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ABSTRACT. In the present paper, we prove that, for an odd prime number p and a positive integer
g such that g — 1 is divisible by p, there exists a Tango curve of genus g in characteristic p.

INTRODUCTION

Throughout the present paper, let p be an odd prime number and k an algebraically closed field
of characteristic p. Let us recall that a Tango curve over k is defined to be a projective smooth curve
over k that admits a rational function f such that the divisor associated to the rational differential
df is nonzero and of order divisible by p at each closed point of the curve [cf., e.g., [2, §2.1], [3,
§3], [5, Definition 3.1.1, (ii)]]. In the present paper, we prove the following result.

Theorem 1. Let g be a positive integer. Then the following two conditions are equivalent:
(1) The integer g — 1 is divisible by p.
(2) There exists a Tango curve of genus g over k.

Note that Theorem 1 determines “the complete list” discussed in [5, Remark 3.1.2], i.e., “the
complete list of g’s such that there is a Tango curve of genus g”.

One immediate application of Theorem 1 is as follows. The following corollary is a formal
consequence of Theorem 1 and [4, Theorem B].

Corollary 2. Let g > 2 be an integer such that g — 1 is divisible by p. Then the moduli stack
of projective smooth curves of genus g over k equipped with Tango structures [cf. [4, Definition
5.1.1]] may be represented by a smooth Deligne-Mumford stack over k of pure dimension 2(g —
1)(p+1)/p, that is finite over the moduli stack of projective smooth curves of genus g over k.
In particular, the substack of the moduli stack of projective smooth curves of genus g over k that
parametrizes Tango curves is a closed substack of pure codimension (g —1)(p—2)/p.

A PROOF

Let us first observe that it follows from [1, Theorem A] that, to verify Theorem 1, it suffices to
verify the following result, i.e., a “higher level version” of Theorem 1.

Theorem 3. Let g and N be positive integers. Then the following two conditions are equivalent:

(1) The integer g — 1 is divisible by p".
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(2) There exists a projective smooth curve of genus g over k that admits a Tango function of
level N [cf. [1, Definition 1.3]].

In the remainder of the present paper, we give a proof of Theorem 3. To this end, let g and N be

positive integers. Write g def pV. Let us first observe that since [we have assumed that] p is odd,
it follows from [1, Corollary 1.10] that the implication (2) = (1) holds. In the remainder of the
present paper, to verify the implication (1) = (2), let us prove that,
(*) for each nonnegative integer n, there exists a projective smooth curve C of genus
gn—+ 1 over k that admits a Tango function of level N.
To this end, let n be a nonnegative integer.
Let us begin our construction of “C” with an ordinary elliptic curve (E,0) over k. [Note that it
is well-known that an ordinary elliptic curve over k exists.] Thus, the elliptic curve (E,0) admits a
closed point e that is p"-torsion but not pV~-torsion [which thus implies that e # o]. In particular,
(T) there exists a rational function fg: E — IP’,]C such that the associated divisor is given by
q[o] — qle] — where we write “|—]” for the principal divisor determined by the closed point
“(_)”.
Lemma 4. The finite morphism fg: E — P,i over k is separable |i.e., generically étale).

Proof. This assertion follows immediately from our assumption that e is not p¥~!-torsion [i.e.,
which thus implies that the rational function fr cannot be written as the “p-th power” of a rational
function on E]. O

Write R(fi) for the ramification divisor of the separable [cf. Lemma 4] morphism fg: E — P}.
Lemma 5. The ramification divisor R(fg) is given by qlo] + q]e].

Proof. Since the morphism fg is of degree g [cf. (T)], it follows from the Riemann-Hurwitz formula
that the divisor R(fg) is of degree 2¢q. On the other hand, one verifies immediately from () that

qlo] + qle] < R(fE). In particular, Lemma 5 holds. O
Lemma 6. The morphism fg: E — P} is étale over P, \ {fe(0), fe(e)}.
Proof. This assertion is an immediate consequence of Lemma 5. 0

Next, let us observe that it follows from the well-known structure of the maximal pro-prime-to-p
quotient of the abelianization of the étale fundamental group of the smooth curve E \ {0, e} that
(%) there exist a projective smooth curve C over k and a finite morphism f¢: C — E of degree
gn+ 1 over k such that the morphism fc is étale over E \ {0,e}, and, moreover, for each
x € {o,e}, the fiber f-'(x) consists of a single closed point xc of C.

Lemma 7. The curve C is of genus gn—+ 1.

Proof. This assertion follows from (%) and the Riemann-Hurwitz formula. O

Write f def fEofc: C— IP’}c for the composite of the morphisms fr and fc.

Lemma 8. Let x € E be either o € E or e € E. Let ty, () be a uniformizer of the local ring ﬁp}c Folx)"
Then there exist a uniformizer ty. of the local ring Oc x. and units uy, uy of the local ring Oc
:uch that the homomorphism ﬁp/ﬁ o) Oc xc induced by the morphism f maps ty, () € ﬁpzl o)
0

+1)(gn+1
uﬂ;EZ )(gn+1)

2

q(gn+1) +

I/lgth € ﬁcrxc.



Proof. Let us first observe that one verifies immediately from () and Lemma 5 that there exist a
uniformizer ¢, of the local ring Of . and a unit vy of the local ring OF , such that the homomorphism
ﬁlP’,i,fE(X) — Ok x induced by the morphism fg maps zy,(,) € ﬁP,i,fb(X) to

t)‘g—i—vlt)?“ € ﬁEJ.

Moreover, let us also observe that one verifies immediately from (&) that there exist a uniformizer
tx of the local ring ¢ . and a unit v; of the local ring O¢ . such that the homomorphism Of , —
Oc . induced by the morphism fc maps . € Of  to

Vzt;]ngl S ﬁaxc.
In particular, Lemma 8 holds. U

Lemma 9. The rational function f: C — IP’,i is a Tango function of level N.

Proof. Let us observe that it follows from Lemma 6 and () that the morphism f: C — IP’}{ is étale

over P\ {fz(0), fe(e)}. Thus, Lemma 9 follows immediately from Lemma 8 and [1, Proposition
1.7]. U

The assertion (x) follows from Lemma 7 and Lemma 9. This completes the proof of the impli-
cation (1) = (2), hence also of Theorem 3.

Remark 10. As discussed in the proof of Lemma 9, the morphism f: C — IP’,& is étale over IP’,i \
{fe(0), fE(e)}. Thus, it follows immediately from (f) and Lemma 8 that the divisor associated to
the rational differential d f is given by g(gn+n+1)[oc] — q(gn —n+ 1)[ec]. Moreover, it follows
from () and (%) that the divisor associated to the rational function f is given by g(gn+ 1)[oc] —
q(gn+1)[ec]. Thus, we conclude that the divisor associated to the logarithmic differential df/f of
f is given by gn|oc] + gn[ec]. In particular, the logarithmic differential d f/ f is regular everywhere.
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