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ABSTRACT. For a non-isomorphic finite endomorphism of the germ of a com-
plex analytic normal surface at a point, the pair of the surface and a completely
invariant reduced divisor is shown to be log-canonical. In many situations, the
endomorphism or its square lifts to an endomorphism of another surface by an
essential blowing up.

0. INTRODUCTION

We study the singularity of a complex analytic normal surface admitting a non-
isomorphic finite surjective endomorphism. More precisely, we consider an endo-
morphism f of the germ X = (X, x) of a normal surface X at a point « in which § is fi-
nite of degree > 1. The singularity of X has been shown to be log-canonical by Wahl
[58]: In the proof, an invariant —P- P concerning the relative Zariski-decomposition
plays an essential role. In [6] Thm. B], Favre proves the log-canonicity by another
method applying the theory of valuation spaces, where he proves furthermore that
X is a quotient singularity when f ramifies on X \ {x}. There are also some re-
markable results in [6] on the liftability of f by bimeromorphic morphisms ¥ — X
from normal surfaces Y. In this article, we classify the singularity of X and check
the liftability of f by standard arguments of algebraic geometry not using valuation
spaces.

For the singularity, we consider not only X but also the germ at z of the pair
(X, S) with a reduced divisor S such that §~1.9 = S; such a divisor S is said to be
completely invariant under f. As a generalization of [58] and [0, Thm. B], we can
prove:

Theorem 0.1. Let f: X — X be a finite surjective endomorphism of the germ
X = (X,z) of a normal surface X at a point x. Let & be the germ (S,z) of a
reduced divisor S C X at x. Here, & may not contain x. Assume that degf > 1
and {716 = &. Then (X, S) is log-canonical at x. If f is not étale on X\ &, then
(X,S) is 1-log-terminal at x (cf. Definition 21)).

The 1-log-terminal is called “purely log terminal” in many articles (see Re-
mark 23] below). Note that singularities of 2-dimensional log-canonical pairs (with
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reduced boundaries) are classified by [29, Thm. 9.6] (cf. [5I, App.], [34, Ch. 3]).
Theorem is a direct consequence of Theorem in Section Bl

For the liftability of f, we can prove the following as a generalization of [6]
Prop. 2.1]:

Theorem 0.2. Let f: X — X be a non-isomorphic finite endomorphism of the germ
X = (X, ) of a normal surface X at a point x. Let ¢: Y — X be a bimeromorphic
morphism such that E = p~1(x) is a divisor and ¢ is an isomorphism over X \ {z}.
Let ®: 9 — X be the morphism induced by ¢ for the germ Q) = (Y, E) of Y along F
(¢f. Notation and conventions, below). Then there is an endomorphism g: 2 — 2
such that ® o g = §2 o ® for the power {2 = f o f provided that one of the following
conditions is satisfied:

(I) The endomorphism § is étale outside {x}, ¢ is an essential blowing up (cf.
Definition B24] below) of the log-canonical singularity X, and X is not a
cusp singularity.

(IT) There is a reduced divisor S > x such that
o S = dS for an integer d > 0 and § is étale on X\ & for the germ
S =(S,z) of S at z, and
e © is an essential blowing up at x with respect to (X, S).

Remark. If ¢ is an essential blowing up with respect to a log-canonical pair (X, .S)
of a normal surface X and a reduced divisor S, then Ky + Sy = ¢*(Kx + 5) for
the reduced divisor Sy = ¢~ 1S, in which (Y, Sy) is log-canonical, and moreover, it
is 1-log-terminal at any point of the non-singular locus (Sy )reg (cf. Definition €.24));
in particular, Y has only quotient singularities. Since ¢ is not an isomorphism, the
singularity X = (X, z) is not log-terminal in ({l), and the pair (X,S) is not 1-log-
terminal at z in ([I). Hence, by the classification of log-canonical singularities (cf.
[29, Thm. 9.6]), in case (), X is a simple elliptic singularity or a rational singularity
whose index 1 cover is either a simple elliptic singularity or a cusp singularity. In
case (), one of the cases () and (@) in Fact below occurs for (X, S) at x.

Remark. The case () is treated in [6l Prop. 2.1] for a certain partial resolution of
singularities of X and it is stated that not only {2 the endomorphism f itself lifts
to an endomorphism of 2): The corresponding result is given in Lemmas and
below. Unfortunately, the proof of [0, Prop. 2.1] seems to omit the case where
“Fy permutes two branched points of I'(u),”
why “F (not only F?) lifts to a holomorphic endomorphism of X” as stated in [6],
Prop. 2.1]. This question is solved in Lemma below, as a consequence of our
key theorem, Theorem [EI0 We need to exclude cusp singularities in () by the
remarkable example constructed in [6, Prop. 2.2].

and the author could not understand

Theorem[0.2]is a direct consequence of Theorem[B.3lin SectionBl In Theorems (3.5l
and (3 instead of an endomorphism of a germ X = (X,x) of normal surface
X at a point x, we consider more generally a morphism f: X° — X from an
open neighborhood X° of z such that f has only discrete fibers, f~1(z) = {x},
and deg, f > 1 (cf. Definition [[9): A non-isomorphic finite endomorphism of the



germ X is induced by such a morphism f (cf. Remark B:2)). Our methods proving
these theorems are based on standard arguments on the following topics, which are
discussed in Sections [Il and 4t

(1) Some morphisms of complex analytic varieties.

(2) Numerical pullbacks of divisors on normal surfaces by non-generate mor-
phisms.

(3) Logarithmic ramification formula.

(4) Classification of 2-dimensional log-canonical singularities of pairs with re-
duced boundaries.

(5) The 2-dimensional relative abundance theorem for log-canonical pairs.

(6) Theory of toric surfaces.

(7) Description of cyclic covers.

(8) Essential blowings up.

(9) Dual R-divisors.

The organization of this article is as follows: In Section [II we shall discuss
topics (), @), and @B). Concerning (), we consider the following morphisms in
Section [Tk morphisms of mazimal rank, non-degenerate morphisms, fully equi-
dimensional morphisms, and discretely proper morphisms. Here, the notion of a
morphism of maximal rank (resp. a non-degenerate morphism) of complex analytic
varieties is a generalization of that of a dominant (resp. generically finite and dom-
inant) morphism of integral algebraic schemes. The basics on divisors on normal
complex analytic varieties are explained in Section [[L2] and the topic (2]) on divisors
on normal surfaces is treated in Section [[L3l Note that the pullback of a Cartier
divisor by a morphism of maximal rank is canonically defined, but the pullback of a
(Weil) divisor is not defined in general. We have the numerical pullback of a (Weil)
divisor by a non-degenerate morphism of normal surfaces: this is known as the
Mumford pullback (cf. [35 II, §(b)]) in the case of bimeromorphic morphism. In
this article, the numerical pullback of divisor is regarded as the standard pullback.
Remarks on pullbacks and pushforwards of divisors by meromorphic mappings are
mentioned in Section [[4] which are used in Section 53l In Section concerning
@), the logarithmic ramification formula due to Iitaka and its generalizations are
given with explanations of the canonical divisor and the ramification divisor.

In Section 2 we treat topics {@) and (Bl). The log-canonical, log-terminal, and
1-log-terminal singularities for pairs of normal surfaces and effective Q-divisors are
defined in Section ] in a little different style from the popular one (cf. Defini-
tion ZT)). See Remarks 2.3 and 2§ for a difference from similar definitions in other
articles. In Section [2.2] we give comparison results on log-canonicity etc. for some
non-degenerate morphisms of normal surfaces by applying formulas in Section
The relative abundance theorem in (@) is treated in Section The theorem is
known in the algebraic case, but the proof seems to be omitted and not given in
the analytic case. Our proof is based on ideas of Fujita [1I] and Kawamata [29]
(cf. Theorem below). By (B), we define the log-canonical modification (see
Lemma-Definition Z.22]), which is important in the proof of Theorem below.



Someone may think that Sections [Il and 2] are superfluous, since most results
there are well known at least in the algebraic case. But, we need to confirm some of
them in the analytic case, since we can not work in the algebraic category. Not all
the results in Sections[] and [2 are used in the other sections, but it is worthwhile to
prove them in a general form, since there seems to be no good references discussing
similar topics in the analytic case.

The purpose of Section Bl is to prove Theorem [B.5] from which Theorem
is deduced directly. In Section [3.I] we give the statement and corollaries, and we
prove its 1-dimensional analogue (cf. Proposition B4l below). Theorem [B5lis proved
in Section gradually by applying results in Sections [[5 2], and

In Section Ml we shall discuss topics (@)—(@). For (@), basics on affine toric sur-
faces are explained briefly in Section ] with some properties of morphisms of
toric surfaces. For (), we review the construction of cyclic covers by Esnault and
Viehweg in Section in a slightly different way from the original, and give a
criterion on the liftability of an endomorphism to the cyclic cover. The essential
blowing up in (8) is defined in Section 3] for log-canonical pairs (X, B) of normal
surfaces with reduced divisors, where we discuss the comparison of two essential
blowings up. The name comes from the “essential divisor” on the resolution of a
normal surface singularity (cf. [26, Def. 3.3]). The dual R-divisor in (@) is defined
and discussed in Section .4} it is defined for a divisor on a normal surface with re-
spect to a compact connected divisor having negative definite intersection matrices.
The notion of dual R-divisors comes from arguments in [6, §1.2], where the duals
are considered as projective limits of Weil divisors on resolutions (cf. [6l Def. 1.3]).

Section [lis devoted to proving Theorem [5.3] from which Theorem [0.2]is deduced
directly. In Section [B.], we give the statement explaining our setting on the lifting
property. The proof of Theorem in the case ([I) is given in Section by
applying results in Sections 1] B.2] and 3l For Theorem in the case (), we
prove a key theorem (Theorem [B.I0) in Section 53] and we complete the proof in
Section B.41

We shall explain a background of this article. This is a revised version of a
part of an unpublished preprint [39] of the author written in 2008, which deals
with the classification of normal Moishezon surfaces X admitting non-isomorphic
surjective endomorphisms. Revised versions of classification parts of [39] are now in
preparation. Note that [40] includes a preliminary part of [39]. In [39], the author
proves that the singularity of (X,S) is log-canonical for any completely invariant
divisor S. The log-canonicity of (X, S) at z € S is shown by using the log-canonical
modification (see Lemma-Definition below). The log-canonicity of (X, S) at
x ¢ S is a consequence of results of Wahl [58] or Favre [6]. The author was informed
by Favre of their results when preparing [39], and gave a modified proof in [39].
Theorem below gives a further modification. The liftability problem of § is not
treated in [39] but in some modified versions of [39] around 2010.

Acknowledgement. The author is grateful to Professor Charles Favre for send-
ing a preprint version of [6] with communication by e-mail. The author thanks
Professors Yoshio Fujimoto and De-Qi Zhang for the discussion on this subject in
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seminars at Research Institute for Mathematical Sciences, Kyoto University. The
author is partially supported by Grant-in-Aid for Scientific Research (C), Japan
Society for the Promotion of Science.

Notation and conventions. In this article, any complex analytic space is as-
sumed to be Hausdorff and to have a countable open base.

e A wariety means a complex analytic variety, i.e., an irreducible and reduced
complex analytic space. Note that an open subset of a variety is not necessarily
irreducible, but a Zariski-open subset, the complement of an analytic subset, is a
variety (cf. [I5, IX, §1.2]).

e For a variety X, the non-singular (resp. singular) locus is denoted by Xjeq
(resp. Sing X). Note that the dimension of X is defined as that of the complex
manifold X.g.

e A local isomorphism of complex analytic spaces is called an étale morphism.

e A morphism f: X — Y of normal complex analytic spaces is said to be étale in
codimension 1if f|x\z: X\ Z — Y is étale for an analytic subset Z of codimension
> 2.

o For the local ring Ox , of a point x of a complex analytic space X, the maximal
ideal is denoted by m, and the residue field by C(x). The local dimension of X at
x denoted by dim, X is defined as the Krull-dimension of Ox , (cf. [7, §3.1]).

e The germ X = (X, S) of a complex analytic space X along a subset S is a
pro-object (cf. [19] §8.10], [27, Def. 6.1.1]) of the category (An) of complex analytic
spaces defined as

3 H b)) !/
X’eu(s)”’
where U(S) is the category of open neighborhoods of S whose morphisms are open
immersions and where “l'gf’ is the projective limit in the category of presheaves
on (An) (cf. [19} (8.5.3.2)], [27, Not. 2.6.2]). For the germ 9 = (Y, T) of another
complex analytic space Y along a subset 7', a morphism X = (X,S5) - 9 = (¥,7T)
of germs is defined as a morphism of pro-objects. Since Y is Hausdorff and since

HomPrO(An) (xa @) = I.&HY’EU(T) mX’EU(S) Hom(An) (X/a Y/)

for the category Pro(An) of pro-objects of (An) (cf. [I9, (8.2.5.1), (8.10.5)], [27]
(2.6.3), (2.6.4)]), a morphism X — 2 of germs is represented by a morphism
f: X' =Y in (An) for some X’ € U(S) and Y’ € U(T') such that f(S) C T.

1. PRELIMINARIES ON COMPLEX ANALYTIC VARIETIES

We shall discuss some morphisms of complex analytic spaces (Section [[I]), ba-
sics on divisors (Section [[2)), numerical pullbacks of divisors on normal surfaces
(Section [[3)), pullbacks and pushforwards of divisors by meromorphic maps (Sec-
tion [[4)), canonical divisors, and the ramification formula (Section [[H]).



1.1. Some morphisms of complex analytic spaces. We shall explain basic
properties of some morphisms of complex analytic spaces, which include: mor-
phisms of maximal rank, non-degenerate morphisms, fully equi-dimensional mor-
phisms, and discretely proper morphisms. A base change property by a fully equi-
dimensional morphism is also given (cf. Lemma [[LT3). We refer to [7] for some
basics on complex analytic spaces.

Definition 1.1. Let f: X — Y be a morphism of varieties.

(1) If f is smooth at a point of Xyeg N f71(Yieg) # 0, then f is said to be of
mazximal rank.

(2) If f is of maximal rank and dim X = dimY, then f is said to be non-
degenerate.

(3) If dim, f~!(f(z)) = dim X — dimY for any z € X, then f is said to be
fully equi-dimensional.

Remark 1.2. For a point € XyegN f ! (Vieg), the smoothness of f at x is equivalent
to each of the following conditions:

e The tangent map T, X — Ty,)Y is surjective, where T, X denotes the
tangent space of X at x.

e The canonical pullback homomorphism f*2{ — 2% of holomorphic 1-
forms is injective at x and its cokernel Q}( Iy is free at z, where 25 v
denotes the sheaf of relative 1-forms, and 2% := 25 / SpecC-

e The morphism f is flat at 2 and the scheme-theoretic fiber f=1(f(z)) over
f(x) is non-singular at x.

e The morphism f is a submersion at x (cf. [, §2.18]) in the sense that an
open neighborhood U of x is isomorphic to the product F x V of an open
neighborhood V of f(z) in Y and a non-singular variety F such that f|y is
isomorphic to the composite of the projection F'xV — V and the immersion
V=Y.

Remark. Let f: X — Y be a morphism of integral separated algebraic schemes
over C and assume that f is the associated morphism f2": X*" — Y2" of complex
analytic varieties. Then f is of maximal rank if and only if f is dominant. Moreover,
f is fully equi-dimensional if and only if f is dominant and equi-dimensional in the
sense of [16], Déf. (13.2.2)].

Lemma 1.3. For a morphism f: X — Y of varieties, the following conditions are
equivalent:

(i) The morphism f is of mazimal rank.
(ii) The image f(X) contains a non-empty open subset of Y.
(iii) The equality mingex dim, f~*(f(z)) = dim X — dimY holds.
(iv) There is a dense Zariski-open subset X' of X such that f|x/: X' =Y is
smooth.
(v) There is a dense Zariski-open subset X" of X such that f|x.: X" =Y is
fully equi-dimensional.
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Proof. Obviously, () is the strongest among conditions except (i), but we can
prove (M) = (@) and (@) = (@) by the upper semi-continuity of the function
x + dim, f71(f(z)) (cf. [7, §3.4]). Implications () = () and (@) = (@) follow
from [7, §2.17, Lem.] and [7, §3.7, Cor.], respectively.

It remains to prove () = (). We use an argument in the proof of [8 Lem. (IV,
13)]. Replacing Y with Y;cg,
tangent map T, X — Ty, Y of f is lower-semi-continuous on z € X,eg, and we have

we may assume that Y is non-singular. The rank of the

a unique maximal Zariski-open subset X, of X,.; on which the rank is constant
and attains the maximum. Since X is assumed to have a countable open basis,
X\ X, is a locally finite countable union of subvarieties X; of dimension less than
dim X. Similarly to the above, for each i, we can find a unique maximal Zariski-
open subset X; of (X;)reg such that the rank of the tangent map 7, X; — Tr)Y
of the induced morphism X; — Y is constant on x € X; attaining the maximum.
Then the complement of X, U[JX; in X is also a locally finite countable union of
subvarieties of dimension less than dim X —1. By continuing the process, we have a
locally finite countable disjoint union X = |,., X of locally closed non-singular
analytic subspaces X of X such that the tangent map T, Xx — Ty)Y of f|x,
has constant rank for x € X,. By [7, §2.19, Cor. 2], locally on X, the morphism
X — Y is isomorphic to a submersion to a locally closed submanifold of Y. Since
f(X) contains an open subset, f(X)) is open for some A € A. We fix such an index
A. Then, for any = € X, the composite

2y @ C(f(z)) = 2% ® C(z) — 2%, ®C(z)

of canonical linear maps is injective. It implies that the canonical homomorphism
[*02) — 2% is injective on an open subset U of X containing X,. The cokernel
Q}( /Yy is locally free on a non-empty Zariski-open subset U’ of U, since U is reduced
(cf. [7, §2.13, Cor.]). Therefore, f*(23 is a subbundle of 2% on U’, and f|y/: U' —
Y is smooth by Remark This shows () = (i), and we are done. O

Remark. If X and Y are non-singular, then (@) = () is a consequence of Sard’s
theorem on critical values.

Corollary. A fully equi-dimensional morphism of varieties is of mazximal rank. A
surjective morphism of varieties is of mazximal rank.

Corollary 1.4. For a morphism f: X — Y of varieties of the same dimension,
the following conditions are equivalent:
(i) The morphism f is non-degenerate.
(ii) The image f(X) contains a non-empty open subset.
(iii) There is a point x € X such that x is isolated in the fiber f=1(f(z)).
(iv) There is a dense Zariski-open subset X' of X such that f|x: is étale.

Corollary 1.5. Let f: X — Y be a morphism of varieties. Let U be a non-empty
open subset of X and let Z be an irreducible component of U.

(1) If f is of mazimal rank, then sois f|z: Z =Y.

(2) If f is a fully equi-dimensional morphism, then so is f|z.
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Proof. Assume that f is of maximal rank. Then Z N X’ # ) for the open subset
X' of Lemma [L3[v)) as X \ X’ is nowhere dense. Since f|z is smooth on Z N X’,
it is of maximal rank. Next, assume that f is fully equi-dimensional. Then

dim X = dim Z < dim,(f ! (f(2))NZ2)+dimY < dim, f~'(f(2))+dimY = dim X
for any x € Z (cf. [1, §3.9, Prop.]). Thus, f|z is fully equi-dimensional. O

Definition (deg f). Let f: X — Y be a proper non-degenerate morphism of va-
rieties. The degree of f, denoted by deg f, is defined as the rank of the coherent
Oy-module f,Ox. Hence,

deg f = dimeyy) f:Ox ®o, C(y) = dime H*(Of-1(,))

for a general point y € Y. By Corollary [[.4], we see that deg f equals the cardinality
of f=1(y) for a general point y € Y.

Definition 1.6. A morphism of complex analytic spaces is said to be discretely
proper if the connected components of the fibers are compact.

Proper morphisms and morphisms with only discrete fibers are discretely proper.
Moreover, we know the following as a strong version of the Stein factorization (cf.
B3], 2 Thm. 3]):

Fact. A morphism f: X — Y of complex analytic space is discretely proper if
and only if f = g o 7w for a proper morphism 7: X — Y’ with an isomorphism
Oy ~ m,Ox and for a morphism ¢g: Y/ — Y with only discrete fibers.

By [7, §1.10, Lem. 1 and §3.2, Lem.], we have:

Lemma 1.7. Let f: X — Y be a morphism of complex analytic spaces. For a
point x € X and a connected component T of f~1(f(z)), if T is compact, then there
exist an open neighborhood V' of f(z) in'Y and an open neighborhood U of T in
F7YV such that UN f=Y(f(x)) =T and fly: U — V is proper. If T = {x}, then
one can choose U and V' so that fly is a finite morphism.

Corollary 1.8. Let f: X — Y be a morphism of varieties of the same dimension.
If v € X is isolated in f~1(f(x)) and if Y is locally irreducible at f(x), then there
is an open neighborhood U of x such that U N f=1(f(x)) = {z}, f(U) is open, and
flu: U — f(U) is a finite morphism. In particular, if f has only discrete fibers and
Y is locally irreducible, then f(X) is open.

Proof. By Lemma [[7] we have an open neighborhood V of f(z) in Y and an open
neighborhood U of x in f~'V such that U N f~1(f(x)) = {z} and fly: U — V is
finite. It suffices to prove that f(U) =V as a set. Here, we may assume that V is
irreducible, i.e., V is a variety. An irreducible component U’ of U containing x is a
variety and the induced morphism f’ = f|y: U' — V of varieties is non-degenerate.
Thus, f/(U’) contains a non-empty open subset of V by Corollary [[4l Therefore,
f'(U") = f(U) =V by the local irreducibility of V, since f’(U’) is a closed analytic
subset of V. |
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Definition 1.9. In the situation of Corollary [[8 we define the local degree of f
at x as the degree of the finite morphism f|;: & — f(U): This is independent of
the choice of such U and is denoted by deg, f. Note that deg, f =1 if and only if
f is an isomorphism at x.

Lemma 1.10. Let f: X — Y and g: Y — Z be morphisms of complex analytic
spaces.
(1) If f is proper and if g is discretely proper, then go f is discretely proper.
(2) If go f is discretely proper, then f is discretely proper.
(3) Assume that f: X — Y is a morphism of varieties of maximal rank. If Y
1s locally irreducible, g has only connected fibers, and go f is surjective and
discretely proper, then f is surjective.

Proof. (M) and ([@): For a point z € X and y = f(x), let T'y, (resp. ©,) be the
connected component of f~1g71(g(y)) (resp. f~1(y)) containing x. Then O, is a
connected component of a fiber of T';, — ¢~ 1(g(y)). In case (@), f(T,) is compact,
since it is a closed subset of a connected component of g~(g(y)); thus, ', is also
compact as a closed subset of f~! f(T';.). This shows (). In case @), ', is compact,
and hence, I';, — f(I';) is proper and ©, is compact. This shows (2).

@): For a point z € X and the connected component ', of f~1g=1(g(f(x)))
containing z, by Lemma [[.7] we have an open neighborhood U, of I';, in X and an
open neighborhood W, of ¢g(f(x)) in Z such that g o f induces a proper morphism
U, — W,. We may assume that W, is connected. Then ¢~'W, is a connected
open subset of Y, which is irreducible as Y is locally irreducible. Now, f induces a
proper morphism U, — ¢~ 'W,. For an irreducible component U’ of U, the induced
morphism fy: U' — g~'W, is of maximal rank, and hence, f(U’) contains a non-
empty open subset by Lemma 3 Thus, f(U,) = f(U') = g~'W,. Therefore,
FX)=UfUy) =g "W, =Y, since g o f is surjective. O

Corollary 1.11. For a surjective morphism f: X — Y of normal varieties and for
a proper surjective morphism 7: Y’ — Y of normal varieties with only connected
fibers, let

/
T

X —

f’l lf

Y ——— Y
be a commutative diagram of varieties such that the induced morphism X' — X Xy
Y’ is an isomorphism over a non-empty open subset of Y'. If T/ is proper surjective

and f is discretely proper, then f' is surjective and discretely proper.

Proof. The composite fo7’ is surjective and is discretely proper by Lemma [LTO(T]).
Hence, f' is discretely proper by Lemma [[LTO(2]) applied to X’ — Y’ — Y. The
morphism f’ is of maximal rank by Lemma [[3] since f’(X’) contains the open
subset of Y’/ over which X’ — X xy Y’ is an isomorphism. Thus, f’ is surjective
by Lemma [[T0O(3) applied to X' - Y’ =Y. O

The openness property in Corollary [[.8l is generalized to:
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Lemma 1.12. Let f: X = Y be a fully equi-dimensional morphism of varieties and
assume that Y is locally irreducible. Then f is universally open in the sense that
the base change f': X xy Y’ —Y' is an open holomorphic map for any morphism
7:Y' =Y from a complex analytic space Y'. If Y’ is a variety, then f'|y: V =Y’
is fully equi-dimensional for any irreducible component V of X xy Y.

Proof. The morphism f is open by [7], §3.10, Thm.]. For any point ¢’ € Y, we have
an open neighborhood )’ with a closed immersion ¢: )’ < I/ into a connected open
subset U of an affine space C". Then the induced morphism (¢, 7|y ): V' < U XY
is a closed immersion and 7|y : )’ — Y is the composite of (¢, 7]y/) and the second
projection U x V' — V', In order to prove the openness of f’, we may replace Y’
with ). If 7 is the second projection Y/ =U xY — Y, then Y is locally irreducible
and f’ is open by [7, §3.10, Thm.]. Thus, we are reduced to the case where 7 is a
closed immersion, but in this case, the openness of f’ is obvious. This proves the
first assertion.

For the second assertion, we set X’ := X xy Y’. Then the function z ~
dim, f/~1(f'(z)) on X’ is constant with value dim X — dim Y, since f is fully equi-
dimensional. The openness of f’ implies that

dim, /7' (f'(x)) = dim, X' — dim g4 Y’ =dim; X' —dimY”’

for any x € X’ by [7, §3.10, Thm.]. In particular, x — dim, X’ is constant. For
the morphism g = f'|y: V — Y of varieties, we have

dim, X’ — dimY” > dim, ¢ 'g(v) > dim, V — dimg . Y =dimV —dimY’

for any v € V by [7, §3.9, Prop.], since f'~1(f'(v)) D g~ *(g(v)). For the open dense
subset V° = VN (X] )reg of V, if v € V°, then dim V' = dim, V = dim,, X’. Hence,
the upper semi-continuous function v +— dim, g~1(g(v)) on V attains the maximum
at any point V°. Thus, the function is constant with value dimV — dimY’ =
dim X —dimY. As a consequence, g is fully equi-dimensional. O

Remark. For morphisms locally of finite type of schemes, we have a result similar
to Lemma [[.T2 by [16 Prop. (14.3.2) and Cor. (14.4.4)].

Remark. Lemma [[L12]is not true in general if we drop the assumption on the local
irreducibility of Y. For example, if Y is a nodal cubic plane curve and if f: X — Y
and 7: Y’ — Y are the normalization of Y, then X xy Y’ contains two isolated
points.

Lemma 1.13. Let 7: Y/ — Y be a proper surjective morphism of normal varieties
with connected fibers and let f: X — Y be a fully equi-dimensional morphism of
varieties. Then X Xy Y’ is irreducible and is generically reduced, i.e., a dense
open subset is reduced.

Proof. We set X’ = X xy Y’ and consider the Cartesian diagram

/

X X5 X

f'l lf

T

Y —— Y.
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By assumption, there exist Zariski-open dense subsets X° C X and Y’° C Y/, and
an open dense subset Y° C Y such that

e f is smooth on X°, 7 is smooth on Y’°, and

e Y° is non-singular containing f(X°) U 7(Y'°).
In particular, X° and Y’° are also non-singular. We set Uy := 7/71(X°) = X°xy Y/,
Uy :=f~HY"®) = X xy Y'°, and U3 := Uy NUy = X° xyo Y'°. Then U; is normal,
Us is reduced, and Us is non-singular, since U; — Y’ and Us — X are smooth. Here,
Us is Zariski-open and dense in U; and also in Us. Since 7’|y, : Uy — X° is a proper
surjective morphism with connected fibers and since X° is a non-singular variety, we
see that U is also normal variety by considering the Stein factorization. Thus, Us
and Uj are also irreducible. For any irreducible component Z of X', the morphism
f'lz: Z = Y’ is fully equi-dimensional by Lemma [[L.T2l Thus, ZNUs # 0, and this
non-empty subset is a closed analytic subset of the variety Us; of the same dimension.
Hence Z D U,, and moreover, Z is the closure of U, in X xyY’. Therefore, X xy Y’
is irreducible. It is generically reduced, since Us is non-singular. O

Corollary 1.14. Let m1: X7 — Y1 and my: Xo — Yy be proper surjective mor-
phisms of normal varieties with connected fibers. If f: X1 — Xo and g: Y1 — Y5
are finite surjective morphisms such that mo o f = gomy, then degg | deg f.

Proof. By Lemma [[ T3] Xs Xy, Y; is irreducible and generically reduced. For the
normalization X| of X5 Xy, Y7, we can consider the commutative diagram

!

/T/ ~--—p1\
X1 X] Xo

N

ylig> Yy,

Here, p; and 7 are finite surjective morphisms, and degp; = degg. Therefore,
deg f/degg = deg f/degp; = degT € Z. O

1.2. Glossaries on divisors. We recall basic properties of divisors on normal com-
plex analytic spaces fixing some notation used in this article. Especially, pullbacks
of divisors by morphisms of maximal rank are explained in detail.

Convention (Divisor). Let X be a normal complex analytic space. A divisor
on X always means a Weil divisor, i.e., a locally finite Z-linear combination of
closed subvarieties of codimension 1. A prime divisor means a closed subvariety of
codimension 1. The divisor group of X, i.e., the group of divisors on X, is denoted
by Div(X). We use the following conventions for a divisor D on X:

e The prime decomposition of D is the expression D = .., m;I"; as a locally
finite Z-linear combination, where m; € Z and I'; are prime divisors and
where the set I, = {i € I | m; # 0 and = € I';} is finite for any z € X, by
the local finiteness. The integer m; is called the multiplicity of D along T';
and denoted by multr, D. If m; # 0, then I'; is called a prime component
of D.
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e We say that D is effective (resp. reduced) if multr D > 0 (resp. multr D €
{0,1}) for any prime divisor I' on X. For another divisor D', we write
D>D"or D' <Dif D— D is effective.

e The support of D, Supp D, is the union of prime components of D: This is
identified with the reduced divisor D,eq := Zm £0 T'; for the prime decom-
position of D above. For a closed subset T, Divy(X) denotes the group of
divisors on X whose supports are contained in 7.

e For an open subset U of X, the restriction D|y is defined as follows: Let ©
be a prime divisor on U such that © C Supp D. Then © C T for a unique
prime component I' of D. We set mg := multr D. Then the divisor D|y
on U is defined by multg(D|y) = me for any prime divisor © on U.

Remark. The restriction D — D]y gives rise to a group homomorphism Div(X) —
Div(U) for any open subset U. The correspondence U +— Div(U) gives rise to a
sheaf Divy of abelian groups. In particular, Div(X) = H*(X,Divy). If Z C X
is a closed analytic subset of codimension > 2, then Div(X) — Div(X \ Z) is
bijective. Thus, Divx ~ j.Divx\ 7 for the open immersion j: X \ Z, and we have
Div(X) ~ Div(X,g) for the non-singular locus Xieg.

Definition 1.15. For a divisor D, there exist effective divisors D and D_ uniquely
such that Dy and D_ have no common prime component and Dy — D_ = D. In
fact, Dy = > ;c;, mil'i and D = 37, .; (—m;)I'; for the prime decomposition
D =3, c;mland for It = {i € I | +m; > 0}. We call Dy (resp. D_) the
positive (resp. negative) part of the prime decomposition of D.

Convention (Cartier divisor). A Cartier divisor on a complex analytic space Y
is defined as a divisor on the ringed space (Y,Oy) in the sense of [16, §21.1].
This is an element of H(Y,25/O%) for the sheaf 93 (resp. O3F) of invertible
meromorphic (resp. holomorphic) functions on X. We set CDivy := M3 /O3 and
set CDiv(Y) := H°(Y,CDivy) as the Cartier divisor group. A principal divisor
is a Cartier divisor belonging to the image of H°(Y,9%) — CDiv(Y). For an
invertible meromorphic function ¢, we consider the Oy-module Oy ¢~ generated
by ¢~! in the sheaf 9y of meromorphic functions on Y. Then Oy¢p~! ~ Oy.
The correspondence ¢ — Oxp~! for “local” invertible meromorphic functions ¢
defines a bijection from CDiv(Y") to the set of invertible sheaves contained in 9y as
Oy-submodules. For a Cartier divisor D, the associated invertible sheaf is denoted
by Oy (D) (cf. [16], (21.2.8)]).

Remark. The correspondence D — Oy (D) defines a homomorphism CDiv(Y) —
Pic(Y'), which is isomorphic to a connecting homomorphism of the exact sequence
0= {1} = 0} = M} — CDivy — 0. In particular, we have isomorphisms
Oy(—D) ~ Oy(D)®(_1) = HOm@Y (Oy(D), Oy),
Oy (D1 + D3) ~ Oy (D) ®o, Oy (D2)

for any D, D;, Dy € CDiv(Y). A Cartier divisor D is principal if and only if
Oy (D) ~ Oy, by the exactness of H*(Y,9) — CDiv(Y) — Pic(Y).
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Convention 1.16. Let £ be an invertible sheaf on Y. A holomorphic section o
of L is said to be nowhere vanishing if ¢ induces an isomorphism Oy — L, or
equivalently,
o(y) := oy mod m, € L, @ C(y)

is not zero for any y € Y. A meromorphic section o of L is by definition a global
section of £ ®p, My. We say that ¢ is regular if ¢ induces an isomorphism
My ~ Lo, My (cf. [16, (20.1.8)]). We note the following on the regularity of ¢:

e When £ ~ Oy, p is regular if and only if ¢ is an invertible meromorphic

function.
e When Y is irreducible and locally irreducible, ¢ is regular if and only if

¢ #0.
e Even if ¢ is regular, it is not necessarily holomorphic.

Remark. A Cartier divisor D on Y is in one-to-one correspondence with a pair
(L, ) of an invertible sheaf £ and a regular meromorphic section ¢ of £. In fact,
the inclusion Oy (D) < My defines an isomorphism Oy (D) @ My ~ My, and we

-1

have ¢ for £ = Oy (D) as the inverse of the isomorphism. Conversely, ¢~ induces

an injection £ — My.

Lemma 1.17. Let f: X — Y be a morphism of varieties of maximal rank (cf.
Definition [LT)). Then there exist a canonical morphism

HO(Y, M) —— CDiv(Y) —— Pic(Y)

f*l f*l lf*
HO(X, M%) —— CDiv(X) —— Pic(X)
of exact sequences of abelian groups, where f* are pullback homomorphisms of

meromorphic functions, Cartier divisors, and invertible sheaves, respectively. In

particular, f*Oy (D) ~ Ox(f*D) for any Cartier divisor D on'Y .

Proof. For a non-zero meromorphic function ¢ on Y, its restriction |y to any
non-empty open subset U C Y is not zero, and the inverse image f*p = o f is
also not zero as f(X) contains a non-empty open subset (cf. Lemmal[l3]). Thus, we
have a group homomorphism M5 — f. 9% extending O3 — f.O%, and it defines
a morphism

0 —— flOor —— fFImy —— f~1CDivy — 0

! l l

0O—— 0 —— My —— CDwx ——0
of exact sequences of sheaves on X. By taking cohomologies, we are done. O

Convention (div(y)). Let X be a normal complex analytic space. Let ¢ be a
regular meromorphic section of an invertible sheaf £ on X (cf. Convention [[.T6]).
The divisor div(y) = divz(p) on X associated with (£, ¢) is defined by the property
that multpr div(e) equals the order of zeros or the minus of the order of poles of ¢
along T for any prime divisor I on X. If £ = Ox, then div(¢y) is just the principal
divisor associated with an invertible meromorphic function .
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Remark. For a Cartier divisor D on X, if a holomorphic section ¢ of Ox (D) is
not zero on each connected component of X, then o is regular as a meromorphic
section, and div(¢) + D = div(c) > 0 for the meromorphic function ¢ defined as
as the image of o by the inclusion Ox (D) C Mx.

Remark. The correspondence ¢ +— div(yp) defines an injection CDivyxy — Divy,
which is an isomorphism on X,e,. Hence, CDiv(X) is regarded as a subgroup of
Div(X), and we have Div(X) =~ Div(X,eg) =~ CDiv(X,eg).

Definition (Ox(D)). Let X be a normal complex analytic space. For a divisor
D on X, we set Ox (D) := j.Ox,,, (D
The sheaf Ox (D) is regarded as an Ox-submodule of Mx and it is a coherent
reflexive sheaf of rank 1 (cf. [45, App. to §1]). Here, a coherent sheaf F on X
is said to be reflexive if it is isomorphic to the double-dual FVV = (FV)V, where

.7:\/ - Homox (.7:, Ox)

Xreg) for the open immersion j: X, — X.

Remark 1.18. An effective divisor D is identified with a closed analytic subspace
of X defined by the ideal sheaf Ox(—D); the structure sheaf Op is the cokernel
of the canonical injection Ox(—D) — Ox. Hence, Supp D is the underlying set
of Dyeq for any divisor D. As a property of a divisor D, we consider a property
of the analytic space D when D is effective. For example, a divisor D is said to
be non-singular if D is effective and the analytic space D is non-singular. Thus, a
non-singular divisor is reduced, and the zero divisor is non-singular by considering
it as the empty set.

Convention (Q-divisors and R-divisors). A Q-divisor (resp. R-divisor) on a nor-
mal complex analytic space X is a locally finite Q (resp. R)-linear combination
of prime divisors. For an R-divisor D, the prime decomposition D = . [
and the multiplicity multr D along a prime divisor I' are defined similarly to the
case of divisor. Hence, we can speak of effective R-divisors, the support of an
R-divisor, prime components of an R-divisor, and the positive and negative parts
of the prime decomposition of an R-divisor (cf. Definition [[TH]). The group of Q
(resp. R)-divisors on X is denoted by Div(X,Q) (resp. Div(X,R)), and the group
of Q (resp. R)-divisors on X whose supports are contained in a closed subset T' is
denoted by Divr(X,Q) (resp. Divy(X,R)) (cf. [38, II, §2.d]); these are Q (resp.
R)-vector spaces. For the prime decomposition of D above, the round-up "D, the
round-down LD, and the fractional part (D) are defined by

ol o I [ E ol — ) ) — 7 _
D':= Zie[ r; "Iy, owDa: ZiGILrlJ Iy, and (D):=D—.D,,
where .ro=max{i € Z|i<r}and "r'=min{i € Z|i >r} = —_—riforr € R.

Remark. For & = Q or R, we have Div(X, &) = H°(X, Divy ® &), but Div(X, &)
is not necessarily isomorphic to Div(X) ® 8.

Convention (Linear equivalence). Let X be a normal variety. For two R-divisors
D and D’ on X, if D— D’ is a principal divisor, i.e., D — D’ = div(y) for a non-zero
meromorphic function ¢ on X, then D is said to be linearly equivalent to D’, and
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we write D ~ D’ for the linear equivalence. If m(D — D’) ~ 0 for a positive integer
m, then D is said to be Q-linearly equivalent to D', and we write D ~g D’ for the
Q-linear equivalence.

Definition (Q-Cartier, R-Cartier). Let X be a normal complex analytic space. A
Q-divisor D on X is said to be Q-Cartier if there is a positive integer m locally
on X such that mD is a Cartier divisor. The group of Q-Cartier QQ-divisors on
X is denoted by CDiv(X,Q). Then we have CDiv(X,Q) = H°(X,CDivx ® Q).
An R-divisor E on X is said to be R-Cartier if it is locally expressed as a finite
R-linear combination of Cartier divisors. The group of R-Cartier R-divisors on X
is denoted by CDiv(X,R). Then we have CDiv(X,R) = H%(X,CDivy ® R).

Lemma 1.19. Let f: X — Y be a morphism of mazimal rank of normal varieties.
Then the pullback homomorphism f*: CDiv(Y) — CDiv(X) in Lemma [[I7 ex-
tends to homomorphisms f*: CDiv(Y,Q) — CDiv(X,Q) and f*: CDiv(Y,R) —
CDiv(X,R). Assume next that

codim(X \ 7! (Vieg), X) > 2.

Then pullback homomorphisms f* above extend to homomorphisms f*: Div(Y) —
Div(X), f*: Div(Y,Q) — Div(X,Q), and f*: Div(Y,R) — Div(X,R). Moreover,
there is a functorial isomorphism (f*Oy (D))VV ~ Ox(f*D) for D € Div(Y).

Proof. Let & denote Z, Q, or R. By the proof of Lemma [[LT7] we have a ho-
momorphism f~1(CDivy ® &) — CDivy ® K, and a homomorphism CDivy ®
R = f«(CDivx ® R) by adjunction. This defines the pullback homomorphism
*: CDiv(Y, &) — CDiv(X, R). Weset X’ = f~!(Y,eg) and assume that codim(X\

X', X) > 2. Then
Divy @ & ~ i, (Divy;

e @ R) ~ i, (CDivy,,, ® &) and

Divy ® R ~ j*(DiUX/ ®ﬁ) D j*(CDiUX/ ®ﬁ),
where i: Yo < Y and j: X’ — X stand for open immersions. Hence, for the

restriction f' := f|x/: X' — Yieg of f, the homomorphism (f’)_lc’Dz'UYreg —
CDivx in the proof of Lemma [[.17] defines a homomorphism

Divy @ R — f.(Divx ® R).

For & = Z, Q, and R, it induces pullback homomorphisms Div(Y) — Div(X),
Div(Y,Q) — Div(X,Q), and Div(Y,R) — Div(X,R), respectively. For D €
Div(Y), we have (f*Oy (D))VV ~ Ox(f*D) by applying j. to

(f*Oy(D))|xs = " Oy, (Dly,.,) = Ox/(f*(Dly,.,)) =~ Ox(f*D)|x,. O

Remark. When codim(X \ f~(Yieg), X) > 2, the pullback f*D is regarded as the
closure of f"*(Dly,,,)-

Definition (Pushforward). Let f: X — Y be a non-degenerate morphism (cf.
Definition [[LT]) of normal varieties. Let B be an R-divisor on X such that f|r: T —
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Y is proper for any prime component I' of B. Then the pushforward f.B is defined
as an R-divisor on Y such that

multe f.B =)

for any prime divisor © on Y, where C(B;0) is the set of prime components I'
of B such that f(I') = © and where dr/g is the degree of the finite morphism
flr: T — ©. Note that if B is a divisor (resp. Q-divisor), then f,B is so.

rec(B:©) dp/@ multr B

Remark. Assume that f is proper. Then f, gives rise to homomorphisms Div(X) —
Div(Y), Div(X,Q) — Div(Y, Q), and Div(X,R) — Div(Y,R). If B € Div(X), then
Oy (f«B) is isomorphic to the double-dual of

deg f deg f

A (£.0x(B)) 2o, (\ £.0x)’
(cf. [38, 11, §2.e]). Moreover, f.(f*D) = (deg f)D for any D € CDiv(Y,Q).

Definition (Exceptional divisor). Let f: X — Y be a non-degenerate morphism of
normal varieties. A prime divisor I' on X is said to be f-exceptional, or exceptional
for f, if dim, T N f~1(f(z)) > 0 for any x € T. An R-divisor on X is called
f-exceptional if its prime components are all f-exceptional.

Remark. When f is proper, an R-divisor D on X is f-exceptional if and only if
f+D =0.

Remark 1.20. If a prime divisor I" is not f-exceptional, then I' N X’ # () for X' :=
7 (Yieg). Moreover I'|x/ is also a prime divisor of X', since X’ is a Zariski-open
subset of X (cf. [15] IX, §1.2]). Hence, we can consider the multiplicity of f™*(Dly,,,)
along I'| x+ for the morphism f’ = f|x/: X’ — Yiee. If f has no exceptional divisor,
then codim(X \ X', X) > 2.

Remark 1.21. Let f: X — Y be a non-degenerate morphism of normal surfaces
without exceptional divisors. Then f has only discrete fibers. Conversely, any mor-
phism f: X — Y of normal surfaces with only discrete fibers is non-degenerate by
Corollary [[L4l In this case, f is open and is locally a finite morphism by Corol-
lary [L8 i.e., for any = € X, there exists an open neighborhood U of z in X such
that U N f~1(f(x)) = {z}, fU) isopen in Y, fly: U — f(U) is finite.

Definition 1.22 (Strict pullback). Let f: X — Y be a non-degenerate morphism
of normal varieties. For an R-divisor D on Y, let Sf(D) be the set of non-f-

exceptional prime divisors on X contained in f~*(Supp D). The strict pullback
fU¥D of D is a Q-divisor on X defined by

multp , f*(Dly,.,), ifT €Ss(D),
0, if ' ¢ S¢(D),
for prime divisors I' on X, where X’ = f7!(Yieg) and f/ = flx/: X' — Yieg (cf.
Remark [[200 [38] II, §2.e]). If f is a bimeromorphic morphism, i.e., a proper

surjective morphism such that f~'U — U is an isomorphism for a non-empty open
subset U C Y, then fI¥!D is called the proper transform of D in X. In this case,

f(f¥1D) = D.

multr D = {
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1.3. Numerical pullbacks of a divisor on a normal surface. For a bimero-
morphic morphism f: X — Y of normal surfaces and a divisor D on Y, we have
the numerical pullback f*D as a Q-divisor on X, which is introduced by Mumford
[35, I1, §(b)]. These pullbacks define intersection numbers of two divisors on normal
surfaces which are not necessarily Cartier. We can extend the definition of numeri-
cal pullback for R-divisors and for non-generate morphisms of normal surfaces. We
shall explain some elementary properties of numerical pullbacks. The following is
proved by the same method as in [35], [48] §1], or [40, §2.1].

Lemma-Definition 1.23 (Numerical pullback). For a non-degenerate morphism
f: X =Y of normal surfaces, there is a functorial linear map f*: Div(Y,Q) —
Div(X, Q)of Q-vector spaces satisfying the following conditions:

(1) For non-degenerate morphisms f: X =Y and g: Y — Z of normal sur-
faces, one has f*og* = (go f)*.

(2) If f is an open immersion, then f* is the restriction map D — D|x.

(3) The homomorphism f* extends the pullback homomorphism CDiv(Y) —
CDiv(X) of groups of Cartier divisors.

(4) In case X is non-singular and f is proper, for a Q-divisor D on'Y, the
intersection number (f*D)E is zero for any f-exceptional Q-divisor E.

The Q-divisor f*D s called the numerical pullback of a Q-divisor D on'Y.

Remark. When X is non-singular and f is a bimeromorphic morphism, the nu-
merical pullback f*D is expressed as the sum f*D + E of the proper transform
fU¥ID and an f-exceptional Q-divisor E such that (f*ID + E)I' = 0 for any f-
exceptional prime divisor I'. Here, F is uniquely determined, since the intersection
matrix (I';T';) of f-exceptional prime divisors I'; contracted to a fixed point of ¥ is
negative definite (cf. [35 p. 6]).

Remark. By resolution of singularities and indeterminacy of meromorphic maps,
for the morphism f, we have a commutative diagram

M —t 5 X

gl lf

N —2—Y
of normal surfaces such that M and N are non-singular and that x4 and v are bimero-
morphic morphisms. Then the numerical pullback is given by f*D = p.(¢*(v*D))

for a divisor D, where g* indicates the pullback of a Cartier divisor, and u, indicates
the pushforward of a divisor by the proper morphism p.

Definition (Intersection number). Let D and E be Q-divisors on a normal surface
X such that Supp D N Supp F is compact. Let u: M — X be a bimeromorphic
morphism from a non-singular surface M. Here, Supp pu*D N Supp p*E is also
compact, and one can consider the intersection number DE := (p*D)u*E. Then
DEFE is independent of the choice of p, and it is called the intersection number of D
and E.
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Remark 1.24. The numerical pullback f* in Lemma-Definition [[L23] and the inter-
section numbers above are defined also for R-divisors by linearity. The following
properties are known or shown easily for f: X — Y and an R-divisor D on Y:

(1) If D is effective, then f*D is so and Supp f*D = f~1(Supp D).

(2) For an R-divisor E on X, if f~*(Supp D) N Supp E is compact, then the
projection formula: (f*D)E = D(f.E) holds.

(3) If f is proper, then (deg f)D = f.(f*D).

(4) If an R-divisor D’ on Y has no common prime component with D and if
DD’ =0, then Supp D N Supp D’ = 0.

(5) Assume that codim(X \ X', X) > 2 for X’ = f~!(Yseg). Then the pullback
f*D given in Lemma coincides with the numerical pullback. In fact,
if D is a divisor, then f*D|x, coincides with the pullback of the Cartier
divisor D

Yreg N

Remark 1.25. Let S be a non-zero reduced compact divisor on a normal surface X
such that the intersection matrix (I';I';) of prime components I'; of S is negative
definite. Let D is an R-divisor on X such that Supp D C S and that D is nef on
S (cf. [0, Def. 2.14(ii)]), i.e., DT' > 0 for any prime component I of S. Then —D
is effective by [59, Lem. 7.1]. If S is connected in addition, then either D = 0 or
Supp D = S. In fact, if I'; ¢ Supp D for a prime component I'; of S, then DI'; = 0,
and hence, I';ND = () and I'; N D = ) for any other prime component I'; such that
I'; NT; # 0; this implies that D = 0.

Definition 1.26. Let X be a normal surface and let u: M — X be the minimal
resolution of singularity. A divisor D on X is said to be numerically Cartier if the
numerical pullback p*D is Cartier (cf. “numerically Q-Cartier” in [38] II, §2.e]).
We say that D is numerically Cartier at a point P € X if D is numerically Cartier
on an open neighborhood of P. The numerical factorial index nf(X, P) at P € X is
defined as the smallest positive integer r such that rD is numerically Cartier at P
for any divisor D defined on any open neighborhood of P. The numerical factorial
index nf(X) of X is defined as lempex nf(X, P).

The numerical factorial index nf(X, P) is calculated by the intersection matrix
as follows:

Lemma 1.27. Let X be a normal surface and let f:Y — X be a bimeromorphic
morphism from a non-singular surface Y. Let P be a point on X such that f~(P)
is a divisor, and let 'y, ..., T') be the prime components of f~1(P). Then nf(X, P)
equals the smallest positive integer r such that TM™1 is integral for the intersection

matriz M = (IiL;) ;-

Proof. We can find an open neighborhood U of P and prime divisors By, Ba, ..., Bg
on f~U such that B;I'; = §; ; for any 1 < 4,5 < k. We set D; := f.B; as a prime
divisor on Y. Then f*D; = B; +Zf:1 a; ;I'; for non-negative rational numbers a; ;
such that (a;;)1<ij<k = —M~'. For a positive integer m, if f*(mD;) is Cartier
along f~!(P) for any i, then m(a; ;) = —mM~1! is integral. Thus, r | nf(X, P). For
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a divisor D on an open neighborhood of P, we write f*D = fID + Zle c;I'; for
rational numbers ¢;. Since fI*D is Cartier, we have d; := (f*!D)I'; € Z and

k
(fHD - Z,_l d;B;)T; =0

for any 1 < j < k. This implies that (c1,ca,...,cx) = —(di,da,...,d;)M~L. Then
re; € Z for any 1 < ¢ <n, and f*(rD) is Cartier. Therefore, nf(X, P) = r. O

The following is a generalization of [48, Thm. (2.1)] and is shown by properties
of relative Zariski-decomposition (cf. [38, III, Lem. 5.10(2)]); here, we shall give a
direct proof.

Lemma 1.28. Let f: Y — X be a bimeromorphic morphism from a non-singular
surface Y to a normal surface X. Let D be a divisor on X and let B be a Q-divisor
on'Y such that f.B = D. Then the canonical injection

Am: f+Oy(LmBl) — (f.Oy (LmB1))YY ~ Ox(mD)

A%

is an isomorphism for any integer m > 0 if and only if B > f*D, where stands

for the double-dual.

Proof. Since the assertion is local on X, we may assume that X is Stein and that
Sing X consists of at most one point. For any m > 0, we have an f-exceptional
Q-divisor F,, on Y such that mf*D — F,, is Cartier and

(f*Ox(mD))VV ~ Oy (mf*D — F,,).

Since the cokernel of f*Ox(mD) — (f*Ox(mD))VY is supported on discrete
points, the intersection number (mf*D — F,,)T' = —F,,,T" is non-negative for any
f-exceptional prime divisor I'. Then F,, is effective by Remark [[.25 since the
intersection matrix of f-exceptional prime divisors is negative definite.

Assume that B > f*D. Then mB > .mBJ, > mf*D — F,,, for any m > 0.
Hence, we have an injection Ox(mD) — f.Oy(umB.) giving the inverse of \,,,.
This shows the “if” part. The “only if” part is shown as follows: Suppose that A,
is an isomorphism for any m > 0. Then f*f.Oy(LmB1) — Oy (LmBJ) induces
an injection Oy (mf*D — F,,) — Oy (umBJ), which corresponds to an inequality
f*D — (1/m)F,, < B of Q-divisors. Hence, we are reduced to proving that F, :=
lim;;, 00 (1/m)F,, = 0. Note that the R-divisor Fi, exists, since Fy,, + F, > Fpin
for any positive integers m and n (cf. [38, III, Lem. 1.3]).

Let I'y, ..., I'; be the f-exceptional prime divisors. Then there exist positive
integers aq, . .., a; such that AT'; > 0 for any 1 < i <[ for the divisor A = — )" a;T;.
This implies that f is a projective morphism over an open neighborhood of Sing X
and that A is f-ample (cf. [36, Prop. 1.4]). Hence, mf*D + A is also f-ample for
any m > 0. We choose an integer b > 0 such that bD is Cartier. Then there is an
integer k = k, > 0 such that

[T 1Oy (k(bf*D + A)) = Oy (k(bf*D + A))



20

is surjective. Hence, k(bf*D + A) < kbf*D — Fyp; equivalently, multr, Fipy < ka;
for any 1 <14 <. By taking b — oo, we have

multpi Foo = llmb*)oo(l/kbb) multpi Fk:bb S limb*)oo az/b =0.
Therefore, F,, = 0 and we are done. O

1.4. Pullback and pushforward by meromorphic maps. We shall define pull-
backs and pushforwards of R-divisors by “non-degenerate meromorphic maps” un-
der certain conditions.

Definition 1.29. Let f: X ---—Y be a meromorphic map of normal varieties,
and let V be the normalization of the graph of f. Then f = mo u~! for the
bimeromorphic morphism g = pys: V. — X and the morphism 7 = m¢: V = Y
defined by projections (cf. [46, §6, Def. 15], [50] I, §2, Def. 2.2]). We say that f is
proper (resp. of maximal rank, resp. non-degenerate) when 7 is so.

Definition 1.30. In the situation of Definition [.29] above, assume that f is non-
degenerate. We set n :=dim X =dimY. Let B and D be R-divisors on X and Y,
respectively.

(1) The strict pullback fP*!D of D by f is defined as the R-divisor p.(7*I D)
on X, where 7*1 D is defined in Definition

(2) When D is R-Cartier or when n = 2, the (total) pullback f*D of D by f is
defined as the R-divisor . (7*D) on X.

(3) When Supp B is compact or when f is proper, the strict pushforward f,)B
of B by f is defined as . (ul*1 B).

(4) Assume that B is R-Cartier or n = 2. When Supp B is compact or when f
is proper, the (total) pushforward f.B of B by f is defined as 7, (u*B).

Remark. (1) When B and D are R-Cartier, we have pullbacks p*B and 7*D
by Lemma When n = 2, we have p*B and 7*D as the numerical
pullbacks (cf. Lemma-Definition [23)).

(2) If £ is holomorphic, then f¥1 D, f*D, and f,B above, respectively, are equal
to the same ones defined for the morphism f, since p¢ is an isomorphism.
Moreover, in this case, we have f,)B = f.B.

(3) When f is a bimeromorphic morphism, the strict transform f*/ D is called
also the proper transform of D. This is expressed as f; 1D in some articles
(e.g. [34]), but this is not equal to the total pushforward (f~1).D of D by
f7 Yy =X,

Lemma 1.31. Let f: X ---—Y be a non-degenerate meromorphic map of varieties
of dimension n and let v: W — X be a bimeromorphic morphism from a mormal
variety W such that w = fov: W =Y is holomorphic. Let B and D be R-divisors
on X and Y, respectively.

(1) The strict pullback f*!D equals v, (w!* D).

(2) If D is R-Cartier or n =2, then f*D = v,(w*D).

(3) If Supp B is compact or if f is proper, then f1,jB = w. (vB).
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(4) Assume that B is R-Cartier or n = 2. If Supp B is compact or f is proper,
then foB = w.(v*B).

Proof. For the normalization V of the graph of f, there is a bimeromorphic mor-
phism o: W — V such that v = poo and @w = moo for morphisms = py and m =
m¢ in Definition Then w D = ¢ (7 D) and v B = ¢ (u* B). Hence,
we have (@) and [3)) by using o, (@ D) = 71D and o, (v B) = u*B. Similarly,
we can prove ([2) and (@), respectively, by @w*D = ¢*(n*D) and o.(w*D) = n*D
and by v*B = o*(u*B) and o, (v*B) = u*B. O

Lemma 1.32. Let f: X =Y and g: Y ---— Z be non-degenerate meromorphic
maps of normal varieties of dimension n. Then we have a commutative diagram

U
v X
) h

V. W
NN
X ! Y- g 7z

of meromorphic maps of normal varieties, where V (resp. W) is the normalization
of the graph of f (resp. g), morphisms py (resp. pg) and wp (resp. my) are as
in Definition [L29], U is the normalization of the graph of the meromorphic map
h = ugl omy: V- W, and morphisms py, and 7, are as in Definition [[29. We
consider two conditions:

(a) every ms-exceptional divisor is jif-exceptional;
(b) every pg-exceptional divisor is m4-exceptional.
Then R-divisors B and D on X and Z, respectively, have the following properties:
(1) If @) or @) holds, then (go f)¥D = (g D).
(2) Assume either that Supp B is compact or that f and g are proper. If (b))
or @) holds, then (g o f)B = g (f14B)-
(3) Assume either that n = 2 or that D and g*D are R-Cartier. If (@) holds,

then (g0 )*D = [*(g" D).
(4) Assume either that Supp B is compact or that f and g are proper. Moreover,
assume either that n = 2 or that B and g.B are R-Cartier. If (b)) holds,

then (go f)«B = g.(f.B).
Proof. We consider R-divisors
E= ﬂg*]D - u[g*] (/J,g*(ﬂ'![]*]D)) and F = Ty D — iy (pg« (7, D))
on W in the cases () and (@), respectively, and R-divisors
C = mna(ph W' B) = p ) (W' B)) and € = my (i3 B) — i (mpa (13 B))
on W in the cases (@) and (), respectively. Here, we have

WIE = pn (751 D) = 7 (g (xf1D)),  W*E = (s D) — 75 (p1g (7 D))
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by ME] OT('E[*] = 71',[1*] o,ug*}, Py oMy =mp 0 g, and fif. o p

R-divisors have the following properties:

g g fufs 0 pp = id. These

(i) E and E are g-exceptional;

(ii) if every prim(i component of wé[,*}D is not pg-exceptional, then £ = 0;
(iii) A E and h*E are 7-exceptional;
(iv) C and C are pg4-exceptional;

(v) if every prime component of u?]B is not 7 s-exceptional, then C' = 0.

In fact, by linearity, we may assume that D and B are prime divisors for proving
@) (@), and we have

pge = pge B = g C = p1g,C =0

by fig+ 0 ,u[g*] = fgx © fg = 1d, figs O Ths = Tfs O fhs, and i © uf] = fp 0y, = id.

This shows () and (I¥)), and we have () as a consequence of (). Moreover, in
case (), F has no pg-exceptional prime component but g, E = 0; this implies
that £ = 0. Thus, () holds. In case (W), Wf*(u[*]B) = m@® for a prime divisor ©
on Y and a positive integer m, and mb*(u[;]ugf]B) = mugk]@, since pyp and p, are
bimeromorphic morphisms; thus, C' = 0, and we have proved ().

By Lemma [[.3T] we have four equalities

(90 HD = fHU(GHID) = pp(WHE), (9o £)*D = (9" D) = pyu(h*B),

(90 B — g (fB) = 14 C, (g0 f)«B — gu(fuB) = 7y C.

For example, we have

(90 IPID = (5 0 pg)u((mg 0 m)ID) = pp. (g (), (D))

by Lemma [[3T|(), and this implies the first equality. Hence, for the proof of
@)—), it suffices to verify:

(1) h*E and h*E are p-exceptional, and

(IT) hpC and h.C are Tg-exceptional.
If (@) holds, then we have () and C = 0 by (i) and (@). It implies () in the case
@), @) in the case (@), and ([B). If (B) holds, then we have ([Il) and £ = 0 by (i)
and (V). It implies () in the case (b)), @) in the case (b)), and ). Thus, we are
done. O

Corollary 1.33. In the situation of Lemma [1.32], assume that n = 2 and that 7; D
is pg-nef (cf. Convention RIAI) below), i.e., (m; D)I' > 0 for any p,-exceptional
prime diwvisor I'. Then (go f)*D < f*(¢g*D).
Proof. The R-divisor E in the proof of Lemma [1.32]is ;14-exceptional and p4-nef.
Then —F is effective by Remark [[.25] since the intersection matrix of prime com-
ponents of any connected non-zero pg-exceptional divisor is negative definite (cf.
[35, p. 6]). Hence,

(9o f)*D = f"(g"D) = ps«(R"E) < 0. O

Remark. An inequality of currents similar to the above is noticed in the study of
dynamical systems (cf. [4, Prop. 1.13] and () in the proof of [20, Prop. 1.2]).
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1.5. Canonical divisors and ramification formulas for normal varieties. In
the first half of Section [[.5] we shall explain the canonical divisor Ky of a normal
variety Y and the ramification formula Kx = f*Ky + Ry for a non-degenerate
morphism f: X — Y of normal varieties in some special cases (cf. Situation [[36]),
which include the case where dim X = dimY = 2. Especially, we want to emphasize
that Ky is unique up to linear equivalence but the ramification formula is regarded
as an equality not only as a linear equivalence. In the last half, we shall give some
variants of the ramification formula including the logarithmic ramification formula
due to Iitaka (cf. (I2)) in Proposition [L40 below).

Convention (Canonical divisor). The canonical divisor Ky of a normal variety Y
is regarded as the following object: We set n = dim Y. In case Y is non-singular, the
canonical sheaf wy is defined as the sheaf (2§ = 20 / SpecC of germs of holomorphic
n-forms on Y. In general, the canonical sheaf wy is a coherent reflexive sheaf of
rank 1 on Y defined as j.wy,,, for the open immersion j: Yieg < Y (cf. [45, App. of
§1, Cor. (8)]); this is isomorphic to the (—n)-th cohomology sheaf H~"(w},) of the
dualizing complex wy- (cf. [21], [44]). If wy has a non-zero meromorphic section 7,
then 7ly,,, is a meromorphic n-form on Y, and there is a unique divisor div(n) on
Y satisfying div(n)ly,., = div(nly,,, ), since codim(Y"\ Y;ez) > 2. The divisor div(n)
is called the canonical divisor and is denoted by Ky, even though it depends on
the choice of 7. Hence, Oy (Ky) ~ wy, and Ky is unique up to linear equivalence.
Even if wy has no non-zero meromorphic section, the symbol Ky is used virtually,
which means just the canonical sheaf wy .

Remark. If Y is Stein, or more generally, if Y is weakly 1-complete with a positive
line bundle, then every non-zero reflexive sheaf on Y admits a non-zero meromorphic
section (cf. [9, Lem. 3]), thus, we can consider Ky as a divisor.

Remark. Even when Y is a reducible normal complex analytic space, one can con-
sider Ky as a divisor on Y whose restriction to each connected component (=
irreducible component) is the canonical divisor.

Definition 1.34 (fTn). Let f: X — Y be a non-degenerate morphism of non-
singular varieties of dimension n > 1. For a holomorphic n-form n on Y, we write
fTn for the pullback of 1 by f as a holomorphic n-form on X. This is given by the
canonical homomorphism ¢: f*wy = f*2% — wx = 2%. Even for a meromorphic
n-form n on Y, we have the pullback fin as a meromorphic n-form on X by

id id
f*(my ®wY) ~ f*my ® f*wy &) Mx ® f*wy ﬂ) Mx Q@ wyx,

where ¢ : f*My — Mx is the pullback homomorphism of meromorphic functions,
which exists as f is non-degenerate (cf. the proof of Lemma [[.T7).

Remark. The pullback fTn is usually denoted by f*n, but we use f' for avoiding
confusions with other f*.

Lemma-Definition 1.35. Let f: X — Y be a non-degenerate morphism of normal
varieties of dimension n > 1 and let n be a non-zero meromorphic section of wy .
For the open subset X, = Xyeg N f‘l(Yreg) and for the induced morphism f, =
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flx,: Xo = Yieg, the pullback fi(n
to a meromorphic section of wy. This section is denoted by fin.

Yieg) @S @ meromorphic n-form on X, extends

Proof. The uniqueness of fn is obvious. Thus, we can replace Y with any open
subset. By the local theory of analytic spaces, we may assume that there is a
finite surjective morphism 7: Y — Q to a domain Q of the affine space C™ (cf.
[7, §3.1, Thm. 1]). Let ¢ be the standard holomorphic n-form on , ie., {( =
dziAdza A - -Ndz,, for a coordinate (z1,za, . . ., z,) of C™. For the induced morphism
Treg ! Yreg — §1 of non-singular varieties, we have a meromorphic function ¢ on Y’
such that

TheC =
Let £ be a meromorphic section of wx such that the restriction ¢|x,,, equals the

pullback (7 o fieg)'¢ as a holomorphic n-form on X,eq for the induced morphism
freg = f Xreg * Xreg — Y. Then

élx, = (o) fl(nlviey)-
Thus, it is enough to set fin := (f*p)~L¢. O
Remark. If codim(X \ f~(Yieg), X) > 2, then codim(X \ Xo, X) > 2. In this case,
for any holomorphic section 7 of wy, the pullback fT7 is also a holomorphic section

of wx. In fact, the section fT is holomorphic if and only if the restriction fin|x,
is so by codim(X \ X, X) > 2, and now fi(n|yreg) is holomorphic.

Yreg :

Situation 1.36. Let f: X — Y be a non-degenerate morphism of normal varieties.
As a pullback homomorphism f* for certain R-divisors, we consider one of the
following:
(I) The homomorphism f*: CDiv(Y,R) — CDiv(X,R) in Lemma [[.T9
(IT) The homomorphism f*: Div(Y,R) — Div(X,R) in Lemma [[.T9] which is
defined only when codim(X \ f~!(Yieg), X) > 2.
(III) The numerical pullback homomorphism f*: Div(Y,R) — Div(X,R) in
Lemma-Definition [[L23] which is defined only when dim X = dimY = 2.
This f* extends the homomorphisms f* in () and ([}), but does not induce
Div(Y) — Div(X) in general.

Lemma 1.37. Let D be an R-divisor on'Y such that the pullback f*(Ky + D)
is defined in one of cases in Situation [[30l. Then Kx — f*(Ky + D) is uniquely
determined as an R-divisor on X when wy has a non-zero meromorphic section 7,
by setting Kx = div(ftn) and Ky = div(n).

Proof. For non-zero meromorphic sections 7; and 75 of wy, there is a non-zero
meromorphic function ¢ on Y such that 1, = ¢no. Then fin; = (f*p)fine, and
we have

div(n) + D = div(ne) + D + div(p) and  div(fTn) = div(fine) + div(f*p).
Since f*div(p) = div(f*¢) (cf. Lemma [[.TT), we have
div(fTm) — f*(div(m) + D) = div(fTnz) — f*(div(nz) + D).
Thus, Kx — f*(Ky + D) is uniquely determined. O
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Convention. Let f: X — Y be a non-degenerate morphism of normal varieties
and let B and D be R-divisors on X and Y, respectively. By an equality Kx + B =
f*(Ky + D), we mean the following:
(1) Assume that wy admits a non-zero meromorphic section 7. Then the pull-
back f*(div(n)+ D) exists in one of cases in Situation and div(fTn) +
B = f*(div(n) + D) as an R-divisors on X.
(2) If Y = U, Y\ for open subsets Y\ such that each wy, admits a non-zero
meromorphic section on Y), then

KXA +B‘X>\ = f;(KYA +D|Y>\)

for any A\, where Xy = f~1Yy and f\ = f|x,: X) — Yh.
Note that () is independent of the choice of n by Lemma [[37

Definition (Ramification divisor (cf. [24] §5.6])). In Situation [[36] we define the
ramification divisor of f as a Q-divisor Ry on X such that Kx = f*Ky + Ry.

Remark. If X and Y are non-singular, then R is the usual ramification divi-
sor in the sense that Ry is an effective divisor and that the canonical injection
f*wy — wx induces an isomorphism f*wy ~ wx ®Ox(—Ry) (cf. [24] §5.6]). In Sit-
uation [36I[M), Ry exists when Ky is Q-Cartier, but Ry is not necessarily effective.
In fact, when f is a resolution of singularities, R is effective if and only if Y has only
canonical singularities (cf. [45, Def. (1.1)], [31, Def. 0-2-6]). In Situation [L3GI(II),
Ry exists always as an effective divisor as the closure of the ramification divisor
Ry, of the induced morphism f, = flx,: Xo = Yieg for Xo = Xieg N f*IYng. In
Situation [L36(IID), Ry exists always, but it is not necessarily effective.

Now, we shall present some variations of ramification formula for non-degenerate
morphisms.

Lemma 1.38. Let f: X — Y be a non-degenerate morphism of non-singular va-
rieties of dimension n > 1 and let B and D be non-singular prime divisors on X
and Y, respectively, such that B = f~'D.

(1) If B is not f-exceptional, then multg Ry = m —1 for m = multg f*D and
for the ramification divisor Ry.
(2) If B is f-exceptional, then the image of the pullback homomorphism

¢": fr 0% (log D) — 2% (log B)
of logarithmic n-forms is contained in the subsheaf (2% .

Proof. We shall give a sheaf-theoretic proof even though () is obvious by a local
description of f. For each 1 < p < n, there is a commutative diagram

0 —— [0 —— [ (logD) —— [ —— 0

(I-1) Wl a% “”Hl

0 —— 2% —— %(ogB) —— QL1 50
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of exact sequences on sheaves of holomorphic and logarithmic p-forms, where the
pullback homomorphisms ¥? = AP! and ¢? = AP¢! are injective as f is non-
degenerate. Moreover, r! is induced by the residue isomorphism 2% (log B)@ Op ~
Op, and P~ ! is expressed as the composite homomorphism

1 qp1! _q Rt _
f* Q% 1 g* _Q% 1 ¢ Q% 1
for g := f|g: B — D, where ¢§—1 is the pullback homomorphism of holomorphic
(p — 1)-forms, and 7P~! is a surjection induced by f*Op ~ O,,p — Op and by
tensor products with the locally free O x-module f*(2 (log D).
Assume that B is not f-exceptional. Then g is non-degenerate and wg_l is

n—1

n—1 i5 generically surjective on B, and the kernel of ¢ is

injective. Hence, ¢
isomorphic to
Om-1)B @ Ox(—B) ® f*2y(logY)

if m > 1, and is zero if m = 1. In particular, ¢™ is surjective on a dense open subset
of B. By the snake lemma, we have multg Ry = m — 1, since the cokernel of " is
isomorphic to wx ® ORf. This shows ().

Assume next that B is f-exceptional. Then n > 2, and 1/13_1 =0 as g is
degenerate. Hence, the image of ¢ is contained in 2%. This shows (2]). O

Lemma 1.39. Let f: X — Y be a non-degenerate morphism of normal varieties
without exceptional divisors and let B C X and D C Y be reduced divisors such
that B = f~'D. Then Kx + B = f*(Ky + D) + A for an effective divisor A
having no common prime component with B. In particular, the induced morphism
X\ B — Y\ D is étale in codimension 1 if and only if A = 0.

Proof. We can consider the pullback homomorphism f*: Div(Y) — Div(X) in
Situation [C36II), since codim(X \ f~!(Yieg), X) > 2. Thus, we may assume that
X and Y are non-singular by replacing Y and X with Yiez and Xyeg N f7 (Yieg),
respectively. For the ramification divisor Ry = Kx — f*Ky, we have A = Ry +
B — f*D. Let I be a prime divisor on X. If I' ¢ B = f~'D, then multr A =
multr Ry > 0. If ' C B, then I' C 71O for a prime component © of D. In this
case, since B is not f-exceptional, we have

14+ multr Ry = multr f*© = multp f*D

by applying Lemma to suitable open subsets U C X and V C Y such that
U C f~'V and that T'|y = B|y and ©|y = D|y are non-singular prime divisors;
hence, multpr A = multr(Ry + B — f*D) = 0. Thus, A is effective and has no
common prime component with B. O

The following equality ([=2)) is known as the logarithmic ramification formula due
to Iitaka (cf. [23, §4, (R)], [24, Thm. 11.5]). The generalization ([-3)) is obtained by
Suzuki [54] and Iitaka [25] Part 2, Prop. 1]. We shall prove them by a sheaf-theoretic
argument.

Proposition 1.40. Let f: X — Y be a non-degenerate morphism of normal vari-
eties and let B and D be reduced divisors on X and Y, respectively, such thatY is
non-singular, D is normal crossing, and f~'D C B.
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(1) There is an effective divisor R on X such that
(I-2) Kx+B=f"(Ky +D)+R

and that any common prime component of f =D and R is f-exceptional.

(2) Let C be a non-singular divisor on' Y and A a reduced divisor on X such
that (f[*]C)red < A, A+ B is reduced, and C + D 1is reduced and normal
crossing. Then there is an effective divisor R® on X such that

(I-3) Kx + A+ B= f*(Ky +C + D)+ R

Proof. By replacing X with a Zariski-open subset whose complement has codi-
mension at least 2, we may assume that X and B are non-singular and that
B = (f*C + A+ B)eq is also non-singular in the situation of (Z).

(@): The pullback homomorphism

@": 7 2¢(log D) = f*(wy ® Oy (D)) = 2% (log B) ~ wx ® Ox(B)

of logarithmic n-forms is injective as f is non-degenerate, and it implies that R > 0.
It is enough to prove that I' ¢ Supp R for any non- f-exceptional prime component
I of f~'D. For this, by replacing X and Y with suitable open subsets, we may
assume that I' = B = f~'D. Then I' = B ¢ Supp R by Lemma [[:39]

@): By (@), we have Ky + B = f*(Ky + C + D) + R for an effective divisor R.
It is enough to prove that R>B- (A + B), or equivalently that R>T for any
prime component I" of B-— (A+ B). By assumption, I' is f-exceptional, I' C f~1C,
and I' ¢ B. By replacing X and Y with open subsets, we may assume that B = 0,
B—(A+B)=(f*C+A)ea — A= f"1C,and I' = f~1C. Then the image of

7028 (log C) ~ f*(wy @ Oy (C)) = 2% (logT) ~ wx ® Ox(T)
is contained in wy by Lemma [[382]). It implies that R> I', and we are done. [J

Remark. We have a little generalization of [25 Part 2, Prop. 1] in [38] II, Thm. 4.2].
But the assumption p*! X <Y in the statement is stronger than what we expect.
The correct assumption is (p[*]X Jred < Y. This correct case has been treated in the
proof of [25, Part 2, Prop. 1], where (f*/C),eq is written as f~'[C]. The stronger
assumption affects [38, II, Lem. 4.4] given as an application of [38] II, Thm. 4.2].

The following lemma is borrowed from [38, II, Lems. 4.3 and 4.4], which are
stated for generically finite morphisms.

Lemma 1.41. Let f: X — Y be a non-degenerate morphism of normal varieties
and let D be an effective Q-divisor on Y. Assume that Y is non-singular and "D
is reduced and mormal crossing.

(1) There is an effective Q-divisor Rp on X such that
KX + (f*D)red = f*(KY + D) +§D

(2) If LDy =0, then there is a Q-divisor Rp on X such that "Rp™ is effective
and KX = f*(KY + D) + RD.
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(3) If C := LD is non-singular, then there is a Q-divisor R% on X such that
TRET is effective and

Kx + (f%10)ea = f*(Ky + D) + R%.

Proof. We may assume that D # 0, since the ramification divisor Ry = Kx — f*Ky
is effective. Hence D,eq = SuppD = "D™. By replacing X with a Zariski-open
subset whose complement has codimension at least 2, we may assume that X and
(f*D)yeq are non-singular. N

(@ and @): By Proposition [TABM), Kx + (£ D)sea = f*(Ky + Dyea) + R for
an effective divisor R. Then Rp is effective by

E = Rf + (f*-D)red - f*(Dred) = ED - f*(Dred - D)
This proves [0). Assume that LD, = 0. Then Rp = Rp + (f*D)req > 0. For a
prime component I' of f*D, we have multp f*(Dyea — D) > 0, and
multr Rp + 1 = multr ED = multp é + multp f*(Dred — D) > 0.

Hence, "Rp ™ is effective, and we have proved (2]).
@): We set A := (D) =D — C. By Proposition [[40[2]), we have

Kx 4+ (fMC)ed + (f*A)rea = f*(Ky + C + Area) + R
for an effective divisor R¥¢ on X. Then
R% + (f*A)red = R& + f*(Ared - A)

is effective. For a prime component T' of f*A, we have multr f*(Aeq — A) > 0,
and

1+ multy RS = multp (RS + (f*A)req) > 0.
Therefore, ’_R%j is effective, and (3) has been proved. (Il

2. LOG-CANONICAL SINGULARITIES FOR COMPLEX ANALYTIC SURFACES

We explain basic properties of log-canonical singularities and their variants only
in the surface case, in Section 2.l and give results related to ramification formulas
in Section 22l The relative abundance theorem and the log-canonical modifications
for surfaces are given in Section 2.3

2.1. Log-canonical singularities.

Definition 2.1. Let X be a normal surface with an effective Q-divisor B and let
w: M — X be a bimeromorphic morphism from a non-singular surface M. We set
¥ = X,(X, B) to be the union of ;! Supp B and the p-exceptional locus. Note
that ¥ D p~ ! Sing X. Let B, = B, (X, B) and T,, = T,,(X, B) be the positive and
negative parts, respectively, of the prime decomposition of p*B — R,, (cf. Defini-
tion [[.TH) for the ramification divisor Ry, i.e., Kar + B, = p*(Kx + B)+T,,. Note
that B, > ul* B for the proper transform u*!B in M (cf. Definition [22]) and that
T,, is p-exceptional. If there is a bimeromorphic morphism p above such that X is
a normal crossing divisor, then (X, B) is said to be

o log-canonical if "B, is reduced;
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o log-terminal if LB, 1 = 0;
o 1-log-terminal if "B, is reduced and if L B, _is a non-singular divisor iden-
tified with the proper transform of . By in M.
Here, the zero divisor is considered as a reduced and non-singular divisor (cf. Re-
mark [[T8). For a point P € X, the pair (X, B) is said to be log-canonical (resp.
log-terminal, resp. 1-log-terminal) at P if (U, B|y) is so for some open neighborhood
U of P.

Remark 2.2. The conditions above are independent of the choice of such bimero-
morphic morphisms p: M — X. This follows from special cases of Lemma 210
below.

Remark. If (X, B) is log-terminal, then multr B, < 1 for any prime component
I' of ¥. The prefix “1-” of 1-log-terminal comes from a property that we allow
multr B,, = 1 only for the proper transforms I' of prime components of B.

Remark 2.3. Tt is known that Kx + B is Q-Cartier if (X, B) is log-canonical in the
sense above (cf. [29, Cor. 9.5], [33, §4.1]). We shall prove it in Corollary [Z2T] below
by applying the relative abundance theorem, Theorem [Z.19] As a consequence, our
definitions of log-canonical and log-terminal coincide with those given in [3T), Def. 0-
2-10]. The log-terminal and 1-log-terminal are called “Kawamata log terminal” (klt)
and “purely log terminal” (plt), respectively, in [52] and [34]. As our policy, we do
not use the notion of “log terminal” in [52] and [34], since it is not analytically local
(cf. Remark 2.8 below). Therefore, the use of “purely log terminal” is not allowed,
since it is weaker than our log-terminal. Thus, we use 1-log-terminal instead.

Remark. The pair (X, B) is 1-log-terminal if and only if (X&B,0) is log-terminal
for the bimeromorphic pair X&B in the sense of [38] II, Def. 4.8].

Bimeromorphic contraction morphisms of extremal rays in the minimal model
program preserve log-canonical (resp. log-terminal, resp. 1-log-terminal) pairs by:

Lemma 2.4. Let v: X — X' be a bimeromorphic morphism of normal surfaces
with a unique exceptional prime divisor I'. Let B be an effective Q-divisor on X
such that (Kx + B)I' < 0. If (X, B) is log-canonical (resp. log-terminal), then
(X', B') is so for B' .= v,B. If (Kx + B)I' < 0 and (X, B) is log-canonical, then
(X', B") is 1-log-terminal at v(T').

Proof. By assumption, there is a rational number a > 0 such that Kx + B =
v*(Kx: 4+ B') + ol’. Here, a > 0 if and only if (Kx + B)I' < 0. Let u: M — X,
By, and T}, be as in Definition 21l for (X, B). Here, we may assume that the union
of u=Y(T' U Supp B) and the p-exceptional locus is normal crossing and that the
proper transform of (LBJ 4+ I')yeq is non-singular. Then

Ky +B,=wop) (Kx +B')+T, +auT.

In particular, the first assertion holds when o = 0. Thus, we may assume that
a>0,ie., (Kx+B)I' <0. Let B, and T, be the positive and negative parts,
respectively, of the prime decomposition of B, — (T, + ax*T"). Then the following
holds for any prime divisor © on M:
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e If © ¢ 1 'T, then multg B,, = multe Byo.

e If © C T but © ¢ Supp B,,, then multe B,, = multg B,o, = 0.

e If © C = 'T'N Supp By, then 1 > multe B, > multe B,,.
In particular, if (X, B) is log-terminal, then (X', B") is so, since LB, = 0 implies
LByouas = 0. If (X, B) is log-canonical, then "B,,," is reduced and LBy, is a
reduced subdivisor of L B,, s having no prime component contracted to v(I") by vopu;
thus, (X', B’) is 1-log-terminal at v(I"). Therefore the first assertion for @ > 0 and
the second assertion have been proved, and we are done. ([

Remark. The first assertion is a special case of Proposition ZZI2|()) below.

Fact 2.5. The analytic germs of log-canonical pairs (X, S) of a normal surface X
and a reduced divisor S at a point « € S are classified in [29, Thm. 9.6] (cf. [34]
Ch. 3]). In particular, one of the following three cases occurs (cf. [40, Thm. 3.22)):

(1) The case where x € Sing S and (X, .5) is toroidal at x: The latter condition
means that X \ S — X is a toroidal embedding at x (cf. [32 II, §1]), or
equivalently, there exist an affine toric variety V and an open immersion
0: U — V of analytic spaces from an open neighborhood of & of x such
that 0~1(T) =U \ S for the open torus T of V.

(2) The case where x € Syeg and (X, S + 5’) is toroidal embedding at z for a
non-singular divisor S’ ¢ S such that x € S".

(3) The case where x € Syeg N Sing X and there is a double-cover 7: X=X
such that

e 7 is étale over X \ {z},

o 7 1(z) = {i} for a point & € Sing S, where S := 7*S, and

e (X,5) is toroidal at 7.
Moreover, for the minimal resolution p: M — X of singularities, the dual graph of
prime components of the union of 4 ~1(S) and the u-exceptional locus is completely
described (cf. [29, Thm. 9.6], [40, Thm. 3.22]). In particular, (X,z) is a cyclic
quotient singularity in (1) and (), and is a quotient singularity by an action of
a dihedral group in [@). The pair (X, S) is 1-log-terminal at z if and only if (2]
occurs. The divisor Kx + S is Cartier at x if and only if either (I) occurs or
T € Xyeg N Sreg-

Lemma 2.6. Let (X, B) be a log-canonical pair of a normal surface X and an
effective Q-divisor B. If (X, B) is not 1-log-terminal at a point x € X, then (X, B+
C) is not log-canonical for any effective Q-divisor C such that x € SuppC; in
particular, Supp(B) N Sing LB1 = 0.

Proof. The last assertion follows from the first one, since (X, .5) is log-canonical for
S:=_BJand (X,5S) is not 1-log-terminal at any point of Sing S.

For the bimeromorphic morphism p: M — X in Definition BXIl we may assume
that the union of pu~!(Supp B U Supp C) and the pu-exceptional locus is normal
crossing. For the Q-divisors B,, and T}, above, let BL and T,i be the positive and
negative parts, respectively, of the prime decomposition of B, + u*C — T},. Then

Ky + B, = p"(Kx + B+C) +1T),.
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The first assertion holds if the following condition (*) is satisfied:
(*) There is a prime component I' of LB, such that u(I") = {z}.
In fact, if (*) holds, then "B, is not reduced by

multy B, = multy B, + multy 4*C' = 1+ multp 4" C > 1,

and (X, B+ (C) is not log-canonical by the independence of y for the log-canonicity
(cf. Remark 22)).

For the rest, we shall check (*). If z € Sieq for S = LB, then (*) holds, since
(X, B) is not 1-log-terminal at . Thus, we may assume that € Sing S. Then
(X, S) is toroidal at = by Fact Let U be an open neighborhood of z in X such
that SingU C {z} and U N Sing S = {z}. When = € Sing X, let : Y — U be the
minimal resolution of singularity. When x € Xiq, let 7: Y — U be the blowing up
at . Then

(I-1) Ky + Sy =n"(Ku + Slv)

for the reduced divisor Sy = n~1(S|y). In fact, if € Sing X, then 7 is described
by Hirzebruch—Jung’s method or a toric method (cf. [40, Exam. 3.2]), which induces
(D). If 2 € Xyeq, then we have ([IE]) by a direct calculation. Since p~'(U) — U
factors through 7, an n-exceptional component of Sy gives a prime component I"
of LB, lying over z. Thus (*) is satisfied also in the case where z € Sing .S, and
we are done. O

Corollary 2.7. For a normal surface X and an effective Q-divisor B, the pair
(X, B) is weak log-terminal in the sense of [31, Def. 0-2-10] if and only if

(a) (X, B) is 1-log-terminal at any point of X \ Sing B,

(b) SingLB. C Xyeg \ Supp(B), and

(c) LB4|x,,, 15 a normal crossing divisor.

Proof. Assume that (X, B) is weak log-terminal. Then we have (@) by (ii) and (iii) of
[3T, Def. 0-2-10]. By Fact 2.5 and Lemma[2:6] we see that Sing . By NSupp(B) = 0,
and (X, B) is toroidal at any point of Sing . B1. Moreover, X is non-singular along
Sing L B, by (iii) of [31, Def. 0-2-10]. This shows () and (gi).

Conversely, assume (@), (D), and (@). Then we can find a bimeromorphic mor-
phism p: M — X from a non-singular surface M such that

e the union of the p-exceptional locus and ! Supp B is a normal crossing
divisor, and
e /i is an isomorphism over an open neighborhood of Sing L B_.

For the effective Q-divisors B,, and T}, in Definition X1} "B, is reduced as (X, B)
is log-canonical (cf. Remark 2.2), and moreover, LB, is the proper transform of
LByin M by (@). Thus, (X, B) is weak log-terminal. O

Remark 2.8. By the proof above, we see that (X, B) is “log terminal” in the sense

of [52] and [34] if and only if (@), (b)), and the following stronger version (/) of ()

are satisfied:
(¢") LB4|x,., is a simple normal crossing divisor.

reg
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Note that the condition (cl) is not analytically local. When B is reduced, the “log
terminal” condition for (X, B) is equivalent to the condition that (X, B) has only
“Kawamata singularities” in the sense of Tsunoda—Miyanishi (cf. [55] 1.1]).

2.2. Relations with ramification formulas. We shall show that singularities

n (X, B) such as log-canonical, log-terminal, and 1-log-terminal are preserved
by a non-degenerate morphism under certain conditions. The results here give
refinements of a similar result [40, Lem. 3.19] in the case of schemes.

Lemma 2.9. Let X be a normal surface with an effective Q-divisor B and let
f:Y = X be a non-degenerate morphism from another normal surface Y. Then
there exist bimeromorphic morphisms p: M — X andv: N =Y from non-singular
surfaces M and N with a commutative diagram

N Y5 Y

(11'2) gl lf

Mt X
for a non-degenerate morphism g which satisfy the following conditions:

1) For the p-exceptional locus E,,, the union E = E,,Uu~! Supp B is a normal
I 3
crossing divisor.
(2) For the v-exceptional locus E,, and for

if := f~(Sing X U Supp B) U Supp Ry,

the union F = E, Uv='Y¢ is a normal crossing divisor.

(3) The equality F = g~'E U Supp R, holds for the divisors E and F above.

Here, Ry and Ry denote the ramification divisors of f and g, respectively. Moreover,
there is an effective divisor R, in N such that Ky + F = g*(Ky + E) + Ry and
that any common prime component of R, and g*FE is g-exceptional.

Proof. By Hironaka’s resolution of singularity and indeterminacy of meromorphic
maps, we have such a commutative diagram satisfying the conditions except ().
The last assertion on R, follows from ¢~'E C F and from Proposition [LZ0(T).
Thus, it is enough to prove [@B): We set I’ = g~ E U Supp R,. Then N \ F’ is the
maximum among open subsets of N \ ¢! (u~! Supp B) étale over X,eq \ Supp B.
Since f induces an étale morphism Y\ ¥ 7 = Xreg \ Supp B, the complement N\ F’
is étale over X, \ Supp B. Hence, FF D F’. If a prime divisor I on N is not
contained in F’, then fovr: N — X is étale along a non-empty open subset of I,
and hence, I' is not v-exceptional and v(I') ¢ if. This shows F C F’, and (B) has
been proved. O

Lemma 2.10. Let X be a normal surface with an effective Q-divisor B and let
f:Y = X be a non-degenerate morphism from another normal surface Y. Let By
and Ty be the positive and negative parts, respectively, of the prime decomposition
of f*B — Ry for the ramification divisor Ry, i.e., Ky + By = f*(Kx + B) + T}.
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(1) If (X, B) is log-canonical (resp. log-terminal), then "By is reduced (resp.
LByy = 0). If Ty = 0 in addition, then (Y,By) is log-canonical (resp.
log-terminal).

(2) If (X, B) is 1-log-terminal, then By has no f-exceptional prime compo-
nent. If Ty = 0 in addition, then (Y, By) is 1-log-terminal.

Proof. We use the commutative diagram ([I=2) in Lemma 291 When we consider

@), we may assume that

(*) the proper transform of Supp.Bi = (LBl)rea in M and the proper trans-
form of SuppLBjy1 = (LBji)rea in N are both non-singular,

by taking further blowings up. We consider Q-divisors B,, and T}, in Definition 2.1
defined for p, where Ky + B, = u*(Kx + B) + T),. First, we shall prove the first
half of ([I)): Assume that (X, B) is log-canonical. Then "B, is reduced, and

KN+ (9" By)rea = 9" (Kn + By) + R
for an effective Q-divisor R’ by Lemma [[AT[). By applying v, we have
Ky + V*((Q*Bu)red) = f*(KX + B) + V*(g*TH + R/)

Then By < v,((¢9*Bp)red), and "By is reduced. Assume next that (X, B) is log-
terminal, i.e., LB,,0 = 0. Then

Ky =g (Km+ By)+ R”
for a Q-divisor R” such that "R"7 is effective, by Lemma [[.4TJ[2). Hence,
Ky = ["(Kx + B) + v(g"T, + R")

and we have LBy1 =0 by Ty — By = v.(¢*T,, + R"). This shows the first half of
@

Next, we shall prove the first half of [2)): Assume that (X, B) is 1-log-terminal
and LBy # 0. We set C := LB,1. Then C'is just the proper transform of LB in
M, and it is reduced and non-singular by (). By Lemma [LATI([3),

Ky +g"C = g*(Ky + By) + R”
for a Q-divisor R"” such that "R'’7 is effective. Applying v,, we have
Ky +v.(g"1C) = f*(Kx + B) + v.(¢°T,, + R") and
Ty — By = vi(g"T, + R") — v.(g"10).
Hence, LBy < v, (¢i*1C), and every prime component of v, (gl*/C) is not exceptional
for f. This proves the first half of (2.
Finally, we shall prove the remaining parts of (Il) and ([2)): Assume that T =

0. Let B, and T,, respectively, be the positive and negative parts of the prime
decomposition of v*B¢ — R,,. Then

Kn+ B, =p*(Ky +By)+ T, = " (f*(Kx + B)) + T,,.

Moreover, we have B¢ = v, B, and Tt = v, T}, = 0 by applying v..
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In the situation of (), "B, is reduced (resp. LB, = 0) by the first half of
(@) applied to forv: N — X and (X, B). Hence, (Y, By) is log-canonical (resp.
log-terminal).

In the situation of (), LB, has no f o v-exceptional prime component by the
first half of (2]) applied to for and (X, B). Hence, LB, s equals the proper transform
of LBy in N, and it is reduced and non-singular by ({l) and @&). Therefore (Y, By)
is 1-log-terminal by (Il). Thus, we are done. |

Remark. Some reader may think that Lemma 210l can be proved by the same
argument as in the proof of [33] Prop. 5.20]. But there is a difficulty in constructing
the “fiber product diagram” in the proof, since our f is only a non-degenerate
morphism, which is not necessarily proper (cf. Remark of [40, Cor. 3.20]).

Lemma 2.11. Let X be a normal surface with an effective Q-divisor B and let
f:Y = X be a surjective and discretely proper morphism (cf. Definition [LG])
from another normal surface Y with effective Q-divisors By and A such that Ry =
f*B+ A — By, ie., Ky + By = f*(Kx + B) + A. For the diagram ([[I=2) of
Lemma 29 let B, T,,, C,, and S, be effective divisors on N such that

e B, and T, are the positive and negative parts, respectively, of the prime
decomposition of v*By — R, and

e C, and S, are the positive and negative parts, respectively, of the prime
decomposition of B, — v*A.

In particular, one has
Ky+B,=v*(Ky +By)+T, and Ky+C,=v"(f*(Kx+B))+S,+T,.

(1) If "C,™ is reduced (resp. LCy1 = 0), then (X, B) is log-canonical (resp.
log-terminal).

(2) If "C,7 is reduced and if LC\y . is a non-singular divisor having no f o v-
exceptional prime component, then (X, B) is 1-log-terminal.

(3) Suppose that Supp By C if (¢f. Lemma 2OI2))). If "B and "By are
reduced, then there is an effective Q-divisor A such that

(I1-3) Ky +v¥By + E, = ¢"(Ky + B+ E,) + A
and that any v-exceptional prime component of A is g-exceptional.

Proof. Note that g is surjective and discretely proper by Corollary [LTIl Divisors
C, and S, + T, have no common prime component, since C,, < B,.. Thus, C, and
S, +1T, are the positive and negative parts, respectively, of the prime decomposition
of (f ov)*B — Rjo,. In particular, v.C, = By and v, (S, + T,) = .S, = Ty for
divisors By and Ty in Lemma 2ZT0l Note that Supp C, C F' by

SuppC, C v~ *(Supp Bf)UE, and SuppB; C if.

Equalities Ky + B, = p*(Kx + B) + T, and Ky + F = ¢*(Ky + E) + R, (cf.
Lemma 29]) induce

Ky +F=g"(W(Kx+B))+g"(E+T,— Bu) + Ry.
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Comparing with Ky + C, = v*(f*(Kx + B)) + S, + T,,, we have
(11-4) g (E+T,-B,)+R;,=F—-C,+5,+1T,.

We shall prove () and (). Assume that "C, 7 is reduced. Then F' > C,,, and we
see that E + T, — B,, is effective by ([I4)), by Supp B, C E, and by a property of
Eg in the last assertion of Lemma [Z0 Moreover, E > B,,, since B,, and T}, have no
common prime component. As a consequence, "B, is reduced, and hence, (X, B)
is log-canonical. Thus, we have proved () in the log-canonical case.

For the proof of () in the log-terminal case and for that of (), we consider a
prime component I' of B, and set d := multg g*I". We can take a non-g-exceptional
prime component © of f*T), since g is surjective. Then © ¢ Supp R, by Supp B,, C
E and by the last assertion of Lemma 2.9 Moreover,

(11-5) dmultr (E — B,,) = multg ¢*(E — B,) = multe ¢"(E — B, +1),)
= multg (F — C,) + multe (S, + T},)

by ([I=4).

Assume that .C,1 = 0. Then F > C, and Supp F' = Supp(F — C,). Thus,
multp(E — B,,) > 0 for any prime component I' of B, by ([I=). In other words,
E > B, and Supp E = Supp(E — B,,). Hence, LB,1 = 0 and (X, B) is log-terminal.
Thus, () has been proved.

Next, assume the condition for C, in (). Then F' > C, and E > B, by the
proof above for ([I]) in the log-canonical case. Assume that I' is a prime component
of LB,s. Then I' ¢ Supp(E — B,,), and we have © ¢ Supp(F — C,) by ([5).
Thus, © is a prime component of LC), 1, which is not exceptional for for: N — X.
Hence, T' is not p-exceptional. This implies that (X, B) is 1-log-terminal, and we
have proved (2)).

Finally, we shall prove (). Note that ' = Supp(u*'/B+E,,). By the assumption
on By, we have

Supp(v[*]By +E,)C V_lif UE, =F.
Since "B and "By ! are reduced, there exist effective Q-divisors Dj; and Dy on
M and N, respectively, such that

E=p"B+E,+Dy and F=v"By +E,+ Dy.
Then the equality ([I=3) holds for
(11-6) A= g*Dyr — Dy —‘rﬁg.

Here, any prime component of Dy; (resp. Dy) is not exceptional for p (resp. v),
and multg A > 0 for any v-exceptional prime divisor ©. On the other hand, we
have v, A = A by applying v, to ([I3). Thus, A is effective. It remains to prove
that any v-exceptional prime component © of A is g-exceptional. Assume that © is
not g-exceptional. Then © C g~ 'T" for a prime divisor I' on M, and g|g: © — T is
non-degenerate. Here, I' is pi-exceptional as O is v-exceptional. Thus, I' C E,, and
I' ¢ Supp Dys. Hence, © C Supp Ry by ([I=6). This contradicts the last assertion
of Lemma [20] since © is a common prime component of g*E and R,. Therefore,
O is g-exceptional. Thus, we are done. O
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Proposition 2.12. Let X be a normal surface with an effective Q-divisor B and
let f: Y — X be non-degenerate morphism from another normal surface Y with
effective Q-divisors By and A such that Ry = f*B + A = By, i.e., Ky + By =
f*(Kx + B) + A. Then the following hold for any x € f(Y):

(1) If (Y, By) is log-canonical (resp. log-terminal) along a non-empty compact
connected component of f~'(xz), then (X, B) is log-canonical (resp. log-
terminal) at x.

(2) If (Y, By) is 1-log-terminal along a non-empty compact connected compo-
nent C of f~Y(x) such that C N Supp LBy . is finite, then (X, B) is 1-log-
terminal at x.

Proof. For a compact connected component C' of f~!(z), there exist an open
neighborhood U of z and an open neighborhood V of C such that V C f~'U,
VNnf~i(z) =C,and f|y: V — U is proper and surjective, by Lemma [[7l Hence,
by replacing X and Y with U and V', respectively, we may assume that f is proper
and surjective, (Y, By ) is log-canonical (resp. log-terminal) in case (), and (Y, By )
is 1-log-terminal in case (2). Moreover, in case (2), we may assume that
(1) fluBy.: LBy — X is a finite morphism

by Lemma [[71 We consider the commutative diagram ([I=2)) in Lemma [Z9] and
divisors B, and C, in Lemma [2. 111

We shall show (). In this case, "B, is reduced (resp. LB, = 0) as (Y, By)
is log-canonical (resp. log-terminal). Hence, "C, 7 is reduced (resp. LC, s = 0), by
C, < B,. Thus, (X, B) is log-canonical (resp. log-terminal) by Lemma ZTT|[I).

Finally, we shall show (@)). In this case, LB, 1 is a non-singular divisor having no
v-exceptional component as (Y, By ) is 1-log-terminal. Since v, B, = By, LB, 1 has
no f o v-exceptional component by (). Hence, LC,_ is also a non-singular divisor
having no f owv-exceptional component by C, < B,.. Thus, (X, B) is 1-log-terminal
by Lemma 2TTI[), and we are done. O

2.3. Relative abundance theorem. The abundance theorem is one of the main
results of the theory of open algebraic surfaces (or logarithmic algebraic surfaces),
which is proved in several versions in [28], [47], [55], and [I1]. Theorem below
is a relative version of the abundance theorem, and Lemma 218 below is its special
case. We shall prove them for the sake of completeness not using the classification
of log-canonical singularities but using Fujita’s argument in [I1] and Kawamata’s
argument in the proof of [29, Lem. 9.3] with some modifications.

Let us consider a proper surjective morphism 7: X — Y of normal complex
analytic varieties such that dim X = 2, and assume either that dimY > 0 or that
X is a normal Moishezon surface with dimY = 0. Before Lemma 218 we fix the
morphism 7. We shall explain relative versions of the Kawamata—Viehweg vanishing
theorem (cf. Proposition [ZT5]) and Zariski-decompositions (cf. Lemma-Definition
2.16]) for the morphism m. The relative abundance theorem (cf. Theorem 2.19])
concerns the case where X is non-singular, but it applies to log-canonical pairs by
taking resolutions. As an application of the relative abundance theorem, we shall
define the log-canonical modification for pairs (X, B) of a normal surface and an
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effective Q-divisor B on X (cf. Lemma-Definition 2:22)), and show a compatibility
for certain morphisms with only discrete fibers (cf. Proposition 223]).

Lemma 2.13. IfdimY > 0, then 7 is a projective morphism locally over Y, i.e.,
for any point y € Y, there exist an open neighborhood Y C Y and an invertible
sheaf on w=1(Y) which are relatively ample over Y (cf. [36, Prop. 1.4]).

Proof. Since finite morphisms are projective locally over the base varieties, we may
assume that every fiber of 7 is connected by considering Stein factorization. If
dimY = 2, then 7 is a bimeromorphic morphism and is projective locally over
Y by an argument in the last paragraph of the proof of Lemma Thus, we
may assume that dimY = 1. Then Y is a non-singular curve and every fiber is
1-dimensional. We fix a point y € Y and let I" be an irreducible component of
7 (y). For a point © € I'ieg N Xyeq, there is an open neighborhood U of x with
a coordinate system (zi,z3) such that I'|yy = div(zz2) and 7|y : U — Y is defined
by the function u(z1,2z2)z5" on U for a positive integer m and a unit function
u(z1,2z2). Then 7 1(y) N © = {z} for the non-singular divisor © = div(z;) on
U. Hence, mlo: ©® — Y is a finite morphism over an open neighborhood of y by
Corollary [L8 By considering divisors © for all the irreducible components T" of
7~ (y), we can find an open neighborhood Y of y and a non-singular divisor D on
7~1(Y) such that DI" > 0 for any irreducible component I' of 7=1(y). Then, by
[36, Prop. 1.4], 7=1()) — Y is a projective morphism over an open neighborhood
of y in which D is relatively ample. U

Convention 2.14. For the morphism 7: X — Y with dimY > 0, a Q-divisor D
on X is said to be:

(1) m-nef (resp. m-numerically trivial), if DC > 0 (resp. DC = 0) for any
prime divisor C' C X such that dim7(C) = 0 (cf. [38, II, Def. 5.14], [40,
Def. 2.14(1)]);

(2) w-semi-ample, if there is a positive integer m locally over Y such that mD
is Cartier and the canonical homomorphism 7*7,Ox(mD) — Ox(mD) is
surjective (cf. [38, II, Def. 1.9(4)));

(3) m-pseudo-effective, if D|c is pseudo-effective for any irreducible component
C of a sufficiently general fiber of = (cf. [38] II, Cor. 5.17));

(4) m-big, if D|¢ is big for any irreducible component C' of a general fiber of 7
(cf. [38, II, Cor. 5.17]).

Note that if dimY = 2, then any D is w-big. Similarly, if dimY = 1, then D is
m-pseudo-effective (resp. m-big) if and only if DC' > 0 (resp. DC > 0) for any irre-
ducible component C of a general fiber of 7. For the morphism 7 with dimY = 0,
i.e., for a normal Moishezon surface X, we use the same notions of nef, numerically
trivial, semi-ample, pseudo-effective, and big, respectively, as in [40, Def. 2.11] for

Q-divisors on X. Sometimes we add the prefix “m-” even when dimY = 0.

The Kawamata—Viehweg vanishing theorem for non-singular projective surfaces
is generalized to the relative situation as follows (cf. [48, Thms. (2.2) and (5.1)]):



38

Proposition 2.15. For any w-nef and w-big Q-divisor D on X and for any ¢ > 0,
one has Rim,Ox(Kx +"D7) = 0.

Proof. Our proof is slightly different from Sakai’s one in [48, Thm. 5.1]. Since the
assertion is local on Y, we may assume the existence of a bimeromorphic morphism
1 M — X from a non-singular surface M such that the union of the p-exceptional
locus and g~ !(Supp D) is a normal crossing divisor and that mou: M — Y is a
projective morphism. In fact, if dimY = 0, then M is projective as X is Moishezon,
and if dimY > 0, then 7 is locally projective by Lemma T3l Then

Ri(mou)yOn(Kp +"p*D) =0 and R'p,Opn(Kpy +"p*D7) =0

for any ¢ > 0 as a relative version of Kawamata—Viehweg’s vanishing theorem on M
(cf. [36}, Thm. 3.7]). Let F be the direct image sheaf p.On(Kps + "p* D). Then
Rim,F = 0 for any ¢ > 0 by a standard argument on Leray’s spectral sequence.
Since F is a subsheaf of the double-dual F¥V = Ox(Kx +"D™) and since FVV/F
is supported on discrete points, we have Rim,Ox (Kx +"D7) ~ Rir,F = 0 for any
i>0. O

We have a relative version of the notion of Zariski-decomposition (cf. [59], [10],
[48, §7], [50, App.], [38]) as follows:

Lemma-Definition 2.16. Let D be a w-pseudo-effective Q-divisor on X. Then
there exists a unique effective Q-divisor N satisfying the following conditions:

e Every prime component of N is contained in a fiber of .

e The difference P := D — N is w-nef and satisfies PN = 0.

o Forapointy €Y, let Ny be the partial sum of N over the prime components
contained in a fiber 7= (y). Then either N, = 0 or the intersection matriz
(N;N;)i; of prime components N; of Ny is negative definite.

The decomposition D = P + N is called the relative Zariski-decomposition of D
with respect to w, where P and N are called the positive part and the negative
part of the decomposition, respectively.

Proof. First assume that dimY = 0. For the minimal resolution p: M — X of
singularities, we have the unique Zariski-decomposition pu*D = P~ + N~ on the
non-singular projective surface M by [10], since p* D is pseudo-effective, where P~
(resp. N™) is the positive (resp. negative) part. Here, P~ is y-numerically trivial.
In fact, for a p-exceptional prime divisor I'; if I' C Supp N~, then P~T' = 0 by
PYN~ =0, and if I' ¢ Supp N~, then P~T = 0 by (u*D)I' = 0, P~T > 0, and
N~T' > 0. Thus, P~ = p*P and N~ = p*N for P := p, P~ and N := p, N~, and
D = P+ N is the Zariski-decomposition of D.

Second, assume that dimY > 0. Our proof in this case is based on Sakai’s
argument in [48] §7] and [50, App.]. By the uniqueness of the decomposition, we
can localize Y. Thus, we may assume the finiteness of the number s(X/Y) of
prime divisors I' on X such that I'? < 0 and dim7(T') = 0. Note that s(X/Y) is
the number of m-exceptional prime divisors when dim Y = 2 and that s(X/Y) is the
sum of numbers of irreducible components of reducible fibers of 7 when dimY = 1.
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We shall prove the existence and the uniqueness of relative Zariski-decomposition
by induction on s(X/Y). We may assume that D is not m-nef; otherwise, N = 0
satisfies the condition and it is unique. Then DI' < 0 for an irreducible component
[ of a fiber of m. In particular, s(X/Y) > 0. Moreover, I? < 0. In fact, if
dimY = 2, then I is m-exceptional, and it implies: I'? < 0. If dimY = 1 and
I'? > 0, then I'> = 0 and I' is a connected component of a fiber of 7; this implies
DT" > 0, a contradiction. Let v: X — X’ be the contraction morphism of T,
i.e., a bimeromorphic morphism to a normal surface X’ such that v(T") is a point
2, v™(2') =T, and v is an isomorphism outside x’. The existence of v follows
from a generalization [49] Thm. 1.2] of the Grauert contraction criterion [I3] (e),
pp. 366-367] (cf. [40, Thm. 2.6]). Let 7’: X’ — Y be the induced morphism such
that 7’ ov = 7. Then s(X'/Y) = s(X/Y) — 1. We have D = v*(v,.D) + oI for
the positive rational number a = DT'/T'2. By induction, the 7’-pseudo-effective Q-
divisor v, D admits a relative Zariski-decomposition over Y. For the negative part
N’ of v, D, the Q-divisor N := v* N’ +al satisfies the condition of the negative part
of the relative Zariski-decomposition of D over Y. In order to prove the uniqueness,
assume that another effective Q-divisor N satisfies the condition of negative part.
Then DT < 0 implies that NT < 0 and (D — N)T' = 0. Thus, N = v*(v,N) + of,
and v, N equals the negative part N’ of the relative Zariski-decomposition of v, D.
Hence, N = N. Therefore, D admits a unique relative Zariski-decomposition. [J

The relative Zariski-decomposition also has the following well-known properties
as in the absolute case:

Lemma 2.17. In the situation of Lemma-Definition 216l let E be an effective
Q-divisor on X such that D — E is w-nef. Then E > N. In particular, for any
rational number t > 0,

T Ox (LtP1) ~ 7.O0x (LtD.).

Proof. For the first assertion, we may assume that N # 0. Let B; and By be the
positive and negative parts, respectively, of the prime decomposition of £ — N.
Then Supp By C Supp N, and

(By — By)By = (E— N)By < (D — N)By = PBy = 0.

Hence, B2 > BB, > 0, and we have By = 0, since the intersection matrix (N;N;)
is negative-definite for prime components IV; of N contained in a fiber of 7. Thus,
FE > N. For the last assertion, let us consider the image F of the canonical
homomorphism

W*W*OX(LtDJ) — OX(I_tDJ).

The double-dual FVV is expressed as Ox (LtD— F) for an effective divisor F. The
divisor LtD_— F is m-nef, since the support of FVV /F is 0-dimensional. Hence, by
applying the first assertion to E = (1/t)({tD) + F), where (tD) = tD — tD_, we
have (tD)+F > tN, since D—F = (1/t)(.tD1—F) is m-nef. Hence, LtPy > ctDi—
F, and as a consequence, m,Ox (LtD.i— F) = 1,0x (LtPJ) = m.Ox (LtDJ). O

The following is a special case of the relative abundance theorem.
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Lemma 2.18. For a normal surface X, let pu: M — X be the minimal resolution
of singularities. Let B be an effective Q-divisor on M and m a positive integer such
that "B™ is reduced and that mB is Cartier. If Ky + B is p-numerically trivial,
then m(Kx + p.B) is Cartier and m(Ky + B) ~ p*(m(Kx + p.B)).

Proof. Since the assertion is local on X, we may assume that X is Stein and Sing X
consists of one point z. Then ¥ := pu~1(x) is the y-exceptional locus. We consider
> as a compact connected reduced divisor on M. First, we consider the case
where (X, ) is a rational singularity, i.e., (R'x.Op), = 0. Then the element
of the Picard group Pic(M) = H'(M,03%,) corresponding to the invertible sheaf
Ox(m(Kp + B)) is sent to zero by the canonical homomorphism
Pic(M) — H°(X, R 11, 0%;) ~ (R 11, O% ) e ~ (R*puZns) 2
2 2
~ H*(%,Z) ~ @FCZ H*(I',Z) ~ @FCZ Z,
since (K + B)I' = 0 for any prime component I' of ¥. Thus, m(Ky + B) ~ p*L
for a Cartier divisor L on X, and we have L ~ p,(m(Ky; + B)) = m(Kx + p«B).
This proves the assertion for rational singularities (X, x).
Next, we consider the case where (X, z) is not a rational singularity. We set

Bt .= Zrcz(multp B)I' and D:=_B..

Then B — BT is p-nef, and —B' — K); = (B— B') — (K + B) is also p-nef. Hence,
R'y,Op(—D) = 0 by Proposition 215, since "—Bf7 = —D. Thus, D # 0 and
H'(D,Op) # 0 by isomorphisms

0# (R'11.0m)z = (R'11.0p), ~ H' (D, Op),

and D is connected by the surjection Ox =~ u.On — u.Op, since u.Op is the
skyscraper sheaf of the residue field C(z) at x. In particular, (K + D)D =
degwp = —2x(D,Op) > 0 by Riemann—Roch. On the other hand, (K + D)D <
(Ka + BY)YD < 0, since —(Ky + BY) is p-nef. Hence, (Kpr + D)D = 0 and
HY(D,0p) ~ H°(D,wp)¥ =~ C, which imply On (K + D)|p =~ wp =~ Op.
Moreover, DNSupp(B—D)=0by 0 = (Ky+B)D—(Ky+D)D = (B—D)D. If
¥ # D, then I'N D # () for an prime component I" of ¥ — D, since X is connected.
In this case, I' ¢ Supp B by D N Supp(B — D) = (§, but KT > 0, BT > 0, and
(K + B)T = 0 imply that T'NSupp B = §; this is a contradiction. Therefore, 3 =
D. Since m(Ky; + B) — BT — Ky is p-nef, we have Ry, Opr(m(Ky +B) —%) =0
by Proposition 2.15] and have a surjection

xOnr(m(Kpr + B)) = pOs(m(Kpyr 4+ B)|s) =~ 1.Os.

Hence, a section of Oy (m(Kp + B)) on an open neighborhood of ¥ is nowhere
vanishing. This means that m(Kys + B) ~ p*L for a Cartier divisor L on X, and
L~ p.(m(Kpy + B)) = m(Kx + p«B). Thus, we are done. O

Theorem 2.19 (Relative Abundance Theorem). Let M be a non-singular surface
with an effective Q-divisor B such that " B is reduced. Let m: M — Y be a proper
surjective morphism to a normal variety Y such that either dimY > 0 or M is
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projective with dimY = 0. Assume that Ky + B is w-pseudo-effective. Then the
positive part P of the relative Zariski-decomposition Ky + B = P+ N with respect
to  is w-semi-ample.

Proof. We may assume that dimY > 0, since the assertion has been proved by [11}
Main Thm. (1.4)] in case dimY = 0. We may assume that 7 is a fibration by taking
Stein factorization. Since the assertion is local on Y, we may assume further that
Y is Stein and 7 is a smooth morphism over Y \ {y} for a point y € Y.

First, we consider the case where K + B is 7-big. By the arguments in (3.2)—
(3.5) of [11], we can reduce to the case where K s + B is m-nef and (Kp +B)C >0
for any (—
and N = 0. Let A be the set of irreducible components I' of fibers of 7 such
that (Kar + B)I' = 0. Then A is finite and the intersection matrix (I'T”)r rrea
is negative definite, since Ky; + B is m-nef and w-big. Let pu: M — X be the
contraction morphism of Jp., I' and 7: X — Y be the induced morphism such
that m = @ o u. Note that p is the minimal resolution of singularities. If mB is

1)-curve C' on M contained in fibers of w. In particular, P = K + B

Cartier for a positive integer m, then m(Ky; + B) ~ p*L for a Cartier divisor L on
X, by Lemma 28 Here, LG > 0 for any prime divisor G contained in fibers of 7
by the choice of A. Thus, L is relatively ample over Y (cf. the proof of Lemma 2.13]),
and hence, Ky + B = P is m-semi-ample.

Second, we consider the case where Kj; + B is not 7m-big. Then dimY = 1 and
(K + B)F = 0 for any smooth fiber F of 7. If BF > 0, then F' ~ P! and BF = 2.
If BF = 0, then F is an elliptic curve and Supp B is contained in fibers of 7. In
both cases, Op(m(Ky + B)|r) =~ O for a positive integer m such that mB is
Cartier. In particular, m.Op(m(Kx + B)) # 0. Then there is an effective divisor
E on M such that Supp E C 7~ !(y) and

Ox(m(Ku + B)) ~ Ox(E) @ m*m.Ox (m(Kar + B)).

The negative part of the relative Zariski-decomposition of E with respect to 7
equals mN. Thus, it is enough to show that the positive part Pg of the relative
Zariski-decomposition of E is m-semi-ample. Now Supp Pz C 7~ !(y). As is well
known, the intersection matrix of components of 7~1(y) is negative semi-definite
with signature (0,7 — 1) for the number 7 of irreducible components of 7=1(y).
Hence, P = gm*(y) for a rational number ¢ > 0, since Pg is m-nef and since
PrF = 0. Therefore, Pg is m-semi-ample. Thus, we are done. (I

By Lemma 217 and Theorem 2T9] we have:
Corollary 2.20. In the situation of Theorem 2.19] the graded Oy -algebra
@m>0 T O (Lm(Kpy + B)J)
is finitely generated locally on Y .

Corollary 2.21. Let X be a normal surface with an effective Q-divisor B. If
(X, B) is log-canonical at a point x € X (in the sense of Definition 21I), then
Kx + B is Q-Cartier at x.
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Proof. By localizing X, we may assume that X is Stein, Sing X = {z}, and (X, B)
is log-canonical. Let pu: M — X, By, and T, be as in Definition 211 Then "B,
is reduced, and Ky + B, = p*(Kx + B) +T),. Hence, p*(Kx + B) is the positive
part of the relative Zariski-decomposition of Ky + B, over X and p*(Kx + B)
is m-semi-ample by Theorem [Z.I91 Therefore, there is a positive integer m such
that mB is a divisor and that mu*(Kx + B) ~ 0. It implies that m(Kx + B) is
Cartier. |

Lemma-Definition 2.22. Let X be a normal surface and B an effective Q-divisor
on X such that "B™7 is reduced. Then there exist a bimeromorphic morphism
p: Y = X from a normal surface Y and an effective Q-divisor By such that

e (Y, By) is log-canonical,

e Ky + By is p-ample, and

e By =plB + E, for the p-exceptional locus E,.
The pair (Y, By) is unique up to isomorphism over X, and it is called the log-
canonical modification of (X, B); we also say that p: (Y, By) — (X, B) is the log-
canonical modification. Here, one has SingY U Supp By = p~!(Sing X U Supp B).

Proof. First, we shall show the existence of (Y, By). Let u: M — X be a bimero-
morphic morphism from a non-singular surface M such that the union of =B and
the p-exceptional locus E, is a normal crossing divisor. We set By := ul B 4 E,.
Then "By, is reduced, Supp Bj; is normal crossing, and u.By = B. Let P be
the positive part of the relative Zariski-decomposition of Kj; + Bj; with respect
to u: M — X. Then P is u-semi-ample by Theorem Therefore, there ex-
ist bimeromorphic morphisms ¢: M — Y, p: Y — X, and a p-ample Q-divisor
A such that Y is a normal surface, p = po ¢, and P ~g ¢*A. In particular,
Y ~ Projany R over X for the graded Ox-algebra

R = @mzo (12O (Lm (K as + Bag)a) = @mzo 11:Onr (LmP ),

which is finitely generated locally over X (cf. Lemma 27 and Corollary [Z20]). The
negative part N of the relative Zariski-decomposition of K s+ B); is ¢-exceptional,
since PN = (¢*A)N = 0. Hence,

¢+P = ¢ (Kp + By) = Ky + By ~g A

for the Q-divisor By := ¢.By. Hence, (Y, By) is log-canonical, Ky + By is p-
ample, and p,By = B. Moreover, By = pl*/B + E, for the p-exceptional locus
E,, since By = p B+ E,,. Therefore, (Y, By) is a log-canonical modification of
(X, B).

Second, we shall show the uniqueness of (Y, By). Let p’: (Y',By/) — (X,B)
be another log-canonical modification of (X, B). Then we have bimeromorphic
morphisms ¢': M’ — Y’ and #: M’ — M from a non-singular surface M’ such
that o6 = p' o ¢ and that the union of ~!(4~'B) and the p o f-exceptional
locus E,,0¢ is a normal crossing divisor. We set Byp = (o 9)[*]B + E,00 as above.
Then Ky 4+ By = ¢ (Kys + Bys) + R’ for a ¢’-exceptional effective Q-divisor
R, since (Y’, By) is a log-canonical modification. Thus, ¢"*(Ky+ + By) is the
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positive part of the relative Zariski-decomposition of Kj;» + By over X. On the
other hand, we have Ky; 4+ By = 0* (K + Byy) + R for a 6-exceptional effective
Q-divisor R”, since (M, Byy) is log-canonical. Hence, v*P = v*(Ky + By) is equal
to ¢"*(Ky+ + By/) as the positive part of the relative Zariski-decomposition of
Ky + By over X. Therefore, Y ~ Y’ over X.

Finally, we shall show the last assertion. We have Supp By = E,U p~ ! Supp B by
By = p"!B+E,, and we have SingY UE, = (p~! Sing X)UE,, by the isomorphism
Y\ E,~ X\ p(E,). Therefore,

Sing Y U Supp By = SingY U E, U p~ ! Supp B = p~*(Sing X U Supp B)

by E, = p~(p(E,)). Thus, we are done. O

A certain morphism of normal surfaces with only discrete fibers lifts to log-
canonical modifications as follows:

Proposition 2.23. Let f: Y — X be a morphism of normal surfaces with only
discrete fibers and let Bx and By be effective Q-divisors on X and Y, respec-
tively, such that "Bx " and "By are reduced and Ky + By = f*(Kx + Bx). Let
o: (V,By) — (X,Bx) and 7: (W,Bw) — (Y, By) be the log-canonical modifica-
tions. Then there is a morphism h: W — V with only discrete fibers such that
for=o00h and Kw + Bw = h*(Ky + By).

Proof. We set B = Bx and apply results in Section For the commutative
diagram ([I=2) of Lemma for (X,B) = (X,Bx), we can find bimeromorphic
morphisms ¢p: M - V,0:V —- X, ¢¥: N - W, ,and 7: W — Y such that y = oo¢
and v = 7o and that ¢*(Ky + By) (resp. ¢*(Kw +Bw)) is the positive part of the
relative Zariski-decomposition of K+ pul*!Bx + E, (resp. Ky + v By + E,) over
X (resp. Y), E, (resp. E,) is the exceptional locus for p (resp. v). In particular,
we have a commutative diagram

N Y w "3 v

gl lf

M-y 2, x

By assumption, By = By and Ty = A = 0 for Q-divisors By, Ty, and A in
Lemmas 210 and 2111 Hence, Supp By C Xy, and

Ky +v¥By + B, = g"(Ky + u"'Bx + E,) + A

for an effective Q-divisor A which is exceptional for both v and g by Lemma 2TTi[3])
as ,A = A = 0. Therefore,

(11-7) Kn+ v By + B, = g"(¢"(Kv + Bv)) + G

for an effective Q-divisor G exceptional for ¢ o g. The fiber product V xx Y is
irreducible and generically reduced by Lemma [[LI3l For the normalization V' of
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V xx Y, we have a commutative diagram

|l |

M—ts v 2, X
in which ¢’ and ¢’ are bimeromorphic morphisms and p is induced by the first
projection V xx Y — V. Note that p also has only discrete fibers. Then G is
exceptional for ¢, g*(¢*(Ky + By)) = ¢"*p*(Kv + By), and p*(Ky + By) is
o’-ample. Hence, by ([I=7)), we have an equality

V" (Kw + Bw) = g"(¢"(Kv + By))

as the positive part of the relative Zariski-decomposition of Ky + v*!By + E,,.
Consequently, there is an isomorphism A: W — V' such that Aoy = ¢', 7 = 0’ 0 ),
and Kw + Bw = AN (p*(Ky + By)). Then the morphism h = p o X satisfies the
required conditions. (I

3. SINGULARITIES OF PAIRS FOR ENDOMORPHISMS OF SURFACES

As a generalization of an endomorphism of a normal surface X, we shall consider
a morphism X° — X with only discrete fibers from an open subset X° of X. The
main result in Section [3]is Theorem below on the log-canonicity of singularities
of pairs (X, B) in which X admits a morphism X° — X as above and B satisfies
a special condition. Theorem [0.1] in the introduction is a direct consequence of
Theorem As a corollary of Theorem B.5 we can prove results of Wahl [58]
and Favre [6] on the log-canonicity of a normal surface singularity which admits a
non-isomorphic finite surjective endomorphism (cf. Corollary B7). In Section Bl
we explain the situation, the statement, and corollaries of Theorem [3.5] as well as
a 1-dimensional analogue, Proposition 3.4l The proof of Theorem is given in
Section

3.1. Setting and statements.

Definition 3.1. For a normal variety X, let f: X° — X be a morphism from an
open subset X° of X. We define inductively open subsets X *) = Xj(ck) of X for
k>0 by

X0 .=x xW=x° and X*D = "1(x®),

Composing f and its restrictions to X (¥, we have a morphism
Fo . x®) Ly x-S T 50 x

for any k > 0, where f(© = idyx and f) = f. Note that f*) has a meaning
when X®*) £ (. We define Xy = Xy (k) to be the image FE(X®) for any
k > 0. Note that X(;) is an open subset of X when f has only discrete fibers
(cf. Corollary [L). The intersection (1, ~; X(x) is called the limit set of f and is
denoted by X () = X7, (o0)-
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Remark 3.2. For the germ X = (X,z) of a normal variety X at a point z, an
endomorphism f: X — X is assumed to be induced by a morphism f: X° — X
from an open neighborhood X° of x such that f(x) = x. Then the k-th power
f¥ =fo..-0of: X = X is induced by f®) . X*) — X. The endomorphism f also
corresponds to an endomorphism {*: Ox , = Ox , as a local ring homomorphism.
When §* is finite, f is said to be finite. In this case, x is an isolated point of f~1(x),
and we may assume that f~!(z) = {z} and f has only discrete fibers by replacing
X° with an open neighborhood of x (cf. Corollaries [[.4] and [L8)).

Remark. For the germ X = (X, z) above, assume that z is an isolated singular point.
Then we may take X as the analytic space X*" associated with an algebraic scheme
X over Spec C by [I, Thm. 3.8]. Hence, an endomorphism §: X — X is represented
by a morphism f: U — X of algebraic schemes from an étale neighborhood U of z.
It is not clear that one can choose U as a Zariski-open neighborhood of x.

We use the following notation for Q-divisors in Section [3

Notation 3.3. Let X be a normal variety and B a Q-divisor on X. Let B =Y b;T;
be the prime decomposition, where b; € Q, and I'; are prime divisors. For a rational
number ¢, we define

Bz°¢:= Zb%biri, B=¢ .= Zb-<cbiri’ and B_.:= Zb:CF”'

The following deals with the 1-dimensional case, which improves a part of [39,
Lem. 3.5.1].

Proposition 3.4. Let X be a non-singular curve and B an effective Q-divisor
on X such that Supp BZ' is a finite set. Let f: X° — X be a non-degenerate
morphism from an open subset X° of X such that

Kxo+ Blxo = f*(Kx + B) + A

for an effective Q-divisor A on X°. Then the following hold for any point P €
Xfy(00) = X(oo):
(1) Ifmultp B > 1, then (f))~1(P) N X (o) = {P} for some k > 0.
(2) If multp B > 1, then f is a local isomorphism at P and multypy B =
multp B.
(3) If multp B =1, then P & Supp A and multypy B = 1.
(4) If f(P) = P, then

(d—1)(multp B—1) = —multp A

for d == multp f*P. In particular, when f is not an isomorphism at P,
multp B < 1 if and only if multp A > 0.

Proof. For a point @ € X°, we set dg := multg f*(f(Q)). Note that f is a local
isomorphism at @ if and only if dg = 1. We have equalities

dg — 1 =multg Ry = dg mult ) B — multg B + multq A
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for the ramification divisor Ry = Kxo — f*Kx = f*B — B|xo + A of f. Hence,
(Hl—l) multg B —1 =dg (multf(Q) B — 1) + multg A > dQ(mlﬂtf(Q) B — 1).
Then we have (@) by the first equality of ([(II-1) for P = Q. Moreover, ([II-1))
implies that

f~Y(Supp B=1) C Supp B=1.
We set S := X (o) N Supp BZ!. We may assume that S # () for assertions () (3).
Then § # f~1(P) N X(oo) C S for any P € S as Supp B=! is finite. By choosing
Qe f~4pP) N X(x0) for each P € S, we have a map ¢: § — S by P +— Q. This
map is injective as f(Q) = P, and moreover, it is bijective as S C Supp B is finite.
We write S = {Py, Ps, ..., P,}. Then there is a permutation o of {1,2,...,n} such
that ¢(P;) = P,-1(;) for any i. Hence, f_l(Pg(Z-)) NX(o) = {Pi} and f(P;) = P,
for any i. Let k be the order of o. Then (f*))~1(P)N X (o) = {P} for any P € S;
this shows (). We set

d; = dp,i = multpi f* (f(Pl)), B; = Hlultpi B, and ¢; = multpi A

for each 1 <7 <n. Then

(I11-2) Bi =1 =di(Bogiy — 1) + i > di(By(i) — 1)
by () for Q = P;, and hence,
(I11-3) Bi =1 > didgiy - dor-10y(Bi — 1)

for any 1 <i <n. If 8; > 1, then d; = 1, B; = B,(;, and §; = 0 by ([[II2) and

; this proves [@)). If 5; = 1, then B,;y = 1 and §; = 0 by ; this proves
(4)
@). Thus, we are done. O

Remark. The idea of the proof above is originally in the proof of [39, Lem. 3.5.1].
It is used in Lemma 5.3 of the preprint version of [41], preprint RIMS-1613, Kyoto
Univ. 2007, and in [22, Prop. 2.4].

The following is the main result of Section[Bl and it is regarded as a 2-dimensional
analogue of Proposition 3.4}

Theorem 3.5. Let X be a normal complex analytic surface and B an effective
Q-divisor on X such that Sing X U Sing Byeq is a finite set. Let f: X° — X be a
morphism with only discrete fibers from an open subset X° of X such that

KX° +B|XO :f*(KX+B)+A
]igr an effective Q-divisor A on X°. Then the following hold for the Q-divisor
B := BS' + % | B_. (cf. Notation B3) and for any point x of the limit set
X(oo) = X, (00)?
(1) If x € Supp A, then (X, B) is 1-log-terminal at x (cf. Definition 21]).
(2) If (X, B) is not log-canonical at z, then f is a local isomorphism at x, and

(f®)~1(z)N X(oo) = {z} for some k> 1.

By Remark 3:2] we have Theorem directly from Theorem We have two
corollaries of Theorem The first corollary below is a generalization of [39]
Thm. 4.3.1], where X is assumed to be a normal Moishezon surface:
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Corollary 3.6. Let f: X — X be a non-isomorphic finite surjective endomorphism
of normal complex analytic surface X and let S be a reduced divisor on X such that
Sing X U Sing S is a finite set and that f~*(S) = S. Then (X,S) is log-canonical.

Proof. There is an effective Q-divisor A such that Kx + S = f*(Kx + S) + A by
Lemma Thus, we can apply Theorem to the situation where X° = X
and B = S. Here, X5 (o) = X, since f is surjective. Assume that (X,S) is not
log-canonical at a point #. Then f is a local isomorphism at z and (f*)~!(z) = {x}
for some k by Theorem BH|([Z). This contradicts: deg f > 1. Thus, (X,95) is log-
canonical. O

The second corollary below is well known: The first assertion has been proved
by Wahl in [58] by using an invariant —P - P, and the second assertion has been
proved by Favre in [6, Thm. B(3)] by using the theory of valuation spaces of normal
surface singularities.

Corollary 3.7 (Wahl, Favre). Let f: X — X be a non-isomorphic finite surjective
endomorphism of a germ X = (X,x) of a normal surface X at a point x. Then
X is log-canonical. If x is contained in the support of the ramification divisor R,
then X is log-terminal.

Proof. By Remark[3.2] we may assume that f is induced from a morphism f: X° —
X with only discrete fibers from an open neighborhood X° of z, in which f(x) =
x, and f is not a local isomorphism at z. Then z € Xy (). Moreover, x €
Supp Ry when x € Supp R;. Obviously, we may assume that Sing X is finite. Hence,
assertions are derived from Theorem applied to the case where B = 0. (]

3.2. Proof of Theorem We shall prove Theorem after proving prelimi-
nary results Lemma B.8] Proposition 3.9, and Lemma [B.I0] in which the latter two
are special cases of Theorem

Lemma 3.8. In the situation of Theorem B0, there is an inclusion
(I11-4) f~1(Supp B=') C Supp B! |x-,

and there is an effective Q-divisor A on X° such that

(I11-5) Kxo + Blxo = f*(Kx + B) + A.

Assume the following three conditions:

(i) The Q-divisor B=1 has only finitely many prime components.
(ii) For any prime component T of BZY, T'|x. is a prime divisor.
(iii) For any prime component T' of BZY, f~1T is not empty.
Then f*(B=.) = B—¢|xo for any ¢ > 1, f~Y(B=1) = B=1|x-, and B=|xo has no
common prime component with A. In particular, A=A and Kxo + Bfl\Xo =
[*(Kx +BSY) + A,

Proof. Let S be the set of prime divisors on X and let 7y be the set of prime divisors
I'° on X° such that I'° is a prime component of f~!D for an effective divisor D
on X. Then, for each I'° € T¢, there is a unique prime divisor I' on X such that
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I'° is a prime component of f~'I", and we have a map ¢: 77 — S by I'° — I". For
I'° € Ty and T = ¢(I"°), the integer a := multro f*T" is the ramification index of f
along I'°. Hence,

a — 1 = multre Ry = amultpr B — multre B|xe + multre A
for the ramification divisor Ry = Kxo — f*Kx = f*B — B|xo + A of f. Therefore,
(I11-6) multre Blxe — 1 = a(multyr B — 1) + multre A > a(multr B — 1).
If I' C Supp BZ!, i.e., multyr B > 1, then I'° C Supp B=!|xo by ([II=6). This shows

(IIT=)). Next, we shall prove that the Q-divisor A defined by ([II=5)) is effective.
The Q-divisor is written as

A=R;+B|xo — f*B=A—(B-B)|x- + f*(B-B),
where B — B = Zc>1(c — 1)B_.. It is enough to show that multre A > 0 for any
prime divisor I'° such that I'> C Supp(B — B)|xo N f~! Supp B. Here, I'° € T; and
I :=(I'°) C Supp B. Hence, multro B|xs = 1 and multr B < 1, and we have
multo A=a—1+ multro §|X° — amultr B>0

for the ramification index a of f along I'°. Therefore, A is effective.
For the rest of the proof, we assume three conditions [)-(i). Let S be the set of
prime components of BZ1. Then S is finite by (), and : ¥ ~*(S) — & is surjective

by (@) and (II-4). By (@) and by the inclusion ([II-4]), we have an injection

i: 9~ 1(8) — S such that I'° = i(T)|xo for any I'° € 9y~(S). Then i: »~1(S) = S

and v: ~1(S) — S are both bijective. Let I'y, ..., I',, be the elements of S. Then,

by maps ¥ and i, there is a permutation o of the set {1,...,n} such that
FHT0w) = Lilxe

for any 1 < i <n. We set

a; = multy,| . f'Tou), Bi:=multr, B, and § =multy, . A.

Here, a; € Z>1, i € Q>1, and 6; € Q>o. By ([II=6) for I';|xo, we have

(I11-7) Bi —1=ai(Bogiy — 1) + i > ai(Boi) — 1)
Let k be the order of the permutation o. Then
(I11-8) Bi =12 aias(iy - agr-13)(Bi — 1)

for any 1 <4 <n by (D). If §; > 1, then a; = 1, B,(;) = fi, and §; = 0 by ([II=1)
and ([II=8)). Therefore, for any ¢ > 1, the equality f*(B—.) = B—.|x- holds, and
B_.|x> has no common prime component with A. Subtracting f*(B=.) = B—|xe
from Kxo + B|xe = f*(Kx + B) + A, we have

Kxo 4+ B xo = f*(Kx + BS')+ A and A=A,

If B; = 1, then f,¢;) = 1 and 6; = 0 by ([IIZ). Therefore, f~'(B=1) = B—1]|xe,
and B_1|xo has no common prime component with A. Thus, we are done. (]

We shall prove the following special case of Theorem B5|([I]).
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Proposition 3.9. In the situation of Theorem B0, assume that "B™ is reduced,
i.e., B = BS. Let x be a point in X° such that f(x) = x and z € SuppA. Then
(X, B) is 1-log-terminal at x.

Proof. For an integer & > 1, we set Y = X(®) By := Blyw), g := f®: Y — X,
and Xy := (¢~! Supp B) USupp Ry, where R, is the ramification divisor of g. Then
Ky + By = g*(Kx + B) + Ay for an effective divisor

k—1
Ay =Aly +) g (Alxw),

where g; is the composite Y = X*) — X*=1) ... 5 X® of morphisms induced
by f. Let u: M — X be a bimeromorphic morphism from a non-singular surface M
such that the union ¥, := ¥, (X, B) of p~ ! Supp B and the p-exceptional locus is a
normal crossing divisor and that the proper transform of L BJ in M is non-singular.
We set N := p~ 1Y and v := pu|y: N — Y. Let T, and B, be the positive and
negative parts, respectively, of the prime decomposition of Ky — v*(Ky + By);
hence, Ky + B, = v*(Ky + By) + T,. Here, v.B, = By as T, is v-exceptional
(cf. Definition 1)), and Supp B,, is normal crossing by Supp B, C £, NY. Let C,
and S, be the positive and negative parts, respectively, of the prime decomposition
of B, — v*Ay. By Lemma [ZTTI[), it suffices to prove that "C, ™ is reduced and
LC, 1 has no v-exceptional prime component over an open neighborhood of x in
Y = X®).

Let U be an open neighborhood of « in X° such that B|y, has only finitely many
prime components. Let m be a positive integer such that mB|y is a divisor. Then
mAly is a divisor by A = Ry — f*B+ B|x-, since Ry is a divisor by Remark [L221(5]).
Thus, mA and mg; (Al x ) are all divisors on an open neighborhood V of z in Y.
Here, we may assume that v is an isomorphism over V\ {z}. Then mrv*(Aly) and
mrv*gi (Al xw ) are divisors on =1V for the numerical factorial index 7 := nf(X, x)
(cf. Definition [L26). Since x € X for all i and since z € Supp A, we have

k—1
multp v* Ay = multr v*(Aly) + Z‘—1 multr v* (g7 (A|x@)) > k/mr

for any v-exceptional prime divisor I' contained in »~!(x). On the other hand,
multr B, does not depend on k. Thus, if we take k large enough, then the positive
part C, of the prime decomposition of B, — u*Ay does not contain such prime
divisors I. Hence, C,, is contained in the proper transform of By on v~!'V. Since
"By™ = "B7|y is reduced, we see that "C,7 is reduced and that .C), . has no

v-exceptional prime component over V. Thus, we are done. (]
Remark. The iteration f(*) is also considered in the proof of [6, Thm. B(3)].

We shall prove the following special case of Theorem BJ[2) by applying the
log-canonical modification (cf. Lemma-Definition [Z22]) and Proposition 223

Lemma 3.10. In the situation of Theorem 3.5, assume that " B™ is reduced, i.e.,
B = B=!. Let z be a point in X° such that f(x) =z and x ¢ Supp A. If f is not
a local isomorphism at x, then (X, B) is log-canonical at x.
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Proof. We shall derive a contradiction by assuming that (X, B) is not log-canonical
at x. By replacing X° with an open neighborhood of x, we may assume that
A = 0. Let p: (Y,By) — X be the log-canonical modification of (X, B). Then
p~1(x) is a non-zero compact divisor as (X, B) is not log-canonical at . We set
Y° = p~}(X°), Byo = Byl|yo, and p° := plyo: Y° — X°. By Proposition 2.23]
there is a morphism fy : Y° — Y with only discrete fibers such that po fy = fop°
and Kyo + Byo = fy(Ky + By ). By Remark[[.2]] we can find open neighborhoods
V; and Vs of z in X°© and X, respectively, such that f(V;) = Vo, f~1(z)NVy = {z},
and the induced morphism 7 := f|y,: Vi — V4 is finite. Here, deg7 > 1, since
f is not a local isomorphism at x. We set Y; := p~'V; for i = 1, 2. Then 7 lifts
to a finite surjective morphism 6 := fy |y, : Y1 — Y3 such that degf = degr. In
particular, 0],-1(,): p~'(x) = p~'(z) is also finite and surjective. Let S be the
set of prime components of p~!(z). Then the map I' = fy(I') = 0(T') induces a
bijection S — S. By replacing f: X° — X with the k-th power f(®): X#) — X
for some k£ > 1, we may assume that I' = fy(I') = §(I') for any I' € S. Then
0*T = drI for a positive integer dr. Since I'?> < 0, we have d% = deg 6 by

d2T? = (0°T)? =T0,(0*T) = (deg §)I'*

(cf. Remark[[24)). Therefore, deg T = deg 6 = d? for an integer d > 1 and 0*T" = dT’
for any I' € S. Then we have (Ky + By )I' =0 by

d(KY + By)r = (Ky + By)@*F = (Kyo + BYo)e*F = (f}*/(Ky + By))G*F
= (Ky + BY)fY*(e*F) = (dege)(Ky + By)F = dZ(KY + By)r.

This contradicts the p-ampleness of Ky + By. Thus, we are done. (Il
Now, we are ready to prove Theorem

Proof of Theorem B0l Let ¥ C X be the set of points = such that (X, é) is not
1-log-terminal at #. Then f~!% C ¥ by Proposition BI2/2) applied to the equality
(IIT-H) in Lemma B8l Note that ¥ is finite by ¥ C Sing X U Sing Byeq. We set
(o) i= XN X(o0). For the proof of Theorem B, we may assume that X () # 0.
For any point z € ¥(«), we have f~!(z) N Xs = f7H(z) N X(oo) # 0. In fact,
S~ (z) is finite by f~(2) C &, and if f7(2) N X(oe) = 0, then f~1(z) N X ) =0
for k > 1, but it contradicts » € Xy C f(X()). By choosing an element of
fHx)n Y(s0) for each z € X (), we have an injection ¢: ¥(o) — ¥() such that
Y(xz) € f~!(x). This is a bijection as ¥, is finite. Hence, () C X° and f
induces the inverse map ¥(o) — (o) of ¥, ie., f(¥(7)) = 2. There is a positive
integer k such that ¢*(z) = z, i.e., (f(k))*l(x)ﬂX(oo) = {z}, for any x € ¥ (). By
replacing f with f(*), we may assume that f~!(x) N X (o) = {2} for any € ¥ (o).
Let us fix a point x € ¥ (). We can choose an open neighborhood U of z in X
satisfying the following conditions:
o If z & Supp B=!, then B21|;; = 0.
e If z € Supp B=!, then any prime component I' of B=!|;; contains z and is
locally irreducible.
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We set U° := (f~'U)NU. Note that if € Supp B=!, then I'|yo is a prime
divisor for any prime component I' of BZ!|;;. Then we can apply Lemma to
the restriction U° — U of f and to BZ!|y;. As a consequence, we have

E|Uo = A'UO'

Then z ¢ SuppA by Proposition applied to U° — U and to the equality
([II=5). This proves Theorem EHI). Moreover, if (X, B) is not log-canonical at z,
then f is a local isomorphism by Lemma B.I0 applied to the equality ([II=5)), since
x ¢ Supp A. This proves Theorem BH|[2]), and we are done. a

4. SOME TECHNICAL NOTIONS FOR THE STUDY OF ENDOMORPHISMS

We prepare some technical results on toric surfaces (Section[]) and cyclic covers
(Section E2]), and introduce two notions: essential blowings up (Section [£4]) and
dual R-divisors (Section ) with their properties. These results and properties
are applied to discussions in Section Bl on the lift of endomorphisms of germs of
normal surfaces.

4.1. Endomorphisms of certain affine toric surfaces. We shall explain some
basic properties of toric surfaces, toric morphisms, and toric endomorphisms, by
using the theory of toric varieties (cf. [32], [42], [12], etc.) with some related ar-
guments in [37, §3.1] and [40, §3.1] in addition. An affine toric surface, which is
considered as a complex analytic surface, is expressed as

Tn(o) = (SpecClo N M])*",

for a free abelian group N of rank 2, a closed strictly convex rational polyhedral
cone o in N ® R, the dual abelian group M := Homz(N, Z), and the dual cone

o0V ={meM@R|m(z) >0 for any » € o}.

Here, 2" stands for the analytic space associated to an algebraic scheme over C (cf.
[18, XII, §1]), the strict convexity means that o N (—o) = {0}, and Clg¥ N M|
denotes the semi-group ring over C. We write Ty = Tn({0}), which is canonically
isomorphic to the algebraic torus N ®z C*, where C* := C\ {0}. The toric surface
admits an action of Ty and an equivariant open immersion Tn({0}) < Tn(o).

Remark. If the cone o is 1-dimensional, then it is a ray R>pe generated by a
primitive element e of N and we have an isomorphism Ty(o) ~ C x C* extending
Tn({0}) ~ C* x C*.

Fact 4.1. Assume that the cone o is 2-dimensional. Then N has two primitive
elements e1, ez such that (e, ez) is a basis of N ® R and o = R>pe; + Rx>pez. Let
& be the set of elements e € o NN such that N = Ze + Zes, and let u € £ be the
element attaining the minimum of ey (e) for e € £, where (e}, ey) is the dual basis
of (e1,e2) in M ® R. Then there exist integers n > ¢ > 0 such that ged(n,q) = 1
and u = (1/n)(e; +qez). The integer n is uniquely determined by (N, o). But g can
be replaced with an integer 0 < ¢f < n by interchanging e; and ey, where ¢t = 0 if
g=0, and ¢¢ =1 mod n if ¢ > 0.
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Definition 4.2. When dim o = 2, the number n above is called the order of (N, o),
and the pair (n,q) is called the type of (N, o).

Remark. Assume that dim o = 2. Then Ty(o) has a unique fixed point * on the
action of Ty: For e; and eg in Fact ] the complement of Tn(R>pe1) UTn(R>pez)
in Tn(o) is just {x}. If ¢ = 0, then Tn(o) is isomorphic to the affine plane C2.
If ¢ > 0, then Tn(o) is singular at x, and it is a cyclic quotient singularity of
type (n,q), or 1/n(1,q) in some literature; in this case, the exceptional locus of the
minimal resolution forms a linear chain of rational curves whose self-intersection
numbers are calculated by a certain continued fraction of n/q (cf. [40, Exam. 3.2]).

In general, a toric surface is expressed as
TN (A) = UUEA TN (0‘)

for a free abelian group N of rank 2 and for a fan A of N: A finite collection A of
closed strictly convex rational polyhedral cones of N ® R is called a fan if each face
of a cone in A belongs to A and the intersection of two cones in A is a face of both
cones. The open immersion Tn({0}) C Tn(A) is also Ty-equivariant. The open
orbit Ty ({0}) or Ty is called the open torus and the complement Tn(A) \ Tn({0})
is called the boundary divisor. We have the following analogy of [40, Exam. 3.4].

Ezample 4.3. Assume that the union |A| = J,c @ is a strictly convex cone of
dimension 2. Then there exist primitive elements v; of N for ¢ = 1, 2, ..., [ such
that A consists of

e 2-dimensional cones o; = R>ov; + R>ov;41 for 0 <i <1 -1,

e 1l-dimensional cones R; := R>gv; for 0 <i <, and

e the 0-dimensional cone {0},
where |A| = R>vg +R>ov;. The toric surface Ty(A) is obtained by gluing Ty (o;)
for 0 < 4 < 1 —1 by open immersions Tn(R;4+1) C Tn(o;) and Tn(Rip1) C
Tn(oit1). The boundary Tn(A) \ Tn({0}) consists of prime divisors I'(v;) for 0 <
1 < [ which are determined by the property that I'(v;)NTn(R;) = Tn(R;)\Tn({0}).

Remark 4.4. For m € M, let e(m) denote the nowhere vanishing function on Ty =
(Spec C[M])®* corresponding to the invertible element m of C[M]. We regard e(m)
as a meromorphic function on a toric surface Tn(A) for the fan A in Example [£3]
Then the principal divisor div(e(m)) is written as Zé:o m(v;)T'(v;) for any m € M.

Remark. If A consists of the faces of the cone o = R>pe1 +Rxpeq in Fact 1] then
Tn(A) is just the affine toric surface Ty(o), and [ = 1 in Example

Definition 4.5. For toric varieties Ty(A) and T/ (4A’), a morphism f: Ty, (A') —
Tn(A) of varieties is called a toric morphism if there is a homomorphism ¢: N’ — N
such that f is equivariant under actions of Ty, and Ty along the complex Lie group
homomorphism ¢ @ C*: Ty =N’ @ C* — Ty = N® C*.

A homomorphism ¢: N’ — N is said to be compatible with A’ and A if, for
any o’ € A/, there is a cone o € A such that ¢r(o’) C o, where ¢r denotes the
induced linear map ¢ @ R: N ® R — N ® R. In this case, the dual homomorphism
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¢Y: M = Homgz(N’,Z) — M = Homg(N,Z) induces homomorphisms o’V N M’ —
oV NM of semi-groups, and toric morphisms Ty (o) — Tn(o). These are glued to
a toric morphism Tn/(A') — Tn(A), which is denoted by T(¢). By [42, Thm. 1.13],
we know that every toric morphism Ty (A') — Tn(A) is expressed as T(¢) for a
homomorphism ¢: N’ — N compatible with A’ and A.

Remark 4.6. The toric morphism f in Definition is proper if, for any o € A,
the inverse image ¢ 'o is the union of some cones o’ in A’ (cf. [42, Thm. 1.15)).
In particular, the fan A in Example [£3] gives a toric bimeromorphic morphism
w: Tn(A) = Tn(JA]), where T'(v;) is p-exceptional for 1 < ¢ <1 — 1. If p is an
isomorphism, then [ = 1, i.e., A consists of the faces of the cone |A].

Remark 4.7. The toric morphism p: Tn(A) — Tn(]A]) above is expressed as the
blowing up along an ideal as follows: Let I'; and I's be the boundary prime divisors
of Tn(]A|) defined by R>qvp and Rsqv;, respectively. We have positive rational
numbers a; and b; for 1 < ¢ < — 1 such that v; = a;v9 + b;v;. Then ay /by >
ag/by > -+ > a;_1/bj—1. Let p; for 1 < i <[ — 1 be positive integers such that
—> " pil'(v;) is p-very ample. Then p is regarded as the blowing up of Tn(]A])
along the ideal sheaf

-1
J = Onyn)(— Zizlpir(vi))-
For an element m € |A|Y N M, the holomorphic function e(m) on Ty (]A]) belongs
to J if and only if

-1
i - T(v;) >
div(e(m)) =Y piT(vi) >0
as a divisor on Tn(A), i.e., m(v;) = a;m(vo) + bym(v;) > p; for any 1 <4 <[ —1.
Since J is preserved by the action of Ty, J is generated by such e(m). Hence,

-1
J = ﬂizl Zaic+bid2pi Ory(r)(=cl't — dI's),

where ¢ and d are non-negative integers.

Lemma 4.8. Let A and A\’ be fans of a free abelian group N of rank 2 such that
T =|A| and 7" = |A'| are strictly convex cones of dimension 2 and ' C T. Let

9: Ta (D) 5 T () = T () “m T (A)

be the meromorphic map, where u and p' are canonical bimeromorphic toric mor-
phisms defined by T = |A| and 7' = |A'|, and t is the toric morphism defined by
7' C 1. Then ¥ is holomorphic if and only if any o’ € A is contained in some
cone o € A. In particular, when T = 7', ¥ is holomorphic if and only if A\ = /N,
and in this case, ¥ is the identity morphism of Tn(A).

Proof. The second assertion follows from the first one, since fans A and A’ give
polyhedral decompositions of the same cone 7 = 7/, and both fans have finitely
many 2-dimensional cones. For the first assertion, it suffices to prove the “only if”
part, and we may assume that A’ consists of the faces of a single 2-dimensional
cone. Thus, from the beginning we may assume that Ty(A") = Tn(7') and ' is the
identity morphism. The normalization of the fiber product of p and t over Tn(7)
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is a toric variety expressed as Tn(A”) for the fan A” = {v'Neo | 0 € A}. If ¥
is holomorphic, then Tn(A”) — Tn(7') is an isomorphism, and it implies that A"
consists of the faces of 7/ by Remark .6l Hence, 7/ C o for some o € A. O

Lemma 4.9. For (N, o) in Fact &1l let ¢: N’ — N be an injective homomorphism
of free abelian groups of rank 2, and let o’ be a 2-dimensional closed strictly convex
rational polyhedral cone of N’ @ R such that ¢r(6’) C o for the isomorphism ¢r =
PQR: N @R — N®R. As in Fact @1], we write 0’ = Rxge} + Rxge for two
primitive elements ) and e, of N’ which form a basis of N @ R. Let w: Tn/ (o) —
Tn(o) be the toric morphism T($). Then
7T (e1) = a1 T'(e}) + a12l'(esy) and 7*T(ez) = aziT(e]) + azal(eh)
for non-negative integers a;; defined by
a1 a
(@) o) = (eren) (410 212).
a1 G22
Moreover, fN/H(N") = (n/n')|ar1a22 — a12a21] for the order n’ of (N',o”).
Proof. Let (e, ey) be the dual basis of (e1,e2) in M ® R and let (e}, e5’) be the
dual basis of (e],€5) in M’ ® R, where M’ = Homyz(M, Z). Let ¢¥: M — M’ be the
dual homomorphism of ¢. Then ¢ = ¢¥ @ R is given by
a1 a
(D). k() = e ep) (11 021,
a2 Q22
For i =1, 2, let k; be a positive integer such that k;ey € M. Then
n*e(kie)) = e(¢” (kie))) = e(kia;e) )e(kiane’).
By Remark .4 we have div(e(k;e))) = k;I'(e;), and hence,
kﬂr*F(ei) = dlv(w*e(kze;/)) = kiaﬂI‘(ell) + kiaigf(eé)
for ¢+ = 1, 2. For the second assertion, we choose an element of N’ of the form
u' = (1/n')(e] + ¢'e}) such that N’ = Zu' + Ze),. Then

@), 00e) = (e o0 (7 3) = Cenen (40 2 ()

! !
az1 Q22 q /n

-1
1/n 0 ail  Gig 1/n" 0
= (u’ 62) P .
g/n 1 az  ax) \¢/n 1
By taking determinants of matrices above, we have the equality for {N/¢(N’). O

Lemma 4.10. For (N, o) in Factl@d let f: Tn(o) — Tn(o) be the finite surjective
toric morphism T(¢) associated with an injective homomorphism ¢: N — N such
that ¢r(o) = . Then, for the composite g = f o f, there exist positive integers d;
and do such that

degg = didy, ¢'T1=diI't, g'T2=d2I's, and di =dy modn,

where 'y = I'(e1) and 'y = T'(eq) are prime components of the boundary divisor
of Tn(o), and n is the order of (N,o). Here, if di = do, then ¢*> = ¢ o ¢ is the
multiplication map by d; .
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Proof. By Lemmal4.9] there exist positive integers d; and ds such that deg g = dida,
g*T; = d;T;, and ¢*(e;) = d;e; for i = 1, 2. Moreover, for the primitive element u
in Fact [£1] we have

¢*(u) = (1/n)(dre1 + qdaes) = dyu+ (g¢/n)(d> — di)es € N.

Thus, dy = dy mod n. If di = da, then ¢*(u) = dyu, i.e., ¢? is the multiplication
map by d. Il

4.2. Lifting endomorphisms to certain cyclic covers. There is a well-known
construction of cyclic covers of normal varieties due to Esnault [5, §1] and Viehweg
[57, §1]. A similar construction can be found in [43] §5] and [3]. We shall present
another construction of cyclic covers from a Q-divisor whose multiple is principal:
This is called an index 1 cover (cf. Definition EET8|[2) below), which is a generaliza-
tion of the same cover considered in [30]. As a byproduct, we shall give a sufficient
condition for an endomorphism of a variety to lift to a cyclic cover (cf. Lemma [£2T]).
In Section [£2] varieties are not necessarily 2-dimensional.

Definition 4.11. For a normal complex analytic variety X and a Q-divisor L on
X, assume that mL is a principal divisor for a positive integer m; hence, we have
an isomorphism s: Ox(mL) =5 Ox. We consider the O x-module
m—1
R(L,m,s) := EBi:O Ox(LiLy)

and endow it an Ox-algebra structure by homomorphisms
fizj: Ox(Lilay) ® Ox(LiLa) — Ox (Lm (L)L)

defined as follows for integers 0 < ¢,7 < m: If ¢ +j < m, then fi;; is just the
composite

Wi Ox(Lila) ® Ox(ujLa) = Ox(Lila+ L jLy) — Ox(L(i+ j)Lo),

where the first homomorphism is given by taking the double-dual and the second
one is induced by the inequality LiLi+jL1 < L(i+ j) L of divisors. If i +j > m,
then fi; ; is the composite

Ox(LiL2) ® Ox (LjLa) 225 Ox (L(i + 5)L2) 22 Ox(L(i + j — m)Lo).

The associated finite morphism 7: V(L,m,s) := Specany R(L,m,s) — X is
called the cyclic cover with respect to (L, m,s). For Specan, see [7, §1.14]. Note
that R(L,m,s) = Ox and V(L,m,s) = X when m = 1.

Remark. For the variety X above, let H be a Cartier divisor on X with a non-
zero global section o of Ox(mH) for an integer m > 1. Then the effective divisor
D = div(o), the divisor of zeros of o, is linearly equivalent to mH, and o induces
an isomorphism Ox (D) ~ Ox(mH). We set L := (1/m)D — H as a Q-divisor, and
set s: Ox(mL) = Ox (D —mH) — Ox to be the isomorphism induced by o. Then
V(L,m,s) is just the usual cyclic cover associated with (H,m, o) in the sense of
Esnault [5 §1] and Viehweg [57, (1.1)]. Conversely, for (L, m, s) in Definition [1T]
we set H := — L. and D := m(L). Then V(L,m, s) coincides with the cyclic cover
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in the sense of Esnault and Viehweg defined by a section o of Ox(mH) such that
div(e) = D.

Remark 4.12. The Ox-algebra R(L,m,s) is graded by Z/mZ. Hence, V(L,m,s)
admits an action of the group u,, of m-th roots of unity over X. The action of
¢ € m,, is defined by multiplication maps Ox (LiLJ) — Ox(LiLJ) by ¢*. For an
open subset U such that L|y is Cartier, we know that V(L|y,m,s) — U is a w,,-
torsor by [L7, Prop. 4.1]. For another isomorphism s': Ox(mL) = Ox, there is a
W,,-equivariant isomorphism V(L,m, s") ~ V(L,m, s) over X if and only if s’ = e™s
for a nowhere vanishing function € on X.

Lemma 4.13. Let X be a non-singular variety with a non-zero holomorphic func-
tion t such that the principal divisor D = div(t) is non-zero and non-singular. For
integers 0 < a < m, we define L := (a/m)D as a Q-divisor on X, and consider t*
as a nowhere vanishing section of Ox(—mL) = Ox(—aD) = Oxt®. Then

(IV_]') R(La m, ta) = OX [11, y]/(ud - 17 ym' - t)OX [11, Y]

as an Ox-algebra for integers d := ged(a,m) and m' := m/d, where u and y
are variables. In particular, V(L,m,t*) is non-singular and is a disjoint union of
d-copies of V((1/m’)D, m/,t).

Proof. Let B be the O x-algebra in the right hand side of ([V=1]), and let us consider
an Ox-algebra

A= 0Ox|z]/(2™ — t")Ox|z]
for a variable z. Then there an Ox-algebra homomorphism A — B given by
z — uy® for a’ :=a/d. Since m/(ai/m) = da'i for any i € Z, we have

(uya')i _ uitLai/mJym'(ai/m>
for any ¢, and the correspondence

i~ (i mod d, m'(ai/m) mod m")

gives rise to a bijection Z/mZ — 7. /dZ x 7Z/m'Z. Hence, A — B is isomorphic to
the canonical injection

m—1 . m—1 . .
i —vLia/ma_ji
@izo Oxz —>®i:0 Oxt AR
As a consequence, we have ([V=1)), i.e., B ~ R(L,m,t*). The last assertion is
deduced from the isomorphism
V(L,m,s) = Specany B ~ p, x V((1/m’)D,m’,t)
with a property that V((1/m’)D,m/,t) ~ Specany Ox[y]/(y™ —t)Oxly] is non-

singular. O

Lemma 4.14. Let w: V = V(L,m,s) — X be the cyclic cover in Definition A11]
in which m > 1. Then V is normal, 7*L is a principal divisor on V, and Oy(7*L)
has a p,,-linearization such that the associated Z/mZ-graded R(L, m,s)-module
mOy(Im* L) is isomorphic to the twist R(L, m,s)(l) byl for anyl € Z, i.e.,

(IV-2) 1Oy (Im* L) ~ @m

=

LOx (Ll + )LL)
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Here, the image v of 1 by the injection
Ox =R(L,m,s)(—1)1 C R(L,m,s)(—1) =~ m.Oy(—7"L)

is a nowhere vanishing section of Oy(—n*L) satisfying m*s = v™. If X and Supp(L)
are non-singular, then V is also non-singular.

Proof. We set X° := X \ (Sing X U Sing Supp(L)). For a given point x € X° N
Supp(L), we have an open neighborhood U of  and a non-zero holomorphic func-
tion ¢ on U such that
e div(t) is non-singular,
o (L)|y = (a/m)div(t) for an integer 0 < a < m, and
e 5|y = &™t® as a section of Ox(—mL)|y for a nowhere vanishing section &
of OX(—TTLI_L_I)‘U.

In particular, V|y ~ V((a/m) div(t),m,t*) by Remark and it is non-singular
by Lemma I3l Hence, V° := 771(X°) is non-singular, since V — X is a p,,-
torsor over X° \ Supp(L) (cf. Remark {T2)). This shows the last assertion. For
open immersions j: X° < X and j': V° < V, we have isomorphisms R(L,m, s) ~
J«(R(L,m,s)|x0) and Oy =~ j.Oyo, since R(L, m, s) is a reflexive O x-module and
codim(X \ X°, X) > 2. Therefore, V is normal.

For the rest, by Hartogs’ lemma, we may assume that X and Supp(L) are non-
singular, by replacing X with X°. Let

m—1
V: Ox(LLl) = R(L,m,s) = @i:o Ox(LiLy) = m,0y

be the canonical injection from the factor of i = 1. Let d,,,: Ox(mcLy) — Ox(mL)
be the inclusion corresponding to the inequality m Ly < mL of divisors and let
Pm: (mOy)®™ — 7.0y be the homomorphism defined by m-times products in the
Ox-algebra m,Oy. Then the diagram

Ox(miLs) —"— Ox(mL) —>— Ox

(IV-3) :T l

RXm
Ox(LL)®™ 22 (7,09)8m —Pm s 1.0y

is commutative, where the right vertical arrow indicates the canonical homomor-
phism of Ox-algebra. Let

p: W*OV(LLJ) — Oy
be an injection corresponding to ¥ by adjunction for (7*,m.). Then the image of

¢ is the ideal sheaf Oy(—F) of an effective Cartier divisor £ on V. By ([V-3)), the
m-th power

©®™: T Oy (LL)®™ — Og]@m = Oy
equals (7*s) o 7%9,,, and hence,

mE =7*(umLi—mu.Ly) = mr*™(L).
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Therefore, E = n*(L), and 7*L = 7*(_L4) + F is a principal divisor. For an integer
n, let us consider the diagram

TaOy(=Rm* L) v - D, Ox((i —n)LJ)

(IV-4) £

T Oy (—nn*LLJ) — @:161 Ox(—ncLy) @ Ox (Lily)

of R(L,m,v)-modules in which the bottom isomorphism is derived from the pro-
jection formula and vertical arrows are injections defined by inequalities —(i —
n)Ly < —neLi + cily of divisors for 0 < i < m. We shall show that the dot-
ted arrow exists as the isomorphism ([V=2)) for [ = —n and it makes the diagram
(IV=4) commutative. For the purpose, we can localize X and we may assume that
L = (a/m)D, D = div(t), and s = t* as in Lemma I3l In this case, cL1 = 0,
7L = aF, E = div(z) for z = uy® in the proof of Lemma EI3] and the diagram

(IV=4) is expressed as

(uy*)"Ox[u, y]/ (! = 1,5 = 1)Ox[u,y] > @iy Oxt=-(mma/mazi

OX [u? Y]/<ud - 17 ym/ - I)OX [u; Y] = @:1—01 OXt_Lia/m"Zi.

Thus, we have the dotted arrow as an isomorphism making the diagram commuta-
tive. As a consequence, m.Oy(In*L) ~ R(L, m,v)(l) for any [ € Z.

For the section v of Oy(—7*L) in the statement, the section v™ of Oy(—mn*L)
corresponds to the section s of Ox(—mL) by the isomorphism

T Oy(—=mn*L) ~ R(L,m, s)(—m) ~ R(L,m,s) ® Ox(—mL).
Thus, 7*s = v™, and we are done. [
Corollary 4.15. The cyclic cover V.=V (L, m,s) is reducible if and only if there

exist a positive integer k and a nowhere vanishing section w of Ox (—kL) such that
kE <m, k|m, kL is Cartier, and s = w™*. When V is irreducible,

(IV-5) Ky =" (Kx + (1-1/e)Ty)

for the prime components T'; of (L) and for the denominator e; of the rational
number multr, L.

Proof. We may assume that X and Supp(L) are non-singular as in the proof of
Lemma .14l The second assertion is reduced to the case where L = (1/m)D for
D = div(t) in Lemma FT3] and we have (IV=5) from the ramification formula for
the cyclic cover Specany Ox|[y]/(y™ — t)Ox[y] — X. For the first assertion, it is
enough to prove the “only if” part, since the “if” part is shown by the isomorphism

V(L,m,s) = p, ;i X V(L, k,w).

Assume that V is reducible, and let Y be an irreducible component of V. Then
Y N7 1(X*) is a connected component of the u,,-torsor 7=1(X*) over X* :=
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X\ (Sing X USupp(L)) (cf. Remark 12). Let H C w,, be the subgroup consisting
elements ¢ € p,, such that {(Y) C Y. Then H is the Galois group of the Galois
cover my = 7w|y: Y — X, the order k := #H divides m and is less than m, and
V is a disjoint union of m/k-copies of Y. Let v be the nowhere vanishing section
of Oy(—7*L) in Lemma [£I4 Then, for any ( € u,,, the pullback (*v by the
automorphism ¢: V — V equals (v as a section of Oy(—n*L), since v is contained
in R(L,m, s)(—=1)1. Thus,

DL, ¢ ) = DML, QH) = ()

is an H-invariant nowhere vanishing section of Oy(—kn*L) ® Oy ~ Oy (—73 (kL)).
Hence, kL is a principal divisor on X with a nowhere vanishing section w of
Ox(—kL) satistfying 7% (w) = (v|y)*. Here, w™/*
are done. O

= s by v = 7*s. Thus, we

Lemma 4.16. Let (X,L,m,s) be as in Definition BTl in which m > 1. Let
f:Y — X be a morphism of maximal rank (cf. Definition [LI)) from a normal
variety Y such that codim(f~! Sing X,Y) > 2; in this situation, one can consider
the inverse image f*D for a divisor D as a divisor on' Y by Lemma [LI9. Then
the cyclic cover V(f*L,m, f*s) =Y is isomorphic to the normalization of the fiber
product V(L,m,s) Xx Y.

Proof. For any i € Z, we have a composite homomorphism
Yi: ffOx(Lila) 2 Oy (f*Lila) E) Oy (Lif*Ly),

where « is the canonical homomorphism on the pullback (cf. Lemma [[T9) and
B corresponds to the inequality f*(LiLly) < vif*L. of divisors. Note that Y’ :=
Y \ f~!(Sing X U Supp(L)) is a non-empty open subset of Y as f is of maximal
rank and that 7, is an isomorphism over Y. The sum of v; induces an Oy-algebra
homomorphism
f*R(L,m,s) = R(f*L,m, f*s)

and the associated finite morphism V(f*L,m, f*s) — V(L,m,s) xx Y over Y,
which is an isomorphism over Y’. Then the assertion holds, since V(f*L, m, f*s)
is normal (cf. Lemma [.T7]). O

Proposition 4.17. Let (X,L,m,s) be as in Definition BTl in which m > 1.
Let f: X' — X be a morphism of mazximal rank from a normal variety X' such
that codim(f~!Sing X, X’) > 2. Let L' be a Q-Cartier Q-divisor on X' such that
mL' ~ 0 and s’ a nowhere vanishing section of Ox/(—mL’). We set m: V =
V(L,m,s) - X and «': V' := V(IL',m,s") — X' as the associated cyclic covers.
For an integer k, assume that f*L ~ kL' and f*s = e™s'* for a nowhere vanishing
section € of Ox/ (kL' — f*L). Then:
(1) There is a morphism g: V' — V such that tog = for’ which is equivariant
under the actions of w,, on'V and V' explained in Remark B2l along the
k-th power map p,, — W, i.e.,

g9(¢x) = Fg(x)
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forany x € V' and ¢ € p,,.
(2) If k is coprime to m, then V' is isomorphic over X' to the normalization
of the fiber product V x x X'.

Proof. By Lemma 16 it suffices to construct a certain morphism V(L' m,s’) —

V(f*L,m, f*s) over X’. Thus, we may assume that X’ = X and f = idx. More-

over, by Remark 12 we may assume that L = kL', ¢ = 1, and s = s’*. By

interchanging L and L', we are reduced to construct a morphism g : V(L,m, s) —
V(kL,m, s*) over X such that

(a) it is equivariant along the k-th power map p,,, — p,,, and

(b) it is an isomorphism when k is coprime to m.
For each 0 < i < m, by the equality ik = mcik/m. + m(ik/m) and by tensor
product with s-"*/"- we have an isomorphism

(Vor OX(I_(Y:]C)L_I) ~ OX (\_m<ik/m>L_:) X OX(m\_ik'/mJL) — OX(Lm<ik/m>LJ).

For any 0 < 4,7 < m, the diagram

Ox (LikLl) @ Ox (LjkLy) 2225 Ox(um(E)L1) ® Ox (Lm(iE) L)
(ki

m
ﬂi,;l
m

o P o (it .
Ox(c(m(ZhkLy) 2% Ox (Lm(UED%) L)

l“m<%>,m<%>

is commutative , where fi.. are homomorphisms defining O x-algebra structures of
R(kL,m, s*) and R(L,m, s) (cf. Definition ILTT)) and where we use
i j i j i+3j)k
m((m{ %) +m(2)) /m) = m(() + (1)) = m({ELDE),

m

Thus, the sum of ¢; for all 0 < i < m gives an O x-algebra homomorphism
®p: R(kL,m,s*) — R(L,m, s),

which corresponds to a finite morphism gy: V(L,m,s) — V(kL,m,s*) over X. Tt
is equivariant along the k-th power map p,, — H,,, since each ¢; commutes with
multiplication by

Cik — Cm(zk/m)

for any ¢ € u,,. This shows (@). If k is coprime to m, then the correspondence
i — mf(ik/m) gives a permutation of {0,1,...,m — 1}, which is identified with the
k-th power map of ,,, and hence, ®; and g are isomorphisms. This shows (),
and we are done. O

Definition 4.18. Let X be a normal variety and L a Q-Cartier Q-divisor on X.

(1) The Cartier (resp. torsion) indez of L is either the smallest positive integer
r such that rL is Cartier (resp. rL ~ 0), or oo if such r does not exist. For
a point P € X, the local Cartier index of L at P is the smallest positive
integer r such that rL is Cartier at P.

(2) A finite morphism Y — X is called an index 1 cover (or a global index 1
cover) with respect to L if Y ~ V(L,m, s) over X for the torsion index m
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of L and an isomorphism s: Ox(mL) = Ox. Note that the index 1 cover
is normal and irreducible by Lemma [£.14] and Corollary

(3) For a point P € X, a local index 1 cover with respect to L and P is an
index 1 cover with respect to L|y for an open neighborhood U of P such
that the torsion index of L|y equals the local Carter index of L at P.

(4) For a point P € X, an index 1 cover of the germ (X, P) with respect to L
is a morphism (X, P) — (X, P) of germs (or the germ (X, P)) induced by
a local index 1 cover X with respect to L and P and for the point P lying
over P.

Remark 4.19. Let V =V(L,m,s) and V' = V(L,m, s") be two index 1 covers with
respect to L. Then s = as’ for a nowhere vanishing function a on X. We have a
finite étale morphism 7: X — X from a normal variety X such that 7*a = g™ for
a nowhere vanishing function 8 on X. In fact, Xis given as a connected component
of V(0,m, @) (cf. LemmadId). Then V x x X ~ V' xx X over X by Remark @12
If H°(X,0x) ~ C, then « is constant, X — X is an isomorphism, and hence,
V ~ V'’ over X. Similarly, every point P € X has an open neighborhood U such
that V x x U =~ V' xx U over U. In particular, the index 1 cover of the germ (X, P)
with respect to L is unique up to isomorphism.

Remark. In [30], an index 1 cover is considered only for Kx + D ~g 0, where X is
a normal surface and D is a reduced divisor.

Lemma 4.20. For (X, L,m,s) in Definition @11l in which m > 1, let 7: Y — X
be a finite surjective morphism from a normal variety Y such that m = deg7T and
7L ~ 0.
(1) If H*(X,Ox) ~ C and if m is the torsion index of L, then T is an index 1
cover with respect to L.
(2) If m is the local Cartier index of L at a point P € X, then 71U — U is a

local index 1 cover with respect to L and P for an open neighborhood U of
P.

Proof. We set w: V :=V(L,m,s) — X as the associated cyclic cover over X. By
assumption, there is a nowhere vanishing section ¢ of Oy (—7*L). Then 7*s = at™
in H°(Y, Oy (—m7*L)) for a nowhere vanishing function o on Y. Suppose that
a = ™ for a nowhere vanishing function 5 on Y. Then 7*s = (8t)"™ and the
normalization of V X x Y is isomorphic to

V(T*L,m, (8)™) ~ p,, x V(T*L,1,8t) ~ u,,, X Y

by Lemma and Remark Thus, there is a finite morphism 6: Y — V over
X. If Vis irreducible, then 6 is an isomorphism, since V is normal (cf. Lemma F.T4))
and since deg 7 = deg 7. In the situation of (@), H°(Y, Oy ) ~ C, since it is integral
over H(X,Ox) ~ C (cf. [7, §2.27, Integrity Lemma]); Hence, such 3 exists and
(@) holds, since V is irreducible (cf. Corollary [L.15]).

In the situation of (@), by replacing X with an open neighborhood of P, we
may assume that mL ~ 0. Then 7: V — X is an index 1 cover with respect to
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L, and moreover, 7~ 1(U) — U is an index 1 cover with respect to L|y for any
open neighborhood U of P. Thus, V and 7~ 1(U) are irreducible. It remains to
find an open neighborhood U of P and a function 8y on 771U such that al,-1y =
(Br)™. This is shown by the finiteness of 7 as follows: Now, 77!(P) is a finite set
{Q1,Q2,...,Qr}. For each 1 < i < k, we have an open neighborhood V; of Q;
and a nowhere vanishing function §; on V; such that Ule V; is a disjoint union
of V; and that aly, = . Then 771U C Ule V; for an open neighborhood U of
P, and functions §3; defines a nowhere vanishing function Sy on 771U such that
a|-1y = (By)™. Thus, we are done. O

Lemma 4.21. For a normal variety X and its connected open subset X°, let
f: X° — X be a non-degenerate morphism without exceptional divisor. Let L
be a Q-Cartier Q-divisor on X such that rL ~ 0 for an integer r > 0 and that
f*L ~ kL|xo for an integer k € Z. Then the following holds for an index 1 cover
m: V — X with respect to L.

(1) If H(X°,0x0) ~ C, then there is a morphism g: V° — V such that
mog=for®, where V° =711V and 7° = w|yo: V° — X°.

(2) For any point P € X°, there exist an open neighborhood U of P in X° and
a morphism gy : V§ — V such that o gy = f o wg;, where Vg := 7~ 1(U)
and gy == wlve: V5 = U — X°.

(3) Assume that k is coprime with respect to the torsion index of L. Then the
morphism g (resp. guy) in [@) (resp. @) induces an isomorphism from V°
(resp. Vi9) to the normalization of V- x x 5 X° (resp. (V x x5 X°) xx0 U).

Proof. Let m be the torsion index of L and we write V = V(L, m, s) for a nowhere
vanishing section s of Ox(—mL). By mf*L ~ mkL|x., we have a nowhere van-
ishing section a of Oxo(m(kL|xe — f*L)) such that f*s = as*|x.. For an open
subset U of X°, assume that

() aly = B} for a nowhere vanishing section 8 of Oxo(kL|xo — f*L)|y.

Then there is a morphism gy : V3 = 71 (U) — V such that 7o gy = f onf; by
Proposition EI7(), since j*(f*s) = (By)™s*|y for the open immersion j: U «— X.
Moreover, if k is coprime to m, then V{7 is isomorphic to the normalization of
V X x,f0; U by Proposition I7([2). Thus, it is enough to verify ) for U = X in
case () and for an open neighborhood U of P in case ([@). This is trivial in case
@), and this is deduced from « € C in case (). O

Remark. In (@), if X° = X, then g: V — V is a lift of the endomorphism f: X —
X. In (@), if the torsion index of L equals the local Cartier index of L at P, then
V — X and V3 — U are local index 1 covers with respect to L and P.

4.3. Essential blowings up of log-canonical pairs. We shall introduce the
notion of an essential blowing up for a log-canonical pair (X, S) of a normal surface
X and a reduced divisor S. This generalizes the notion of toroidal blowing up of
a toroidal pair (cf. 40} §4.3]). We begin with some preliminary results on . B for
log-canonical pairs (X, B).
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Lemma 4.22. Let X be a normal surface with an effective Q-divisor B such that
(X, B) is log-canonical. Let f:Y — X be a bimeromorphic morphism from a
normal surface Y and let By and Ty be the positive and negative parts, respectively,
of the prime decomposition of f*B — Ry, i.e., Ky + By = f*(Kx + B)+Ty. Then
LByi= D+ D' for two reduced divisors D and D', which might be zero, such that

e DND' =0, f(D)=SuppLB,, f(D')NSuppLBi =10,
e f(D’) is at most 0-dimensional, and
e f induces an isomorphism O g, ~ fOp when Bl # 0.

Proof. Since Ty — By — Ky = —f*(Kx + B) is f-nef, we have
(IV-6) R'f.Oy("Ty7 = LBy1) =0

by Proposition I8l We set T':="T" and C := LBy, and let F be the cokernel
of the canonical injection Oy (T — C) — Oy (T). Then we have a commutative
diagram

0 —— Oy(*C) — Oy Oc¢c 0
0 —— Oy(T*C) E— Oy(T) F 0

of exact sequences of sheaves on Y, where vertical arrows are all injective, since
Oy (T — C)N Oy = Oy(—C) as a subsheaf of Oy (T). By ([V=0) and by applying
f+ to this diagram, we have a commutative diagram

0 —— fiOy(-C) —— Ox ~ f,.0Oy —— f.Oc

| | g
0 —— fiOy(T-C) —— f.Oy(T) —— fuF —— 0

of exact sequences of sheaves on X. Here,a is an isomorphism as T is f-exceptional.
Hence, § is an isomorphism and Ox — f.O¢ is surjective. On the other hand, we
have f.By = B as a Q-divisor on X by applying f, to Ky + By = f*(Kx+B)+T}.
Thus, f.C = (B.. In other words, the ideal sheaf Ox(—LB4) equals the double
dual of f.Oy(—C). Therefore, there is a surjection f,Oc — O_p, which is an
isomorphism outside a discrete set Z. Since C is reduced, LBoN Z = (). Thus,
C = D+ D’ for reduced divisors D and D’ such that DN D’ =@ and f(D') C Z
and f(D) = LB with an isomorphism f,Op ~ O_p.. O

Lemma 4.23. In the situation of Lemma [A22] the following hold for any point
xr € LB

(1) If (X, B) is 1-log-terminal at x, then f|p: D — B4 is an isomorphism
over an open neighborhood of x.

(2) If x € Sing B and if f~1(z) is a divisor contained in By, then f is a
toroidal blowing up with respect to (X,_B.) over an open neighborhood of
x.
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Proof. ([d): By shrinking X, we may assume that (X, B) is 1-log-terminal and that
D = B¢ Then D is just the proper transform of LB in Y. Hence, D — LB is
a finite surjective morphism. This is in fact an isomorphism by O, g, ~ f.Op.
@): We know that (X, By) is log-canonical and that B = B, on an open
neighborhood of z by Lemma By shrinking X, we may assume that B is
reduced. Moreover, we may assume that D = By and Supp D = (Supp By u
[7(z), since f~(z) C LByo. In particular, Ky + D = f*(Kx + B). Since (X, B)
is toroidal at x by Fact [ZD|[]), we may assume also that Kx + B is Cartier. Thus,
Ky + D is also Cartier. If I' is a prime component of f~!(x), then (Ky + D)I' = 0,
and one of the cases (A), (B), (C), and (D) of [40, Prop. 3.29] occurs for I" as C. Now,
I'N(D—T) # 0, since f~!(x) is connected and £~ (z)N f*1 B # (). Hence, only the
case (C) occurs, and we have §(D—T")NI" = 2 and I'NSingY C 'N(D—-T") C Sing D.
On the other hand, f/BNSingY ¢ fHBN f~'(z) C Sing D by (@). Thus, (Y, D)
is toroidal along D, and f is a toroidal blowing up by [40, Prop. 4.21]. a

Definition 4.24. Let (X, B) be a log-canonical pair of a normal surface X and a
reduced divisor B. A bimeromorphic morphism f:Y — X from a normal surface
Y is called an essential blowing up of (X,B) if Ky + By = f*(Kx + B) for a
reduced divisor By such that
e By contains the f-exceptional locus, and
e (Y, By) is 1-log-terminal outside Sing By, i.e., (U, By|y) is 1-log-terminal
for U =Y \ Sing By .
In this case, we say also that f: (Y,By) — (X, B) is an essential blowing up.
Furthermore, if B = 0, then X has only log-canonical singularities, and we call f
an essential blowing up of X.

Remark. The pairs (Y, By) is log-canonical by Lemma 2I0(I). We have By D
f71B, since f.By = B and since By contains the f-exceptional locus. If (X, B = 0)
is log-terminal, then any essential blowing up of X is an isomorphism.

Lemma 4.25. For a normal surface X with a reduced divisor B, suppose that
(X, B) is log-canonical and that (X, B) is 1-log-terminal outside Sing B. Let f: Y —
X be a bimeromorphic morphism from a normal surface Y. Then the following con-
ditions are equivalent:

(i) f is an essential blowing up of (X, B);

(ii) f is a toroidal blowing up with respect to (X, B);

(iii) there is a reduced divisor By on'Y such that Ky + By = f*(Kx + B) and

that By contains the f-exceptional locus.

Proof. We have ({l) = (i) by Definition £24

(@) = (@): In (), any f-exceptional prime divisor is contained in By, and it
is contracted to a point of Sing B by Ky + By = f*(Kx + B), since (X, B) is
1-log-terminal outside Sing B. Thus, f is an isomorphism over X \ Sing B, and ()
is satisfied by Lemma 23|2]).

@) = @@): In (@), we have Ky + By = f*(Kx + B) for By := f~!B, where
By contains the f-exceptional locus. Let P be a point of X over which f is not an
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isomorphism. Then (Y, By) is toroidal along f~1(P), and (Y, By) is 1-log-terminal
along f~1(P)\ Sing By. Hence, (Y, By) is 1-log-terminal outside Sing By, since
(X, B) is so outside Sing B. Thus, ({l) is satisfied. O

Lemma 4.26. For the log-canonical pair (X, B) of a normal surface X and a
reduced divisor B, let M be a non-singular surface with a bimeromorphic morphism
p: M — V. Let B,, and T, be effective Q-divisors on M without common prime
components such that Ky + B, = p*(Kx + B) +T,. Let 0: M — Y be the
contraction morphism of all the pi-exceptional prime divisors not contained in LB, 1.
Let f: Y — X be the induced morphism such that jp = f o o and set By := 0.B,,.
Then f: (Y,By) — (X, B) is an essential blowing up.

Proof. The divisor "B, is reduced by Lemma 2ZI0()). We have an equality Ky +
By = f*(Kx + B) by applying o, to Ky + B, = p*(Kx + B) + T}, since T),
is o-exceptional. Then (Y, By) is log-canonical by Lemma ZI0(). We set D :=
LB, 1. By construction, By is reduced, and D = o1 By. The induced morphism
o|lp: D — By is an isomorphism, since it is finite and since Op, ~ 0.0p by
Lemma[d22l In particular, o(Sing D) = Sing By. Then (U, By |y ) is 1-log-terminal
for U := Y \ Sing By. In fact, for the equality

KM—FBM:U*(Ky—‘y-By)—f—TM,

"B, is reduced and the divisor D|,-1py = LB}, 1|,—1y on ¢~ 'U is non-singular and
contains no o-exceptional prime component. Moreover, the f-exceptional locus
is contained in (D) = By, since the image of the p-exceptional locus by o is
contained in the union of o(D) and a finite set. Therefore, (Y, By ) is an essential
blowing up of (X, B). O

Definition 4.27. The essential blowing up (Y, By) — (X, B) in Lemma [£.20] is
called the standard partial resolution if p: M — X is the minimal resolution of
singularities.

We shall give local descriptions of standard partial resolutions in Examples [4.28
and [4.29] below:

Ezample 4.28. Let (X, B) be a log-canonical pair of a normal surface X and a
reduced divisor B. Assume that Sing X = {z}, Sing B C {z}, and x € B. Let
f: (Y,By) — (X, B) be the standard partial resolution. Then By is the union of
f~(z) and the proper transform B’ = f*IB of B. If 2 € Sing B, then (X, B) is
toroidal at = by Fact 25|[]), and hence:

e f is the minimal resolution of singularities;

o f71(x) is a linear chain C of rational curves (cf. [40, Def. 4.1]);

e if C is irreducible, then it intersects B’ transversely at two points;

e if C' is reducible, then each end component of C intersects B’ transversely

at one point;

e any non-end component of C' does not intersect B’'.
If © € By and (X, B) is 1-log-terminal at x, then f is an isomorphism by
Lemma [£25] Assume that © € Byes and (X, B) is not 1-log-terminal at z. Then
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the local description of (X, B) at z as in Fact ZH([3). For the minimal resolution of
singularities of X, the dual graph of the union of the exceptional locus and the in-
verse image of B is well known (cf. [29, Thm. 9.6(6)], [34, Ch. 3], [40, Thm 3.22(iii),
Fig. 2]). As a consequence, the following hold:

(1) The f-exceptional locus f~!(z) is a linear chain C' = Zle C; of rational
curves.

(2) The divisor B’ is non-singular, and it intersects an end component C; of C
transversely at a non-singular point of Y but does not intersect C' — C4.

(3) The singularity Y consists of two A;-singular points lying on C. If k > 1,
then these points are both contained in the other end component Cy of C
but not on C — C}.

Ezample 4.29. Let X be a normal surface with a point € X such that (X,0)
is log-canonical and Sing X = {x}. By the classification of 2-dimensional log-
canonical singularities (cf. [51, App.], [29) Thm. 9.6], [34, Ch. 3]), the standard
partial resolution f: (Y, By) — (X,0) is described as follows:

(1) If (X, x) is a quotient singularity, then f is an isomorphism.

(2) If (X, z) is a simple elliptic singularity, then f is the minimal resolution of
singularities, and By is an elliptic curve.

(3) If (X, ) is a cusp singularity, then f is the minimal resolution of singular-
ities, and By is a cyclic chain of rational curves (cf. [40), Def. 4.3]).

(4) If (X, ) is a rational singularity and its index 1 cover with respect to Kx
(cf. Definition EET8H)) is a simple elliptic singularity, then By is a non-
singular rational curve, and Sing Y consists of at least three cyclic quotient
singular points lying on By.

(5) If (X, x) is a rational singularity and its index 1 cover with respect to Kx
is a cusp singularity, then By is a reducible linear chain of rational curves,
Sing Y consists of four A;-singular points lying only on end components of
By, and each end component has exactly two A;-singular points.

Definition 4.30. Let I' be a prime component of a reduced divisor B on a normal
surface. We define v(I'/B) :=4I'N (B —T).

Lemma 4.31. Let f: (Y,By) — (X,B) be an essential blowing up of a log-
canonical pair (X, B) of a normal surface X and a reduced divisor B. Leto: Z —'Y
be a non-isomorphic bimeromorphic morphism from another normal surface Z with

a reduced divisor D such that D contains the f o o-exceptional locus and that
Kz+D = O'*(Ky + By). Then:

(1) The composite f o o: (Z,D) — (X,B) is an essential blowing up, and
o:(Z,D) — (Y, By) is a toroidal blowing up with respect to (Y, By).

(2) IfT is a non-singular prime component of By, then v(I'/By) = v(c*IT'/D).

(3) If © is a o-exceptional prime divisor, then v(©/D) = 2.

Proof. By Lemma 28] o is a toroidal blowing up with respect to (Y, By ) and is
also is an essential blowing up of (Y, By). In particular, (Z, D) is 1-log-terminal
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outside Sing D. Thus, we have proved (Il). Assertions (2 and (@) are deduced from
the property that o is a toroidal blowing up with respect to (Y, By ). ([

Lemma 4.32. Let (X, B) be a log-canonical pair of a normal surface X and
a reduced divisor B. For two essential blowings up f1: (Y1,B1) — (X,B) and
fa: (Y2, B2) — (X, B), there exists an essential blowing up fs5: (Y3, B3) — (X, B)
such that f[l o f3: Y3 = Y; is holomorphic and is a toroidal blowing up with respect
to (Y3, B;) for anyi=1, 2.

Proof. We can take a bimeromorphic morphism p: M — X from a non-singular
surface M such that the union of ;= 'B and the u-exceptional locus is a normal
crossing divisor and that v; := fi_1 ou: M —Y; is holomorphic for any 7 = 1, 2.
Let B, and T}, be effective Q-divisors on M without common prime components
such that Ky + B, = u*(Kx + B) + T,. Then, for each i =1, 2,

KM—I-B#:V:(KYi +B¢)+TH,

and (B,)+T,, is v;-exceptional. Let v3: M — Y3 be the contraction morphisms of all
the prime divisors which are exceptional for both 17 and v5. Let f3: Y3 — X be the
induced morphism such that = f3 ovs. Then o; ;== v; 0 y3_1 = fi_l of3: Y3 =Y
is holomorphic for any i, and Ky, + Bs = f5(Kx + B) for the reduced divisor
Bs :=v3,B,, = v3,.B,, 1, since (B,,) + T, is v3-exceptional. Hence,

(IV-7) Ky, + B3 = 0} (Ky, + B;)

for ¢ = 1, 2. Here, 0;(Bs) C B;, since Y; \ B; has only log-terminal singularities,
and the induced morphism o;|p, : B3 — B; is an isomorphism over B; \ Sing B; by
Lemma A23|[). In particular, B; = 0;(B3) for i = 1, 2.

Let T' be an f3-exceptional prime divisor on Y3. Then o;(T") is a prime divisor
for i = 1 or 2, and in this case, o;(T") is contained in the f;-exceptional locus; thus,
0;(I") C B;. Here, the proper transform I' of ¢;(I") is contained in Bs by B; =
0;(Bs). Hence, B3 contains the f3-exceptional locus. Therefore, o;: (Y3, B3) —
(Y;, B;) is a toroidal blowing up for ¢ = 1, 2, and f3: (Y3,B3) — (X,B) is an
essential blowing up, by Lemma A3l applied to ([V=1). O

Corollary 4.33. Let f: (Y,By) — (X, B) be an essential blowing up of a log-
canonical pair (X, B) of a normal surface X and a reduced divisor B.

(1) If an f-exceptional prime divisor T' is non-singular, then v(I'/By) < 2.

(2) IfT is a non-singular prime component of By such that v(T'/By) # 2, then
T is not contracted to a point by the meromorphic map g to f: Y - —Z
for any essential blowing up g: (Z,D) — (X, B), i.e., the proper transform
of I' in Z is a prime component of D.

(3) If every f-exceptional prime divisor T is non-singular and satisfies v(T'/ By)
< 1, then, for any essential blowing up g: (Z,D) — (X, B), there is an
essential blowing up o: (Z,D) — (Y, By) such that g = foo.

Here, v(I'/By) = T N (By —T') (¢f. Definition E30]).

Proof. Let us fix an essential blowing up g: (Z, D) — (X, B) and let f1: (Y1,B1) —
(X, B) be the standard partial resolution. By Lemma 32] we have an essential
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blowing up fa: (Ya, B2) — (X, B) such that o1 := ffl 0fa: Yo =Y, 0:=f"1o
fo: Yo =Y, and 7:= g 'o fo: Yo — Z are all holomorphic. Here, o1: (Yz, Ba) —
(Y1,B1), 0: (Yo, B2) — (Y, By), and 7: (Y2, By) — (Z, D) are toroidal blowings up
by Lemma 3T}

Let T’ be a non-singular prime component of By. Then the proper transform
I = oIl in Y3 is also non-singular. By Lemma E3I, we have v(I'/By) =
v(I'"/B3), and if v(I'"'/By) # 2, then T is not exceptional for 7 and o;. In
particular, we have (2)).

Assume that T' is f-exceptional and that IV = o1(T') is a divisor, which is a
prime component of By. If IV is non-singular, then v(IV/B;) = v(I'"/Bz2) by
Lemma E3T|[2), and we have v(I'/B;) < 2 by Examples and If IV is
singular, then f(T') = f1(I') € B, X has a cusp singularity at f(T'), and I is a
nodal rational curve being a connected component of Bj, by Examples and
Then v(T""/Bg) = 2, since o7 is a toroidal blowing up with respect to (Y1, By)
and is not an isomorphism over the node of IV as T is non-singular. Therefore,
v(I'/By) < 2, and we have (J).

The remaining assertion (3] is deduced from (2)). In fact, any f-exceptional prime
divisor is not contracted to a point by the meromorphic map roo ': Y .. = Z
by ([@). Hence, every T-exceptional divisor is o-exceptional. It implies that o o
771: Z...—Y is holomorphic. Thus, we have (). O

Lemma 4.34. Let (X, B) and (X', B") be log-canonical pairs of normal surfaces X
and X' and reduced divisors B and B’, respectively. Let 7: X' — X be a morphism
with only discrete fibers such that B' = 7~'B and that 7|xnp: X'\ B’ — X \ B
is étale in codimension 1. Then, for any essential blowing up f: (Y,D) — (X, B),
there exists a commutative diagram

v L x

al lf
y L, x

of normal surfaces such that Y’ is the normalization of the fiber product Y x x X'
and that f': (Y',D') — (X', B') is an essential blowing up for D' := c=1D. In
particular, o: Y' — Y is a morphism with only discrete fibers and the induced
morphism Y'\ D' — Y \ D is étale in codimension 1.

Proof. Let Y’ be the normalization of X’ X xY andleto0: Y’ - Y and f': Y/ — X’
be induced morphisms. Here, X’ x x Y is irreducible and generically reduced by
Lemmal[[.T3l Then ¢ has only discrete fibers, and it is étale in codimension 1 outside
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D, since D contains the f-exceptional locus and since 7 is étale in codimension 1
outside B. The f’-exceptional locus is contained in the inverse image by o of the
f-exceptional locus as ¢ has only discrete fibers. Thus, D’ = o~ D contains the f’-
exceptional locus. We have Kx’ + B’ = 7*(Kx + B) and Ky + D' = ¢*(Ky + D)
by Lemma [[39] and have Ky + D = f*(Kx + B) as [ is an essential blowing
up. Hence, Ky, + D' = f*(Kx/ + B’). In particular, (Y’, D’) is log-canonical by
Lemma ZTO(I).

It remains to prove that (Y’, D) is 1-log-terminal outside Sing D’. Now, (Y, D’)
is 1-log-terminal outside o~!(Sing D) by Lemma EIO(@). Thus, it is enough to
show: o~ !(Sing D) C Sing D’. For a point 3 € o~ 1(Sing D), by Corollary [LL.8]
we have an open neighborhood U’ of y in Y’ such that U := o(U’) is open and
oy = oy : U — U is finite and surjective. By shrinking U, we may assume that
D)y = I'y + Ty for two distinct prime divisors I'y and T's and o(y’) € Ty N Ty
Then oc*D|y = o};T1 + 0/, T'2 and ' € U&ll“l Oaglfg, where 0,1 and ;1" have
no common prime component, since oy is surjective. Hence, 3’ € Singo™'D =
Sing D', and we have o~1(Sing D) C Sing D’. As a consequence, (Y, D') is 1-
log-terminal outside Sing D', and f’: (Y',D’) — (X', B’) is an essential blowing
up. (I

4.4. Dual R-divisors. We fix a normal surface X and a non-zero reduced con-
nected compact divisor S on X such that the intersection matrix of prime compo-
nents of S is negative definite; in other words, S is the inverse image of a point
by a certain bimeromorphic morphism X — X to a normal surface X, by the
contraction criterion (cf. [I3] (e), page 366-367] and [48, Thm. (1.2)]). We shall
introduce primitive dual Q-divisors and dual R-divisors for a prime component of
S in Lemma-Definition below and show their basic properties.

Lemma-Definition 4.35. Let I' be a prime component of S.

(1) There is a unique Q-divisor D(I'/S) on X supported on S such that
multr A = D(T'/S)A

for any divisor A supported on S. We call D(I'/S) the primitive dual
Q-divisor of T" with respect to S.
(2) For an effective R-divisor H on X such that Supp H = S, we set

A(T',H) := —(multr H)~'D(T/S)

and call it the dual R-divisor of I' with respect to H.
The following hold for D(I'/S) and A(T, H):
(3) The Q-divisor —D(T'/S) is effective and Supp D(I'/S) = S.
(4) If T is a prime component of S — T, then D(I'/S)I' = 0. Moreover,

A= ZFCS(AF)D(F/S).

for any R-divisor A supported on S.
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(5) For any effective R-divisor H on X such that Supp H = S, the R-divisor
A(T, H) is effective, Supp AT, H) = S, —A(T,H) is nef on S, and

A, H)H = —1.
Proof. Since the intersection matrix of S is definite, the Q-divisor D(T'/S) satisfying

() exists uniquely, and we have ). Since D(I'/S) is nef on S, we have ([B]) by
Remark [[25] Assertion (Bl) is deduced from (@) and (). O

Lemma 4.36. Letw: Y — X be a bimeromorphic morphism from a normal surface
Y, and set Sy := 7 'S. Let Hy be an R-divisor on Y such that Supp Hy =
Sy, and set H := m,Hy. Then, for any prime component I' of S and its proper
transform 7T in Y, one has

™ D(/S) = D(x¥T/Sy)  and A, H) = A<, Hy).

Proof. Note that Sy is compact and connected, the intersection matrix of prime

components of Sy is also negative definite, and Supp H = S. For any m-exceptional

prime divisor E, we have D(7*)'/Sy)E = 0 by Lemma-Definition EZ35|H), since

either ENSy = 0 or E C Sy. Thus, D(W[*]F/Sy) = 7*D for the pushforward
D := 71,.D(n*IT/Sy). Then

: !/
DI’ = (7* D) = D(xT /Sy )r T = {17 ifI" =T,
0, otherwise,

for any prime component IV of S, and D = D(T'/S) by Lemma-Definition E35(T),
and we have the first equality. The second equality follows from the first one by
Lemma-Definition E35[2]), since mult .jp Hy = multr H. O

We have the following generalization of the first equality in Lemma [4.30

Lemma 4.37. Let 7: Y — X be a non-degenerate morphism from a normal surface
Y such that Sy := 7S is compact. Let © be a prime component of Sy. Then

m.D(©/Sy) = (multe 7*T)D(T/S).
In particular, if 7(0) is a prime divisor T', then

7,.D(0/Sy) = (multe 7*T)D(T/S).

T(®)CI'CS

Conwversely, for any prime component I' of S, one has
T D(/S)=> (multp 7,0)D(0/Sy).
Proof. For any prime component I' of S, we have
(m.D(©/Sy))I' = D(©/Sy)r*T' = multg 7*T

by Lemma-Definition E35|([I)). This implies the first equality, since multe 7*T" # 0
if and only if 7(0©) C I". The second equality is a special case of the first one. The

rcn(e)

third equality is deduced from equalities
(7*D(T'/S))© = D(I'/S)m,.© = multp 7.0
and from Lemma-Definition E35(H]). O
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The following result almost corresponds to the last assertion of [6, Prop. 1.4].

Proposition 4.38. Assume that (X, S) is log-canonical and let H be an effective
R-divisor on X such that Supp H = S. Then there exist positive rational numbers
c1 < cg depending only on (X, S, H) such that

(IV-8) an H < A(O,7"H) < con™H

for any non-degenerate morphism w:Y — X from a mormal surface Y and any
prime component © of Sy := 718 satisfying the following conditions:
(i) 7(Y) is an open neighborhood of S, and m: Y — w(Y') is a bimeromorphic
morphism;
(il) multe A; = 0 for the Q-divisor A, defined by Ky +Sy = 7 (Kx+S)+A,.

Proof. We divide the proof into three steps.
Step 1. Reduction to the following two cases of (mw,©):

(1) 7 is the identity morphism;

(2) 7(Y) = X and the exceptional locus of m equals the prime component ©.
Note that in case @), we have A, = 0 by multe A, = 0. Let ¢; and ¢y be
positive rational numbers such that ([V=8) holds only in cases (Il and (@)). Let
(m: Y — X, 0) be an arbitrary pair satisfying (i) and (). First, assume that © is
not m-exceptional. Then © = 7l*IT" for a prime component I" of S, and we have

AO,7"H)=r"A(T, H)

by Lemma .36 applied to the bimeromorphic morphism Y — 7(Y"). Hence, ([V=8)
for this (m,©) is deduced from that for (idx,I'). Second, assume that © is -
exceptional and let p: Y — Y be the contraction morphism of the union of -
exceptional prime divisors except ©. Then m = 7 o ¢ for a morphism 7: Y — X
satisfying (), the 7-exceptional locus is © := ¢(0©), and

AO,m"H)=¢*"A(O,7"H)
by Lemma We can construct a bimeromorphic morphism 7 : Y — X with
an isomorphism 7~ !(7(Y)) ~ Y over X by gluing Y — 7(Y) and the identity
morphism of X \ S. Then © = © and #*H = 7*H are regarded as Q-divisors on
Y, and we have

A(O,7"H) = A(©,7°H).
Thus, ([V=R) for (7, ©) is deduced from that for (#,©). Therefore, we are reduced
to the cases () and ().

Step 2. Reduction to the case where X is non-singular and S is a simple normal
crossing divisor: Since the assertion is on R-divisors lying over S, we may replace
X with an open neighborhood of S freely. Thus, we may assume that X \ S is
non-singular. There is a bimeromorphic morphism p: M — X from a non-singular
surface M such that Sy, := =15 is a simple normal crossing divisor and that y is
an isomorphism over X\ S. Then the Q-divisor A, defined by Ky;+Sy = p* (Kx+
S) + A, is effective as (X, .5) is log-canonical. Assume that the assertion holds for
(M, Sy, p*H) instead of (X, S, H), i.e., the equality corresponding to (IV=8)) holds
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for (M, Spr, p*H) for some ¢; and ¢y. For the proof, by Step 1, it is enough to verify
(IN=8)) for (m,©) such that 7 is a bimeromorphic morphism, © is the exceptional
locus of 7, and A, = 0. Then (Y, Sy) is log-canonical by Ky + Sy = 7*(Kx + S)
(cf. Lemma ZI0(I)). We can find a bimeromorphic morphism v: N — Y from a
non-singular surface N and a bimeromorphic morphism ¢: N — M such that v is
an isomorphism over Y \ Sy, ¢ is an isomorphism over M \ Sy, and the diagram

N Y'Y

gl [

Mt X
is commutative. Then

AWMe, v (n*H)) = v* A(O, 7" H)
by Lemma 36l We set Sy := ¢~ 1Sy = v~ 1Sy, and let A, and A, be Q-divisors
defined by
Ky + Sy =¢"(Km+Su)+Ay and Ky + Sy =v*(Ky +Sy) + A,

Then Ay is ¢-exceptional and effective, and A, is v-exceptional and effective, as
(M, Syr) and (Y, Sy) are log-canonical. Moreover, we have

PN Ay =0, FUAL=A,.
Thus, v*1© ¢ Supp Ay and #(v1¥1O) ¢ Supp A,. As an equality corresponding to
(IN=8)) for (M, Sy, 7*H), we have
16" (u"H) < AWHO,¢" (u"H)) < c2¢" (u"H)-
Applying v, to it, we have
am*H < A(O,7°H) < con*H

by Lemma B30 since ¢*(u*H) = v*(x*H). Therefore, for the proof, we may
replace (X, S, H) with (M, Sy, p*H).
Step 3. The final step: We may assume that X is non-singular and S is a

simple normal crossing divisor by Step 2. Since S has only finitely many prime
components, we have positive rational numbers ¢ < ¢ satisfying

(IV-9) AH < AT, H)<SH
for any prime component I" of S. We shall show that rational numbers ¢; = ¢{ and
e > 9+ (2h?) 7! satisfy the inequality ([V=8) for

h := min{multr H | T is a prime component of S}.
By Step 1, it is enough to verify ([V=8) in the case where m: Y — X is a bimero-
morphic morphism, © is the exceptional locus of 7, and A, = 0. Since Ky + Sy =
7*(Kx +5), the pair (Y, Sy) is log-canonical and 7 is a toroidal blowing up at the

node z := w(©) of S. Hence, z € I'y NI'y for two prime components I'1, I's of S,
and 710y N 7Ty, N © = 0. Therefore, z ¢ 7T<7T[*]F1 N W[*]F2)7 and

(IV-10) [0y = (a0 70y 4+ 1
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For i =1, 2, we set a; := multg 7*I'; € Q, i.e., 7*T; = 7*IT"; + a,0. Then
(IV-11) (7Fr)e =ayt, @Fr)e=a;l, and ©2? = —(ajay) "t
In fact, the first equality of (IV=11]) is obtained by calculation
[y = (7)) 70, = (70210, + a0x0r, = Dy — 1 + anlfler,

using (IV=I0)): We have the second equality by interchanging (I'1, a;) and (T, az),
and the third one by calculation

0= ag(w*Fl)@ = ag(ﬂ'[*]rl)@ + a1a2®2 =1+ a1a2@2

using the first equality. We set h; := multr, H for ¢ = 1, 2, and h3 := multe 7*H.
Then hy = a1hy + ashs and we have

h37T*A(®,7T*H) = —W*D(G/Sy) = —alD(Fl/S) - CLQD(FQ/S)
= alhlA(Fl,H) +a2h2A(I‘27H)

by Lemma 37 and Lemma-Definition L35I[2]). Therefore,
(IV-12) AH < m,A0,7°H) < cSH
by ([V=9)). For the rational number e defined by
AO,7"H) = 7" (7. A(O,7"H)) + €O,
we have e = ajaz/hs > 0 by calculation
—1/h3 = A(O,7*H)O = 0% = —¢/(a1az)

using Lemma-Definition [A35([2) and ([V=11)). Therefore,

aa aia
Am*H < AO,7*H) < r*H + 1329 < (5 + ;Li;)ﬂ'*H

by ((V=12) and by h50 < 7*H. Here, ajazhs > < (2h%)~! by
hg = (a1h1 + a2h2)2 > 2a1a9h1hgy > 2a1a2h2.

Thus, we have the expected inequality ([V=8) for ¢; = ¢} and ¢y > §+(2h?)~t. O

5. ENDOMORPHISMS OF NORMAL SURFACE SINGULARITIES

The purpose of this section is to prove Theorem [B.3] below from which Theo-
rem is deduced directly. This is stated in Section 5.l with our setting. The
proof of Theorem 5.3 in the case (I) (resp. (II)) is given in Section 5.4 (resp. £.2)).
In Section 5.3 we shall prove Theorem [5.10] which is a key to the proof in the case

@.
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5.1. Setting and statement. Let X = (X, z) be a germ of a normal surface X at
a point . We consider a non-isomorphic finite surjective endomorphism f: X — X
of the germ. Then X is a log-canonical singularity by Corollary Bl Note that
f is represented by a morphism f: X° — X of normal surfaces from an open
neighborhood X° of x such that f has only discrete fibers, f~!(x) = {x}, and
deg, f > 1 (cf. Definition [[9). Here, we may assume that Sing X C {z}.

Remark 5.1. By assumption and by Corollary [[L§ there is an open neighborhood
U of z in X° such that V = f(U) is open and f|: U — V is a finite morphism of
degree = deg, f > 1.

Remark 5.2. If X = (X, z) is a 2-dimensional quotient singularity, then any finite
endomorphism f: X — X étale outside x is an isomorphism (cf. [6, §2.1]). This
is shown as follows: Let f: X° — X be a representative of f as above and let
flu:U =V = f(V) be the finite morphism in Remark 511 Now, we may assume
that U\ {z} is étale over V\ {z}. Since (X, x) is a quotient singularity, by shrinking
U and V, we may assume that the fundamental group w1 (V \ {z}) of V \ {z} is
finite. Then degf is just the index of the subgroup 71 (U \ {z}). As a consequence,
degf is bounded. If degf > 1, then degf® = kdegf is sufficiently large for k& > 0
for the k-th power f¥ =fofo---of. Thus, degf=1 and f is an isomorphism.

Theorem 5.3. Let X be a normal surface with a reduced divisor S such that
Sing X C {z} and Sing S C {x} for a point x. Let f: X° — X be a morphism from
an open neighborhood of x in X° such that f has only discrete fibers, f~1(z) =
{z}, deg, f > 0, f71S = S|xeo, and f is étale over X \ ({x} USuppS). Then
(X, S) is log-canonical by Theorem BB For any essential blowing up ¢: Y — X
of the log-canonical pair (X, S), the meromorphic map f}(,Z): Y® ... Y defined in
Definition [5.4] below is holomorphic and has only discrete fibers in the following two
cases:

(I) S =0, and x is not a cusp singularity of X;

(II) z € S, and f*S = dS|x- for a positive integer d.

Definition 5.4. For an integer & > 1 and for the morphism f®): X®*) — X in
Definition B} we set Y(¥) := »=1(X(®)) and define a meromorphic map f}(,k) as the
composite

v (&) x® I 2y

Since XM = X° and fM) = f, we write Y° := Y () and fy := 3(,1).

‘P‘Y(k)
s

Remark 5.5. By the assumption of Theorem and by Lemma [[39] we have
Kxo + S|xo = f*(Kx + S5).

5.2. Proof of Theorem [5.3] in the case (II). In Proposition and Corol-
lary 5.7 below, we treat the case where x € Sing S. The case where z € S,z and
(X,S) is not 1-log-terminal, is treated in Proposition below. Theorem (.3 in
the case ([} is just derived from Corollary [5.7] and Proposition Proposition (.8
below concerns the case where (X, S) is 1-log-terminal at z; it is not related to
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Theorem [5.3] directly, but where we consider a lifting problem of f by another kind
of toroidal blowing up.

Proposition 5.6. In the situation of Theorem B3|, assume that {x} = S1 NSy for
two distinct prime components S1 and Sy of S and that

f*S; = d;iSi|xe

for some positive integer d; for i = 1, 2. Then deg, f = dida. Moreover, the
meromorphic map fy = f}(}) :Y° =YW .Y in Definition [5.4) is holomorphic if
and only if dy = do, and in this case, fy has only discrete fibers.

Proof. The pair (X, S) is toroidal at « by Fact Hence, ¢: Y — X is a toroidal
blowing up by Lemma For the finite morphism fly;: U — V = f(U) in
Remark Bl by shrinking V, we may assume that there is an open immersion
j:V <= V of analytic spaces to an affine toric surface V.= Ty(o), where S|y =
j 1D for the boundary divisor D of V. We assume that (N, &) is as in Fact I with
primitive elements e; and ey of N and that S;|y = j7IT; for i = 1 and 2, for the
prime components I'y = I'(e;) and T's = I'(e2) of D. Hence, j(x) is the fixed point
% of the action of Ty. By shrinking V furthermore, we may assume that the open
immersion V\ S < V'\ D ~ Ty induces an isomorphism 71 (V\S) ~ w1 (V\D) ~ N
of fundamental groups (cf. [37, Cor. 3.1.2]). Let NT be a finite index subgroup of N
isomorphic to the image of the homomorphism 71 (U \ S) — 71 (V \ S) associated
with the finite étale morphism flns: U\ S — V\ S, and let

7 Vii=Tyi (o) =V =Tn(o)

be the toric morphism defined by the inclusion N ¢ N and ¢ ¢ NT@ R = N®@ R.
This 7 is a finite surjective morphism, and it is étale over V' \ D. Then U \ S —
V \ S is isomorphic to the base change of 7 by the open immersion V' \ S — V.
Therefore, U =~ VT xy, V over V by a theorem of Grauert-Remmert (cf. [14], [I8,
XII, Thm. 5.4]), since normal varieties i and VT xy- V are finite over V and these
are isomorphic to each other over the Zariski-open subset V' \ S. In particular, the
singularity of VT is the same as that of ¢, and the type (n, q) of (N, &) equals that of
(NT, &) (cf. Definition E22)). Hence, we may assume that NT = N, VT =V and 7 is
the toric endomorphism T(¢): V — V associated with an injective endomorphism
#: N — N such that ¢gr(o) = o. The open immersion j7: & < VT =V induced
by j: V < V is also a toroidal embedding such that j7='D = S|;;. Since 7~'T; is
either T'y or I'y, we have 7*T'; = d;T'; for i = 1, 2 from the equality f*S; = d;S;|xo.
Hence, deg, f = degm = d1dy by Lemma EI0l Note that jT and j may not induce
the same open immersion to V' from a common open neighborhood of z.

The toroidal blowing up ¢: Y — X is induced by the bimeromorphic toric
morphism p: W = Tn(A) — V = Ty(o) associated with a fan A of N such that
|A| = o (cf. Example E3]). More precisely, ¢ is obtained by p as follows: Let
6: W — V be the base change of u by j: V < V. This is expressed as the blowing
up of V along a closed subscheme Z of Spec Oy, /m” for k > 0, where the defining
ideal J of Z in Oy, is written as in Remark[d. 7l The morphism ¢: Y — X is defined
as the blowing up of X along the closed analytic subspace Z. In other words, Y is
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obtained by gluing X and W via the isomorphism W\ 6~!(z) ~ V \ {z}. Here, A
contains at least three 1-dimensional cones, since p is not an isomorphism.

Let W1 be the normalization of the fiber product VI xy W of 7: VI — V
and pu: W — V. Then W' is a toric variety expressed as Ty(AT) for the fan Af
consisting of cones ¢]§17' for all 7 € A, and the morphism uf: Wt — V1 induced
by the first projection is a bimeromorphic toric morphism defined by |Af| = o.
Let YT be the normalization of the fiber product X° xx Y of f and ¢. Then the
morphism ¢f: YT — X° is a toroidal blowing up induced by the bimeromorphic
toric morphism ' and by the open immersion jt: &/ < VT. On the other hand,
the morphism ¢°: Y° = ¢~ 1(X°) — X° defined by ¢ is also a toroidal blowing up
and it is induced by u: W — V and j: V < V. Therefore, the holomorphicity of
three meromorphic maps

fy: Y=Y, (o) lop®:Y°.mVl and (u)lop: W= W'

are equivalent to one another. By LemmaB38] (17)~! o p is holomorphic if and only
if A = AT, Hence, fy is holomorphic if and only if W ~ W' over V. Since the
morphism W1 — W induced by the second projection is finite and surjective, fy
has only discrete fibers if it is holomorphic.

Assume that d; = dy. Then ¢: N — N is the multiplication map by di, by
Lemma A 10l It implies that A = AT, and hence, fy is holomorphic.

Conversely, assume that fy is holomorphic. Then ¢: Nt = N — N is compatible
with AT = A and A (cf. Definition EE5)). In particular, ¢r has at least three
eigenvectors, since /A contains at least three 1-dimensional cones. This implies that
¢r is a scalar map, and hence, d; = do by Lemma Thus, we are done. O

Corollary 5.7. In the situation of Theorem [5.3, assume that x € SingS and
f*S = dS|x- for a positive integer d. Then deg, f = d?, and f}@: Y® Y s
holomorphic with only discrete fibers.

Proof. By replacing X with an open neighborhood of x, we may assume that {x} =
S1 NSy for two distinct prime components S; and Sy of S. Thus, the assertion
follows from Proposition [5.6 applied to £ : X(®) — X instead of f: X° — X. O

Proposition 5.8. In the situation of Theorem [5.3], assume that x € S and that
(X, S) is 1-log-terminal at x. Then f|snxo: SNX° — S is an isomorphism at x.
Moreover, for any integer k > 0 and for any non-isomorphic toroidal blowing up
p:Y — X at x in the sense below, the meromorphic map fx(/k): Y .Y in
Definition [5.4] is not holomorphic:
($) By Fact 28, © has an open neighborhood U with a prime divisor S’ on
U such that x € S|y NS and that (U, S|y + S') is toroidal at x. The
bimeromorphic morphism p: Y — X is a toroidal blowing up with respect
to (U, S|y +5’) for such U and S’.

Proof. For the finite morphism f|;;: U — V = f(U) in Remark 5] we may assume
the existence of an open immersion j: V — V to a toric surface V = Tn(o)
satisfying the following conditions by Fact and by an argument in the proof of
Proposition
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j(x) is the fixed point * of an action of Ty;

j 1Ty = S|y for a prime component I'y of the boundary divisor D = I'; +T'5
of V;

¢ is a toroidal blowing up with respect to (V,j~1D);

the homomorphism 71 (V\ j71D) — 71 (V'\ D) = N of fundamental groups
is an isomorphism.

Let N’ be the subgroup of N isomorphic to the image of the homomorphism
m U\ D) = m(V\TD)

associated with the finite étale morphism & \ f~1(j71D) = V\j7'D. Let 7: V' =
Tn: () — Tn(o) be the toric morphism associated with the inclusion N’ € N and
o CN @R =N®R. Then f|y;: U — V is isomorphic to the base change of 7 by
j by the same argument as in the proof of Proposition In particular, the type
(n,q) of (N, o) equals that of (N, o). Hence, 7 is isomorphic to a toric morphism
T(¢): Tn(o) — Tn(o) associated with an injective homomorphism ¢: N — N such
that ¢g(0) = a. Since f|y is étale over V\ j 71Ty, we have 7*T'y = I'; and 7*T'y =
dT's for a positive integer d > 0. Hence, deg, f = degm =d > 1 by Lemma L9 In
particular, 7|p,: I's — T’y is an isomorphism, and hence, f|snxo: SN X° — S is
an isomorphism at x.

Let pu: W =Tn(A) — V = Tn(o) be a toric morphism defined by a fan A such
that |A| = o and assume that the toroidal blowing up ¢: Y — X in the sense of
is induced by g in the same way as in the proof of Proposition For an
integer k > 0, let W®*) be the normalization of the fiber product V xy W of p and
Ek-th power 7%: V' — V. Then W®*) ~ Ty (A®) for the fan A*) consisting of cones
(¢k)~17 for all T € A, and the morphism W) — V induced by the first projection
is a toric morphism defined by |[A*)| = . As in the proof of Proposition [5.8] if
f)(,k) is holomorphic, then A®*) = A, and ¢uk£ is a scalar map. However, ¢H’§ has
two eigenvalues 1 and d > 1; thus, it is not a scalar map. Therefore, f§,k) is not
holomorphic for any k£ > 0. (]

Proposition 5.9. In the situation of Theorem B3], assume that x € Seg and
(X, S) is not 1-log-terminal at . Then there is a positive integer d such that f*S =
dS|xe and deg, f = d?. Moreover, the meromorphic map f}(,z) in Definition 5.4 is
holomorphic and has only discrete fibers for any essential blowing up ¢: Y — X of
the log-canonical pair (X, S).

Proof. For the proof, we may replace X with an open neighborhood of x freely.
Thus, by Fact[ZHI[B]), we may assume that S is a non-singular prime divisor, 2(K x +
S) ~0,and Kx+5 is Cartier on X \ {«}. In particular, f*S = dS|xo for a positive
integer d. Let \: X — X be an index 1 cover with respect to Kx + 5. Then

e ) is a double-cover étale over X \ {z},

e \!(z) = {&} for a point {7}, and

e (X,5) is toroidal at {#} and # € Sing S for the divisor S := A*S,
by Fact ZBIB)). Since Kxo+S5|xo = f*(Kx+5) (cf. Remark[E.5), by LemmaZ.2TJ[2),
after replacing X° with an open neighborhood of z, we have a morphism f: X° =
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A~1(X°) = X with a commutative diagram

X L, X

e | p

xe I, x

Here, f has only discrete fibers, fﬁl(i) = {z}, and f*g = d§|)~(o. Then deg, f =
deg; f = d? by Corollary 5.7 By iterating f, we have a commutative diagram

xo Y, %

/W;@)l lA

x@ L2, x
where X? ;= fﬁl()?o) and f? = fo(f|)~((2)). Note that f and f® are equivariant
under the action of the Galois group py of A

Wesset T := ¢~ 1S and apply Lemmal34to the essential blowing up ¢: (Y, 7) —
(X, S) and the index 1 cover A\: X — X. Then we have a commutative diagram

YL)X'

AL

v 24— X
such that Y is the normalization of the fiber product Y x x X and that @: (Y, T) —
(X, S) is an essential blowing up for the reduced divisor T'= o ~'T. Here, o is also

an index 1 cover with respect to Ky +T = ¢*(Kx +.5), and ¢ is a toroidal blowing
up at & by Lemma [4.25 Then the meromorphic map

o)~ ~ 5 ooy F® o~ ~
FEYD =0 (Y®) = (X@) H X L X Ty
is po-equivariant and oo fg ) = 1(/2) 00|32 . By Corollary 5.7, fg) is a holomorphic

map having only discrete fibers. Hence, fgf ) is so. O

5.3. A key theorem. We shall prove the following theorem, which is a key to the
proof of Theorem [5.3]in the case (). For the proof, we apply results in Sections [l
and [£.4]

Theorem 5.10. Let X be a normal surface with a point x € X and let f: X° —
X be a morphism from an open neighborhood X° of x such that f~1(x) = {z},
deg, f > 1, and f is étale over X \ {z}. Let p: Y — X be a bimeromorphic
morphism from a normal surface Y such that S = ¢~ (x) is a divisor, © is an
isomorphism over X \ {z}, and Ky + S = ¢*Kx. We define g: Y°--—Y to be
the meromorphic map fy in Definition B4l and assume that

(*) any prime component of S is not contracted to a point by g.
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Then g is holomorphic and induces an automorphism of the set of prime components
of S by T' — g(T'). Moreover, the following hold for the positive square root b of
deg, [:
(1) If g(T") =T for a prime component I' of S, then b € Z and g*T" = bI".
(2) There exists an effective R-divisor H on'Y such that Supp H = S, g*H =
bH|yo, and HT < 0 for any prime component I of S.

The proof of Theorem (. I0is given at the end of Section 5.3l We begin with the
following lemma on the graph of the meromorphic map:

Lemma 5.11. LetV be the normalization of the fiber productY x x s X° of p: Y —
Xand f: X° = X over X. Let¢: V =Y and py: V — X° be morphisms induced
by projections from the fiber product. Then there is a bimeromorphic morphism
w: V= Y?° such that ¢ = go p and oy = ¢° o u for ¢° = ply.: Y° = X°. In
particular, V is isomorphic to the normalization of the graph of the meromorphic
map g.

Proof. Let W be the normalization of the graph of the bimeromorphic map <p‘_,1 )
@°: Y= V. Let v: W — Y° and ¢: W — V be induced morphisms such that
p®ov = @y o1. Then we have a commutative diagram

Y ¢

w |4 Y

/| e | |¢

yo 2 xe L, x
If a prime divisor Z on W is t-exceptional, then = C ¢y '¢~ 1S = v~1S, and = is
not expressed as v*II" for any prime component T' of S by (*) in Theorem [5.10
hence, Z is v-exceptional. Therefore, the meromorphic map p := voyp=!: V....5 Y°
is holomorphic, and ¢y = ¢° o u. Hence, ¥»: W — V is an isomorphism, since W
L= o' 0p°, and we have

is the normalization of the graph of u~
gop=yplofop’op=plofopy=plopod=2¢.
Thus, V' is also isomorphic to the normalization of the graph of g. O
Remark. By Lemma BTl we have a commutative diagram
V
7N
(V-1) Yo

Y
<] |
! X

X

of normal surfaces with the following properties:

e ©, ©°, and p are bimeromorphic morphisms;
e ¢ has only discrete fibers, and is étale over Y\ S;
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e the restriction u=1(p°1U) — =1V of ¢ is a finite and surjective morphism
of degree deg,, f for some open neighborhoods U and V of x (cf. Remark[B.T]).

Definition 5.12. We define
S°:=S|lye and Sy :=¢ 'S =pu"18°

as reduced divisors on Y° and V, respectively. For an R-divisor D on Y such that
Supp D C S, we write D° = D|y. as an R-divisor on Y°, and set

DV := p*(D°) and Dy = ul(D°)
as R-divisors on V' (cf. Definition [[22). However, sometimes, we write S = S° and

D = D° for simplicity. Note that Sy = (S" ) eq.

Remark 5.13. The pullbacks ¢"*!D and ¢g*D and the pushforwards 9 D° = gD
and ¢g,D° = g,D by the meromorphic map ¢ are defined in Definition Here,

9«D =¢.DY and g D = ¢. Dy
by definition, but
g"1D = ¢"D = p.(¢" D),
since ¢ has no exceptional divisor. If g is holomorphic, then g.D = g, D.

Definition 5.14. For an integer k > 0, we define ¢®): Y*) ...V to be the
meromorphic map fi(/k) in Definition [£.41

Remark 5.15. For an R-divisor D on Y such that Supp D C S, we can consider
g£k)D, g[(f})D, and ¢™*D as in Remark [5.13. Then
K+l k), (1 " X "
g[(*]+ )p — g[(*])(g[(*%D) and gFtD*D = g% (g(M)* D)
for any k, [ > 0 by Lemma [[.32] since ¢ has no exceptional divisor. However, we

can not expect the equality g£k+l) D= gik)(gil)D) in general.

Definition 5.16. Let I be the set of prime components of S and let J be the set
of prime components of Sy. We define a map fi: I — I by

JiT') = ¢(L'v) = Supp g
We define a function a: I — Z, = {m € R| m > 0} by
a(l') := multr g*S = multr g*(fi(T')) = multp,,, ¢*5 = multr ., ¢*(fi(I)).

For T' € I, we define Jr to be the set of prime components © of Sy such that
#(©) =T. Then J = | |y Jr. For © € Jr, we define

ag := multg ¢*S = multg ¢*'T" and me := multr $.0 = deg(g|lo: © = T).

Remark 5.17. We have a(T") € Z for any T € I, since ¢ has only discrete fiber and
since ¢*S' is a divisor (cf. Lemma [[.T9] and Remarks and [L241[E])). Moreover,

a(l) = ar, and gl'=mr,, fi(D)
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for the proper transform I'(y) = pIre in V., where Loy €edpm. I fﬂfl(fﬂ(l")) =
{T'}, then

(V-2) 9" (i) = po™ (i) = a(M)pL' vy = a(I)T,
since p,© = 0 for any other member © of Jz ). For any integer k > 1,

(1) the k-th power (fi1)¥ = fro---o fi: I — I equals the map (f*); associated
with f%: X®) — X which maps I € I to Supp g[(f])F, and
(2) the equality

k=1
(k)y* ¢ — i
multr (g'*)"S Hi:o a(ff(I'))
holds for any I" € .
These are shown by equalities in Remark

Remark 5.18. For I' € I and © € Jr, we have
¢*T = ZGEJF ae® and ¢,0 =mel
by Definition and moreover,
.D(©/Sy) =aeD('/S) and ¢*D(I/S)=3 meD(©/Sy),
elr
by Lemma .37
Lemma 5.19. Let D be a non-zero effective R-divisor on'Y such that Supp D C S.
We set H := Hp := ) . hr D(T'/S), where
0, if multp D = 0,
hr =
—(multr D)~Y,  otherwise.

Then H is effective, SuppH = S, and —H is nef on S (c¢f. Remark [L25). If
fi: T — 1 is bijective and if g*D = bD for a real number b > 0, then gik)H =b*H
for any k > 1.

Proof. By Lemma-Definition L35IB]), H is effective and Supp H = S. Moreover,
HT = hr <0 for any T’ € T by Lemma-Definition EL35[). Thus, —H is nef on S,
and we have proved the first assertion. Assume that ¢*D = bD. Then

a(T") mult 4,0y D = multr g* D = bmulty D

for any T' € T by the definition of a(T"). In particular, I' C Supp D if and only if
f1i(T') C Supp D, and we have

a(l)hr = bhy(r)
for any I' C Supp D. On the other hand, for any I" € I, we have
p'D(I/S) = DT )/Sv) and g.D(T/S)=¢.D(v)/Sv)=al)D(fi(I')/5)
by Lemma and Remark 5.8 Therefore,
gH =3 (. hrgDT/$)=% hra(T)D(fi(T)/$)

=b ZFCSUPD D hry DUT)/S),
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and we have g, H = bH when fj is bijective. For any k > 1, we have ¢/*)*D = bv*D
by Remark 515, and if f; is bijective, then (f¥); = (fi)* is bijective by Re-
mark BI7(). Hence, if fi is bijective, then gﬁk)H = V*H by the argument above
applied to f*) instead of f. (Il

Lemma 5.20. Assume that X \ {z} is non-singular. Then (Y,S) and (V,Sy) are
log-canonical, and Ky + Sy = p*(Kyo + 5°).

Proof. The pair (Y, S) is log-canonical by Ky +S5 = ¢*(Kx) and by Lemma[ZTOI(T]).
Since ¢ is étale over Y \ S and since f is étale over X \ {z}, we have
Ky + 8y = ¢"(Ky +5) = ¢"(¢"Kx) = oy (f"Kx) = ¢} (Kxe)
by Lemma [[39 Thus, (V,Sy) is also log-canonical by Lemma ZI0(I)). Moreover,
P (Kye +5%) = p* (9" Kxo) = ¢y (Kxe) = Kv + Sy
by Lemma 5171 O

Proposition 5.21. Let H be a non-zero R-divisor on'Y and let b be a positive real
number such that Supp H C S, —H 1is nef on S, and gﬁk)H =b*H for any k > 1.
Then ¢*H = bHY and deg,, f = b*.

Proof. By Remark [[.25] H is effective and Supp H = S. Moreover, we can write
(V-3) H= ZFEH BrA(L, H)

for non-negative real numbers fr = —(HT)multr H by (@) and (@) of Lemma-
Definition Note that 3 := > . fr > 0 as H # 0. In order to prove ¢*H =
bHY and deg, f = b%, we may replace X with an open neighborhood of . Thus,
we may assume that X \ {z} is non-singular. Then there exist positive integers
¢1 < ¢o depending on (Y, S, H) such that
(V-4) aHY <A©,HY) < cHY
for any © € J, by Lemma and by Proposition applied to (Y°,S°, H°),
w:V —Y° and O.

For a prime component © of Sy, we define

multe HY

te 1=
© multr H ’

where I' = ¢(0), i.e., © € Jp. Then
* _ 1%
GAMH) =) meteA©,H")
by Lemma .37 and Lemma-Definition E35(2)). We have
(V—5) b= Z@GJF m@t@

by calculations
AT, H)p,H =bA(I,H)H = —b  and

* vV _ \4 v _
(¢*A(T,H))HY = Z@eﬂr meteA(©,HV)HY = ZGEJF mete
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using ¢, HY = g.H = bH and Lemma-Definition EL35([5)). Therefore,
cibHY < ¢*A(T',H) < cpbHY

for any T' € T by (V=4)) and (V=5). Applying ¢., we have
c1b’H < (deg, f)A(T, H) < cob®H
for any I' € I, since ¢ is a finite morphism of degree deg, f over an open neighbor-
hood of S. Therefore,
clﬁb2 <deg, f < czﬁb2
for =3 pcr Br > 0 by [=3). Since gﬁk)H = b*H and since ¢1, o, and 8 depend
only on (Y, S, H), we can apply the argument above for ) instead of f. Then
c1b?F < deg, f*) = (deg, f)* < co8b%*

for any k > 1. Taking limits for k — oo, we have deg, f = b?. Then

(6"H — bHY)? = (¢" H)* — 2b(¢" H)H + b*(u* H°)’

= (deg, f)H? — 2b>H? + b¥*H? = 0,

by HY = p*H°. Hence, ¢*H = bHV, since the intersection matrix of prime
components of S is negative definite. O

Remark. The method of the proof above is borrowed from the proof of [6, Prop. 2.1].
Lemma 5.22. Theorem [5.10] holds true if fi: 1 — 1 is bijective.

Proof. We shall divide the proof into three steps:

Step 1. Let D and H = Hp be R-divisors in Lemma 519 and assume that
g*D = bD for a real number b > 0. Then ¢*H = bH"Y = bu*H and deg, f =
b2 by Lemma and Proposition (2Tl Assuming that Supp D = S, we shall
show that ¢ is holomorphic and that H satisfies the condition of Theorem BEIO(2]).
By assumption, HI' = hr < 0 for any I' € I, and H satisfies the condition of
Theorem [F.I0(2) by Lemma 519l On the other hand, ¢*H = bH" implies that

H($.0) = (¢"H)O = b(n"H)® =0

for any p-exceptional prime divisor ©. Hence, ¢,.0 = 0 for any p-exceptional prime
divisor ©, and consequently, u is an isomorphism and ¢ is holomorphic.

Step 2. We shall show that a(T')? = deg, f for any T' € I satisfying f;(T') = T.
Now, ¢*T = a(I')T by (V=2)) in Remark 5171 By applying Step 1 to D = T, we
have a(I')? = deg, f. As a consequence, we have g*S = bS for b := (deg, f)'/?> > 0
provided that fj is the identity map.

Step 3. Final step. By Step 1, it is enough to construct an effective R-divisor D
on Y such that Supp D = S and g*D = bD for b := (deg,, f)*/?. Let n be the order
of the bijection fi: I — I Then (deg, f)" = b2" = deg, f(™ and f™ = (fi)" = id
by Remark F.I7(), and ¢g(™*S = b"S by Step 2 applied to f(: X — X instead
of f. By Remark BI7[2), we have

(V-6) b = multr g*5 = [T a((*)
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for any I' € 1. Let M be the multiplicative abelian group defined as the set of
maps I — Ry = {r € R | » > 0}. The bijection fj defines an action of Z/nZ
on M in which the transform vT of v € M by the action of 1 € Z/nZ is given by
AT(T) = v(fi(T)). We define ¢ € M as a map I — R given by &(T') = b~ ta(T).

Then

n—1

H =1

k=0
by (V=G)), and hence, ¢ defines a 1-cocycle of the Z/nZ-module M. The group
cohomology H(Z/nZ,M) is trivial, since the n-th power map is bijective for R,
and for M. Thus, we have a map d: I — Ry such that e =6 - (7)1, i.e.,

e(l) =8(M)o(fi()) ™"

for any I' € I. Then D = .. 6(I')I" satisfies Supp D = S and

g D=3 Ay (D) =D S(fi(T))a()r
_ -1 _
= ZFEH (D) a(I)6(I)T = bD
by (V=2) in Remark 517 Thus, we are done. O
Now, we shall finish the proof of Theorem

Proof of Theorem EI0. We set Lo, := (s, fF(). Then I, = f(I) for some
m > 0, and fi induces a bijection I, — Io. By Lemma [5.22 it is enough to
derive a contradiction assuming that I, # I. Let 7: Y — Y be the contraction
morphism of all the prime components of S not contained in I.. Let ¢: Y — X
be the induced bimeromorphic morphism satisfying ¢ = ¢ o m and set

—0 —0 >—1 _
37 = x0) S xe Lx Aoy
to be a meromorphic map defined by f, ¢, and ¢° = @|po. Then we have a
commutative diagram

Vo
© \
ye / J Y
(V-7) el , b
ol el .7 Ve
\@O\L f i’LE/

X —— X

extending (V=1I), where 7° = 7|yo. The set I of prime components of S = 7(S) =
¢! (z) is identified with I, and the map f;: I — [ defined by I' — g[*]f is identical
to the bijection I, — I induced by fi. Hence, by Lemma [5.22] g is holomorphic,
and g*H = bH for an R-divisor H on Y such that HI' < 0 for any I € I, where
b? = deg, f. Then

b (" H) = p*(n" (5" H)) = ¢" (" H)
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by the equality gom°®ou = 7o ¢ shown in (V=7). For any I' € I if fi(T') € I, then
I e, by

bH (7, I') = b(r*H)T = b(n°*H)[° = b(wo*ﬁ)u*f‘(v) = bu*(wo*ﬁ)f‘(v)
= ¢ (m"H)D vy = (" H)$.T(v) = mr,, (7" H) fi(T) = mr ., Hr.(fi(T)) < 0.
Therefore, I = I, a contradiction. Thus, we are done. (I

5.4. Proof of Theorem [5.3] in the case (I). We shall finish the proof of Theo-
rem [53]

Lemma 5.23. In the situation of the case () of Theorem B3, assume that the index
1 cover of (X, x) with respect to Kx 1is a simple elliptic singularity. Then the ex-
ceptional locus C' = p~1(x) is irreducible, and the meromorphic map fy: Y° - —Y
is holomorphic and has only discrete fibers. Moreover, deg, f = b2 for a positive
integer b, and f3C = bClyo.

Proof. Every essential blowing up ¢: Y — X is isomorphic to the standard partial
resolution (cf. Definition E27)) and C' = ¢~1(0) is irreducible by Example £291 Let
V' be the normalization of the fiber product ¥ x x ¢ X° of ¢ and f over X. Then the
induced morphism ¢y : V — X° is also an essential blowing up by Lemma [£.34]
Thus, the bimeromorphic map go(,l o@:Y?---—V is an isomorphism by Corol-
lary A33I[), and fy is holomorphic with only discrete fibers. We have fiC = bC
for a positive integer b by construction, where b* = deg, f by C? < 0. |

Remark. We can prove Lemma [5.23] by another method as follows. When (X, x) is
a simple elliptic singularity, ¢ is the minimal resolution of singularities and C' is an
elliptic curve (cf. Example 29([2])); in this case, it is easy to prove the assertion.
Next, we consider the case where (X, ) is a rational singularity. By localizing X,
we may have an index 1 cover \: X — X with respect to Kx such that ()?, Z)is a
simple elliptic singularity for the point Z lying over x. Moreover, we may assume
that f: X° — X lifts to a morphism f: X° = ATH(X°) — X by Lemma 2712 .
Thus, in this case, we can prove that fy is holomorphic and has only discrete fibers,
by the same method as in the proof of Proposition (.9 using Lemma [£341

Lemma 5.24. In the situation of the case (l)) of Theorem [5.3] assume that (X, x)
is a rational singularity whose index 1 cover with respect to Kx is a cusp singu-
larity. Assume also that the essential blowing up ¢: Y — X is obtained from the
standard partial resolution of X by contracting all the non-end components of the
exceptional divisor, which forms a reducible linear chain of rational curves (cf. Ex-
ample E29[)). Then fy:Y° =Y is holomorphic and has only discrete fibers.

(2)
Y

Moreover, (fy’)*T' = (deg, f)T'|y @ for any p-exceptional prime divisor I'.

Proof. The exceptional locus ¢~ !(z) is a linear chain I'; +T'y consisting of two prime
components by construction and by Example @29|[F]). In particular, fI'y N Ty = 1.
For the normalization V' of the fiber product ¥ xx y X° of ¢ and f over X, the
induced morphism ¢y : V — X° is also an essential blowing up by Lemma L34
Thus, the bimeromorphic map gp‘_/l op: Y°.+—V does not contract I'y and I's to
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points by Corollary A33|[2]). Hence, fy does not contract I'; and T's to points and
the image of I'y by fy is either I'y or I's, and vice versa. Therefore, the assertion
is a consequence of Theorem [B.10 O

Theorem [5.3]has been proved in the case (II}) by Corollary [5.7land Proposition [5.9]
in Section Finally, we shall prove Theorem [5.3]in the case (I):

Proof of Theorem [53] in the case (). Now, (X, z) is a log-canonical singularity but
is not a quotient singularity nor a cusp singularity. Hence, either
(a) theindex 1 cover of (X, x) with respect to K x is a simple elliptic singularity,
or
(b) (X, ) is a rational singularity and its index 1 cover with respect to Kx is
a cusp singularity
by the classification of 2-dimensional log-canonical singularities (cf. [29, Thm. 65]).
In the case (@), Theorem (3] is a consequence of Lemma It is enough to
consider the case (B)). Let @: Y — X be the essential blowing up ¢ in Lemma 5241
Then any essential blowing up ¢: Y — X factors through Y by a toroidal blowing
up Y — }A/', by Lemma and Corollary A33I[@3]). By Lemma the meromor-
phic map f}g) LY@ = o XP@Y) Y defined as a lift of f® is holomorphic with
only discrete fibers, and
()"0 = (deg, T

for i = 1, 2, for the exceptional locus ¢~!(z) = I'; UTy. Hence, the lift fl(/z) of

}(72 ) is also holomorphic with only discrete fibers by Proposition Thus, we are
done. (]
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