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ON SURJECTIVE HOMOMORPHISMS FROM A
CONFIGURATION SPACE GROUP TO A SURFACE GROUP

KOICHIRO SAWADA

ABSTRACT. In the present paper, we classify all surjective homomorphisms
from the étale fundamental group of the configuration space of a hyperbolic
curve (over an algebraically closed field of characteristic zero) to the étale
fundamental group of a hyperbolic curve. We can show that such a surjective
homomorphism is necessarily “geometric” in some sense, that is, it factors
through one of the homomorphisms which arise from specific morphisms of
schemes.

Introduction

Let n be a positive integer, k& an algebraically closed field of characteristic zero,
and X a hyperbolic curve of type (g,r) over k. Write X,, for the n-th configu-
ration space (cf. Definition 1.2) and II for the étale fundamental group of X,, or
the maximal pro-I quotient of the étale fundamental group of X,,. We obtain some
homomorphisms from X,, to a hyperbolic curve over k, so called “projection mor-
phisms (of co-length 1)” and “exceptional morphisms” (cf. Definitions 1.3, 1.4).
These morphisms induce surjective homomorphisms between fundamental groups.
In [S], we show that, under some conditions, any surjective homomorphism from IT
to a surface group (cf. Definition 1.7) factors through one of the above homomor-
phisms:

Theorem A (cf. [S] Theorem 7.12). Let H be a surface group and ¢ : II — H
a surjective homomorphism of profinite groups. Suppose that at least one of the
following holds:

(1) g#1orr<1.
(2) H is not isomorphic to the mazimal pro-X completion of the free group of
rank 2 (where 3 is a nonempty set of prime numbers).

Then there exists a surjective homomorphism ¢’ : 11 - H' induced by a projection

morphism of co-length 1 or an exceptional morphism such that ¢ factors through
/

o
The main theorem of the present paper is a generalization of Theorem A:

Theorem B (cf. Corollary 3.3). Let H be a surface group and ¢ : Il - H a
surjective homomorphism of profinite groups. Then there exists a surjective ho-
momorphism ¢’ : II - H' induced by a projection morphism of co-length 1 or an
exceptional morphism such that ¢ factors through .
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1. CONFIGURATION SPACES OF CURVES

In the present §1, we review generalities on the configuration spaces of curves
and their fundamental groups. Let [ be a prime number and n a positive integer.

Definition 1.1. Let S be a scheme and X a scheme over S.

(i) We shall say that X is a smooth curve (of type (g,7)) over S if there exist
a pair of nonnegative integers (g, r), a scheme X°P' over S, and a (possibly
empty) closed subscheme D C X Pt of X°P! such that

e X°Pt i5 smooth, proper, and of relative dimension one over S;

e any geometric fiber of XP* — S is connected (hence a smooth proper
curve) of genus g;

e the composite D — X°P* — § is finite étale of degree r;

e X is isomorphic to X°P*\ D over S.

(ii) We shall say that X is a hyperbolic curve (of type (g,r)) over S if X is a
smooth curve of type (g, r) over S such that 2g — 2+ r > 0.

Definition 1.2 (cf. [MT] Definition 2.1).

(i) Let S be a scheme and X be a smooth curve over S. Then we shall write

P, :ZXXS“‘XS_X.

(ii) Let (n,S,X) beasin (i). For (4, j) a pair of integers such that 1 < i < j < n,
write m; ; : P, = P» = X xg X for the projection to the i-th and j-th
factors. Moreover, we shall write X, := P, \ (U, ; ’/T;jl(A)), where A C Il
is the diagonal of P,. We shall refer to X,, as the n-th configuration space

of X over S. (For convenience, we set Xy :=S5.)

Definition 1.3 (cf. [S] Definition 1.6). Let K be a field and X a hyperbolic curve
of type (g,7) over K. Write ¢ := r if X 2 PL \ {0,1,00} (hence (g,7) = (0,3)) or
(g,7) = (1,1), and write € := 0 if otherwise. Let I C {1,...,n + ¢} be such that
0 < #I < n. We shall define p; : X,, = X,,_4; as follows:

(a) If X = PL \ {0,1,00} (e.g., the case where (g,7) = (0,3) and K is alge-
braically closed), then there is a natural K-isomorphism X, = (Mo n+3) ks
(X1,...,2n) = [21,...,2p,0,1,00], where Mg 43 is the moduli space of
ordered (n + 3)-pointed curves of genus zero. We shall define p; as

pr:Xn S (Monts)x = (Mon—tr+3)k — Xn—tr,

where (Mo nt3)k — (Mo,n—gr+3) K is the morphism obtained by forgetting
the marked points corresponding to the elements of I.

(b) If (g,7) = (1,1), then write E := X°P'  and write O for the unique point
of E'\ X. Since E is an elliptic curve over K, F has an addition whose
identity element is O. In this case, there is a natural K-isomorphism X,, =

E,1/E, (x1,...,2n) = [21,...,Zp, O], where the action of E on E, ;1 is
the diagonal translation determined by the addition of E. We shall define
pr as

pr:Xn = Enp1/E = Eq_yr1/E S Xy,

where E,11/E — E,_41+1/FE is the morphism obtained by forgetting the
factors corresponding to the elements of I.
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(c) If X 22 P\ {0,1,00} and (g,7) # (1,1), then we shall define p; as the
projection obtained by forgetting the factors corresponding to the elements
of I.

(In particular, pg = idx, . Moreover, if {1 = n, then p; is the structure morphism
X, — Xo = Spec K.) We shall refer to p; as a generalized projection morphism.
If p; coincides with a projection from X, to X,,_4; obtained by forgetting some #1
factors (i.e., I C {1,...,n} or fI = n), then we shall also refer to p; as a projection
morphism. We shall refer to n — I as the co-length of p;.

Definition 1.4. Let K be an algebraically closed field of characteristic zero and X
a hyperbolic curve of type (g,7) over K. Suppose that g = 0 (resp. g = 1). Then,
since X is hyperbolic and K is algebraically closed, there is a hyperbolic curve Y
of type (0,3) (resp. (1,1)) such that X is an open subscheme of Y. We shall say
that a morphism p : X,, — Y is an exceptional morphism if p is a composite of an
immersion X,, < Y,, determined by the open immersion X — Y and a generalized
projection morphism Y,, — Y of co-length 1 which is not a projection morphism.

Remark 1.4.1. (cf. [S] Remark 4.5.1) If g = 1, then any exceptional morphism factors
as X, = (X°%),, — Y. This implies that “the set of exceptional morphisms to Y
does not depend on the choose of Y (up to isomorphism between Y's).

In the case g = 0, by the direct calculation of coordinates, we can show the
following: let X,, — Y;, — Y be an exceptional morphism. We write I C {1,...,n+
3} for the set corresponds to the generalized projection morphism Y, — Y in
the notation of Definition 1.3, and write m := $I N {n + 1,n + 2,n + 3} (since
Y, — Y is not a projection morphism, it holds that m > 0). Then there exists
a smooth curve Z of type (0,3 —m) contains Y such that X,, — Y factors as
X, <= Z, — Y. (In particular, any exceptional morphism from X, factors through
an n-th configuration space of a smooth curve of type (0,2).)

Definition 1.5. Let G be a group and % a nonempty set of prime numbers. Then
we shall write
GZ
for the pro-3 completion of G. If G is a topologically finitely generated profinite
group, then G* coincides with the maximal pro-¥ quotient of G.
We often write simply
Gl
instead of G, Moreover, we often write simply
G/\
instead of the profinite completion of G.

Definition 1.6. Let X be a connected noetherian scheme and ¥ a nonempty set
of prime numbers.
(i) We shall write
1 (X) = 7PN(X)
for the étale fundamental group of X (for some choice of base point).
(ii) We shall write
TP (X) = (X))
We often write
w(x)
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instead of ﬂ{’m'{l}(X).
(iii) If X is a C-scheme of finite type, then we shall write

TP (X)

for the topological fundamental group of the complex analytic space X2"
associated to X (for some choice of C-rational base point).

(iv) We shall refer to 7§ (X) (where C = pro-X, prof, pro-/, top) as a C-fundamental
group of X.

Remark 1.6.1. Hereinafter, whenever we consider 7°?(X), we always assume that
X is a C-scheme of finite type. Note that, for a variety over an algebraically closed
field K of characteristic zero, by taking a subfield K’ of K such that K’ is an
algebraic closure of a finitely generated field over Q and that X has a model X’ over
K’, and fixing an inclusion K’ < C, 72> (X) is isomorphic to (7" (X’ x & C))>.

Definition 1.7 (cf. [HMM] §0). Let K be an algebraically closed field of character-
istic zero, X a hyperbolic curve of type (g, r) over K, and C € {pro-X, pro-/, prof, top}.
Then we shall write

e =11, = TS (X) = € (X,)

n,g,m

If C € {pro-X, pro-l, prof }, then we shall refer to (a profinite group isomorphic to)
¢ (X) (resp. II{ (X)) as a (C-)configuration space group (resp. (C-)surface group).

Remark 1.7.1. Tt is well-known that 7;°?(X) has a presentation

<a17"'70197617"'555]7713"'777“ | [alyﬂl]"'[ag;ﬂg]')/l"")/r: 1>

Remark 1.7.2. For the most part of the present paper, we assume that X is hyper-
bolic. For the case X is not necessarily hyperbolic, see Remark 3.3.2.

Definition 1.8. Let K be an algebraically closed field of characteristic zero, X a
hyperbolic curve of type (g, r) over K, C € {pro-I, prof, top}, and I as in Definition
1.3. Then we shall write

¢r 15 (X) — Iy (X)

for the natural (outer) surjection induced by p;. For i € {1,...,n}, we often write
simply

i
instead of ¢ ;3.

Proposition 1.9 (cf. [H] Proposition 2.4(i)). In the notation of Definition 1.8, let
T — X,_y1 be a geometric point. Then ker ¢y is isomorphic to the C-fundamental
group of the geometric fiber X,, Xx,_,; T (which is the §I-th configuration space of
a hyperbolic curve X, 4141 Xx,,_,; T of type (g,7 +n —H{I) over T). In particular,
a configuration space group is topologically finitely generated.

The following Lemma 1.10 is used in the next section.

Lemma 1.10. Let K be an algebraically closed field of characteristic zero, X a
hyperbolic curve of type (g,r) over K, and C € {pro-l,prof,disc}. Suppose that
g > 0. Then the natural open immersion X, — P, determines an isomorphism
II¢.ab % (HCA,ab)n

n 1 .
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Proof. The case C = prof follows immediately from the case C = pro-l, which is
proved in [HMM] Proposition 2.2(ii). If C = disc, then ITdiscab (H‘liisc’ab)" is a
surjective homomorphism between finitely generated abelian groups such that the
homomorphism obtained by taking profinite completions is isomorphic (cf. Remark
1.6.1). Thus, [Idise:ab _ ([[592P)n jtgelf is isomorphic. This completes the proof
of Lemma 1.10. O

2. CONFIGURATION SPACE GROUP VIA PURE BRAIDS

In the present §2, we treat a configuration space group as the group of isotopy
classes of pure braids, and prove the key theorem by using a topological argument
(cf. Theorem 2.3 below). Let [ be a prime number, n a positive integer, K an
algebraically closed field of characteristic zero, and X a hyperbolic curve of type
(g,7) over K.

By definition, (if K = C, then) II'*P(X) = m (X" (z1,...,2,)) is identi-
fied with the group of isotopy classes of pure braids of M := X?" on n strands
whose endpoints are x1,...,2,. Note that M°P! is a compact Riemann surface
of genus g and §(M°*\ M) = r (denote M®*\ M = {y1,...,y,}). Under
this identification, ¢; : II'P(X) — II'°’;(X) is the morphism obtained by for-
getting the i-th braid (i.e., the braid starting from ;). Moreover, if we write
M; .= M\ {z1,...,%i—1,%i41,-..,Zn} C M, then, via the natural inclusion ¢; :

wp (M;, z;) < IIP°P(X) obtained by attaching trivial strands, ker ¢; is identified
Wlth 7P (M;, x;). Here, wi°P(M;, 2;) has the presentation

mOP(My, ) = (7,0l 89 B0 AP D606 6l = 1,
g
L 401 T4 T = .
s=1 t=1 u=1

where ag) (resp. Bgi ) is determined by a loop going once around the s-th hole (resp.

going once through the s-th hole), and 7 (resp 5 (u # i)) is determined by a
loop going once around y; (resp. x,,) (by choosing suitable orientations of loops).

Lemma 2.1. Lets € {1,...,¢}, t€ {1,. r}, i ,7 €{1,...,n} be such thati # j.
Then, in the notation above, Ll( ) (resp Lz(ﬁs )) commutes with some conjugate
of 1 (7y (])) Moreover, if t' € {1,...,7}\ {t} (hence r > 2), then Li(’y(j)) commutes
with some conjugate of Lj('yt(j)).

Proof. Fix a loop f representing the element agi) (resp. ﬂs ,%, ) Then we can
easily take a loop f’ in M; based at x; such that f’ is a loop going once around
yt, and that the image of f and the image of f’ are disjoint in M. (Figure 1 is the
case g = 1 and f represents a( Y. Since a compact Riemann surface of genus g > 0
is obtained by gluing the sides of a regular 4g-sided polygon, we can find a loop f’
in the general case Similarly as in Figure 1.)

Then the element v € 7T1 P(M;,x;) determined by f’ is a conjugate of 'yt(j) or

("yt(j))*l. Moreover, since Im fNIm f/ = 0, Li(agi)) (resp. ¢;(Bs ¢ )), Li ('yt(,))) commutes
with ¢;(y). This completes the proof of Lemma 2.1.



6 KOICHIRO SAWADA
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FIGURE 1.

Hereinafter, we regard as all BS ,'yt ) e Prf (X)) via the composite of ¢;, the
natural injection Hffg - (Hﬁfg ) (cf. [MT] Proposition 7.1), and the isomor-
phism (IT{P )" = IPf(X) (cf. Remark 1.6.1). It is immediate that al? L ,7( D e
ker ¢; C TIP™f(X).

Lemma 2.2. Suppose that g > 0. Write © for the quotient map TP™H(X) —»
prof(X)aP and J for the closed subgroup of ker ¢; generated by agi), ceey ozéi), 69, e
751)7 . ,'y,(, )1 Then it holds that w(J) = m(ker ¢;).

Proof. By Lemma 1.10, we obtain a commutative diagram

1— > kel i 15t (X) TP} (X) 1
(ker ;)" ——— T (X L% (X)™ !

e TP o (T (X)) o (I (X)) 1,

where the horizontal sequences are exact. Now it follows from the explicit de-
scriptions of ker ¢; and II"***(X) that the composite J < ker ¢; — (ker ¢;)*> —
IIP7f(X)P is surjective. This implies that Im(J — IIP™f(X)2P) = Im(ker ¢; —
I1°7°f(X)2P). Thus, it follows from the above diagram that

7(J) = Im(J — TP (X)?P) = Tm(ker ¢; — TIP™F(X)?P) = 7(ker ¢;).
This completes the proof of Lemma 2.2. O

Theorem 2.3. Suppose that g,v > 0. Let H be a pro-l group, ¢ : IIP"Y(X) — H
a surjective morphism, x € XP*\ X, and j € {1,...,n}. Write I C ker(p;)(C
1Pro-l(X)) for the inertia subgroup corresponding to x (which is well-defined up to
congugation). Suppose that the following conditions are satisfied:

(1) o(I) # {1}.

(2) Any abelian subgroup of H is (topologically) generated by single element.

(3) dile (Hab Rz, Ql) > 2.

(4) Any topologically fintely generated normal closed subgroup of H is trivial or

open in H.

(@)

s Mg
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Then ¢ factors through the morphism ¢(1, oy g5y 2 IBOHX) — Hll’m'l(X).

Proof. For a € TIP™!(X), write @ for the image of a by the quotient map IIP*f(X) —»
ngo—l (X)

In light of [MT] Proposition 2.4(vi), it suffices to show that ker ¢; C ker ¢ for all
ie{l,...,n}\ {j}. We may assume that the inertia subgroup I is corresponding

to yr, Wthh 1mphes that <p( ) # 1.

Z

Write A := {al ,. ..,ag“, 1 ,...,Bg v 7...,75121} C TPl (X), and " for
the composite of ¢ and the quotient map H — H?P_ Then it follows from Lemmas
2.1, 2.2 that

e for any a € A, p(a) commutes with b, (¥ (J))b(:1 for some b, € H;
0 (ker qbi) is (topologically) generated by ¢*"(A).

Now, since cp( ) # 0, it follows from assumption (2) that there exists ¢, € Q
such that p(a) = (bago(%(n))ba )éa, which implies that p*(a) = c,¢**(¥ (J))

g@ab(ﬁ,(ﬂj))(@l(c H®* ®7, Q;). Thus, it holds that ¢ (ker ¢;) C P (¥ gj))(@l. In light
of assumption (3), it follows that " (ker ¢;) C H?P, hence also ¢(ker ¢;) C H, is
not open. On the other hand, since ¢ is surjective, ¢(ker ¢;) C H is a normal closed
subgroup of H. Thus, it follows from Proposition 1.9, together with assumption (4),
that ¢(ker ¢;) is trivial, i.e., ker ¢; C ker p. This completes the proof of Theorem
2.3. O

3. CLASSIFICATION OF SURJECTIVE HOMOMORPHISMS

In the present §3, we classify all surjective homomorphisms from a configuration
space group to a surface group. Let [ be a prime number.

Definition 3.1 (cf. [S] Definition 5.5). Let G be a pro-l group. Then we shall
write 7., (G) for the m-th term of the lower central series of G, ie., v1(G) = G
and Y1 1(G) = [G, 7 (G)] (m € Zsg). Moreover, we shall write Gr'®(G) =
®D,,>1 7 (G)/¥m+1(G). Note that Gr'(G) can be regarded as a Zso-graded Lie
algebra over Z;.

Theorem 3.2. Let H be a profinite group, n a positive integer, (9,7) a pair of
nonnegative integers such that 2g — 2 +1r > 0, and ¢ : 1S g — H a surjective
homomorphism. Suppose that the following conditions are satisfied:
(1) Gr'*(H') is a free Z;-module of rank > 2.
(2) Fora,be GrlCS(Hl), if [a,b] = 0, then a and b are linearly dependent over
Z.
(3) Any topologically finitely generated normal closed subgroup of H (resp. H')
is trivial or open in H (resp. H').
(4) If g > 0 and r > 2, then any abelian subgroup of H' is (topologically)
generated by single element.
Then there erists a (surjective) homomorphism ¢’ HC — H' induced by a
pm]ectzon morphism of co-length 1 or an exceptional morphzsm such that ¢ factors
through ¢’ .

Proof. As in the proof of [S] Theorem 5.11, we can reduce to the case C = pro-l.
If g =0 or r <1, then Theorem 3.2 follows from (the proof of) [S] Theorem 5.11
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(note that, since Gr'®*(H') is generated by ~v; (H')/v2(H') = H"#" the assumptions
(1),(2) imply that rankz, (H»*") > 2 and that rankz, (Gr'*(H')) > 3).

If g > 0 and 7 > 2, then let us consider the surjective morphism 10" — Hﬁrgll
obtained by the open immersion X,, — Y, arising from an open immersion X <
Y, where X (resp. Y) is a hyperbolic curve of type (g,7) (resp. (g,1)) over an
algebraically closed field of characteristic zero. Then, in light of Theorem 2.3, we

may assume that the surjective homomorphism ¢ factors through ITPro-L — TP

n,g,r n,g,1°
Thus, we can reduce to the case r = 1, which has already been verified. This
completes the proof of Theorem 3.2. O

Corollary 3.3. Let H be a surface group, C € {pro-l,prof}, Il a C-configuration
space group, and ¢ : 1 — H a surjective homomorphism. Then there exists a
(surjective) homomorphism ¢’ : 11 — H' induced by a projection morphism of co-
length 1 or an exceptional morphism such that ¢ factors through ¢'.

Proof. We may assume that [ € ¥, where H is a pro-X surface group. Then it
follows from [S] Lemma 2.5, [MT] Theorem 1.5, together with the well-known fact
that any closed subgroup of H' of infinite index is a free pro-I group (cf. e.g. the
proof of [MT] Theorem 1.5), that H satisfies the conditions of Theorem 3.2. O

Remark 3.3.1. We can prove similar results in the case C = top by arguments similar
to the above arguments (or arguments appearing in [S] §8).

Remark 3.3.2. Let X be a smooth curve of type (g,r) over an algebraically closed
field of characteristic zero. If 2g — 2+ < 0, then, by taking an integer 7’ such that
29 — 247" > 0 and a surjective homomorphism 7§ (X,,) — IIS , ., determined by
an open immersion X < Y (where Y is a hyperbolic curve of type (g,7')), we can

classify all surjective homomorphisms from 7§ (X,,) to a surface group.

Remark 3.3.3. Historically, Corollary 3.3 in the case

e H is not isomorphic to the pro-% completion of the free group of rank 2 for
any nonempty set of prime numbers X: proved in [HMM] Proposition 2.3.
e g > 2: essentially proved in [MT] Corollary 4.8 (see [S] Theorem 7.11).
e g=0orr <1: proved in [S] Theorem 5.11.
Moreover, in the case g > 2 and C = top, an alternative proof was given in [Ch2]
Lemma 2.5 (see also [Chl] §3).

Remark 3.3.4. By Theorem 3.2, we can replace the condition “H D Ain/K and
(g,7,n) € {(0,3,3),(1,1,2)}” appearing in [S] Theorem 7.14 with “H D Ain/[{,
and, moreover, (g,7,n) = (0,3,3) or g > 17. In particular, if g > 1, then, for
a positive integer n, a generalized sub-l-adic field K (cf. [M] Definition 4.11), a

hyperbolic curve X of type (g,7) over K, and a hyperbolic polycurve Z over K (cf.
[H] Definition 2.1), it holds that the natural map

Isomg (X, Z) — Isomg, (71(X,,), 71(Z))/ Inn(m1 (Z xx K))
is bijective.
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