ⌊1
2
z⌋σ

is expressed as

⌊1
2
z⌋σ =

ℓ∑
i=1

ri(χAi∩S − χBi∩T ) (6.44)

with integers ri (i ∈ [m]) such that 0 ≤ ri ≤ pi. Moreover, we have qi+ri = pi (∀i ∈ [ℓ]).

Proof. We see that the signed upper-rounding ⌈1
2
z(i)⌉σ(i) becomes ⌈1

2
z(i)⌉ for i ∈
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S+ ∪ T+ with the decreasing vector sequences (χAi∩S+ | i = 1, · · · , ℓ) in (6.37) and
(−χBi∩T+ | i = 1, · · · , ℓ) in (6.39), and becomes ⌊1

2
z(i)⌋ for i ∈ S− ∪ T− with the

increasing vector sequences (χAi∩S− | i = 1, · · · , ℓ) in (6.38) and (−χBi∩T− | i =
1, · · · , ℓ) in (6.40). Similarly, the signed lower-rounding ⌊1

2
z(i)⌋σ(i) becomes ⌊1

2
z(i)⌋ for

i ∈ S+ ∪ T+ with the decreasing vector sequences (χAi∩S+ | i = 1, · · · , ℓ) in (6.37)
and (−χBi∩T+ | i = 1. · · · , ℓ) in (6.39), and becomes ⌈1

2
z(i)⌉ for i ∈ S− ∪ T− with

the increasing vector sequences (χAi∩S− | i = 1. · · · , ℓ) in (6.38) and (−χBi∩T− | i =
1. · · · , ℓ) in (6.40). Hence the present lemma follows from Lemma 6.5. 2

Now suppose that we are given an HRD2-convex function f : Zn → R ∪ {+∞} and
an integer k ≥ 2 such that dom(f) ∩ (kZ)n ̸= ∅. Define

fk(x) = f(kx) (∀x ∈ Zn). (6.45)

The function fk is called a k-scaled function of f .

Theorem 6.7 (Scalability): For any HRD2-convex function f : Zn → R ∪ {+∞} with
respect to an orientation σ and for any integer k ≥ 2 such that dom(f) ∩ (kZ)n ̸= ∅, the
k-scaled function fk is again an HRD2-convex function with respect to the orientation σk

given by σk
(x,y) = σ(kx,ky).

Proof. For any distinct x, y ∈ Zn put z = x− y. Because of Lemma 6.6, for z ∈ Zn we
have expressions (6.43) and (6.44) for a positive integer ℓ. Hence we have

k(x− y) =
ℓ∑

i=1

kpi(χAi
− χBi

), (6.46)

k⌈1
2
(x− y)⌉σ =

ℓ∑
i=1

kqi(χAi∩S − χBi∩T ), (6.47)

k⌊1
2
(x− y)⌋σ =

ℓ∑
i=1

kri(χAi∩S − χBi∩T ) (6.48)

with qi + ri = pi (i ∈ [ℓ]). Moreover, under the condition (H) we have that for any
x, y ∈ dom(fk)

fk(⌈1
2
(x+ y)⌉σ) = f(k⌈1

2
(x+ y)⌉σ), fk(⌊1

2
(x+ y)⌋σ) = f(k⌊1

2
(x+ y)⌋σ), (6.49)

and
⌈1
2
(x+ y)⌉σ = y + d ⌊1

2
(x+ y)⌋σ = x− d, (6.50)

where

d = (⌈1
2
(x(i)− y(i))⌉ | i ∈ S+ ∪ T+)⊕ (⌊1

2
(x(i)− y(i))⌋ | i ∈ S− ∪ T−). (6.51)
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Hence, from (6.46)–(6.51) and Theorem 6.4 we obtain

fk(x) + fk(y) ≥ fk(⌈1
2
(x+ y)⌉σ) + fk(⌊1

2
(x+ y)⌋σ) (∀x, y ∈ dom(fk)). (6.52)

2

It should be noted that the HRD2-convexity inequality (6.52) for fk is an instance of
the parallelogram inequalities for f .

6.4. Proximity results for HRD2-convex functions
We show a proximity theorem for HRD2-convex functions. The proof given below is an
adaptation of the one in [13].

Theorem 6.8 (Proximity): For any HRD2-convex function f : Zn → R ∪ {+∞} with
respect to an orientation σ and for any integer k ≥ 2 such that dom(f) ∩ (kZ)n ̸= ∅, let
x̂ be a vector in dom(fk)(= dom(f) ∩ (kZ)n) such that

fk(x̂) ≤ fk(x̂+ d) (∀d ∈ {0,±1}n). (6.53)

Then there exists a minimizer x∗ of f such that ||kx̂− x∗||∞ ≤ n(k − 1).

Proof. Let y be any vector in dom(f) such that ||kx̂− y||∞ = m > n(k − 1). Note that
the difference kx̂− y is expressed as (6.42) with z replaced by kx̂− y, where

ℓ ≤ n,
ℓ∑

i=1

pi = m > n(k − 1). (6.54)

Hence pi∗ > k for some i∗ ∈ [ℓ] and let d∗ = k(χAi∗ − χBi∗ ) from (6.42). It follows from
the parallelogram inequality (Theorem 6.4) that we have

f(kx̂) + f(y) ≥ f(kx̂− d∗) + f(y + d∗) ≥ f(kx̂) + f(y + d∗). (6.55)

Hence, f(y) ≥ f(y+d∗) and ||kx̂− (y+d∗)||∞ = ||kx̂−y||∞−k. Put y0 = y and repeat
the above arguments by putting y ← y + d∗ until we obtain a vector y ∈ dom(f) such
that f(y0) ≥ f(y) and ||kx̂− y||∞ ≤ n(k− 1). It follows that there exists a minimizer x∗

of f such that ||kx̂− x∗||∞ ≤ n(k − 1). 2

We have thus shown that HRD2-convex functions satisfy a proximity result with the
same proximity bound as the more restricted classes of L♮-convex, discrete midpoint con-
vex, and directed discrete midpoint convex functions (see [9, 8, 13]).
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7. Concluding Remarks
We have drawn the readers’ attention to the class of discrete 2-convex functions, which
is a subclass of integrally convex functions. We have examined discrete 2-convex func-
tions that have nice combinatorial structures under a plausible condition, i.e., a locally
hereditary orientation property. We have shown parallelogram inequalities, scalability,
and proximity results for discrete 2-convex functions with the locally hereditary orien-
tation property, which extend the known results for special cases in [8, Theorem 7] and
[13, Theorem 5] (also [7]). Such extensions naturally lead to simple extensions of the
minimization algorithms developed in [8] and [13] for discrete midpoint convex and for
directed discrete midpoint convex functions to the class of HRD2-convex functions.

Our proofs in the unifying framework are simple and will lead us to further deeper
understanding of discrete 2-convex functions even in the special cases in the literature.
The class of discrete 2-convex functions we have focused on is worth further investigation.
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