$\operatorname{RIMS-1921}$

On Surjective Homomorphisms from a Configuration Space Group to a Surface Group

By

Koichiro Sawada

July 2020

京都大学 数理解析研究所

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan

ON SURJECTIVE HOMOMORPHISMS FROM A CONFIGURATION SPACE GROUP TO A SURFACE GROUP

KOICHIRO SAWADA

ABSTRACT. In the present paper, we classify all surjective homomorphisms from the étale fundamental group of the configuration space of a hyperbolic curve (over an algebraically closed field of characteristic zero) to the étale fundamental group of a hyperbolic curve. We can show that such a surjective homomorphism is necessarily "geometric" in some sense, that is, it factors through one of the homomorphisms which arise from specific morphisms of schemes.

Introduction

Let n be a positive integer, k an algebraically closed field of characteristic zero, and X a hyperbolic curve of type (g, r) over k. Write X_n for the n-th configuration space (cf. Definition 1.2) and Π for the étale fundamental group of X_n or the maximal pro-l quotient of the étale fundamental group of X_n . We obtain some homomorphisms from X_n to a hyperbolic curve over k, so called "projection morphisms (of co-length 1)" and "exceptional morphisms" (cf. Definitions 1.3, 1.4). These morphisms induce surjective homomorphisms between fundamental groups. In [S], we show that, under some conditions, any surjective homomorphism from Π to a surface group (cf. Definition 1.7) factors through one of the above homomorphisms:

Theorem A (cf. [S] Theorem 7.12). Let H be a surface group and $\varphi : \Pi \twoheadrightarrow H$ a surjective homomorphism of profinite groups. Suppose that at least one of the following holds:

- (1) $g \neq 1 \text{ or } r \leq 1$.
- (2) *H* is not isomorphic to the maximal pro- Σ completion of the free group of rank 2 (where Σ is a nonempty set of prime numbers).

Then there exists a surjective homomorphism $\varphi' : \Pi \twoheadrightarrow H'$ induced by a projection morphism of co-length 1 or an exceptional morphism such that φ factors through φ' .

The main theorem of the present paper is a generalization of Theorem A:

Theorem B (cf. Corollary 3.3). Let H be a surface group and $\varphi : \Pi \twoheadrightarrow H$ a surjective homomorphism of profinite groups. Then there exists a surjective homomorphism $\varphi' : \Pi \twoheadrightarrow H'$ induced by a projection morphism of co-length 1 or an exceptional morphism such that φ factors through φ' .

²⁰²⁰ Mathematics Subject Classification. 14H30, 20F36.

 $Key\ words\ and\ phrases.$ hyperbolic curve, configuration space, fundamental group, surjective homomorphism.

KOICHIRO SAWADA

1. Configuration spaces of curves

In the present $\S1$, we review generalities on the configuration spaces of curves and their fundamental groups. Let l be a prime number and n a positive integer.

Definition 1.1. Let S be a scheme and X a scheme over S.

- (i) We shall say that X is a smooth curve (of type (g, r)) over S if there exist a pair of nonnegative integers (g, r), a scheme X^{cpt} over S, and a (possibly empty) closed subscheme $D \subset X^{\text{cpt}}$ of X^{cpt} such that
 - X^{cpt} is smooth, proper, and of relative dimension one over S;
 - any geometric fiber of $X^{\text{cpt}} \to S$ is connected (hence a smooth proper curve) of genus g;
 - the composite $D \hookrightarrow X^{\text{cpt}} \to S$ is finite étale of degree r;
 - X is isomorphic to $X^{\text{cpt}} \setminus D$ over S.
- (ii) We shall say that X is a hyperbolic curve (of type (g,r)) over S if X is a smooth curve of type (g,r) over S such that 2g 2 + r > 0.

Definition 1.2 (cf. [MT] Definition 2.1).

- (i) Let S be a scheme and X be a smooth curve over S. Then we shall write $P_n := \overbrace{X \times_S \cdots \times_S X}^n.$
- (ii) Let (n, S, X) be as in (i). For (i, j) a pair of integers such that $1 \le i < j \le n$, write $\pi_{i,j} : P_n \twoheadrightarrow P_2 = X \times_S X$ for the projection to the *i*-th and *j*-th factors. Moreover, we shall write $X_n := P_n \setminus (\bigcup_{i,j} \pi_{i,j}^{-1}(\Delta))$, where $\Delta \subset \Pi_2$ is the diagonal of P_2 . We shall refer to X_n as the *n*-th configuration space of X over S. (For convenience, we set $X_0 := S$.)

Definition 1.3 (cf. [S] Definition 1.6). Let K be a field and X a hyperbolic curve of type (g, r) over K. Write $\varepsilon := r$ if $X \cong \mathbb{P}^1_K \setminus \{0, 1, \infty\}$ (hence (g, r) = (0, 3)) or (g, r) = (1, 1), and write $\varepsilon := 0$ if otherwise. Let $I \subset \{1, \ldots, n + \varepsilon\}$ be such that $0 \leq \sharp I \leq n$. We shall define $p_I : X_n \to X_{n-\sharp I}$ as follows:

(a) If $X \cong \mathbb{P}_{K}^{1} \setminus \{0, 1, \infty\}$ (e.g., the case where (g, r) = (0, 3) and K is algebraically closed), then there is a natural K-isomorphism $X_{n} \xrightarrow{\sim} (\mathcal{M}_{0,n+3})_{K}$, $(x_{1}, \ldots, x_{n}) \mapsto [x_{1}, \ldots, x_{n}, 0, 1, \infty]$, where $\mathcal{M}_{0,n+3}$ is the moduli space of ordered (n+3)-pointed curves of genus zero. We shall define p_{I} as

$$p_I: X_n \xrightarrow{\sim} (\mathcal{M}_{0,n+3})_K \to (\mathcal{M}_{0,n-\sharp I+3})_K \xrightarrow{\sim} X_{n-\sharp I},$$

where $(\mathcal{M}_{0,n+3})_K \to (\mathcal{M}_{0,n-\sharp I+3})_K$ is the morphism obtained by forgetting the marked points corresponding to the elements of I.

(b) If (g,r) = (1,1), then write $E := X^{\text{cpt}}$, and write O for the unique point of $E \setminus X$. Since E is an elliptic curve over K, E has an addition whose identity element is O. In this case, there is a natural K-isomorphism $X_n \xrightarrow{\sim} E_{n+1}/E$, $(x_1, \ldots, x_n) \mapsto [x_1, \ldots, x_n, O]$, where the action of E on E_{n+1} is the diagonal translation determined by the addition of E. We shall define p_I as

$$p_I: X_n \xrightarrow{\sim} E_{n+1}/E \to E_{n-\sharp I+1}/E \xrightarrow{\sim} X_{n-\sharp I},$$

where $E_{n+1}/E \to E_{n-\sharp I+1}/E$ is the morphism obtained by forgetting the factors corresponding to the elements of I.

(c) If $X \not\cong \mathbb{P}^1_K \setminus \{0, 1, \infty\}$ and $(g, r) \neq (1, 1)$, then we shall define p_I as the projection obtained by forgetting the factors corresponding to the elements of I.

(In particular, $p_{\emptyset} = \operatorname{id}_{X_n}$. Moreover, if $\sharp I = n$, then p_I is the structure morphism $X_n \to X_0 = \operatorname{Spec} K$.) We shall refer to p_I as a generalized projection morphism. If p_I coincides with a projection from X_n to $X_{n-\sharp I}$ obtained by forgetting some $\sharp I$ factors (i.e., $I \subset \{1, \ldots, n\}$ or $\sharp I = n$), then we shall also refer to p_I as a projection morphism. We shall refer to $n - \sharp I$ as the co-length of p_I .

Definition 1.4. Let K be an algebraically closed field of characteristic zero and X a hyperbolic curve of type (g, r) over K. Suppose that g = 0 (resp. g = 1). Then, since X is hyperbolic and K is algebraically closed, there is a hyperbolic curve Y of type (0,3) (resp. (1,1)) such that X is an open subscheme of Y. We shall say that a morphism $p: X_n \to Y$ is an *exceptional morphism* if p is a composite of an immersion $X_n \hookrightarrow Y_n$ determined by the open immersion $X \hookrightarrow Y$ and a generalized projection morphism $Y_n \to Y$ of co-length 1 which is not a projection morphism.

Remark 1.4.1. (cf. [S] Remark 4.5.1) If g = 1, then any exceptional morphism factors as $X_n \hookrightarrow (X^{\text{cpt}})_n \twoheadrightarrow Y$. This implies that "the set of exceptional morphisms to Y" does not depend on the choose of Y (up to isomorphism between Y's).

In the case g = 0, by the direct calculation of coordinates, we can show the following: let $X_n \hookrightarrow Y_n \to Y$ be an exceptional morphism. We write $I \subset \{1, \ldots, n+3\}$ for the set corresponds to the generalized projection morphism $Y_n \to Y$ in the notation of Definition 1.3, and write $m := \sharp I \cap \{n+1, n+2, n+3\}$ (since $Y_n \to Y$ is not a projection morphism, it holds that m > 0). Then there exists a smooth curve Z of type (0, 3 - m) contains Y such that $X_n \to Y$ factors as $X_n \hookrightarrow Z_n \to Y$. (In particular, any exceptional morphism from X_n factors through an n-th configuration space of a smooth curve of type (0, 2).)

Definition 1.5. Let G be a group and Σ a nonempty set of prime numbers. Then we shall write

 G^{Σ}

for the pro- Σ completion of G. If G is a topologically finitely generated profinite group, then G^{Σ} coincides with the maximal pro- Σ quotient of G.

We often write simply

 G^l

instead of $G^{\{l\}}$. Moreover, we often write simply

$$G^{\wedge}$$

instead of the profinite completion of G.

Definition 1.6. Let X be a connected noetherian scheme and Σ a nonempty set of prime numbers.

(i) We shall write

$$\pi_1(X) = \pi_1^{\text{prof}}(X)$$

for the étale fundamental group of X (for some choice of base point).

(ii) We shall write

$$\pi_1^{\text{pro-}\Sigma}(X) := (\pi_1(X))^{\Sigma}.$$

We often write

 $\pi_1^{\text{pro-}l}(X)$

KOICHIRO SAWADA

instead of $\pi_1^{\text{pro-}\{l\}}(X)$.

(iii) If X is a \mathbb{C} -scheme of finite type, then we shall write

 $\pi_1^{\mathrm{top}}(X)$

for the topological fundamental group of the complex analytic space X^{an} associated to X (for some choice of \mathbb{C} -rational base point).

(iv) We shall refer to $\pi_1^{\mathcal{C}}(X)$ (where $\mathcal{C} = \text{pro-}\Sigma$, prof, pro-*l*, top) as a *C*-fundamental group of X.

Remark 1.6.1. Hereinafter, whenever we consider $\pi_1^{\text{top}}(X)$, we always assume that X is a \mathbb{C} -scheme of finite type. Note that, for a variety over an algebraically closed field K of characteristic zero, by taking a subfield K' of K such that K' is an algebraic closure of a finitely generated field over \mathbb{Q} and that X has a model X' over K', and fixing an inclusion $K' \hookrightarrow \mathbb{C}$, $\pi_1^{\text{pro-}\Sigma}(X)$ is isomorphic to $(\pi_1^{\text{top}}(X' \times_{K'} \mathbb{C}))^{\Sigma}$.

Definition 1.7 (cf. [HMM] §0). Let K be an algebraically closed field of characteristic zero, X a hyperbolic curve of type (g, r) over K, and $C \in \{\text{pro-}\Sigma, \text{pro-}l, \text{prof}, \text{top}\}$. Then we shall write

$$\Pi_n^{\mathcal{C}} = \Pi_{n,q,r}^{\mathcal{C}} = \Pi_n^{\mathcal{C}}(X) := \pi_1^{\mathcal{C}}(X_n)$$

If $\mathcal{C} \in \{\text{pro-}\Sigma, \text{pro-}l, \text{prof}\}$, then we shall refer to (a profinite group isomorphic to) $\Pi_n^{\mathcal{C}}(X)$ (resp. $\Pi_1^{\mathcal{C}}(X)$) as a (\mathcal{C} -)configuration space group (resp. (\mathcal{C} -)surface group).

Remark 1.7.1. It is well-known that $\pi_1^{\text{top}}(X)$ has a presentation

 $\langle \alpha_1, \ldots, \alpha_g, \beta_1, \ldots, \beta_g, \gamma_1, \ldots, \gamma_r \mid [\alpha_1, \beta_1] \cdots [\alpha_g, \beta_g] \gamma_1 \cdots \gamma_r = 1 \rangle.$

Remark 1.7.2. For the most part of the present paper, we assume that X is hyperbolic. For the case X is not necessarily hyperbolic, see Remark 3.3.2.

Definition 1.8. Let K be an algebraically closed field of characteristic zero, X a hyperbolic curve of type (g, r) over $K, C \in \{\text{pro-}l, \text{prof}, \text{top}\}$, and I as in Definition 1.3. Then we shall write

$$\phi_I: \Pi_n^{\mathcal{C}}(X) \twoheadrightarrow \Pi_{n-\sharp I}^{\mathcal{C}}(X)$$

for the natural (outer) surjection induced by p_I . For $i \in \{1, ..., n\}$, we often write simply

 ϕ_i

instead of $\phi_{\{i\}}$.

Proposition 1.9 (cf. [H] Proposition 2.4(i)). In the notation of Definition 1.8, let $\overline{x} \to X_{n-\sharp I}$ be a geometric point. Then ker ϕ_I is isomorphic to the C-fundamental group of the geometric fiber $X_n \times_{X_{n-\sharp I}} \overline{x}$ (which is the $\sharp I$ -th configuration space of a hyperbolic curve $X_{n-\sharp I+1} \times_{X_{n-\sharp I}} \overline{x}$ of type $(g, r+n-\sharp I)$ over \overline{x}). In particular, a configuration space group is topologically finitely generated.

The following Lemma 1.10 is used in the next section.

Lemma 1.10. Let K be an algebraically closed field of characteristic zero, X a hyperbolic curve of type (g,r) over K, and $C \in \{\text{pro-}l, \text{prof}, \text{disc}\}$. Suppose that g > 0. Then the natural open immersion $X_n \hookrightarrow P_n$ determines an isomorphism $\Pi_n^{\mathcal{C}, \text{ab}} \xrightarrow{\sim} (\Pi_1^{\mathcal{C}, \text{ab}})^n$.

4

Proof. The case C = prof follows immediately from the case C = pro-l, which is proved in [HMM] Proposition 2.2(ii). If C = disc, then $\Pi_n^{\text{disc},\text{ab}} \twoheadrightarrow (\Pi_1^{\text{disc},\text{ab}})^n$ is a surjective homomorphism between finitely generated abelian groups such that the homomorphism obtained by taking profinite completions is isomorphic (cf. Remark 1.6.1). Thus, $\Pi_n^{\text{disc},\text{ab}} \twoheadrightarrow (\Pi_1^{\text{disc},\text{ab}})^n$ itself is isomorphic. This completes the proof of Lemma 1.10.

2. Configuration space group via pure braids

In the present §2, we treat a configuration space group as the group of isotopy classes of pure braids, and prove the key theorem by using a topological argument (cf. Theorem 2.3 below). Let l be a prime number, n a positive integer, K an algebraically closed field of characteristic zero, and X a hyperbolic curve of type (g, r) over K.

By definition, (if $K = \mathbb{C}$, then) $\Pi_n^{\text{top}}(X) = \pi_1(X^{\text{an}}, (x_1, \ldots, x_n))$ is identified with the group of isotopy classes of pure braids of $M := X^{\text{an}}$ on n strands whose endpoints are x_1, \ldots, x_n . Note that M^{cpt} is a compact Riemann surface of genus g and $\sharp(M^{\text{cpt}} \setminus M) = r$ (denote $M^{\text{cpt}} \setminus M = \{y_1, \ldots, y_r\}$). Under this identification, $\phi_i : \Pi_n^{\text{top}}(X) \to \Pi_{n-1}^{\text{top}}(X)$ is the morphism obtained by forgetting the *i*-th braid (i.e., the braid starting from x_i). Moreover, if we write $M_i := M \setminus \{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n\} \subset M$, then, via the natural inclusion $\iota_i : \pi_1^{\text{top}}(M_i, x_i) \to \Pi_n^{\text{top}}(X)$ obtained by attaching trivial strands, ker ϕ_i is identified with $\pi_1^{\text{top}}(M_i, x_i)$. Here, $\pi_1^{\text{top}}(M_i, x_i)$ has the presentation

$$\pi_1^{\text{top}}(M_i, x_i) = \langle \alpha_1^{(i)}, \dots, \alpha_g^{(i)}, \beta_1^{(i)}, \dots, \beta_g^{(i)}, \gamma_1^{(i)}, \dots, \gamma_r^{(i)}, \delta_1^{(i)}, \dots, \delta_n^{(i)} \mid \delta_i^{(i)} = 1,$$
$$\prod_{s=1}^g [\alpha_s^{(i)}, \beta_s^{(i)}] \prod_{t=1}^r \gamma_t^{(i)} \prod_{u=1} \delta_u^{(i)} = 1 \rangle,$$

where $\alpha_s^{(i)}$ (resp. $\beta_s^{(i)}$) is determined by a loop going once around the *s*-th hole (resp. going once through the *s*-th hole), and $\gamma_t^{(i)}$ (resp. $\delta_u^{(i)}$ $(u \neq i)$) is determined by a loop going once around y_t (resp. x_u) (by choosing suitable orientations of loops).

Lemma 2.1. Let $s \in \{1, \ldots, g\}$, $t \in \{1, \ldots, r\}$, $i, j \in \{1, \ldots, n\}$ be such that $i \neq j$. Then, in the notation above, $\iota_i(\alpha_s^{(i)})$ (resp. $\iota_i(\beta_s^{(i)})$) commutes with some conjugate of $\iota_j(\gamma_t^{(j)})$. Moreover, if $t' \in \{1, \ldots, r\} \setminus \{t\}$ (hence $r \geq 2$), then $\iota_i(\gamma_{t'}^{(i)})$ commutes with some conjugate of $\iota_j(\gamma_t^{(j)})$.

Proof. Fix a loop f representing the element $\alpha_s^{(i)}$ (resp. $\beta_s^{(i)}, \gamma_{t'}^{(i)}$). Then we can easily take a loop f' in M_j based at x_j such that f' is a loop going once around y_t , and that the image of f and the image of f' are disjoint in M. (Figure 1 is the case g = 1 and f represents $\alpha_1^{(i)}$. Since a compact Riemann surface of genus g > 0 is obtained by gluing the sides of a regular 4g-sided polygon, we can find a loop f' in the general case similarly as in Figure 1.)

Then the element $\gamma \in \pi_1^{\text{top}}(M_j, x_j)$ determined by f' is a conjugate of $\gamma_t^{(j)}$ or $(\gamma_t^{(j)})^{-1}$. Moreover, since $\text{Im } f \cap \text{Im } f' = \emptyset$, $\iota_i(\alpha_s^{(i)})$ (resp. $\iota_i(\beta_s^{(i)})$, $\iota_i(\gamma_{t'}^{(i)})$) commutes with $\iota_j(\gamma)$. This completes the proof of Lemma 2.1.

FIGURE 1.

Hereinafter, we regard as $\alpha_s^{(i)}, \beta_s^{(i)}, \gamma_t^{(i)} \in \Pi_n^{\text{prof}}(X)$ via the composite of ι_i , the natural injection $\Pi_{n,g,r}^{\text{top}} \hookrightarrow (\Pi_{n,g,r}^{\text{top}})^{\wedge}$ (cf. [MT] Proposition 7.1), and the isomorphism $(\Pi_{n,g,r}^{\text{top}})^{\wedge} \xrightarrow{\sim} \Pi_n^{\text{prof}}(X)$ (cf. Remark 1.6.1). It is immediate that $\alpha_s^{(i)}, \beta_s^{(i)}, \gamma_t^{(i)} \in \ker \phi_i \subset \Pi_n^{\text{prof}}(X)$.

Lemma 2.2. Suppose that g > 0. Write π for the quotient map $\Pi_n^{\text{prof}}(X) \twoheadrightarrow \Pi_n^{\text{prof}}(X)^{\text{ab}}$ and J for the closed subgroup of ker ϕ_i generated by $\alpha_1^{(i)}, \ldots, \alpha_g^{(i)}, \beta_1^{(i)}, \ldots, \beta_g^{(i)}, \gamma_1^{(i)}, \ldots, \gamma_{r-1}^{(i)}$. Then it holds that $\pi(J) = \pi(\ker \phi_i)$.

Proof. By Lemma 1.10, we obtain a commutative diagram

where the horizontal sequences are exact. Now it follows from the explicit descriptions of ker ϕ_i and $\Pi_1^{\text{prof}}(X)$ that the composite $J \hookrightarrow \ker \phi_i \twoheadrightarrow (\ker \phi_i)^{\text{ab}} \to \Pi_1^{\text{prof}}(X)^{\text{ab}}$ is surjective. This implies that $\operatorname{Im}(J \to \Pi_1^{\text{prof}}(X)^{\text{ab}}) = \operatorname{Im}(\ker \phi_i \to \Pi_1^{\text{prof}}(X)^{\text{ab}})$. Thus, it follows from the above diagram that

$$\pi(J) = \operatorname{Im}(J \to \Pi_n^{\operatorname{prof}}(X)^{\operatorname{ab}}) = \operatorname{Im}(\ker \phi_i \to \Pi_n^{\operatorname{prof}}(X)^{\operatorname{ab}}) = \pi(\ker \phi_i).$$

This completes the proof of Lemma 2.2.

Theorem 2.3. Suppose that g, r > 0. Let H be a pro-l group, $\varphi : \prod_n^{\text{pro-l}}(X) \to H$ a surjective morphism, $x \in X^{\text{cpt}} \setminus X$, and $j \in \{1, \ldots, n\}$. Write $I \subset \text{ker}(p_j)(\subset \prod_n^{\text{pro-l}}(X))$ for the inertia subgroup corresponding to x (which is well-defined up to conjugation). Suppose that the following conditions are satisfied:

- (1) $\varphi(I) \neq \{1\}.$
- (2) Any abelian subgroup of H is (topologically) generated by single element.
- (3) $\dim_{\mathbb{Q}_l}(H^{\mathrm{ab}} \otimes_{\mathbb{Z}_l} \mathbb{Q}_l) \geq 2.$
- (4) Any topologically fintely generated normal closed subgroup of H is trivial or open in H.

Then φ factors through the morphism $\phi_{\{1,\dots,n\}\setminus\{j\}}: \prod_{n=1}^{\text{pro-}l}(X) \twoheadrightarrow \prod_{1=1}^{\text{pro-}l}(X)$.

Proof. For $a \in \prod_{n=1}^{\text{prof}}(X)$, write \overline{a} for the image of a by the quotient map $\prod_{n=1}^{\text{prof}}(X) \twoheadrightarrow$ $\Pi_{r}^{\text{pro-}l}(X).$

In light of [MT] Proposition 2.4(vi), it suffices to show that ker $\phi_i \subset \ker \varphi$ for all $i \in \{1, \ldots, n\} \setminus \{j\}$. We may assume that the inertia subgroup I is corresponding to y_r , which implies that $\varphi(\overline{\gamma}_r^{(j)}) \neq 1$.

Write $A := \{\overline{\alpha}_1^{(i)}, \ldots, \overline{\alpha}_g^{(i)}, \overline{\beta}_1^{(i)}, \ldots, \overline{\beta}_g^{(i)}, \overline{\gamma}_1^{(i)}, \ldots, \overline{\gamma}_{r-1}^{(i)}\} \subset \prod_n^{\text{pro-}l}(X)$, and φ^{ab} for the composite of φ and the quotient map $H \twoheadrightarrow H^{\text{ab}}$. Then it follows from Lemmas 2.1, 2.2 that

- for any a ∈ A, φ(a) commutes with b_aφ(γ_r^(j))b_a⁻¹ for some b_a ∈ H;
 φ^{ab}(ker φ_i) is (topologically) generated by φ^{ab}(A).

Now, since $\varphi(\overline{\gamma}_r^{(j)}) \neq 0$, it follows from assumption (2) that there exists $c_a \in \mathbb{Q}_l$ such that $\varphi(a) = (b_a \varphi(\overline{\gamma}_r^{(j)}) b_a^{-1})^{c_a}$, which implies that $\varphi^{ab}(a) = c_a \varphi^{ab}(\overline{\gamma}_r^{(j)}) \in$ $\varphi^{\mathrm{ab}}(\overline{\gamma}_r^{(j)})\mathbb{Q}_l(\subset H^{\mathrm{ab}}\otimes_{\mathbb{Z}_l}\mathbb{Q}_l)$. Thus, it holds that $\varphi^{\mathrm{ab}}(\ker\phi_i)\subset \varphi^{\mathrm{ab}}(\overline{\gamma}_r^{(j)})\mathbb{Q}_l$. In light of assumption (3), it follows that $\varphi^{ab}(\ker \phi_i) \subset H^{ab}$, hence also $\varphi(\ker \phi_i) \subset H$, is not open. On the other hand, since φ is surjective, $\varphi(\ker \phi_i) \subset H$ is a normal closed subgroup of H. Thus, it follows from Proposition 1.9, together with assumption (4), that $\varphi(\ker \phi_i)$ is trivial, i.e., $\ker \phi_i \subset \ker \varphi$. This completes the proof of Theorem 2.3.

3. Classification of surjective homomorphisms

In the present §3, we classify all surjective homomorphisms from a configuration space group to a surface group. Let l be a prime number.

Definition 3.1 (cf. [S] Definition 5.5). Let G be a pro-l group. Then we shall write $\gamma_m(G)$ for the *m*-th term of the lower central series of G, i.e., $\gamma_1(G) = G$ and $\gamma_{m+1}(G) := \overline{[G, \gamma_m(G)]}$ $(m \in \mathbb{Z}_{>0})$. Moreover, we shall write $\operatorname{Gr}^{\operatorname{lcs}}(G) :=$ $\bigoplus_{m>1} \gamma_m(G)/\gamma_{m+1}(G)$. Note that $\operatorname{Gr}^{\operatorname{lcs}}(G)$ can be regarded as a $\mathbb{Z}_{>0}$ -graded Lie algebra over \mathbb{Z}_l .

Theorem 3.2. Let H be a profinite group, n a positive integer, (g,r) a pair of nonnegative integers such that 2g - 2 + r > 0, and $\varphi : \prod_{n,g,r}^{\mathcal{C}} \twoheadrightarrow H$ a surjective homomorphism. Suppose that the following conditions are satisfied:

- (1) $\operatorname{Gr}^{\operatorname{lcs}}(H^l)$ is a free \mathbb{Z}_l -module of rank ≥ 2 .
- (2) For $a, b \in \operatorname{Gr}^{\operatorname{lcs}}(H^l)$, if [a, b] = 0, then a and b are linearly dependent over \mathbb{Z}_l .
- (3) Any topologically finitely generated normal closed subgroup of H (resp. H^{l}) is trivial or open in H (resp. H^l).
- (4) If g > 0 and $r \ge 2$, then any abelian subgroup of H^l is (topologically) generated by single element.

Then there exists a (surjective) homomorphism $\varphi' : \prod_{n,a,r}^{\mathcal{C}} \twoheadrightarrow H'$ induced by a projection morphism of co-length 1 or an exceptional morphism such that φ factors through φ' .

Proof. As in the proof of [S] Theorem 5.11, we can reduce to the case $\mathcal{C} = \text{pro-}l$. If q = 0 or $r \leq 1$, then Theorem 3.2 follows from (the proof of) [S] Theorem 5.11

(note that, since $\operatorname{Gr}^{\operatorname{lcs}}(H^l)$ is generated by $\gamma_1(H^l)/\gamma_2(H^l) \cong H^{l,\operatorname{ab}}$, the assumptions (1),(2) imply that $\operatorname{rank}_{\mathbb{Z}_l}(H^{l,\operatorname{ab}}) \ge 2$ and that $\operatorname{rank}_{\mathbb{Z}_l}(\operatorname{Gr}^{\operatorname{lcs}}(H^l)) \ge 3$).

If g > 0 and $r \ge 2$, then let us consider the surjective morphism $\Pi_{n,g,r}^{\text{pro-}l} \twoheadrightarrow \Pi_{n,g,1}^{\text{pro-}l}$ obtained by the open immersion $X_n \hookrightarrow Y_n$ arising from an open immersion $X \hookrightarrow Y$, where X (resp. Y) is a hyperbolic curve of type (g, r) (resp. (g, 1)) over an algebraically closed field of characteristic zero. Then, in light of Theorem 2.3, we may assume that the surjective homomorphism φ factors through $\Pi_{n,g,r}^{\text{pro-}l} \twoheadrightarrow \Pi_{n,g,1}^{\text{pro-}l}$. Thus, we can reduce to the case r = 1, which has already been verified. This completes the proof of Theorem 3.2.

Corollary 3.3. Let H be a surface group, $C \in \{\text{pro-}l, \text{prof}\}$, Π a C-configuration space group, and $\varphi : \Pi \twoheadrightarrow H$ a surjective homomorphism. Then there exists a (surjective) homomorphism $\varphi' : \Pi \twoheadrightarrow H'$ induced by a projection morphism of colength 1 or an exceptional morphism such that φ factors through φ' .

Proof. We may assume that $l \in \Sigma$, where H is a pro- Σ surface group. Then it follows from [S] Lemma 2.5, [MT] Theorem 1.5, together with the well-known fact that any closed subgroup of H^l of infinite index is a free pro-l group (cf. e.g. the proof of [MT] Theorem 1.5), that H satisfies the conditions of Theorem 3.2.

Remark 3.3.1. We can prove similar results in the case C = top by arguments similar to the above arguments (or arguments appearing in [S] §8).

Remark 3.3.2. Let X be a smooth curve of type (g, r) over an algebraically closed field of characteristic zero. If $2g - 2 + r \leq 0$, then, by taking an integer r' such that 2g - 2 + r' > 0 and a surjective homomorphism $\pi_1^{\mathcal{C}}(X_n) \twoheadrightarrow \prod_{n,g,r'}^{\mathcal{C}}$ determined by an open immersion $X \hookrightarrow Y$ (where Y is a hyperbolic curve of type (g, r')), we can classify all surjective homomorphisms from $\pi_1^{\mathcal{C}}(X_n)$ to a surface group.

Remark 3.3.3. Historically, Corollary 3.3 in the case

- H is not isomorphic to the pro-Σ completion of the free group of rank 2 for any nonempty set of prime numbers Σ: proved in [HMM] Proposition 2.3.
- $g \ge 2$: essentially proved in [MT] Corollary 4.8 (see [S] Theorem 7.11).
- g = 0 or $r \leq 1$: proved in [S] Theorem 5.11.

Moreover, in the case $g \ge 2$ and C = top, an alternative proof was given in [Ch2] Lemma 2.5 (see also [Ch1] §3).

Remark 3.3.4. By Theorem 3.2, we can replace the condition " $H \supset \Delta_{X_n/K}^{\Sigma}$ and $(g, r, n) \in \{(0, 3, 3), (1, 1, 2)\}$ " appearing in [S] Theorem 7.14 with " $H \supset \Delta_{X_n/K}^{\Sigma}$, and, moreover, (g, r, n) = (0, 3, 3) or $g \ge 1$ ". In particular, if $g \ge 1$, then, for a positive integer n, a generalized sub-l-adic field K (cf. [M] Definition 4.11), a hyperbolic curve X of type (g, r) over K, and a hyperbolic polycurve Z over K (cf. [H] Definition 2.1), it holds that the natural map

$$\operatorname{Isom}_{K}(X_{n}, Z) \to \operatorname{Isom}_{G_{K}}(\pi_{1}(X_{n}), \pi_{1}(Z)) / \operatorname{Inn}(\pi_{1}(Z \times_{K} \overline{K}))$$

is bijective.

Acknowledgement

I would like to thank Professor Akio Tamagawa for valuable discussions and advice. This research was supported by JSPS KAKENHI Grant Numbers JP17J11423, JP20J00323.

9

References

- [Ch1] Chen, L., The universal n-pointed surface bundle only has n sections, J. Topol. Anal. 11 (2019), no. 2, 293–309.
- [Ch2] Chen, L., Surjective homomorphisms between surface braid groups, Israel J. Math. 232 (2019), no. 1, 483–500.
- [H] Hoshi, Y., The Grothendieck conjecture for hyperbolic polycurves of lower dimension, J. Math. Sci. Univ. Tokyo 21 (2014), no. 2, 153–219.
- [HMM] Hoshi, Y., Minamide, A. and Mochizuki, S., Group-theoreticity of numerical invariants of configuration space groups, RIMS preprint 1870 (2017).
- [M] Mochizuki, S., Topics surrounding the anbelian geometry of hyperbolic curves, Galois groups and fundamental groups, Math. Sci. Res. Inst. Publ. 41, Cambridge Univ. Press (2003), 119–165.
- [MT] Mochizuki, S. and Tamagawa, A., The algebraic and anabelian geometry of configuration spaces, *Hokkaido Math. J.* 37 (2008), no. 1, 75–131.
- [S] Sawada, K., Reconstruction of invariants of configuration spaces of hyperbolic curves from associated Lie algebras, RIMS preprint **1896** (2018).

DEPARTMENT OF MATHEMATICS, OSAKA UNIVERSITY, OSAKA 560-0043, JAPAN *Email address:* k-sawada@cr.math.sci.osaka-u.ac.jp