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ON NORMAL MOISHEZON SURFACES ADMITTING
NON-ISOMORPHIC SURJECTIVE ENDOMORPHISMS

NOBORU NAKAYAMA

ABSTRACT. Normal Moishezon surfaces admitting non-isomorphic surjective
endomorphisms are classified in some cases by using the original notion: “char-
acteristic completely invariant divisor.” A surface in our list has a finite Galois
cover étale in codimension 1 from one of the following surfaces: a toric surface,
an abelian surface, a P'-bundle over an elliptic curve, a projective cone over
an elliptic curve, and the direct product of a non-singular projective curve
of genus > 2 with a rational or elliptic curve. As a corollary of our classi-
fication, any normal Moishezon surface admitting non-isomorphic surjective
endomorphisms is shown to be projective.
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INTRODUCTION

We are interested in classifying compact complex analytic varieties admitting
non-isomorphic surjective endomorphisms. In the case of non-singular projective
curves, such a curve is rational or elliptic. In the case of non-singular projective
surfaces, we have the following complete classification theorem by [I5] §3] and [40]:

Theorem. A non-singular complex projective surface admits a non-isomorphic sur-
jective endomorphism if and only if it is one of the surfaces listed below:

e Toric surfaces.
o Pl-bundles over elliptic curves.
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P'-bundles over curves of genus > 2 which are trivialized after finite étale
base changes.

Abelian surfaces.

Hyperelliptic surfaces.

Surfaces with Kodaira dimension =1 and euler number = 0.

We have complete classification results also in the cases of non-singular compact
complex surfaces (cf. [16]) and non-singular complex projective 3-folds with non-
negative Kodaira dimension (cf. [I5] and [I7]).

This article deals with normal Moishezon surfaces admitting non-isomorphic
surjective endomorphisms. A Moishezon surface is by definition a compact complex
analytic surface bimeromorphic to a projective surface (cf. [36]): This is associated
with a 2-dimensional integral algebraic space proper over C by [2]. The main
purpose of this article is to prove the following:

Theorem A. Let X be a normal Moishezon surface with a reduced divisor S.
Suppose that Kx + S is pseudo-effective and that S is completely invariant under a
non-isomorphic surjective endomorphism f: X — X. Then Kx + S is semi-ample
and there exists a finite Galois cover v: V — X étale in codimension 1 satisfying
one of conditions [I)-([]) below with a non-isomorphic surjective endomorphism
fv:V =V such that v o fyy = f' ov for some positive integer 1. Here, one can
take I =1 in cases B)—(G):

(1) V=P x T and v*S = pri (P, + P») + pry D for a non-singular projective
curve T, two points P| P, € P!, and a reduced divisor D C T such that
deg(Kr + D) > 0, where pry: V — P! and pry: V — T are projections.

(2) V= C xT and v*S = pry D for an elliptic curve C, a non-singular
projective curve T, and a reduced divisor D C T such that deg(Kr+D) > 0,
where pro: V. — T 1is the second projection;

(3) V is an abelian surface and S = 0;

(4) V is a Pl-bundle over an elliptic curve and v*S is a disjoint union of two
sections;

(5) V is a projective cone over an elliptic curve and v*S is a cross section (cf.
Definition below);

(6) V is a toric surface with v*S as the boundary divisor.

Remark. In the statement, K x denotes the canonical divisor, and a reduced divisor
S is said to be completely invariant under f, or f-completely invariant, if f~18 =
S; we allow 0 as a completely invariant divisor (cf. Definition below). For
definitions of pseudo-effective and semi-ample, see Remark [[L3] and Section
below. A finite surjective morphism v: V' — X is said to be étale in codimension
Lif vfynz: V\ Z — X is étale for a Zariski-closed subset Z of codimension > 2.

Remark. We have Kx + S g 0 (resp. ~g 0) in (1) and @) (resp. @)—(@)). Fur-
thermore, S = 0 (resp. # 0) in [B]) (resp. @)—(@)).

Corollary B. A normal Moishezon surface admitting a non-isomorphic surjective
endomorphism is always projective.
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Proof. For the normal Moishezon surface X, if Kx is not pseudo-effective, then X
is projective by Brenton’s criterion [, Prop. 7]. If Kx is pseudo-effective, then we
can apply Theorem [Al to the case where S = 0. In this case, we have a finite Galois
cover V — X from one of projective surfaces V listed in Theorem [Al Thus, X is
always projective. O

The proof of Theorem [Al is given in Section We shall explain briefly the
strategy of the proof, where we need:

(A.1) Theorem [E] below on log-canonicity of (X, S).

(A.2) Theorem [2:24] below concerning the semi-ampleness of Kx + S.

(A.3) Some properties on the Galois closure of the k-th power f* = fo fo---o
f: X — X for k> 0 (cf. Section [22]).

(A.4) Theorem below on the structure of (X,.S, f) in which X admits a fi-
bration X — T to a non-singular projective curve 7" and f descends to an
automorphism of 7.

(A.5) Theorem below on the structure of (X, S, f) in which X is irrational
and ruled.

We see that (X, S) is log-canonical and K x +.S is semi-ample with (Kx +5)? =0
by (A1) and (A2). In the case where Kx + S g 0, we have a fibration 7: X — T
to a non-singular projective curve T' such that some multiple of Kx + S is linearly
equivalent to the pullback of an ample divisor on 7. Here, the endomorphism
f: X — X induces an automorphism h: T — T satisfying mo f = hox (cf.
Section [B]). Theorem [Alin this case is deduced from (A4).

For the case where Kx + S ~q 0, the proof of Theorem [Alis given in Section
(resp. 5.3) when S = 0 (resp. # 0). For the subcase: S = 0, Theorem [Alis deduced
from (A3) with calculation of euler numbers. For the other subcase: S # 0,
Theorem [A]is deduced from ([A.3]), (AH), the theory of toric surfaces (cf. [30], [49],
[20]), and so on.

Before stating other results, we shall explain some important notions. The in-
tersection theory of (Weil) divisors is essential to our study of normal Moishezon
surfaces. This is defined by Mumford in [38] II, (b)] and is applied to the study
of normal surfaces by Sakai in a series of papers [562], [53], [54], [B6]. See also
[44, §2] and [45] §1.3] for details. By the intersection theory, one can consider
the numerical equivalence & for R-divisors on a normal Moishezon surface X. We
set N(X) to be the real vector space generated by R-divisors modulo &, and de-
fine the Weil-Picard number as p(X) := dimN(X). The usual Picard number
p(X) = rank NS(X), where NS(X) denotes the Néron—Severi group, is not greater
than p(X), since NS(X) ® R C N(X). However, we can show:

Proposition C. If a normal projective surface X has a non-isomorphic surjective

endomorphism, then p(X) = p(X).

We can extend the cone and contraction theorems of the minimal model theory
to pairs (X, B) of a normal Moishezon surface X and a pseudo-effective R-divisor
B as in Theorems [[J] and [I0 below. These theorems concern the cone NE(X) in
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N(X) consisting of the numerical classes of pseudo-effective R-divisors and concern
extremal rays R C NE(X) satisfying (Kx + B)R < 0. The theorems seem to be
well known, but we give their complete proofs.

For a surjective morphism f: Y — X of normal Moishezon surfaces, we have
defined the numerical pullback f*D of a divisor D on X in [44] Def. 2.4(3)] (cf. [45}
§1.3]), where f*D is a Q-divisor. This is a generalization of Mumford’s pullback [38],
I1, (b)] defined when f is a bimeromorphic morphism and Y is non-singular. Since
the numerical pullback of a Cartier divisor is just the usual pullback, we consider the
numerical pullback as the “standard” pullback of a divisor. For a divisor F on Y, the
pushforward f.E is defined as usual, and we have the equality (f*D)E = D(f.E)
of intersection numbers. The pullback D — f*D and the pushforward F — f,F
give rise to linear maps f*: N(X) — N(Y) and f.: N(Y) — N(X), respectively (cf.
[44, Rem. 2.9]), where f. o f*: N(X) — N(X) is just the multiplication map by
deg f, the degree of f, which is the cardinality of a general fiber of f.

For a non-isomorphic surjective endomorphism f: X — X of a normal Moishe-
zon surface X, we define the first dynamical degree Ay as the spectral radius of
f*: N(X) = N(X) (cf. Definition Bl below). Then /\% > deg f, and Af equals the
spectral radius of f.: N(X) — N(X) (cf. Proposition B3 below). We can prove the
following by applying Theorem [Ak

Theorem D. For a non-isomorphic surjective endomorphism f of a normal pro-
jective surface X and for the first dynamical degree Ay, one of the following holds:

(1) The pullback homomorphism (fF)*: N(X) — N(X) is a scalar map for
some power f*: X — X. In particular, (A\f)? =deg f.

(2) There is a fibration X — T to a non-singular projective curve T such that
the support of any fiber is isomorphic to P*, X; is an integer dividing deg f,
and ()\f)2 > deg f. In this case, X has only quotient singularities and has
no negative curve, and p(X) = 2.

(3) There is a finite Galois cover C x T — X étale in codimension 1 for an
elliptic curve C and a non-singular projective curve T of genus > 2. In this
case, \f = deg f.

(4) There is a finite Galois cover A — X étale in codimension 1 from an abelian
surface A with an endomorphism fa: A — A as a lift of f. Here, A\ = Ag,
and deg f = deg fa.

Remark. The canonical divisor Kx is not pseudo-effective in ([2). Moreover, Kx is
nef (cf. Remark [[3)) but not numerically trivial in @), and Kx ~g 0 in ). By a
negative curve, we mean a prime divisor with negative self-intersection number.

Remark. There is a well-known definition of dynamical degrees of a meromorphic
endomorphism of a compact Kahler manifold in the study of complex dynamical
systems (cf. [50, p. 917, Def.], [9, p. 960], [25, Def. 1.1]). In Corollary [A.10] in
Appendix [Al below, our Ay is shown to be equal to the first dynamical degree of the
meromorphic map v~!o fov: Z--— Z for any birational map v: Z---— X from
a non-singular projective surface Z. When X is non-singular, this result is known
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by [25, Prop. 1.2]. Note that the second dynamical degree of v~! o f o v is nothing
but deg f.

The following theorem on completely invariant divisors (cf. Definition [Z12)) is a
consequence of [45] Cor. 3.6], since f is a finite morphism by Remark 210l below:

Theorem E. Let X be a normal Moishezon surface with a non-isomorphic surjec-
tive endomorphism f. Then (X,S) is log-canonical for any f-completely invariant
divisor S

In particular, if K x +.S is nef, then K x+5 is semi-ample by the 2-dimensional abun-
dance theorem for log-canonical pairs: The theorem for normal Moishezon surfaces
is prepared in Theorem below. Theorem [E] is applied to prove Theorem 2.24]
(cf. (A22)). Moreover, by the classification of 2-dimensional log-canonical pairs (cf.
[28, Thm. 9.6], [33 Ch. 3]), the following hold for (X,S) (cf. [44, Thm. 3.22], [45]
Fact. 2.5]):

e X has only quotient singularities along S}
e X\ S C X is a toroidal embedding at any point of the singular locus of S;
¢ S|x,., is a normal crossing divisor on the non-singular locus Xcg of X.

The characteristic completely invariant divisor is a key notion in our study: This
is a reduced divisor S defined by the following property: A prime divisor I' on X
is contained in Sy if and only if (fk)*I‘ = bI" for some k > 1 and b > 2. We have
the following in Section 24t

e the number of prime components of Sy is finite;

e Sy is f-completely invariant and Syx = Sy for any & > 0;

e any negative curve is contained in Sj.
In particular, X has only a finitely many negative curves, which generalizes [40]
Prop. 11]. The refined ramification divisor Ay defined in Definition equals
Ry — f*Sy + Sy for the ramification divisor R; of f, where Sy and Ay have no
common prime component. In particular, Kx +S5 = f*(Kx +S¢)+ Ay, and every
prime component of Ay is nef (cf. Proposition Z220(])). We can prove that Ay =0
if and only if f|x\s: X \ S — X \ S is étale in codimension 1 for an f-completely
invariant divisor S (cf. Proposition 2:21]). Under the assumption of Theorem [Al we
have S > Sy and Ay = 0 by Theorem Moreover, v*S; = pri(P1 + P) in
Theorem [Al[I)), and Sy = 0 in Theorem [A[2]), by Lemma G511 below.

Organization of this article. In Section [II we discuss properties on normal
Moishezon surfaces. Some basic properties on divisors are prepared in Section [Tl
Section [[.2] concerns semi-ampleness criteria for nef divisors. In Section[.3] we shall
prove cone and contraction theorems for certain pairs (X, B) generalizing the same
theorems in the well-known minimal model theory for projective surfaces. There
is added Theorem as a version of abundance theorem for normal Moishezon
surfaces. Section [[4] concerns P!-bundles over a non-singular projective curve.
Here, we introduce the notion of a projective cone over a curve (cf. Definition [[T6)).

General properties of non-isomorphic surjective endomorphisms of normal va-
rieties are explained in Section Elementary properties on endomorphisms of



sets, cyclic covers, Galois closures, and endomorphisms of curves are discussed in
Sections Z.IHZ3l In Section 2.4] we introduce many key notions such as the char-
acteristic completely invariant divisor Sy and the refined ramification divisor Aj
for a non-isomorphic finite surjective endomorphism f of a compact normal vari-
ety. Some results on Ay and completely invariant divisors are given in Section 2.5]
which include Theorem on the semi-ampleness of Kx + S.

From Section [3] we concentrate on the study of normal Moishezon surfaces with
non-isomorphic surjective endomorphisms. The first dynamical degree Ay is intro-
duced and studied in Section[3Il The singularity of the pair (X, .S) for a completely
invariant divisor S is studied in detail in Section Section deals with endo-
morphisms preserving fibrations or bimeromorphic morphisms. An application of
the minimal model program to the study of endomorphisms is given in Section [3.4]
where we obtain further properties on the first dynamical degree.

In Section[d proceeding works in Section [B.3] we study non-isomorphic surjective
endomorphisms f: X — X preserving a fibration 7: X — T to a non-singular
projective curve T such that m o f = h o 7w for an endomorphism h of T. In
Section .1l we study the effect of base change by a surjective morphism 7: 7/ — T
from another non-singular projective curve T’ with an endomorphism h': T" — T’
such that 7o A’ = ho7. In Lemma and Proposition 3] below, we give a
sufficient condition for having a good morphism 7 so that the normalization X' of
X xr T is étale in codimension 1 over X. Some fundamental results are proved in
Section in the case where the endomorphism h is étale; for example, it is proved
in Corollary 7] that if h is étale with degh > 1, then 7 is smooth. Section L3
is devoted to proving Theorem .9, which determines the structure of X when
degh = 1. In Section 4] applying results in Sections and 3] we prove
Theorem classifying the irrational ruled surfaces admitting non-isomorphic
surjective endomorphisms.

Section [ is devoted to proving Theorem [Al Section 1] treats the case where
Kx + S g 0. Sections (resp. B3] treats the case where Kx + S ~g 0 and
S =0 (resp. # 0). Some applications of Theorem [A] are given in Section [6, where
we shall prove Proposition [Cl and Theorem

We have an appendix, where we compare our definition of the first dynamical
degree (cf. Definition B1]) with the definition of the same degree defined in the study
of complex dynamical systems. After discussing elementary properties of spectral
radii of endomorphisms of finite-dimensional real vector spaces in Section [A1l we
shall prove Theorem [A.9] and Corollary [A. 10l on the comparison in Section [A.2]

Background. During the joint work [47] with D.-Q. Zhang on polarized endomor-
phisms of normal complex varieties, the author recognized gradually the importance
of studying them in the 2-dimensional case. Independently of [47], the author began
the study of normal Moishezon surfaces admitting non-isomorphic surjective endo-
morphisms, and was preparing a paper in several versions. One version [43] written
in 2008 is referred to the published version of [47]. This incomplete version [43]
is non-public and was sent to limited persons; however, it has been distributed so
widely than what the author expected. Some ideas and results there have already



been applied or generalized by many other people in several papers in these 10 years
and more. On the other hand, further modified (but incomplete) versions of [43]
seem to have never been taken into account by the people. The author continued
the modification work up to 2010, but after that, it was interrupted many times
by his new study of subjects in different areas of algebraic geometry. The author
gave talks on results in [43] and modified versions several times at symposiums in
2008-2014. The current article is thought of as the core part of a revised version of
[43]. Some contents of [43] have already been included in [44] and [45]. The other
contents of [43] with further progress will appear in the forthcoming paper [46].

Acknowledgement. The author is grateful to Professors Yoshio Fujimoto and
De-Qi Zhang for discussions in seminars at Research Institute for Mathematical
Sciences, Kyoto University. He expresses his gratitude to Professor Charles Favre
for sending a preprint version of [I2] with communication by email. The author is
partially supported by Grant-in-Aid for Scientific Research (C), Japan Society for
the Promotion of Science.

Notation and conventions. We use standard notation and conventions of the
birational (resp. bimeromorphic) geometry of complex algebraic (resp. analytic)
varieties as in [29], [41], [44], and [45]. However, some of them are different from
those used in [33], [57], and [34].

In this article, we deal with complex analytic spaces rather than schemes over
C, and a complex analytic space is always assumed to be Hausdorff and to have
a countable open base. A complex analytic variety is by definition an irreducible
and reduced complex analytic space, which is simply called a variety. A variety
of dimension 1 (resp. 2) is called a curve (resp. surface). A compact variety is
said to be Moishezon if its transcendence degree of the function field is equal to
the dimension (cf. [36]). In other words, a Moishezon variety is a compact variety
bimeromorphic to a projective variety. Sometimes, we call a dominant meromorphic
map of Moishezon varieties simply a rational map, since it is determined by a C-
algebra homomorphism of function fields. We write arrows ---— with dotted tail for
meromorphic maps. A list of notations used frequently in this article is in Table [l

1. SOME BASIC RESULTS ON NORMAL MOISHEZON SURFACES

We recall some basic properties on divisors on normal surfaces in Section [Tl
In Section [[.2] we prepare results on semi-ample Q-divisors, and in Section [[.3] we
prove some versions of cone and contraction theorems for normal Moishezon surfaces
with an application to the case when —Kx is big. Some elementary properties of
P!-bundles over non-singular projective curves are explained in Section [[4] with
properties of projective cones (cf. Definition [[T6]).

1.1. Basics on divisors on normal surfaces. We recall some notation and con-
ventions for divisors explained in [44, §52.1 and 2.2], and [45, §1.2].

Let X be a normal variety. A divisor on X always means a Weil divisor. The
prime decomposition of a divisor is an expression as a formal linear combination
of prime divisors. The multiplicity multr D of D along a prime divisor I is the



TABLE 1. List of specific notations

Dreg the non-singular locus of Z.

Sing Z the singular locus of Z.

Zred the reduced structure of Z, i.e., the closed reduced subspace with
the same underlying set.

Dred the reduced divisor associated to an R-divisor D with Supp Dyeq =
Supp D.

~Q the Q-linear equivalence relation for R-divisors.

A the numerical equivalence relation for R-divisors.

N(X) the real vector space of R-divisors on X modulo &.

p(V) the Picard number of V, the rank of the Néron—Severi group NS(V).

p(X) the Weil-Picard number of X (= dim N(X)).

Ky the canonical divisor of V.

Ry the ramification divisor of a non-degenerate morphism f.

LD the round-down of an R-divisor D.

D7 the round-up of an R-divisor D.

f~'D = (f*D)yeq for a reduced divisor D and for a certain morphism f.

D1Ds the intersection number of R-divisors D and D5 on a normal surface.

(Dl . DQ) = D1D2.

cl(D) the numerical class in N(X) of an R-divisor D.

) the intersection pairing on N(X) such that (cl(D1),cl(D2)) = D1Ds.
NE(X) the pseudo-effective cone of X.
Nef(X) the nef cone of X.

e(Z) the euler number = Y, ,(—1)" dim H;(Z, C).

g(C) the genus of a non—singﬁlar projective curve C.

k(D,X) the D-dimension for an R-divisor D on X.

m the m-th power fofo---of: V — V of an endomorphism f: V — V.

St the characteristic completely invariant divisor of a finite endomor-
phism f: V = V.

Ay the refined ramification divisor of a finite endomorphism f: V — V.

Af the first dynamical degree of a surjective endomorphism f: X — X.

of the positive square root (deg f)'/? of the degree deg f of a finite

endomorphism f: X — X.
(Here, Z is a complex analytic space, V' is a compact normal variety,
and X is a normal Moishezon surface.)

coefficient of T" in the prime decomposition of D. If multr D € {0,1} for any prime
divisor I', then D is said to be reduced. In particular, we allow 0 as a reduced
divisor. The group of Weil (resp. Cartier) divisors on X is denoted by Div(X)
(resp. CDiv(X)). Similarly, we have the group Div(X,Q) (resp. Div(X,R)) of Q
(resp. R)-divisors on X, which is isomorphic to Div(X) ® Q (resp. Div(X) ® R)
when X is compact. A Q-divisor D on X is said to be Q-Cartier if mD is Cartier
for some m > 0 locally on X. The associated reduced divisor, the round-down, and



the round-up, respectively, of an R-divisor D are divisors defined by

Dyeq := ZT#O Ty, oDo:=) irialy and "D7:=> 7Ly,
where D = > r;T'; is the prime decomposition with r; € R and where
tros=max{m €Z|m<r} and "r':=min{m €Z|m >r}.

Let f: Y — X be a morphism of normal varieties. Assume that f is of mazximal
rank (cf. [45, Def. 1.1]) and that codim(f~! Sing X,Y) > 2. Here, f is of maximal
rank if and only if f is smooth on a non-empty Zariski open subset of Y (cf. [45]
Lem. 1.3]). Then one can consider the pullback f*D of a divisor D on X as a
divisor on Y (cf. [45, Lem. 1.19]): This is defined by the composite homomorphism

F*: Div(X) = CDiv(Xyeg) 13 CDiv(Y") = Div(Y)

for Y/ = Yieg N f ' Xyeg, [/ = fly': Y’ — Xieg, and the pullback homomorphism
f"* of Cartier divisors.

Convention 1.1. For a reduced divisor D on X, we write f~1D for (f*D)yeqa by
abuse of notation, where f~! Supp D = Supp f*D as a set. In particular, f~10 = 0.

In the situation above, assume in addition that dim X =dimY, ie., f: Y — X
is non-degenerate (cf. [45, Def. 1.1]). Then the ramification divisor Ry is defined
as the closure of the ramification divisor Ry of f: Y’ — X,es, and we have the
ramification formula: Ky = f*Kx + Ry (cf. [45] §1.5]). In this case, Ry = 0 if and
only if f is étale in codimension 1, i.e., f is étale on Y \ Z for a closed subset Z of
codimension > 2.

To a non-degenerate morphism f:Y — X of normal surfaces, without as-
suming codim(f~!Sing X,Y) > 2, we can associate the pullback homomorphism

*: Div(X,Q) — Div(Y,Q) of Q-divisors by the numerical pullback (cf. [44] §2.1],
[45, §1.3]). Here, f*D is a Q-divisor for any divisor D on X. The homomorphism
f* extends the pullback homomorphism f*: CDiv(X) — CDiv(Y) of Cartier di-
visors, and extends the pullback homomorphism f*: Div(X) — Div(Y) above in
the case where codim(f~!Sing X,Y) > 2 (cf. [45, Lem.-Def. 1.23]). For a reduced
divisor D on X, we also write f~1D for (f*D);eqa as in Convention [T where
f~1Supp D = Supp f*D as a set.

Remark 1.2. For an R-divisor D on a compact normal variety X, the D-dimension
k(D, X) is defined in [41], 1T, Def. 3.2] by generalizing litaka’s definition for Cartier
divisors [27]. When dim X = 2, for any resolution p: X — X of singularities, we
have x(D,X) = r(u*D, X) for the numerical pullback x*D, by [52, Thm. (2.1)]
(cf. [45], Lem. 1.28]).

The intersection numbers of R-divisors on a normal surface is defined by the
numerical pullback. Let X be a normal surface and let Dy and D, be R-divisors
on X. If Supp Dy N Supp Ds is compact, then the intersection number D; Dy =
(Dy - Ds) is defined as (u*Dy - u*Ds) for the minimal resolution p: X — X of
singularities. The numerical factorial index of X, denoted by nf(X), is defined as
the smallest positive integer n such that p*(nD) is Cartier for any divisor D on



10

X (cf. [45] Def. 1.26]). A negative curve on X is a prime divisor I' with negative
self-intersection number I'? = (I'- T'). For a compact reduced divisor E = """ | E;
on X, if the intersection matrix (E;E;)1<; j<n 1S negative definite, then we have the
contraction morphism of E as a bimeromorphic morphism 7: X — X to another
normal surface X such that the m-exceptional locus is just E. This is unique up to
isomorphism and its existence is shown in [52, Thm. (1.2)] as a generalization of
Grauert’s contraction criterion [21} (e), pp. 366-367] (cf. [44, Thm. 2.6]).

The intersection numbers define a numerical equivalence & for R-divisors on a
normal Moishezon surface X; two R-divisors D; and Dy are numerically equivalent,
i.e., D1 & Do, if and only if D1I"' = DoI" for any prime divisor I'. We define N(X)
to be the real vector space Div(X,R)/&. Then N(X) D NS(X) ® R for the Néron—
Severi group NS(X). The dimension p(X) of N(X) is finite and is called the Weil-
Picard number of X. Note that the Picard number p(X) is the rank of NS(X). The
numerical equivalence class cl(D) of an R-divisor D is called the numerical class.
We write ( , ): N(X)xN(X) — R for the bilinear map induced by the intersection
pairing, i.e., {(cl(D;),cl(D3)) = D1 Ds. The pseudo-effective (resp. nef) cone of X
is defined as the set of numerical classes of pseudo-effective (resp. nef) R-divisors
on X, which is denoted by NE(X) (resp. Nef(X)). Two sets NE(X) and Nef(X)
are both strictly convex closed cones of N(X), and these are dual to each other.
Note that an R-divisor D on X is big (resp. numerically ample) if and only if cl(D)
lies in the interior of NE(X) (resp. Nef(X)).

Remark 1.3. An R-divisor D on a normal Moishezon surface X is said to be:

numerically trivial if D & 0;

nef if DC > 0 for any prime divisor C;

pseudo-effective if DB > 0 for any nef R-divisor B;

numerically ample if D?* > 0 and if DC > 0 for any prime divisor C;
big if D — A is pseudo-effective for a numerically ample R-divisor A

(cf. [44] Def. 2.11], [53, p. 629]). These are numerical properties, i.e., depending on
the numerical class cl(D) in N(X).

For a surjective morphism f: Y — X of normal Moishezon surfaces, the pushfor-
ward f,F is defined as usual for any R-divisor E on Y. As the projection formula,
we know that

(D-f+E) = (f*D-E) and [f.(f*D) = (degf)D

for any D € Div(X,R) and E € Div(Y,R), where deg f, the degree of f, is the
cardinality of a general fiber of f. Then we have linear maps

FoNX) = NY) and £ N(Y) = N(X)

satisfying f*cl(D) = cl(f*D) and f.cl(E) = cl(f«E) for any D and E (cf. [44]
Rem. 2.9]). Here, the composite f. o f*: N(X) — N(X) is the multiplication
map by deg f. Moreover, we have f*Nef(X) C Nef(Y), f*NE(X) C NE(Y),
f« Nef(Y) = Nef(X), and f. NE(Y) = NE(X).
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1.2. Semi-ampleness criteria. We shall prove some results on semi-ampleness
which are well known for non-singular projective surfaces. Recall that a Q-divisor
D on a normal Moishezon surface X is said to be semi-ample if there is a positive
integer m such that mD is Cartier and the linear system |mD| is base point free.

Lemma 1.4. Let D be a nef Q-divisor on a normal Moishezon surface X such
that D?* = 0. If either k(D,X) > 1 or DKx < 0, then D is semi-ample and
k(D,X)=1.

Proof. We can reduce to the case where X is a non-singular projective surface,
as follows: Let u: M — X be a birational morphism from a non-singular pro-
jective surface M. Then p*D is a nef Q-divisor satisfying (u*D)? = D? = 0
and (u*D)Ky = D(psKnr) = DKx. Moreover, k(u*D, M) = (D, X) (cf. Re-
mark [[2). Suppose that p*D is semi-ample. Then there exist a positive integer
m and a morphism ®: M — PV to a projective space such that mu*D ~ ®*H
for a hyperplane H of PV. Here, dim ®(M) < 1, since D? = 0. If dim ®(M) = 0,
then p*D ~ 0 contradicting (D, X) > 1 or DKx < 0. Hence, dim®(M) =1
and k(u*D, M) = 1. Moreover, ® factors through X, i.e., there is a morphism
¢: X — PV such that ® = ¢ o p, since (u* D)’ = 0 for any p-exceptional prime
divisor I". Hence, mD ~ ¢*H. In particular, D is semi-ample and (D, X) = 1.
Therefore, we may assume that X is non-singular and projective. Then the
assertion in the case k(D, X) > 1 is well known (cf. [19, Thm. (4.1)]). If DKx < 0,
then x(D,X) > 1 by the Riemann-Roch formula for x(X, Ox(mD)) for m € Z.
Thus, we are done. [l

We have the following by Lemma [[4] and [44] Lem. 2.31]:

Proposition 1.5. Let X be a normal Moishezon surface. Assume that X is rational
and —Kx is big. Then X is a projective surface with only rational singularities.
Furthermore, any nef Q-divisor on X is semi-ample.

Proof. Since —Kx is big, X is projective by Brenton’s criterion [4, Prop. 7]. Let
p: M — X be a resolution of singularities. Then H*(M,Oy;) = 0 as M is rational.
Hence, X has only rational singularities by [44, Lem. 2.31(3)]. It remains to prove
that any nef Q-divisor D on X is semi-ample. If D & 0, then D ~g 0 by [44]
Lem. 2.31(4)], since H*(X,0x) = H'(M,Oy;) = 0; thus, D is semi-ample in this
case. If D % 0 with D? = 0, then DKx < 0. In fact, since —Kx — A is pseudo-
effective for an ample Q-divisor A, we have —DKx > DA > 0. Hence, in this case,
D is semi-ample by Lemma [l Finally, we consider the case where D? > 0. Then
the set {I';,T'a,...} of prime divisors I" on X satisfying DI" = 0 is finite, and the
intersection matrix (I';I';) is negative definite, by the Hodge index theorem. Let
v: X = Y be the contraction morphism of Y T';. Then —Ky = p.(—Kx) is also
big. Hence, Y is also a projective rational surface with only rational singularities
by the previous argument. Then the Q-Cartier divisor Dy := ¢, D is ample, and
D = ¢*Dy by the construction of ¢. Thus, D is semi-ample. O
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Remark. The last assertion on the semi-ampleness has been proved in [59, §2] and
[7, §3] when X is non-singular. This assertion can be proved by reducing to the
non-singular case, since —K s is big for the minimal resolution M of singularities.

1.3. Minimal model program. For a normal Moishezon surface X and a pseudo-
effective R-divisor B on X, we shall prove the cone and contraction theorems as
Theorems [[.9] and [[.I0] below, respectively, which generalize the same theorems in
the minimal model theory (e.g. [29, Thms. 4-2-1, 3-2-1]) in the 2-dimensional case.
Moreover, the minimal model program works in the case where the round-up "N
is reduced for the negative part N of the Zariski-decomposition of B (cf. Corol-
lary [LTT)). For the Zariski-decomposition of a pseudo-effective R-divisor, see [62}
§7), [18, §1], [52] §7], [54, App.], [41l I1I], [45, Lem.-Def. 2.16], and so on. Although
the statements are quite different from usual cone and contraction theorems, the
proofs are essentially known by the study of open surfaces in 1980s. For the study of
endomorphisms in this article, we need these theorems only for log-canonical pairs
(X, B), but we present here the generalized versions. Even for Moishezon surfaces,
we have the abundance theorem for log-canonical pairs (X, B) as Theorem
below, where B is a Q-divisor. At the end of Section [[3] as an application of the
cone and contraction theorems, we shall prove Theorem [[.T3 on negative curves for
surfaces with big anti-canonical divisor, which is a generalization of [42, Prop. 3.3].

Definition. The cone and contraction theorems concern the pseudo-effective cone
NE(X) in N(X). For an R-divisor D, we set
NE(X)p = {z € NE(X) | {cl(D), ) > 0}.
An extremal ray R of NE(X) is a 1-dimensional cone in N(X) such that
R=NE(X)NnH"' := {2 e NE(X) | (cI(H),z) = 0}
for a nef R-divisor H.

Remark. When X is projective, the usual cone theorem concerns the dual vector
space Ni(X) of N'(X) := NS(X) ® R. Note that N;(X) is a quotient vector space
of N(X) = Div(X,R)/& identified with Div(X,R)/& for a restricted numerical
equivalence relation &', where E &' 0 if and only if DE = 0 for any Cartier
divisor D. Instead of the cone NE(X) C N(X) above, its image in N1 (X) is treated
in the usual cone theorem.

We note the following on extremal rays:

Lemma 1.6. Let R be a 1-dimensional cone in NE(X).

(1) If NE(X) = C + R for a closed convex cone C not containing R, then R is
an extremal ray.

(2) IfR is an extremal ray and if vi + vy € R for two vectors vi, vy € NE(X),
then vy and v € R.

(3) Assume that R is an extremal ray contained in Nef(X). If D is an effective
R-divisor such that (cl(D),v) = 0 for any v € R, then cl(©) € R for any
prime component © of D.
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Proof. ([{): We can find a functional 5: N(X) — R such that § > 0 on C \ {0} and
B(v) < 0 for v € R\ {0}. Since the pairing ( , ) is non-degenerate, we have an
R-divisor B such that 8(z) = (z,cl(B)) for any z € N(X). For a numerically ample
divisor A and for ¢ := —(v, cl(B))/{v,cl(A)), we see that the R-divisor H = B+ cA
is nef and NE(X) N H+ = R. Thus, R is an extremal ray.

@): Let H be a nef R-divisor such that R = NE(X)NH~. Then 0 = (cl(H),v; +
va) = (cl(H),v1) + (cl(H),v2) > 0, and we have vy, v3 € R.

@): For the R-divisor H above, we have H? = 0 by R C Nef(X) and by the
Hodge index theorem. In particular, cI(H) € R. Since HD = 0, we have cl(D) € R
and also cl(0) € R by (@)). O

The following is a consequence of Mori’s cone theorem [37, Thm. (1.4)]:

Lemma 1.7. A normal Moishezon surface X contains a rational curve if Kx is
not nef.

Proof. Let pu: M — X be the minimal resolution of singularities. Then K, is not
nef, since Kx = p. K (cf. [44, Rem. 2.13]). Hence, by [37, Thm. (1.4)], there is
a rational curve I' on M such that Ky I' < 0. Now, Ky is u-nef, i.e., KpyyE > 0
for any p-exceptional prime divisor F. Thus, T is not u-exceptional and u(T') is a
rational curve on X. O

The following is shown by the idea in the proof of [60, Prop. 2.5], and it is
essential in the proof of Theorem [[9 below.

Lemma 1.8. For a normal Moishezon surface X, let C be a closed convex cone in
NE(X) and let Ty, ..., T, be finitely many prime divisors such that

NE(X)=C+) ~ Rsocl(ly).

Then, for any finitely many prime divisors C1, Cs, ..., Cp,, one has
—_— - / m ) n )
NE(X)=C'+3 ~ ReoclC)+), Rsocly)

for the cone
C':={2€C|(z,c(C)) >0 forany 1<i<m}

Proof. Let A be a numerically ample divisor on X. Then cl(4) > 0 on NE(X) by
the intersection paring ( , ). For a pseudo-effective R-divisor D on X, let S(D)
be the set of collections ¢ = (z;,¥;j)1<i<m,1<j<n Of non-negative real numbers xz;,
y; such that cl(D(¢)) € C for

D(C) = D — Zi:l xiOi — Zj:l ijj.
Then S(D) is a compact subset of Rggf " since it is closed and

for any ¢ € S(D). Thus, we can find an element ¢° € S(D) such that «a(¢°)
is maximal. Tt suffices to prove that D((°) € C’. Assume the contrary. Then
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D(¢°)C; < 0 for some 4. Thus, C; is contained in the negative part of the Zariski-
decomposition of D(¢°), and D(¢°)—bC; is pseudo-effective for some b > 0. Hence,

cl (D((O) —bC; — Zj:1 y;Fj) eC
for some y} > 0. Note that D(¢T) = D(¢°) — bC; — 3 y;T; for a collection ¢f =

(II, y;r) Then ¢' € S(D) and a(¢t) > «(¢°) + bC; A > a(¢°). This contradicts the
maximality of a(¢°). Thus, we are done. a

The following is our version of the cone theorem for normal Moishezon surfaces
(cf. [37, Thm. (1.4)], [60, Props. 2.5, 2.9], [63, Prop. 4.8], [29] Thm. 4-2-1], [56,
Thm. 2], [T, Thm. 10.2]):

Theorem 1.9. Let X be a normal Moishezon surface with a big R-divisor B. If
Kx + B is not nef, then there exist finitely many extremal rays R; such that

NE(X) = NE(X)ky+5+ YR

and that each R; is generated by the numerical class of a prime divisor C; satisfying
(KX + B)CZ' < 0.

Proof. We can take a numerically ample Q-divisor A and an effective R-divisor
Bx such that B & A+ By, since B is big. Let u: M — X be the minimal
resolution of singularities and set Bj; to be the proper transform of Bx in M.
Since Kj; and Bjs are p-nef, there is a p-exceptional effective R-divisor E’ such
that Ky + By = p*(Kx + Bx) — E' (cf. [44, Rem. 2.15]). Moreover, there is
a u-exceptional effective Q-divisor E” such that H := p*A — E” is an ample Q-
divisor. Then p*(Kx + B) & Ky + H+ By + E' + E”. By the cone theorem [37]
Thm. (1.4)],
NE(M) = NE(M) k11 + Y Rxocl(T;)

for finitely many rational curves I';. Let G1, G3, ..., Gy, be the prime components
of By + E' + E”. Then, by Lemma [[.8]

ﬁ(M) =Cp + Zk:l R>o Cl(Gk) + Z R>g Cl(Fj)
for the cone
Cy ={2 e NE(M)g,,+u | (cl(Gy),2) >0 for any 1<k <m}.
For an R-divisor D on M, if cl(D) € Cyy, then
(Kx +B-usD)= (u"(Kx+B)-D)=(Ky +H+ By +FE +E")D
=(Ky+H)D+ (Buy+E' +E")D > 0.
Thus, p«Cryr € NE(X) gy op for p.: N(M) — N(X). Since u, NE(M) = NE(X),
we have
NE(X) = NE(X)ky48+ 3 _ Roocl(C))
for finitely many prime divisors C;, where C; is expressed as (.G or p.I';. We set
R; = R>ocl(C;). By Lemma [L6([), removing redundant R;, we may assume that

R; are all extremal and R; ¢ NE(X)x, 15, ie., (Kx + B)C; < 0. Thus, we are
done. |
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Remark. The proof of [I, Thm. 10.2] is sketchy but essentially the same as above.

The following is our version of the contraction theorem (cf. [37, Thm. (2.1)],
[60, Props. 2.10, 2.12, 2.13], [53, Thm. 4.9], 29, Thm. 3-2-1], [56, Thm. 3], [I
Thm. 10.3)).

Theorem 1.10. Let X be a normal Moishezon surface with a pseudo-effective R-
divisor B. Let R be an extremal ray of NE(X) such that (Kx + B)R < 0, i.e.,
(cl(Kx 4+ B),v) < 0 for any 0 # v € R. Then there exists a unique fibration
m: X = Y to a normal Moishezon variety Y, called the contraction morphism of
R, such that, for a prime divisor C C X, the image w(C) is a point if and only if
cl(C) € R. Moreover, p(X) = p(Y) + 1 for the Weil-Picard number p, and the
following hold for a non-zero vector v € R:

(1) If (v,v) > 0, then p(X) = p(X) =1, NE(X) =R, X is a projective surface
containing a rational curve, and 7 is the structure morphism X — SpecC.

(2) If (v,v) =0, then X is a projective surface with only rational singularities,
p(X) =p(X)=2,dimY =1, and Fyeq ~ P* and cl(F) € R for any fiber
F of m.

(3) If (v,v) < 0, then R = Rx>ocl(C) for a negative curve C and w is the
contraction morphism of C. Assume that (B — C)C > 0. Then C is a
rational curve and p(X) = p(Y) + 1. Moreover, in this case, if X is
projective, then so is'Y .

Proof. There is a numerically ample R-divisor A such that (Kx + B+ A)R < 0. By
Lemma [[OI2]), R is one of R; in Theorem [[9 applied to the big R-divisor B + A.
Thus, we may assume that v = cl(C) for a prime divisor C. Then (v,v) = C%. When
C? < 0, i.e., C is a negative curve, we can take m as the contraction morphism
of C. Here, p(X) = p(Y) + 1 by [44] Lem. 2.10]. Assume that (B — C)C >
0, or equivalently, r < 1 for the real number r defined by BC = rC?. Then
(Kx + B)C = (Kx +rC)C < 0. Hence, there is a real number 0 < ¢t < 1
such that (Kx + tC)C < 0, i.e., —(Kx + tC) is m-ample. Then R'm,Ox = 0
by a version of Kawamata—Viehweg’s vanishing theorem [52, Thm. (6.3)] (cf. [44]
Thm. 2.17], [45, Prop. 2.15]), since LtC'1 = 0. In particular, the exceptional curve
C is rational. Moreover, R'7,O% ~ R%m.Zx is a skyscraper sheaf at 7(C) of the
abelian group H?(C,Z) ~ Z. Hence, Pic(Y) is isomorphic to the kernel of the
homomorphism Pic(X) — Z given by £ — deg L|c. This proves p(X) = p(Y) + 1.
The last assertion of (@) is shown by the same argument as in [44, Rem. 2.22] from
R'7,Ox = 0. Thus, we are done in the case where C? < 0.

Note that if C% > 0, then C is nef and Kx is not pseudo-effective by KxC <
(Kx 4+ B)C < 0. Thus, in this case, X is projective by Brenton’s criterion [4]
Prop. 7] and X contains a rational curve by Lemma [[7l Assume that C? > 0.
Then v = cl(C) is in the interior of NE(X), and hence, NE(X) = R and p(X) =
dimN(X) =1 > p(X) > 0. This shows (D).

Assume that C? = 0. Then C is semi-ample by Lemma [[4 and by KxC < 0,
and we have a fibration 7: X — Y to a non-singular projective curve Y such that
mC ~ m*H for some m > 0 and an ample divisor H on Y. Since R = Rx¢cl(C)
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is an extremal ray, the numerical classes of prime components of fibers of 7 are all
belonging to R. It implies that every fiber F' of 7 is irreducible. Moreover, 7 is
a P'-fibration by KxF < 0. Then Fyeq ~ P! for any F, p(X) = p(X) = 2, and
X has only rational singularities by [44, Prop. 2.33]. This shows (@], and we are
done. (]

Corollary 1.11. Let X be a normal Moishezon surface.
(1) If Kx is not pseudo-effective, then X is a projective surface containing a
rational curve, and p(X) = p(X), i.e., N(X) = NS(X) @ R.
Let B be a pseudo-effective R-divisor on X such that™ N7 is reduced for the negative
part N of the Zariski-decomposition of B. Then:

(2) For any numerically ample R-divisor A, there exist at most finitely many
rational curves C; such that

NE(X) =NE(X)ky+81a+ »_ Rsocl(Ch),

where (Kx + B+ A)C; <0 and R>q cl(Cy) is an extremal ray for any i.

(3) Assume that Kx + B is pseudo-effective. Let ¢: X — X' be the contraction
morphism of the negative part E of the Zariski-decomposition of Kx + B
and set B' := ¢.B. Then p(X)— p(X) = p(X') — p(X'), Kx + B’ is nef,
and Kx + B = ¢*(Kx + B') + E. Moreover, if X is projective, then so is
X',

Proof. We set B = 0 for the proof of [Il). We may assume that Kx + B is not
nef for assertions (I)-(B). Thus, there is an extremal ray R C NE(X) such that
(Kx + B)R < 0 by Theorem [[.9 and we have the contraction morphism m: X —
Y of R by Theorem If 7 is not birational, then Kx + B is not pseudo-
effective, p(X) = p(X), and R = R cl(C) for a rational curve C, by () and )
of Theorem [LTO

Assume that 7 is birational. Then 7 is the contraction morphism of a negative
curve C' and R = R cl(C) by Theorem [[LT0(E). Here, (B — C)C = (B — N)C +
(N —C)C > 0, since B— N is nef and "N is reduced. Then C is rational, and
p(Y) = p(X)—1and p(Y) = p(X) — 1 by Theorem [LTOB). Moreover, Y is
projective when X is so. We set By := 7, B and let Ny be the negative part of
the Zariski-decomposition of By. Then By — m,N = m(B — N) is nef (cf. [44]
Rem. 2.13]), and Ny < m,N. Thus, "Ny " is also reduced. Hence, in this case, we
can consider the same statements for (Y, By ) instead of (X, B). Moreover, we have

(I—l) Kx+B:7T*(Ky+By)+aC

for a rational number o > 0, since (Kx + B)C < 0.

Assertion (2) follows from Theorem [[9 applied to the big R-divisor B + A and
from the rationality of C; shown in Theorem [[LI(] with the observation above.

For (), it is enough to prove: p(X) = p(X) by [ Prop. 7] and Lemma [[L7l By
the observation above for birational and non-birational contraction morphisms of
extremal rays, we have p(X) = p(X) by induction on p(X).
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In the situation of (B]), the contraction morphism 7: X — Y is always birational,
and Ky + By is also pseudo-effective. By (1)), E = n*Ey + aC for the negative
part Ey of the Zariski decomposition of Ky + FEy. In particular, ¢: X — X'
factors through the contraction morphism ¢y : Y — X’ of Ey, where B’ = ¢y, By.
Therefore, by induction on p(X), we see that ¢ is expressed as the composite
of birational contraction morphisms of extremal rays. Hence, p(X) — p(X) =
P(X") — p(X'), and X’ is projective when X is so. Thus, we are done. |

Remark. If B is an effective R-divisor such that "B™ is reduced, then assertions
@) and @) hold for B, since N < B for the negative part N of the Zariski-
decomposition of B. In particular, these assertions hold for any log-canonical pair
(X, B) for a normal Moishezon surface X; in this case, if Kx + B is pseudo-effective,
then (X', B’) in (@) is also log-canonical by Kx + B = ¢*(Kx + B') + E.

We have the following abundance theorem for normal Moishezon surfaces:

Theorem 1.12. Let X be a normal Moishezon surface and B an effective Q-divisor
on X such that (X, B) is log-canonical, or more generally, MR log-canonical in the
sense of [I, Def. 1.7]. If Kx + B is pseudo-effective, then the positive part of the
Zariski-decomposition of Kx + B is semi-ample.

Proof. Let p: M — X be the minimal resolution of singularities. Then M is
projective, and there exist effective Q-divisors B,, and T}, on M such that B, and
T,, have no common prime component, T}, is p-exceptional, "B, is reduced, and
Ky + B, = p*(Kx + B) +T,. Hence, for the positive part P of the Zariski-
decomposition of Kx + B, the pullback p*P is the positive part of the Zariski-
decomposition of Ky + By,. It is known by [19, Main Thm. (1.4)] that p*P is
semi-ample. Thus, P is so by an argument in the proof of Lemma [[4l In fact, we
have a morphism ®: M — PV to a projective space such that mu*P ~ ®*H for
a hyperplane H of PV and a positive integer m. Then ® = ¢ o p for a morphism
©: X — PV, and we have mP ~ ¢*H. Hence, P is semi-ample. O

The following is a generalization of [42] Prop. 3.3] (cf. [B1 Prop. 4.4]):

Theorem 1.13. Let X be a normal Moishezon surface such that —K x is big. Then
X has only finitely many negative curves. If p(X) > 3 in addition, then NE(X) is
generated by the numerical classes of negative curves.

Proof. Note that X is projective and p(X) = p(X) by Corollary [LTII(]). Let us
fix an ample divisor A and take a rational number « > 0 such that —(Kx + aA)
is big. Then prime divisors T" satisfying (Kx + «A)T" > 0 are prime components
of the negative part N, of the Zariski-decomposition of —(Kx + aA). We fix a
rational number ¢ such that 0 < t < a. By Theorem [[L9] there exist finitely many
extremal rays R; such that (Kx +tA)R; < 0 and

(I-2) NE(X) = NE(X)xx 414 + »_ Ry,

For a negative curve I' on X, if cl(T') ¢ R; for any j, then (Kx + tA)I' > 0, and
hence, I is a prime component of N,. Therefore, X has only finitely many negative
curves.
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Assume that p(X) > 3. Then R; = Rx>ocl(I'j) for a negative curve I';, by
Theorem [LT0 Let Neg(X) C NE(X) be the polyhedral cone generated by the
numerical classes of negative curves. For a pseudo-effective R-divisor D, let &(D)
be the set of elements z € Neg(X) such that cl(D) —z € NE(X)xy 1¢4. Then &(D)
is compact, since it is closed and since

(cl(A), z) = AD — (cl(A),cl(D) — 2) < AD
for any z € &(D). We can find an element 2° € &(D) such that
(cl(A), 2°) = max{(cl(4),z) | z € 6(D)}

and we have an effective R-divisor B such that cl(B) = z° and that every prime
component of B is a negative curve. Then D — B is pseudo-effective.

We consider the Zariski-decomposition D — B = P + N, where P (resp. N) is
the positive (resp. negative) part. If P & 0, then D & B+ N and cl(D) € Neg(X).
Thus, it suffices to derive a contradiction assuming P & 0. Then —(Kx +tA)P > 0
by the Hodge index theorem as —(Kx + tA) is big. By ([22)), there exist real
numbers r; > 0 such that one of r; is positive and that

CI(P — erl“j) S W(X)KXJ’,tA.

Then cI(B + N + Y r;I';) € &(D) and we have A(B+ N + > r;I';) > AB =
(cl(A), 2°) contradicting the choice of z°. Thus, we are done. O

1.4. P'-bundles and projective cones over curves. Here, we note some ele-
mentary properties of Pl-bundles and projective cones (see Definition below)
over a non-singular projective curve.

Let 7: X — T be a P-bundle over a non-singular projective curve 7. Then
X ~ Pr(€) for a locally free sheaf £ of rank 2 on T. By [35] Thm. 3.1], the
following conditions are equivalent:

e £ is semi-stable;

e X contains no negative curves, i.e., Nef(X) = NE(X);

° *KX/T = —Kx + 7* Ky is nef;

o NE(X) =Rxqcl(F) + R cl(=Kx/7) for a fiber F of 7.
In particular, if X contains a negative curve, then £ is not semi-stable; hence, the
maximal destabilizing subsheaf of £ produces a negative section of 7, i.e., a section
with negative self-intersection number. The negative section is a unique negative
curve by the following:

Lemma 1.14. Assume that m has a negative section ©. If C' is a prime divisor on
X such that m(C) =T and C # O, then C? > 0.

Proof. There is a divisor L on T such that C' ~ d© + 7n*L for d := deg(C/T) > 0.
Then CO = dO2% +deg L > 0 by © # C, and

C? = d*0% + 2ddeg L = 2d(dO©? + deg L) — dO? > —dO2.
Thus, C? > 0 by ©2 < 0. (]

The following lemma is used in the proof of Proposition E.IT] below.
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Lemma 1.15. Assume that ™ has no negative section. Let D be a non-zero effective
divisor on X such that cl(D) € Rxqcl(—Kx,r). Then cl(©) € Rsocl(=Kx/p) for
any prime component © of D. Suppose that D is reduced. Then D is non-singular
and w|p: D — T is an étale morphism. In particular, there is a finite étale cover
7: T —= T from a non-singular projective curve T' such that D xp T’ is a disjoint
union of copies of sections of the induced P'-bundle X xp T — T'. Here, if
degm|p > 3 in addition, then X x7 T" ~ P! x T' over T".

Proof. By assumption, R>q cl(—K x ) is an extremal ray of Nef(X) = NE(X), and
the first assertion follows from Lemmal[l.6i[2). As a consequence, every © dominates
T. Suppose that D is reduced. Let v: D — D be the normalization and consider
the composite « := 7|p o v: D — T. Then Kz = v*Kp — c for the conductor c,
and the ramification formula K5 = o* K1 + R, implies that

deg Kp = (deg ) deg K1 + deg R, + dege.

On the other hand, deg Kp = (dega)deg Kt by (Kx/r + D)D = 0. Thus, R, =
¢ = 0. This means that D is non-singular, and «|p is étale. There is a finite
étale Galois cover 7: T/ — T which factors through the étale cover w|lg: © — T
for any prime component © of D. Then D X T’ is a disjoint union of copies of
T, since T x7 T' ~ G x T’ for the Galois group G of 7. Thus, 7 is a finite étale
cover satisfying the required condition. If degnw|p > 3, then X x7 7" — T’ has
at least three mutually disjoint sections of self-intersection number zero. Thus,
X xpT' ~P! x T" over T' by [40, Lem. 7]. O

Definition 1.16 (cf. [23, §8.3]). A normal projective surface X is called a projective
cone over a non-singular projective curve C' if there is an ample invertible sheaf A

on C such that X ~ Projan (R(C, A)[x]) for the graded C-algebra
RC, A=  RCAn=  H(CA™)
and a variable x, where the grading of R(C,A)[x] = R(C, A) ®c C[x] is given by
_mMm" pgo &7\ pm—j
(RIC, Al = @) HO(CL A .

For the maximal ideal R(C, A)y = @,,-, R(C, A)p, of R(C,A), the point of X
determined by the ideal R(C,.A)4[x] is called the vertex. The analytic subspace
defined by the ideal (x — a)R(C, A)[x] for a € R(C,.A); is called a cross section.

Remark. If A is very ample in Definition [[LT6] then the definition of projective cone
coincides with the usual geometric definition of projective cone over C' embedded by
the complete linear system |.A|. More precisely, we have the following: Let C' < P"
be the closed embedding defined by |.A|. Fixing a hyperplane H of P"*! we embed
C into P"*! by an isomorphism P" ~ H. For a point P in P"*1\ H, let V(C, A)
be the union of lines of P"*! passing through P and intersecting C. Then V(C, A)
is isomorphic to the projective cone Projan (R(C,.A)[x]). Here, P is the vertex and
C=HnNV(C,A)is a cross section.

Remark 1.17. For C and A in Definition [LT6 let M be the Pl-bundle Pc(Oc & .A)
over C. Then there is a birational morphism p: M — X such that p*Ox (1) ~
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O (1) for the tautological invertible sheaf Ox (1) with respect to the graded algebra
R(C, A)[x] and for the tautological invertible sheaf Oys(1) with respect to O¢ @ A.
The inverse image p~!(P) of the vertex P equals the u-exceptional locus, and it is
a section of the P!-bundle M — C corresponding to the projection Oc @ A — O¢.
If C 2 P! or deg A > 1, then the vertex is a singular point of X and p is the
minimal resolution of singularity.

Lemma 1.18. Let X be a projective cone over a non-singular projective curve C.
Then p(X) = p(X) =1 and H'(X,0x) = 0. If X is irrational and if there is an
elliptic curve B on X not containing the vertez, then C is an elliptic curve, and B
18 a cross section.

Proof. Let pi: M =Pc(O¢ @A) — X be the birational morphism in Remark [LT7
Then p(X) = p(M) —1 =1 by [44, Lem. 2.10]. Since X is projective, we have
p(X) = p(X) = 1. Weset E := u~1(P). Let D be a section of the Pl-bundle
m: M — C corresponding to a surjection Oc ® A — A. Then DN E = ) and
Ky +D+FE ~ 7 Ke. The image (D) is a cross section of X as Opr(1) ~ O (D).
By Leray’s spectral sequence, we have an exact sequence

0— HY(X,0x) = HY(M,0p) 5 H(X, R 11, 0yr).

For the isomorphism 7*: HY(C,O¢) — HY(M,Oy;) and for the canonical homo-
morphism R'4, Oy — R, Op, the composite

Hl(ca OC) TF_*) Hl(Ma OM) L> HO(X7R1,U*OM) — HO(Xa Rlﬂ*oE) = Hl(Ea OE)
is an isomorphism induced by 7|g: E — C. Hence, r is injective, and we have
HY(X,0x) =0.

Assume that X is irrational, i.e., g(C) > 1. Let B be an elliptic curve on X,eq.
Then Ox(Kx + B)|p ~ Op, and we have an exact sequence

H°(X,0x(Kx + B)) — H°(B,0p) - H'(X,0x(Kx)) ~ H(X,0x)" = 0.

Thus, there is an effective divisor Bf on X such that Kx +B ~ Bt and BN Bt = (.
Since p(X) = 1, B is ample and BY = 0. In particular, X is Gorenstein by
Kx + B ~0, and K); = p*Kx +mF for an integer m. Here, we have m = —1 by
0<2g(C)—2=(Ky+E)E=(m+1)E? and

0<Bu.F='B)F=(—pu"Kx)F=(mE—-Ky)F=m+2

for a fiber F of w. Therefore, g(C) = 1, i.e., C is an elliptic curve, and p*B ~ D.
As a consequence, B is a cross section. (Il

2. ENDOMORPHISMS OF NORMAL VARIETIES

We discuss some general properties of endomorphisms of normal varieties. After
giving elementary properties of endomorphisms of sets in Section 27T we discuss
Galois closures of powers of an endomorphism and endomorphisms of curves in
Sections and 23] respectively. In Sections 24 and B35 we define and study
the characteristic completely invariant divisor and the refined ramification divisor:
These are key notions of our study of non-isomorphic surjective endomorphisms.
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2.1. Endomorphisms of sets. We present two elementary lemmas on endomor-
phisms of sets, which are useful in our study of endomorphisms. The proofs are left
to the reader.

Lemma 2.1 (cf. [40, Prop. 11], [16, Lem. 3.4]). Let f: X — X be an injection for
a set X. Assume that -

x=U,_,0m's
for a finite subset S, where f™ = fo..-0 f: X — X denotes the m-th power
(iteration) of f. Then X is a finite set. In particular, f™: X — X is the identity
map for some n > 0.

Lemma 2.2. Let f: X — X be a surjective map for a set X. For a finite subset
S C X, suppose that f~'S C S. Then f~18 =S and f|s: S — S is a bijection.
In particular, there is a positive integer k such that (f*)~1(s) = {s} for any s € S.

2.2. Galois closure of an endomorphism. Let f be a non-isomorphic finite
surjective endomorphism of a compact normal variety X. We discuss Galois closures
of iterations f¥: X — X in Lemmas 23] and 24 below. The following is originally
in [43] and is written as [47, Lem. 2.5]:

Lemma 2.3. Let 0;,: V;, — X be the Galois closure of f*: X — X for an integer
k> 1 and let 7,: Vi, — X be the induced finite Galois cover such that 0 = f* o1y.
Then there exist finite Galois morphisms gi, hi: V41 — Vi such that Tkog, = Ti41
and T o hy = f o Ti41, i.e., the diagram below is commutative:

gk hi
Vi<—Viga Vi

\ l‘rwﬂ lﬂc
Tk
f

X —— X

Proof. The composite f* o 7p11: Viyr — X — X is Galois, since so is f¥*! o
Thp1 = Opy1. Hence, f¥ o 741 factors through the Galois closure 6, of f*. Thus,
Tk+1 = Tk © gk for a morphism gi: Viy1 — Vi. Let H; be the Galois group of
ft 0Tkt1: Vg1 — X for 0 < ¢ < k+1. Then 6;: Vj, = X is regarded as the Galois
closure of H1\Vi+1 — Hi41\Vi41; thus Vi ~ H\Vj41 for the maximal normal
subgroup H of Hy; contained in H;. Hence, we have a morphism hg: Vi1 — Vi
satisfying 7 o hy = f o Tpa1. ([l

Lemma 2.4. Let U C X be a Zariski-open dense subset such that f~'U = U,
flu: U = U is étale in codimension 1, and that U has only isolated quotient singu-
larities. Then, for the morphism 1 in Lemma 2.3 Tk_lU s non-singular and the
euler number e(r; 'U) is zero for k> 0.

Proof. Note that SingU is a finite set. By assumption, f|y is étale over Uleq
and f(SingU) C SingU. For an integer k > 0, let 7; be the set of points
Q € SingU such that (f*)™1(Q) C SingU. Then SinglU > 73 D T2 O --- and
f YT C Ti—y1 for any k > 1. Thus, f'Teo = Too and f: Too — Too is bijec-
tive for the intersection 75, := (,5( 7x by Lemma In particular, there is
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a positive integer [ such that (f/)~1(Q) = Q for any Q € T.. Since the local
fundamental group of U at Q € Tu is finite, f' gives an isomorphism between
two open neighborhoods of Q; this contradicts deg f > 1. Therefore, Too = 0,
and T = 0 for k& > 0, ie., (fF)71(Q) ¢ SingU for any Q € SingU. For
the integer k, we have Sing 9,:1U = Sing kalU = (), since O: Vi — X is Ga-
lois and étale in codimension 1 over U. Then there exist two étale morphisms
iy g : T,;llU — 7, 'U satisfying deg gr = (deg f)(deghy) by Lemma Hence,
e(r;;'U) =0 by e(T,;_llU) = (deg gi) e(r;, 'U) = (deg hy) e(r, 'U). O

An argument similar to the above is used in the proof of [47, Thm. 3.3]. The
following is useful for analyzing the singularity of the Galois closure of f*:

Lemma 2.5. Let ¢: V — W be a finite surjective morphism of normal varieties.
Let 0: U — W be the Galois closure of ¢ and let T be the induced morphism U — V
such that @ = ¢ o 1. For a point P € W, suppose that
(i) the morphism ¢: (V, P’') — (W, P) of germs of normal varieties is Galois
for any P’ € ¢~ (P),
(i) for any two points P', P" € ¢—1(P), there is an isomorphism ¢: (V, P") —
(V, P") of germs over (W, P), i.e., pop = ¢.
Then T is étale along 6~ 1(P).

Proof. There exists a connected open neighborhood W of P such that 6=1(W) is
a disjoint union |_|Ug of connected open neighborhoods Ug of all @ € 71(P). We
may assume that every connected component of ¢~1(WW) is Galois over W by ().
Let G be the Galois group of 6 and let Gg C G be the stabilizer at Q € 6~!(P)
for the action of G on U. Then, for any Q € 6~!(P), the inverse image §~1(P) is
identified with the factor set G/Gg, and Uy — W is a Galois cover with the Galois
group Gg. For g € G, the action g: 6~ (W) — 071 (W) induces an isomorphism
UQ — Z/{g(Q) over W and Gg(Q) = gGQg_l.

Let H be the Galois group of 7. Then ﬂgec gHg™' = {1}, since 0 is the
Galois closure of ¢. The stabilizer Hg C H at Q € 7'(P) is just Go N H. The
connected component V(g of #~1(W) containing 7(Q) is just isomorphic to the
quotient space Ho\Ug. By (I) and by our choice of W, we see that H, is a normal
subgroup of Gg. We have an isomorphism

Vra@) = (97 Hy)9)\Ug = (Go Ng™ ' Hg)\Ug

over W for g € G by the action g: 671(W) — 6~ 1(W).

The normalization of the fiber product Ug xyy Ug is isomorphic to Gg x Uy by
Go xUg 3 (g,z) = (gz,x) € Ug x Ug. Thus, for two subgroups Hy, Hs C Gg, a
connected component of the normalization of (H;\Ug) xw (H2\Ug) is expressed
as (Hy NkHyk™')\Ug for some k € Gg. We apply this to the subgroups H; = Hy
and Hy = GoNg 'Hg for g € G. Then we may assume that Hy\Ug ~ Ho\Ug over
W by (@) and by our choice of W. Since H;\Ug is Galois over W, any connected
component of the normalization of (Hi\Ug) xy (H2\Ug) is isomorphic to Hi\Ug.
Thus, §(H; NkHyk™') = 4H; for some k € Gg. Hence, H; = Hs, since H; = Hg
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is a normal subgroup of Gg. Therefore, Go Ng~'Hg = Hg for any g € G and
_ -1 _ -1 _
{1}—GQﬂmg€GgHg —ﬂgeGGQ NgHg " = Hog.

It implies that Uy — V(@) is an isomorphism. As a consequence, 7: U — V is
étale along 0~1(P). O

2.3. Endomorphisms of curves. We present here some basic results on endo-
morphisms of non-singular projective curves.

Lemma 2.6. Let f be a finite surjective endomorphism of a non-singular projective
curve X. Let Y be a finite subset of X such that f~'X =%. If2g(X)—-2+4% > 0,
then f is an automorphism of finite order.

Proof. We consider ¥ as a reduced divisor on X. Then there is an effective divisor
A on X such that Kx + X = f*(Kx + %) + A (cf. [45, Lem. 1.39]). Thus,

deg(Kx + %) = (deg f) deg(Kx + X) + deg A > (deg f) deg(Kx + X).

Since deg(Kx + X) = 2g(X) — 2+ 4X > 0, we have deg f = 1, ie., f is an
automorphism. If g(X) > 2, then it is well known that f is of finite order. If
g(X) =1 and ¥ # (), then some power f* fixes points of ¥; thus, f is of finite
order. If g(X) = 0 and #¥ > 3, then it is also well known that the order of f is
finite. (I

Lemma 2.7. Let7: Y — X be a finite surjective morphism of non-singular projec-
tive curves and let 3 be a finite subset of X with a collection {mp}pcs of integers
mp > 2 such that

e 7 is étale over X \ X and

o 7P =mprY(P) for any P € X.
If an automorphism f of X preserves X, i.e., f(X) = X, then there exist an auto-
morphism g of Y and a positive integer k such that Tog= fFor.

Proof. If T is an isomorphism, then we can take 7! o f o7 as g. Thus, we may
assume that deg7 > 1. If the order of f is finite, then we can take the identity
morphism of Y as g. Hence, we may assume that 2 g(X)—2+44% < 0 by Lemma[2.6

Assume that g(X) > 1. Then g(X) =1 and ¥ = ). Hence, X and Y are elliptic
curves. For certain complex Lie group structures on X and Y, we may assume that

e some power f* is the translation morphism tr(a): z = z+a by an element
a € X, and
e 7 is a group homomorphism.

Then, for a point b € 77 !(a), the transition morphism g = tr(b): Y — Y satisfies
Tog=fFor.

Assume next that g(X) = 0. Then % < 2. Since 7 is étale over X\ X and deg 7 >
1, we have 3 = 2, and 7 is a cyclic cover of degree m > 1 branched at two points
Py and Py, where ¥ = {P;, P} and mp, = mp, = m. By certain isomorphisms
X ~ P! and Y ~ P!, we may assume that P; = (1:0), P, = (0:1) and that 7 is an
:y™) for a homogeneous coordinate

m

endomorphism P! — P! given by (x:y) — (x
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(x:y). Since f preserves X, it is given by (x:y) — (cx:y) or (x:y) — (cy:x)
for some ¢ € C\ {0}. Hence, we can find an automorphism g of Y satisfying
Tog=for. (]

Proposition 2.8. Let X be a non-singular projective curve with a non-isomorphic
surjective endomorphism f. Let D be a non-zero effective Q-divisor such that the
ramification diwisor Ry equals f*D — D, ie., Kx + D = f*(Kx + D). Then
X ~ P! and degD = 2. Let D = > a;P; be the prime decomposition such that
a1 >as > -+ >0. Then A = (a1,aq,...) is one of the following:

(L1, (1,1/2,1/2), (5/6,3/4,1/2),
(3/4,3/4,1/2), (2/3,2/3,2/3), (1/2,1/2,1/2,1/2).

Moreover, the endomorphism f is determined by A as follows, where Fy: P — P!
is an endomorphism defined by (x : y) — (x? : y%) for d := deg f, and v: P! — P!
is an involution defined by (x: y) — (y: x):
(1) If A= (1,1), then f is isomorphic to Fy or to Fy.
(2) If A = (1,1/2,1/2), then there exists a double-cover 7: P* — X such that
(a) T is the quotient morphism by the involution ¢, and
(b) ToFg=fororto(toFy)=for.
(3) If A is not (1,1) nor (1,1/2,1/2), then there exist a finite cyclic cover
7: V. —= X from an elliptic curve V' and an étale endomorphism fy: V —V
such that Ky = 7 (Kx + D) and 7o fy = for.

Proof. We have deg(Kx + D) =0by Kx + D = f*(Kx + D), and it implies that
X ~ P! and deg D = 2. For a point P € X, we set dp := multp f*(f(P)). Then

dp —1=multp Ry =dp multf(p) D —multp D
by Ry = f*D — D. Hence,
(I1-1) dp(1 —multypy D) =1 — multp D
(cf. the proof of [45, Prop. 3.4]). Let T be the set of points € Supp D such that
multg D ¢ {1 —m™ | m € Z, m>1}.

Then f~17 C T by ([I=I). Hence, f~'7 = T and f induces a permutation of 7
by Lemma 22 Thus, f~'(f(Q)) = {Q}, dg = deg f > 1, and multg D = 1 for any
Q € T by ([IE). If 47 > 2, then 7 =2 and A = (1,1). If f7 = 1, then a1 = 1
and a; = 1 —mj ! for i > 2 with m; > 2; hence A = (1,1/2,1/2). If T = (), then
a;=1-— m;l for m; > 2 with my > ms > - -, and hence, (my, ma,...) is one of

(67 3’ 2)7 (47 4’ 2)7 (37 37 3)’ (2’ 2’2’ 2)'

Therefore, we have the list of A. The remaining assertions are shown as follows:
Assume that A = (1,1). Then D = Py + P, and f~'D = D by f~'T = T.
Replacing f with ¢ o f if necessary, we may assume that f*(P;) = dP; fori =1, 2.
By an isomorphism X ~ P! with a homogeneous coordinate (x:y) of P!, we may
assume that P, = (1:0) and P, = (0:1). Then f is written as (x:y) — (cx?:y%)
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for a non-zero constant c. Here, we can make ¢ = 1 by changing the homogeneous
coordinate. Thus, f = Fy, and ([{l) has been proved.

Assume next that A # (1,1). Let m be the smallest positive integer such that
mD is integral. Then m = 2 in case A = (1,1/2,1/2), and a; = 1 —m~! in case
a1 # 1 by the list of A. For the Q-divisor L = Kx + D, its torsion index (cf. [45]
Def. 4.18(1)]) equals m, and we can consider the index 1 cover 7: V — X with
respect to L (cf. [45, Def. 4.18(2)]). Then there is an endomorphism fy: V — V
such that 7o fyy = for by [45, Lem. 4.21(1)]. If a; # 1, then V is an elliptic curve
by the ramification formula

Ky =7m"(Kx +»_(1—-m; ")P)

(cf. [45, Cor. 4.15]). Thus, @) holds. If A = (1,1/2,1/2), then D = P, + (1/2)P, +
(1/2)P5 and f=*(Py) = P, by f~'T = T; hence, V ~ P!, the branch locus of 7 is
{Py, Ps}, and f,;'(r71(P1)) = 77Y(P1). Thus fy is isomorphic to Fy; or ¢ o Fjy by
the argument in the case of A = (1,1). Hence, () also holds, and we are done. [

Proposition 2.9. Let X be a non-singular projective curve with a non-isomorphic
surjective endomorphism f. We define Sy to be the set of points P € X such that
(fF)~Y(P) = {P} for some k > 0. Let m: X > P+ mp € Z>; be a function such
that ¥ :={P € X | mp > 1} is a finite set and that

(11-2) dpmp = Mg p)

for any P € X \ Sy, where dp stands for the ramification index of f at P, t.e.,
dp = multp f*(f(P)) =1+ multp Ry. Then the following hold:

(1) If P € Sy, then f(P) € Sy and f*(f(P)) = (deg f)P. Consequently,
Sy C Supp Ry and f*Sy = (deg f)Ss.

(2) If ¥ # 0, then X ~ P! and one of the following holds:

(a) deg Sy =2 and ¥ = Sy;
(b) deg Sy =1, 4(X\ Sf) =2, and mp, =mp, =2 for {P, P} =%\ S§;
(c) Sy=0and3 <tx <4,

(3) Assume either that tX # 2 or that ¥ = {Py, Po} with mp, = mp,. Then
there exist a finite Galois cover 7:' Y — X from a non-singular projective
curve Y such that

(i) 7 is étale over X \ X,
(i) 7*(P) = mp7Y(P) for any P € %,
(iii) there is an endomorphism g: Y — Y satisfying Tog= for.

(4) In the situation of @), assume that X # 0. If 2al) holds, then' Y ~ P! and
T is taken as a cyclic cover. If [2H) holds, then Y ~ P! and 7 is taken as
a dihedral cover (resp. double-cover) provided that Sy MY # 0 (resp. = 0).
If 2d) holds, then Y is an elliptic curve and T is taken as a cyclic cover.

Proof. (@): For a point P € Sy, we have f~1(f(P)) = {P} by f(P) € (f*~1)~4(P)
and f1(f(P)) C (f*)~Y(P) = {P} for some k > 0. Hence, f(P) € S and
f*(f(P)) = (deg f)P for any P € S;.
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(@): Let us consider an effective Q-divisor

D= Zpez\sf(l —1/mp)P.
Then Kx + Sy + D = f*(Kx + Sy + D). In fact, we have
Kx+S;+D— f"(Kx+Sf+D)=Ry—(deg f—1)Sy — (f*D — D),
where the right hand side is 0 by the following argument: If P € X \ S¢, then
multp(Ry — (deg f —1)Sy — (/D — D))
=dp—1—(1—=1/mygpy)dp + (1 —1/mp) =dp/mspy—1/mp =0
by ([[I-2)), and if P € Sy, then
multp(Ry — (deg f —1)Sy — (f*D — D)) = (deg f — 1) — (deg f — 1) = 0

by (). Note that Sy + D # 0 by Supp(Sy + D) D ¥ # 0. By Proposition 2.8
applied to Kx + Sf + D = f*(Kx + Sy + D), we have X ~ P!, and one of the
following holds:

(A) degSy=2,D=0,and ¥ =5y;

(B) deg Sy = degD =1, §SuppD = 2, and mp, = mp, = 2 for {P;, P} =

Supp D;

(C) Sy =0,degD =2, and 3 <3 <4.

Thus, (@) holds, where (A]), (Bl), and (), correspond to (Zal), L), and (2d),

respectively.

@) and @): We may assume that ¥ # 0. In fact, if ¥ = ), then one can take
the identity morphism of X as 7 and take f as g. If we have a finite surjective
morphism 7: ¥ — X satisfying conditions (i) and (@) of (3], then

Ky =7 (Kx + D+ Zpemsfu —1/mp)P).

Thus, Y ~ P! if [A]) or (B) is satisfied, and Y is an elliptic curve if () is satisfied.
If (C) is satisfied, then, by Proposition 2.8[3]), we have a cyclic cover 7: ¥ — X
with an endomorphism g: Y — Y satisfying the required conditions in (@) and (@)
in the case (2d). Hence, it is enough to consider conditions (Al and (BI).

Assume that (&) holds. Then mp, = mp, for {P;, P} = ¥ by the assumption
on ¥ in [@). By Proposition Z8(), we may assume that X = P* with P; = (1:0),
Py = (0:1) and that f = F, or ¢ o F for the endomorphism Fy: (x:y) = (x¢:y%)
of P! and the involution ¢: (x:y) — (y:x), where d = deg f. Let 7: Y = P! — X
be the cyclic cover of degree m := mp, = mp, branched at P; and P, which is
identified with the endomorphism F,,. Then f lifts to an endomorphism ¢ of Y,
since Fyo F,, = F,,, o Fy and v o F,, = F,, ot. Thus, 7 and g satisfy the required
conditions in (@) and @) in the case (Za).

Assume that (B]) holds. Let Py be the unique point of Sy and set m := mp,. Note
that m > 2 if and only if Py € ¥. We may assume that X = P with Py = (0: 1),
P = (1:1), and P, = (1:—1). Let 7/: X’ = P! — X be a double-cover given
by (x:y) — (2xy:x? +y?). Then 7’ is branched at P, and P, and 7/~1(P) =
{(1:0),(0:1)}. By Proposition Z8|[), we have an endomorphism f': X’ — X’
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such that 7/ o f/ = f o 7/, and moreover, f’ is equal to F,; or 1o F; for d = deg f.
Let 0: Y = P! — X’ be the cyclic cover of degree m branched at 7/~1(Py) =
{(1:0),(0:1)} which is identified with the endomorphism F,,. When m = 1, we
consider # as the identity morphism of X’. Then the composite 7 :=7'060: Y — X
is a Galois cover given by (x : y) — (2x™y™:x?™ + y?™), and the following hold:

e 7 is étale over X \ {Py, Py, P2 };

o 7(P;) =mp1 Y(P) for any 0 <i < 2;

e if m = 1, then the Galois group of 7 is Z/2Z;

e if m > 1, then the Galois group of 7 is the dihedral group D,, of order 2m.
Moreover, we have an endomorphism ¢g: Y — Y such that fog = f/ 0. In fact, we

can take F; or 1o Fy as g. Hence, 7o g = for. Thus, 7 and g satisfy the required
conditions in ([B]) and @) in the case (2B), and we are done. O

Remark. The set Sy is just the characteristic completely invariant divisor of f
defined in Definition 2.16] below.

2.4. Characteristic completely invariant divisor. For a finite surjective en-
domorphism f of a compact normal variety X, we introduce suitable sets of prime
divisors completely invariant under powers f* of f (cf. Definition 212 below) and
define the characteristic completely invariant divisor Sy and the refined ramification
divisor Ay in Definition below.

Remark 2.10. If X is a normal projective variety or a normal Moishezon surface,
then every surjective endomorphism f: X — X is finite. This is shows as follows:
If X is projective, then f*: NS(X)® Q — NS(X) ® Q is bijective for the Néron—
Severi group NS(X), which implies the finiteness of f, since some ample divisor on
X is expressed as f*A for an ample divisor A. If X is a normal Moishezon surface,
then we have a bijection f.: N(X) — N(X), since f. o f* is the multiplication
map by deg f for the pullback homomorphism f*: N(X) — N(X). It implies the
finiteness of f, since f has no exceptional prime divisor. As an application, we have
Theorem [E]l by [45, Cor. 3.6].

Definition (Morphisms flat in codimension 1). A morphism ¢g: ¥ — X of normal
varieties is said to be flat in codimension 1 if gly\z: Y \ Z — X is flat for an
analytic subset Z of codimension > 2.

If ¢ is flat in codimension 1, then g is of mazimal rank (cf. [45], Def. 1,1. Lem. 1.3]),
since every flat morphism is open (cf. [13], §3.19, Prop.]). Morphisms flat in codi-
mension 1 are characterized as follows:

Lemma 2.11. Let g: Y — X be a morphism of mazimal rank of normal varieties.
Then g is flat in codimension 1 if and only if codim(Z,Y) > 2 for

Z:={y €Y |dim,g '(g(y)) > dimY — dim X}.
Proof. Note that Z is an analytic subset (cf. [13} §3.6, Thm.]). The “only if” part

is shown by a dimension formula for a flat morphism (cf. [13} §3.19, Lem.]). In fact,
if g is flat, then & = (). For the proof of “if” part, we may assume that = = (). Then
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codim(g~1W,Y) > 2 for any analytic subset W of X of codimension > 2. In fact,
for the induced morphism W x x Y — W of complex analytic spaces, we have

dim, W x x Y < dimg,y W + dim, g (g(y))
< dim X — 2 +dim, g '(g(y)) = dimY — 2

for any y € g7'W = (W X x Y)yeq (cf. [13] §3.9, Prop.]). In particular, g~! Sing X
has codimension > 2, and we may assume in addition that X and Y are both
non-singular. In this case, g is known to be flat (cf. [I3] §3.20, Cor.]). O

Remark. A similar assertion holds for a dominant morphism g: Y — X of finite
type of normal integral Noetherian schemes: It is flat in codimension 1 if and only
if codim(g=1=,Y) > 2 for the closed subset

E={yeY|dimyg '(g(y) > dimY — dim X}.

Remark. For a non-degenerate morphism g: Y — X of normal varieties (cf. [45]
Def. 1.1]), if g has no exceptional divisor, i.e., I' # {y € I' | dim, g~ *(g(y)) > 0}
for any prime divisor I on Y (cf. [45, §1.2]), then ¢ is flat in codimension 1 by
Lemma 211l In particular, any finite surjective morphism of normal varieties is
flat in codimension 1.

Remark (Pullbacks of divisors). Let g: Y — X be a morphism of normal varieties
flat in codimension 1. By Lemma 2.IIl we can consider the pullback ¢*D of a
divisor D on X, and we have the pullback homomorphism ¢g*: Div(X) — Div(Y)
extending the pullback homomorphism for Cartier divisors (cf. [45, Lem. 1.19]).
This also extends to Q-divisors and R-divisors. If dim X = dim Y = 2 in addition,
then g* D equals the numerical pullback of D by [45] Lem.-Def. 1.23]. Thus, the use
of the same symbol g* for several pullbacks may not cause any confusion. We may
write g7'D = (g* D)yeq for any reduced divisor D as in Convention [Tl When g is
non-degenerate, we have the ramification divisor R, with the ramification formula
KY = g*KX + Rg.

Definition 2.12. For an endomorphism §: X — & of a set X', a subset S of X
is said to be completely invariant under f, or f-completely invariant, if §(S) C S
and 1S € S. Let f: X — X be a finite surjective endomorphism of a normal
variety X. An f-completely invariant divisor S is a reduced divisor on X which is
completely invariant under f, i.e., (f*S)ed = f~*S = S. In particular, the zero
divisor 0 is always completely invariant.

Definition 2.13. For a normal compact variety X and a finite surjective endomor-
phism f: X — X, we define several sets of prime divisors on X by Table 2] where
R¢ denotes the ramification divisor of f.

Remark 2.14. By definition, S(X, f;a) C S(X, f*;a*) for any k > 1, and

(I1-3) sx,n=U S(X, f*;0).

k>1,b>1
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TABLE 2. Some sets of prime divisors

S(X, f)¥  the set of prime divisors I' on X such that (f*)~!(I") is irreducible
for any k£ > 1.

S(X, f)% the set of prime divisors I' € S(X, f)* such that (f*)~YI') C
Supp Ry for infinitely many k > 1.

S(X,f)”  the set of prime divisors I' on X such that (f*)~'(f*(T)) = T for
any k > 1.

S(X,f),  the set of prime divisors I' € S(X, f)* such that f*(I") C Supp Ry
for infinitely many k& > 1.

S(X, f) the set of prime divisors I' on X such that (f*)*(I') = bI' for some
kE>1andb> 1.

S(X, f;a) the set of prime divisors I" on X such that f*I' = aI', where a is a
positive integer.

Moreover, S(X, f') = S(X, f) for any [ > 1. For a positive integer a, if S(X, f;a) #
0, then a | deg f. In fact, if f*I' = al" for a prime divisor ', then the degree of
flr: T —= T is (deg f)/a, since f.(f*T') = (deg f)T.

Proposition 2.15 (cf. [40, Prop. 11]). In Definition 213, S(X, f) is a finite set and
S(X, f)g =S(X, f)b = S(X, f). Purthermore, T' +— f(T) induces a permutation of
S(X, f). In particular, S(X, f;a) is a finite set for any a > 1.

Proof. The last assertion is a consequence of the first one, since S(X, f;a) C
S(X, f). We have injections ¢: S(X, f)¥ — S(X, f)f and ¥: S(X, f)* — S(X, f)’
defined by ¢(T) := f~1(I') and ¢(I") := f(I') for prime divisors I. Here, one has
S(S(X, )h) C S(X, )i and $(S(X, f)) C S(X, f)p. For T € {4,b}, we define

S(X, N = AT € S(X, )} | T < Supp Ry}
as a finite subset of S(X, f). Then

S N6 =, () IS(X g and (X, 1 =, (") 7IS(X, Do

k>1
Hence, S(X,f)ﬁO and S(X, f) are finite by Lemma I and there is a positive
integer k such that ¢* and ¢* induce identity maps on S(X, f)g and S(X, f)?,
respectively. In particular, (f*)~Y(T') =T for any ' € S(X, f)?J US(X, f)5. There-
fore, S(X, f)g US(X, f)y € S(X,f). For the rest, by ([I3) in Remark ZI4 it
suffices to prove that

(11-4) S(X, fF0) C S(X, HENS(X, )5

for any £ > 1 and b > 1. Let I be a prime divisor in S(X, f¥;b). Then ' €
S(X, H*NS(X, f)” by (f*)~1(T') = T. Since b > 1, there is an index 1 < i < k
such that fY(T') C Supp Ry. For, otherwise, f*(fT1(I')) = fi(I') for any 1 <
i < k, and we have a contradiction: (f*)*I' = (f*)*(f*(I')) = I'. Therefore,
I e S(X, )} N S(X, £, since fHH(T) = f3(T) and (7)1 (T) = (9)74(T) for
any j > 0. Thus, (II=4)) holds, and we are done. O
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Definition 2.16. For a finite surjective endomorphism f: X — X of a compact
normal variety X, we define

Sy = ZFGS(X,f) I' and Ay:= ZFQS(X,f) (multr Rf)T,

and call them the characteristic completely invariant divisor of f and the refined
ramification divisor of f, respectively. The endomorphism f is said to be suffi-
ciently iterated if any prime component of Sy is completely invariant under f (cf.

Lemma ZT7([) below).

Remark. If deg f = 1, i.e., f is an automorphism, then S(X, f) = 0, Sy = 0, and
Ay =Ry =0. If fis sufficiently iterated, then

Sx, £ =/ S(X, f;a)

1<a| deg f
by Remark 2141
Lemma 2.17. The following hold for S¢ and Ay:

(1) The reduced divisor Sy is f-completely invariant, i.e., f~1S; = Sy. There

s a positive integer m such that the power f™ is sufficiently iterated.
(2) One has Ry = f*Sy — S¢ + Ay, or equivalently,

(II-5) Kx + Sy = f"(Kx +Sf) + Ay
(3) For any k>2, Sy =Sy and
(11-6) Ape= () Ap 4+ ffAp + Ay

(4) One has inclusions
Supp Ay C Supp Ry C Supp Rym = Sy USupp Ay,

where m is any positive integer such that f™ is sufficiently iterated. In

particular, Ry = 0 if and only if Sy = Ay = 0.
Proof. Assertion () follows from Proposition We have @) by (@) and [45]
Lem. 1.39]. For (@), we have S;v = Sy by S(X, f¥) = S(X, f) (cf. Remark 2.14),
and we have ([I=6) by iterating ([I=5):

Kx + 8y = () (Kx +8p) + (F ) Ay + -+ f*Ap + Af.
The inclusions in () are derived from Ry = f*Sy — Sy + Ay in (@), where f*Sy >
f71S¢ = Sy and Supp(f*S; — Sf) C Sf. Here, Supp((f™)*Sy — Sf) = Sy, and it
implies: Supp Rym = Sy U Supp A. By iterating the ramification formula Ky =
f*Kx + Ry, we have
Rpe = (f*" )Ry +---+ f*Ry + Ry

for any k > 2. Hence, Ry = 0 if and only if Ry» = 0, and this is also equivalent to
Sy =A¢ =0 by Supp Rym = Sy USupp Ay. O

Lemma 2.18. Let f be a mon-isomorphic finite surjective endomorphism of a
compact normal variety X and let S be an f-completely invariant divisor. Then
Kx + S = f"(Kx +5)+ A for an effective divisor A having no common prime
component with S. Here, A > Ay. If S > Sy, then A = Ay.
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Proof. The existence of A is shown in [45, Lem. 1.39]. We set S = SU Sy =
(S + Sf)rea- Then f*(S — Sf) = S — S; by the definition of S¢, and we have
Kx + 8= f*(Kx + S) + Af by Lemma EZTT7[). Moreover, we have A > A by

S—=8S=f(S=-9)+A;—A,
since S — S is also f-completely invariant. If S > Sy, then S = S and Ay =A. O

Lemma 2.19. Let m: X — Y be a surjective morphism of normal compact vari-
eties and let f: X — X and g: Y — Y be non-isomorphic finite surjective endo-
morphisms such that mo f = gom.
(1) If 7 is a fibration, i.e., Oy ~ m.Ox, then degg | deg f.
(2) Assume that m is flat in codimension 1. Then 'S, < S¢, and 7=,
consists of the prime components of Sy not dominating Y .
(3) If w is a finite surjective morphism, then Sy = m—1S,.

Proof. We have ([I)) by [45, Cor. 1.14]. Assertion (@) is a consequence of (@), but
we shall prove ([B)) in the course of the proof of [2)). For the proof of (), we may
assume that f and g are sufficiently iterated, since Sy = S¢x and S, = Sy for any
k> 1 (cf. Lemma 2T7(3])). We note the following on prime divisors I" and © on X
and Y, respectively, such that © = n(T'): If f(T') =T, then g(0) = © and

multy f*(7°0)  multr 7%(g*O)

= = Ite ¢g*O.
multr 7@ multr 76O mite g

(I1-7) multr f*T =

If © is a prime component of S, then ¢g*© = bO for some b > 1, and we
have 7710 C Sy by f*(7*0) = 7*(9*0) = br*O, where 7710 = (7%0)yeq (cf.
Convention [[T). This shows that m=15, < Sy.

For the rest, it is enough to prove: =15, = S3er for the reduced divisor

ver .__
Sf T ZFch,Tr(F)géY r

Let I' be a prime component of S3*". Then f*I' = bl for some b > 1, and © = m(T)
is a prime divisor on Y, since 7 is flat in codimension 1 and proper surjective. In
order to show: 7715, = 7", it is enough to prove that ¢*© = bO, and this is
equivalent to: ¢g~'O = ©, since we have multg ¢g*© = b by ([I=0).

We shall show ¢g~'© = © in the case where 7 is a fibration. For the fiber product

X9:=X xy,4Y of m and g over Y, there is a commutative diagram

f

. T

X X9 X

S,

Y —— Y.

Here, X9 is irreducible by [45, Lem. 1.13], and hence, the induced morphism ¢ is
surjective. For a prime component ©’ of g~'0 and for the fiber product I xg ©/,
the second projection I' xg ©' — ©' and the morphism ¢~ 1(I' xg ©') — T’ xg ©’
induced by ¢ are both surjective, and ¢~ 1(I' xg ©') C f~1I' = I". These properties
imply that ©' = 7(I') = ©, and we have ¢g~!© = © as a consequence.
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Next, we shall show g=1© = © in the case where 7 is finite (cf. (3])). In this case,
we have deg f = degg by mo f = gow. Since 7w and [ are finite, 7,I' = m© and
f+I' = el for m := deg(n|r: T — O) and e := deg(f|r: T' = I'). Then be = deg f
by f«(f*T) = (deg f)T, and g.© = €O by g«(7.(T')) = 7.(f.). By ([[0=0), there is
an effective divisor B on Y such that © ¢ B and that ¢*© = b0 + B. Then

(deg g)© = g.(g"©) = beO + ¢, B.

Hence, B = 0 and ¢*© = bO. This shows ¢~'0 = O.

Finally, we shall show ¢~!© = O in the general case. Let X — Y’ — Y be the
Stein factorization of . Then the fibration 7': X — Y’ and the finite morphism
7: Y’ — Y are both flat in codimension 1. By the uniqueness of Stein factorization,
there is an endomorphism ¢’: Y’ — Y’ such that ¢’ on’ =n’o f and goT =704’
We set ©' := 7/(©). Then ¢'~'@' = ©' by the argument above in the case of
fibration, and ¢7'© = © by the argument above in the case of finite morphism.
Thus, we are done. ([l

When X is a normal Moishezon surface, we have:

Proposition 2.20. Let f be a non-isomorphic surjective endomorphism of a nor-
mal Moishezon surface X.
(1) If C1Cy # 0 for some Cy € S(X, f;a1) and Cy € S(X, f;a2), then ajas =
deg f.
(2) If C € S(X, f)>\ S(X, f), then C? = 0.
(3) Every negative curve is contained in Sy. In particular, X has only finitely
many negative curves.

(4) Ewery prime component of the refined ramification divisor Ay is nef.
(5) If C € S(X, f;a), then

(1—(degf)/a)(Kx +S)C=A;C>0
for any f-completely invariant divisor S such that S > Sy.

Proof. ([Il): This follows from (f*C1)f*Cy = (deg f)C1Cs.

@): For an integer k > 0, let aj, be the positive integer defined by f*(f*+1(C))
apf¥(C). Then a, = 1 except for finitely many k, since S(X, f) = S(X, f)
(cf. Proposition ZT5). Thus, we can consider a := [], -, ax. Since aj f*(C)?
(deg f)f*T1(C)? for any k > 1, we have

o (degf)' 1/ o (degf)
¢ = a? £ e(12nf(X)
for [ > 0, where nf (X) is numerical factorial index (cf. [45], Def. 1.26]). Therefore,
C?=0.

@): Let C be a negative curve on X. If f(C) = f(C’) for a prime divisor C’,
then f.C' = Af.(C') for some rational number A > 0, which implies that C — AC" is
numerically trivial, since f,: N(X) — N(X) is bijective; thus, C = C’ by CC’ < 0.
Hence, f(C) is a negative curve and f~'(f(C)) = C. Therefore, C' € S(X, )", and
moreover, C' € S(X, f) by (@).

(@): This follows from (3) and the definition of Ay (cf. Definition 210]).

o
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[@): We have AyC > 0 by @) and we have Kx + S = f*(Kx +5) + Ay by
Lemma [ZT8 since S > Sy. Then f*C = aC implies that

(deg f)(Kx +S)C = (f"(Kx +5)-f"C)=a(Kx +85—Ay)C.
This shows (B), and we are done. O

2.5. Refined ramification divisor. Let f be a non-isomorphic surjective endo-
morphism of a normal compact variety X, and assume that X is either a projective
variety or a Moishezon surface. Then f is finite by Remark ZI0l We know that
the ramification divisor Ry is zero if and only if f is étale in codimension 1. In
Section 2.7 we shall give a criterion for such an endomorphism f to satisfy Ay =0,
in Proposition 22Tl below, and prove Theorem [2.24] below on f-completely invariant
divisors S such that Kx + S are pseudo-effective.

Proposition 2.21. Let f: X — X be non-isomorphic surjective endomorphism in
which X is either a normal Moishezon surface or a normal projective variety. Then
each of the following conditions is equivalent to Ay = 0:

(i) There is an effective divisor S such that Ry = f*S — S.
(ii) For any f-completely invariant divisor S, if S > Sy, then Ry = f*S — S.
(iii) Thereis an f-completely invariant divisor S such that f|x\g: X\S — X\S
is €tale in codimension 1.

Moreover, the following hold for any effective divisor S satisfying (1):

(1) Sreq is f-completely invariant;
(2) Sred = Sf and f*(S — Sred) =5 —5q-

Proof. If Ay = 0, then (i) holds by Lemma[2T8 If (i) holds, then Ry = f*S§—Sy,
and (i) holds for Sy by [45, Lem 1.39]. Moreover, we have (i) = () by [45}
Lem 1.39]. If (@) and () hold for a divisor S in ({), then Ry = f*Sreq — Srea and
we have Ay = 0 by Lemma I8 Thus, it is enough to prove (dl) and ().

Let T be a prime divisor on X, and B a prime component of f~!I". Then

b—1=multg Ry = bmultr S — multp S
for b:=multp f*I' by Ry = f*S — S, or equivalently:
(I1-8) multg S — 1 = b(multp S — 1).

In particular, if ' C S, then B C S. Let X be the set of prime divisors on X and
let S be the set of prime components of S. We consider a map F': X — X defined
by F(T') = f(T'). Then F~!(S) C S by the implication I' € S = B C S. Since S
is finite, F~1(S) = S and F|s: S — S is bijective by Lemma In particular,
f~1(Supp S) = Supp S. Thus, we have ().

Let k be a positive integer such that f* is sufficiently iterated and that the power
F* induces the identity map of S. Then (f*)~!I' = I for any prime component I of
SUS;. IfT' C Sy, then (f*)*(T') =T for some r > 1, and we have multr S = 1 by
applying ([I=8) to f*. This shows that Syeq > Sy. If multp S > 2, then (f¥)*I' =T
by ([I=8) applied to f*. This implies that f*(S — Sreq) = S — Srea. Thus, (@) holds,
and we are done. |
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The following result is well known in the case where X is a non-singular projective
variety and S = 0 (cf. [15] Lem. 2.3]).

Lemma 2.22. Let f be a non-isomorphic surjective endomorphism of a normal
compact variety X with a Q-divisor S such that Ry = f*S — S+ A for an effective
Q-divisor A, i.e., Kx+S5 = f*(Kx+5S)+A. If one of the following two conditions
is satisfied, then A = 0:
(i) X is projective of dimension n and (Kx + S)H"™* > 0 for any ample
divisor H on X
(ii) X is a normal Moishezon surface and Kx + S is pseudo-effective.

In particular, if S =0 in [{) and @), then Ry = 0.

Proof. By setting Ay, := Rpv + S — (f*)*S for k > 1, we have an equality

(I1-9) Kx +8=(f")(Kx+95)+Ap.

Iterating the equality Kx + S = f*(Kx + 5) + A, we have A = A; and
Ap=(f)A+ + fFA+A

for any k& > 2 (cf. Lemma 2T7(3])).

Assume (@) and let H be an ample divisor on X. Then H & (f*)*A for an
ample Q-divisor A on X, since (f*)*: NS(X) ® Q — NS(X) ® Q is bijective (cf.
Remark 2T0). Hence,

(") (Kx + 8)H" ™ = (deg f*)(Kx +5)A" 1 >0
for any k by (i), and we have (Kx + S)H" ™1 > Ay H"~! by ([IE9). If A # 0, then

(Kx +S)H" ' > Ay H " L = ((fF"HY*A+ -+ A)H" 1 > L (k — c0)
C

for a positive integer ¢ such that cA is a divisor. This is a contradiction. Therefore,
A =0, and the assertion holds under ().

Next, assume () and let H be a numerically ample divisor on X. Then (Kx +
S)H > Ay H for any k > 1, since (f¥)*(Kx +S) is pseudo-effective. If A # 0, then
(Kx +S)H > AH = (51 A+ -+ AVH > %(X) oo (k= 00)
for a positive integer ¢ such that cA is a divisor. This is a contradiction. Therefore,
A =0. |

Lemma 2.23. Let X be a normal Moishezon surface with an R-divisor D such
that Ry & f*D — D for a non-isomorphic surjective endomorphism f of X. Then
(Kx + D)?> =0 and (Kx + D)C = 0 for any negative curve C on X.

Proof. By assumption, Kx + D & f*(Kx + D). We have (Kx + D)2 = 0 by
(f*(Kx + D))? = (deg f)(Kx + D)?, since deg f > 1. For a negative curve C,
there exist positive integers k and r such that (f*)*C = rC by Lemma ET7(I) and
Proposition Z20@). Then r = (deg £*)'/2 by ((f¥)*C)? = (deg f¥)C?, and

(deg f*)(EKx + D)C = ((f*)"(Kx + D) - (f*)*C) = r(Kx + D)C
by Kx + D& (f*)*(Kx + D). Thus, (Kx + D)C = 0, since deg f* > r. O
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Theorem 2.24. Let X be a normal Moishezon surface with a reduced divisor S
such that Kx + S is pseudo-effective. If S is completely invariant under a non-
isomorphic surjective endomorphism f of X, then S > Sy, Ry = f*S—85, Ay =0,
and Kx + S is semi-ample with (Kx + S)? = 0.

Proof. There is an effective divisor A such that Kx +5 = f*(Kx + S)+ A by [45,
Lem. 1.39]. Then A = 0 by Lemma 222 thus, Ry = f*S — S. Hence, Ay = 0,
S > St (Kx +8)? =0, and (Kx + S)C = 0 for any negative curve C' on X
by Proposition 222T] and Lemma 223l Since Kx + S is pseudo-effective, it implies
that Kx + S is nef. Then Kx + S is semi-ample by Theorem [[L12] since (X, S) is
log-canonical (cf. Theorem [E]). 0

Corollary 2.25. Let f be a non-isomorphic surjective endomorphism of a normal
Moishezon surface X. Let S be a reduced divisor such that Ry = f*S — S and
that Kx + S is not semi-ample. Then —(Kx + S) is nef, (Kx + S)? = 0, and
Kx +S5#&0.

Proof. By Lemma 2.23] and by [44, Lem. 2.16(2)], we have (Kx + S)? = 0, and
either Kx + S or —(Kx +.5) is nef. If Kx + S is nef, then Kx + S is semi-ample
by Theorem Thus, —(Kx + S) is nef but not numerically trivial. O

3. ENDOMORPHISMS OF NORMAL MOISHEZON SURFACES

For a non-isomorphic surjective endomorphism f of a normal Moishezon surface
X, we study the first dynamical degree Ay in Section BIland the singularity of the
pair (X, S) for an f-completely invariant divisor S in Section[B:2 An application of
the minimal model program to the study of endomorphisms is given in Section 3.4l

3.1. The first dynamical degree.

Definition 3.1. Let f be a surjective endomorphism of a normal Moishezon surface
X. Then we have an automorphism f*: N(X) — N(X) of the real vector space
N(X) = Div(X,R)/& such that f*cl(D) = cl(f*D) for any R-divisor D on X (cf.
[44, Rem. 2.9]). The first dynamical degree Ay is defined as the spectral radius of
f*:N(X) = N(X), i.e., the maximum of the absolute values of eigenvalues of f*.

Remark. If X is a non-singular projective surface, then Ay equals the first dynamical
degree in the sense of the complex dynamical systems of compact Kéahler manifolds
by [25, Prop. 1.2(iii)]. Let v: Z — X be a birational morphism from a non-singular
projective surface Z. Then we have a dominant rational map v='o fov: Z.--— Z.
In Appendix [Al following the idea of Guedj [25], we shall show that A equals the
first dynamical degree of v~ ! o f o v. Note that the second dynamical degree of
v~1o fouwis just the usual degree: deg f = rank f,Ox.

Definition 3.2. For ¢ € R, we define N(X, f;¢) as the eigenspace of f*: N(X) —
N(X) with eigenvalue c¢. We set /\} :=deg f/As and set 05 to be the positive square
root (deg f)*/? of deg f.
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Remark. For any k > 1 and for the power f*: X — X, we have
Ape = (Ap)F, )\;ﬂk =(\hE, and 65 = (0p)".

Proposition 3.3. The following hold for f*: N(X) — N(X), where { , ): N(X) x
N(X) — R denotes the intersection paring (cf. Section [LI)):
(1) If (v,v") # 0 for some v € N(X, f;¢) and v' € N(X, f;¢), then e’ = deg f
(¢f. Proposition Z20()).
(2) The spectral radius of f.: N(X) — N(X) equals A, and Ay > dy.
(3) There exist non-zero vectors vy and v_ in the nef cone Nef(X) such that

ffop = Aoy, f*m_:/\;v_,_, f*v_:)\}v_, and  fouo = Apo_.

(4) A real eigenvalue of f*: N(X) — N(X) is one of 67, =07, Ay, and /\}. In
particular, if 1 or deg f is an eigenvalue of f*, then Ay = deg f and )\} =1.

(5) The pairing { , ) restricted to N(X, f;c) is negative definite if ¢ is a real
eigenvalue of f* different from Ay and /\;.

(6) If \f > 6y, then (v4,v_) >0, (vy,v4) = (v—,v_) =0, N(X, f; A\f) = Rog,
and N(X, f; /\}) = Ru_ for vectors vy and v— in (@3)).

(7) If A\ = deg f, then all the numerical classes of prime components of Ag
belong to R>qvy. In particular, Sy N Supp Ay = 0.

Proof. First, we shall prove ([)—(B]). We have (f*z,y) = (x, f.y) and (f*z, f*y) =
(deg f){x,y) for any x, y € N(X) by the projection formula on intersection numbers
of divisors. Thus () holds by (deg f){v,v") = (f*v, f*v') = ¢’ (v,v"), and we have
fe = (deg f)(f*)~1. We write )\}/ for the spectral radius of fi.

We set o := 5f_1f* as an automorphism of N(X). Then (a(z), a(y)) = (x,y) for
any z, y € N(X), and o™t = 5;1]”*. Moreover, the spectral radius of a (resp. 1)
equals (5;1)\f (resp. 5;1)\}/). For a basis of N(X), « is expressed as a matrix A satis-
fying YAABA = B for the symmetric matrix B representing the pairing { , ). Fixing
anorm || || of N(X), let ||T|| denote the L*-norm sup{||7T'z|| ; ||| = 1} for any linear
transformation 7' of N(X). Then lim,, oo [|A™]|"/™ (resp. lim,, s o [|A™]|/™)

equals the spectral radius of a (resp. a~!), and we have
Bl = [(‘A)"BA™|| < [|(‘A)™ - Bl - |A™] = | B - | A™*

for any m € Z. Thus [|A™|| > 1 for any m, and we have Ay > d; and AY > d;.

The automorphisms f* and f, of N(X) preserve the nef cone Nef(X), i.e.,
f*Nef(X) C Nef(X) and f. Nef(X) C Nef(X). By a version of Perron—Frobenius
theorem (cf. [3]), we can find non-zero vectors vy and v_ in Nef(X) such that
ffoy = Apvg and five = Afv_. Then fivy = (degf/Af)vy and frv_ =
(deg f/A})v— by f. = (deg f)(f*)".

Assume that (v4,v_) = 0. Then (vy,vy) = (v—,v_) =0 and Rvy = Ru_ by the
Hodge index theorem (cf. Lemma just before [44] Def. 2.11]). Thus, )\f/\}’ = 5f2, and
we have Ay = \Y = d; by Ay > dy and AY > d;. Next, assume that (vi,v-) # 0.
Then (vy,v_) > 0 by vy, v— € Nef(X), and the formula (f*vi,v_) = (vy, frv_)
implies: Ay = A}. Therefore, A\ = A} in any case and we have proved (@) and (3).
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Second, we shall show ) and (&]). Let v be an eigenvector of f*: N(X) — N(X)
with real eigenvalue ¢, i.e., 0 # v € N(X, f;¢). Then

C<’U,’U+> = <f*’U,U+> = <’U,f*’U+> = )‘;r‘<vvv+> and
c(v,v) = (ffv,v_) = (v, frv_) = Ap(v,v-)

for vectors vy, v_ in [@). Suppose that ¢ ¢ {)\f,)\}}. Then (v,v4) = (v,v_) =0
by ([II-1)). Hence, (v,v) < 0 or v € Rvy = Ru_ with (v,v) = 0 by the Hodge index
theorem. The latter case does not occur, since the condition implies: ¢ = Ay = )\}.
Thus, (v,v) < 0 and hence ¢ = £6¢ by (). This shows the first half of (@) and ().
The latter half of ({@]) follows directly from the first half by Ay > 6, (cf. @).

Finally, we shall show (@) and () separately.

@): By the proof of ) and (B]) above, we have (vy,v_) > 0, since Ay > dy.
Moreover, (vy,v4+) = (v_,v_) = 0 by ([I). Let v be a vector in N(X, f; Ay). Then
(v,vy) = 0 by (I, and (v,v) = 0 by [@). Thus, v € Rvy by the Hodge index
theorem, and we have N(X, f; Af) = Ruy. The other equality N(X, f; )\}) = Ro_
is similarly proved.

(@: We may assume that Ay # 0. Now, )\} =1, and f.vy = vy by @). We
have (v, cl(Af)) = 0 by ([I5) in Lemma 217 and by

(04, cl(Kx + S5)) = (fevy, l(Kx + S5)) = (vg, el(f*(Kx + 5¢))-

Then (v4,cl(C)) = 0 for any prime component C' of Ay, since vy € Nef(X). Thus
cl(C) € R>gvy by the Hodge index theorem, since C'is nef (cf. Proposition Z20(H)).
In particular, f*C' & (degf)C. Hence, S;C = 0 by (), and Sy N C = 0 by
C ¢ S(X, f). Thus, Sy NSupp Ay =), and we are done. O

(I11-1)

Remark. A generalization of (7)) is given in Proposition [3.24] below.

Corollary 3.4. On divisors on X, the following hold:

(1) If 8(X, f;a) # 0 (¢f. Definition 2I13), then a | deg f and a € {5f,)\f,)\}}.

(2) Assume that f*D & rD for an R-divisor D and a real number r.
(a) If D* # 0 and if D is pseudo-effective, then r = &y.
(b) If D is nef and big, then r =07 = Aj.
(¢) Ifr =05 and D is a Q-divisor, then §; € Z.

(3) Assume that deg f > 1 and f is sufficiently iterated (cf. Definition 2.10)).
Then N (X) C S(X, f;85) for the set N(X) of negative curves on X. In
this case, if N(X) # 0, then §y € Z.

Proof. [Il): We have a | deg f in Remark T4l The latter half of () follows from
Proposition B.3I{H).

@): In the situation of ([a) or @H), 7* = deg f = 67 by (f*D)? = (deg f)D?.
Here, we have r = &y, since D is pseudo-effective. Here, if D? > 0, thenr € {\y, /\J}}
by Proposition B3|[5). Hence, r = Af in (2D). In the situation of (2d), the square
root §y is rational, and hence, 6 € Z.

@): Let C be a negative curve on X. Then C € §(X, f) by Proposition Z20(3),
and we have f*C = §;C by (Zal), since f is sufficiently iterated. This shows the
first assertion of (B]). The latter assertion follows from (2d). Thus, we are done. [



38

Corollary 3.5. Let 7: X' — X be a surjective morphism of normal Moishezon
surfaces and let f: X — X and f': X' — X' be surjective endomorphisms such
that o f' = for. Then deg f =deg " and A\f = Ap.

Proof. Considering the degree of 7o f' = f o7, we have deg f = deg f’. Moreover,
there exist commutative diagrams

N(X) — s N N(X)) — N(X)
I S
N(X) —L s N(X) N(X) —L s N(X)

of real vector spaces. Any eigenvalue of f* is an eigenvalue of f'*, since 7* is
injective. Hence, Ay > Ay. On the other hand, there is an eigenvector v’ of f
with eigenvalue Ay in the nef cone Nef(X’) by Proposition B3I@). If 7.v" = 0,
then (r.v',cl(A)) = (v, cl(7*A)) = 0 for any numerically ample divisor A in X,
and hence, (v',v’) < 0 by the Hodge index theorem; this contradicts v’ € Nef(X").
Thus, 70" # 0 and it is an eigenvector of f, with eigenvalue Ay Since the spectral
radius )\}/ of f, equals Ay, we have Ay < Ay, Therefore, Ay = Ay. O

Example 3.6. Let us consider the following two conditions:
(A) Ay > deg f, or equivalently, /\} <1;
(B) p(X) > 1 and (f))*: N(X) — N(X) is not a scalar map but has exactly
one real eigenvalue for any [ > 0.
We shall show that each case of (A) and (B) has an example.

Let T be an elliptic curve with a fixed abelian group structure as a complex
torus. Let X be the abelian surface 7' x T'. Then 3 < p(X) < 4, and p(X) =4
if and only if T has a complex multiplication. An integral 2 x 2 matrix M with
det M # 0 defines a surjective endomorphism fps: X — X by

TxT> (tl,tg) — (tl,tQ)M el xT.

Here, deg far = (det M)2. We shall consider the first dynamical degree of fas.
We have an isomorphism H!(X,C) = H'%(X,C)® H*!(X,C), where HP*4(X,C)
stands for the Hodge component of H*(X,C) of type (p,q). The pullback homo-
morphism fi,: HY9(X,C) — HY9(X,C) is represented by the matrix M. Let
{a, B} be the set of eigenvalues of M and assume that o # . Then the set of
eigenvalues of f1,: HV'(X,C) — HY(X,C) is {|a|?, 8], aB,@B}. Since N(X)®C
is an fj,-invariant subspace of H%!(X,C) and since deg far = |a3]?, we have

Ay = maxf{lal®,|B*} and A} =min{|al?,|3*}.

We consider the following two matrices:

1 3 1 =5
Ml = (1 1) and M2 = (1 1)

Assume that M = M. Then det M = —2, and we can take a« = 1 + V3 and
8 =1—+/3. Thus,

My =4+2V3>degfar =4 and A} =4-2V3 <1
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Hence, this gives an example satisfying (A).

Assume next that M = M. Then det M = 6, and we can take a = 1 + /=5
and 8 = 1—+/=5. Thus, deg far = 36, A\s,, = 07, = 6, and the set of eigenvalues of
fips HYY(X,C) — HYY(X,C) is {6, (1++v/=5)%, (1—+/=5)?}. In particular, the set
of eigenvalues of (fi,)*: HY(X,C) — H“(X,C) is {6', (1++/=5)%, (1—+/=5)%}
for any positive integer [ > 0. Here, (14 +/=5)% ¢ R for any [ > 0. Therefore, M
gives an example satisfying (B).

Lemma 3.7. Assume that p(X) = 2. Then f*: N(X) — N(X) is expressed by
a real diagonal matriz. In particular, f* has only real eigenvalues. Moreover, the
following hold:

(1) Assume that A\ = §¢. Then (f2)* = (f*)*: N(X) — N(X) is the multi-
plication map by deg f. If f* preserves each extremal ray of NE(X) (resp.
Nef(X)), then f* is the multiplication map by é¢. If f* exchanges two
extremal Tays, then the eigenvalues of f* are 65 and —dy.

(2) Assume that A\f > 6. Then X contains no negative curves, NE(X) =
Nef(X) = R>ovy + Rx>gv_ for two vectors vy, v_ in Proposition B3], and
f* preserves extremal rays R>ov4 and R>qv_.

Proof. Since p(X) = 2, the cone NE(X) is fan-shaped, i.e., NE(X) = R+ R’ for
two extremal rays R and R’. Since f*NE(X) = NE(X), (f%)* = (f*)? preserves
R and R/, and (f?)* is expressed by a diagonal matrix composed of two positive
numbers. Hence, f* is also expressed by a real diagonal matrix. If A\ = 7, then an
eigenvalue of f* is 0 or —d; by Proposition B3i@); thus, (f?)* is the multiplication
map by deg f. This implies ().

Assume that Ay > d7. Then f* has two eigenvalues Ay > )\}. Since v4 and v_
are eigenvectors of f* contained in Nef(X), we have NE(X) = Nef(X) = R+ R’ for
R =Rs>ovs and R’ = R>gv_. This implies (). O

3.2. The singularities on the pair (X,S) along S. Let f be a non-isomorphic
surjective endomorphism of a normal Moishezon surface X and let S be a non-zero
f-completely invariant divisor. Then (X, S) is log-canonical by Theorem [El We
shall study the singularity on (X,.S) along S more in details, e.g., on Sing S and
on the subsets P(X, S) and D(X, S) defined in [44], Def. 3.27].

Remark 3.8. We have the following by the classification of 2-dimensional log-
canonical pairs [28, Thm. 9.6] (cf. [33, Ch. 3], [44, Thm. 3.22|, [45], Fact 2.5]):
(1) X has only quotient singularities along S;
(2) X\ S C X is a toroidal embedding at any point of Sing S;
(3) SN X,eg is a normal crossing divisor on Xyeg;
(4) P(X,S) is the set of points P of Syeg such that P € Sing X and that (X, .5)
is 1-log-terminal at P (cf. [45] Def. 2.1]);
(5) D(X,S) is the set of points P of Syeg such that P € Sing X and (X, 9) is
not 1-log-terminal at P. Thus, (S NSing X) \ Sing S = P(X, S)UD(X, S).
Note that our “1-log-terminal” is identical to “purely log terminal (plt)” in [57] and
[33]. See [45] Rem. 2.3] for our policy.
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Definition 3.9. Let k be a positive integer such that (f*)~!(I') =T for any prime
component I' of S. For ', we define an integer br > 0 by (f*)*(I') = brI'. We set

(*) . (1) .— 1) .
S . Zbr:lr, S pr<degfkr’ and SO . Zbrzdegfkr

Remark. These divisors are independent of the choice of such an integer k. By
definition, we have S = S 4 §®) 56 < §(1) and SH < § - ) < S¢, and
there is no common prime component of S®) and S .

Lemma 3.10. The following hold for S, S®) and S®:

(1) Connected components of S™) and S® are all irreducible and
S (8 — gty = g0 n (Sy — SHy = 9.

(2) One has: f*(S™) = 8™ f*(SH) = (deg £)SWP, and f~1(SH) = 51,

(3) If SW U SH £, then Ay =deg f and S C Sy € X \ SuppA;.

(4) If T is a prime component of S, then (Kx + S)I' < 0. Moreover, if
(Kx + S)I' =0 in addition, then T' N Supp Ay = .

Proof. (l): This follows from Proposition 2.20(), since Sy = Sy for any k > 1.

@): Divisors S®), S and S® are f-completely invariant by Definition
Here, we have f*S®) = S*) since any prime component of ™) is not contained
in Supp Ryx O Supp Ry for the integer k in Definition For a prime component
I of S® the restriction f¥|r: T — T is birational. Hence, for the prime divisor
I = f~IT', the morphism f|r: IV — T is also birational. This implies that f*T" =
(deg f)I'". Therefore, f*S® = (deg f)S®.

@): We have Ay = deg f by Proposition B3), and Sy C X \ SuppA; by
Proposition B3|[T).

@): We set S :=SUSs. Then (S—S)I >0, and (Kx + S)I' > (Kx +S)I'. On
the other hand,

(1 — (deg f*)/br)(Kx + S)I' = ApI >0

by Proposition 2220(F) applied to I' € S(X, f*,br). Hence, (Kx + S)I' < 0 by
br < deg f*. Assume that (Kx + S)I' = 0. Then A = 0 by the inequality
above, and we have A¢I' = 0 by Lemma 2ZTI7[3), since Ay is nef. It is enough to
prove: I' ¢ Supp Ay. If bp = 1, this holds, since I' ¢ Supp Rpx O Supp Apx. If
br > 1, then I' C Sy and I' ¢ Supp Ay, since Sy and Ay have no common prime
component (cf. Definition 216). Thus, we are done. O

Lemma 3.11. Let D be a non-zero reduced divisor D on X which is either

e a connected component of S®) satisfying (Kx +S)D <0, or
e a connected component of S(H.
Then D is an elliptic curve, a cyclic chain of rational curves, or a linear chain of
rational curves ([44], Defs. 4.1 and 4.3]). Moreover, the following hold:
(1) If D is an elliptic curve or a cyclic chain of rational curves, then Kx + S
is Cartier along D, Ox(Kx + S)|p ~ Op, and D N Sing X C Sing D.
(2) If (Kx +S)T =0 for any prime component I' of D, then DN Supp Ay = (.
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(3) For any prime component I' of D,
#(I'N (D(X, S) U Sing 9)) < 2.

If this is an equality, then T ~P1, TNP(X,S) =0, (Kx +S)I' =0, and
I'NSuppAy = 0.

Proof. We have (Kx + D)I' < (Kx + S)I' <0 for any prime component I' of D
by (@) (resp. @)) of Lemma BI0in case D C S (resp. D ¢ SM)). Since (X, 5)
is log-canonical, the first assertion and (Il) follow from [44, Lem. 4.5]. In fact, in
@), D satisfies Ox(Kx + D)|p ~ Op, and it implies that D N (S — D) = () and
(Kx+95)|p = (Kx+D)|p. Assertion (@) follows from (@) (resp. {@)) of Lemma 310
in case D € S® (resp. D  S(M).

For the last assertion (B, we apply [44, Prop. 3.29], which gives a detailed
information on (X, S5,T"). We set mr := §I' N (D(X, S) USing S). Then

mr =4I ND(X,S)+ N Sing S =I'ND(X,S) +4T'N(S—T) + §Sing T,

since D(X, S)NSing S = (. If T is an elliptic curve, then mr = 0, and if T' a nodal
rational curve with one node, then mp = 1: These are checked by cases (A) and
(B) of [44, Prop. 3.29]. Thus, we may assume I' ~ P! by the other cases in [44]
Prop. 3.29]. By [44, Lem. 3.28] and by the inequality (III-8) in the proof of [44]
Prop. 3.29], we have

r—

. Lirnp.(x,9)

(Kx + ST > —2+ﬁ1“m(S—F)+ﬁFmD(X,S)+ZT>1

=—2+mr +Z7“>1

where P, (X, 5) is a subset of P(X,S) defined in [44] Def. 3.27], and P(X,S) =
-1 P-(X,S). Therefore, mr < 2. If mp = 2, then (Kx + S)I' = 0 and I'N
P(X,S) = 0; in particular, I' " Supp Ay = () by (2). Thus, we are done. O

r—

TN PL(X, 5),

Lemma 3.12. The subsets Sing S and D(X,S) are f-completely invariant (cf.
Definition ZI2)). In particular, there is a positive integer n such that (f*)~1(P) =
{P} for any P € D(X,S)USing S. Moreover, for any m > 1,

(I11-2) (D(X, S)USing S) N Supp A pm = 0.

Proof. First, we shall show: f~!Sing S = Sing S. Since (X, S) is toroidal at any
point of Sing S (cf. Remark B8(@)), we have f~!SingS C SingS. In fact, for
P € Sing S and Q € f~1(P), there exist open neighborhoods & and V of P and Q,
respectively, such that S|y is reducible and that f|y: V — U is finite and surjective.
Then f~1S|y, = S|y is also reducible and its prime components all contain Q;
hence, @ € Sing S. This shows: f~!Sing .S C SingS. Then f~!Sing S = Sing S by
Lemma applied to the finite set Sing S.

Second, we shall show: f~!1(D(X,S) U SingS) = D(X,S) USingS. Note that
if it holds, then f~'D(X,S) = D(X,S) by f~!SingS = Sing S, and the second
assertion holds by Lemma We know that S\ (D(X,S) U Sing S) is the set
of points P € S at which (X,S) is 1-log-terminal (cf. Remark B8(H)). Thus,
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we have f~1(D(X,S) USingS) C D(X,S) U Sing S by [45, Prop. 2.12(2)]. Then
fYD(X,S)USing S) = D(X, S) USing S by Lemma 2.2

It remains to prove ([II2)). By Lemma 2I7[3), it suffices to prove it when m
is the integer k in Definition B3 Since f~1S = S, by [45, Lem. 1.39], there is an
effective divisor A such that Kx + S = f*(Kx +5) + A and that S and A have
no common prime component. Then A > A by Lemma [ZI8 and

(fkil)*A—F-f—f*A"'AzAfk

by Lemma 2.I7(@3]). Thus, it is enough to prove: (D(X,S) U Sing X) N Supp A = .
But, this follows from [45, Thm. 3.5(1)]: In fact, if P € Supp A, then (X,S) is
1-log-terminal at P. Thus, we are done. (]

Proposition 3.13. Let C' be a singular prime component of S. Then there is a
positive integer n such that (f")*C = 6} C. Moreover,

o C is isomorphic to a nodal cubic rational curve,

o (' is a connected component of S,

e Creg C Xieg, CNSupp Ay =0, and

o Kx + C is Cartier along C with Ox(Kx + C)|¢c ~ O¢.

As a consequence, S™ and S%) are non-singular.

Proof. Let P be a singular point of C. By iteration, we may assume that f~1C = C
and f~'(P) = {P} by Lemma 312 Note that P ¢ Supp A; by Lemma3I2l Then
f*C = 6;C by [5, Cor. 5.7] applied to the morphism f° := f|xo: X° — X from
an open neighborhood X° of P, where f° is étale over X°\ S by P ¢ Supp A;. This
shows the first assertion. In particular, C' € S(), and the required properties of C
are verified by Lemma[3T1l Then we have the last assertion by LemmaBI0([). O

3.3. Endomorphisms preserving a fibration. We shall discuss some elemen-
tary properties of endomorphisms preserving fibrations. For more properties, see
Section @] below.

Lemma 3.14. Let f be a non-isomorphic surjective endomorphism of a normal
Moishezon surface X and let m: X — Y be a non-isomorphic bimeromorphic mor-
phism to a normal Moishezon surface Y. Let 'y, I's, ..., Ty, be the mw-exceptional
prime divisors. Then
(1) there is an integer k > 0 such that (f*)*T; = 5’} I for any 1 <i<mn, and
(2) each T; is Q-Cartier.
Moreover, if the w-exceptional divisory ., I'; is f-completely invariant, then there

is a non-isomorphic surjective endomorphism g: Y — Y such that mo f = gom,
deg f = degg, Ay = Ay, and the following holds:

(3) The pullback homomorphism f*: N(X) — N(X) is isomorphic to the direct
sum of g*: N(Y') = N(Y) and a linear transformation 6: R®" — R¥™ such
that O is the multiplication map by 6’; for the integer k in ().

Proof. The negative curves I'; are contained in Sy by Proposition Z20(3]). Thus,
we have ([Il) by Corollary B:4i[3]). Since X has only quotient singularities along S



43

(cf. Remark B.8({l)), every prime component of Sy is Q-Cartier. In particular, we
have ([@)).

Assume that > ['; is f-completely invariant. Then the exceptional locus of
mo f equals the exceptional locus of 7w, and there is an endomorphism ¢g: Y — Y
such that mo f = gon. Here, deg f = degg and Ay = Ay by CorollaryB.5l Let L be
the vector subspace of N(X) generated by cl(T';) for 1 < ¢ < n. Then dim L = n,
and N(X) = 7*N(Y) @ L by [44, Lem. 2.10], and we have f*L = L, since >, I;
is f-completely invariant. Hence, the automorphism f*: N(X) — N(X) is just the
direct sum of 7*(g*): 7*N(Y) — 7*N(Y) and 0 := f*|;: L — L, where 0% is the
multiplication map by 5’; by (). This shows (@) and we are done. O

Lemma 3.15. In the situation of Lemma B.14], assume that the w-exceptional locus
is f-completely invariant. Then the following hold on the endomorphism g of Y:

(1) If a reduced divisor S on X is f-completely invariant, then w.S is g-
completely invariant.

(2) If a reduced divisor S on'Y is g-completely invariant, then the proper trans-
form in X and the inverse image 11S are both f-completely invariant.

(3) The characteristic completely invariant divisors Sy of f is the union of
718, and the m-exceptional locus. In particular, Sy = m.St.

Proof. Let By and By be non-m-exceptional prime divisors on X, and we set ©; =
m«B; for i =1, 2. Then 7*0; = B; + E; for a m-exceptional effective Q-divisor FE;.
If f*B; = aBy for an integer a > 0, then

W*(g*(")l — CL@Q) = f*(Bl + El) — a(Bg + Eg) = f*El —akFs
and we have ¢g*©; = a©s by applying m,. If g*©1 = aO4 for an integer a > 0, then
f*Bl — aB2 = w*(g*@l — a@2) — (f*El — G,EQ) = —(f*El — G,EQ)

and we have f*B; = aBy and f*E; = aFEs, since f*B; — aBs has no m-exceptional
prime component. Assertions (I)-(3]) are shown by this argument. O

Lemma 3.16. Let m: X — T be a fibration from a normal Moishezon surface
X to a non-singular projective curve T and let f: X — X be a finite surjective
endomorphism. Let R C N(X) be the 1-dimensional cone generated by the numerical
class of a general fiber of w. If f*: N(X) — N(X) preserves R, i.e., f*"R =R, then
there is an endomorphism h: T — T such that mo f = hom.

Proof. Let F be a general fiber of 7. Then f*F & bF for some b > 0. For
any t € T, f~Y(r=1(t)) is contained in fibers of =, since 7*(t) & F and since
F(f*F) = bF? = 0. Thus, f~'(7~1(¢)) is mapped to finitely many points by the
morphism (7o f,w): X — T x T. Hence, dim7T’ = 1 for the Stein factorization
X —>T —-TxTof (mof,m). Let 8: T" — T x T be the finite morphism and let
p; be the i-th projection T'x T — T for i = 1, 2. Since m: X — T is a fibration,
the composite v := py 0o 0: T — T is an isomorphism. Then wo f = ho 7 for
h=p ofoul O
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Proposition 3.17. Let X be a normal Moishezon surface with a non-isomorphic
surjective endomorphism f, and let m: X — T be a fibration to a mon-singular
projective curve T with an endomorphism h satisfying wo f = homw. Then:

(1) The fiber product X" := X xp T of © and h is irreducible and f induces a
finite surjective morphism X — X" of degree deg f/degh. In particular,
degh | deg f, and flr—1¢y: 71 (t) = 71 (h(t)) is surjective for anyt € T.

(2) The numerical class of a general fiber of 7 is an eigenvector of f*: N(X) —
N(X) with eigenvalue degh.

(3) The surface X is projective and has at most quotient singularities.

Let S be an f-completely invariant divisor and assume either that S = 0 or that
every prime component of S dominates T'. Then

(4) S is non-singular,

(5) (X,S) is 1-log-terminal, and

(6) (X,S+771(t)) is log-canonical for any t € T.

Proof. Assertion (IJ) is a consequence of [45, Cor. 1.14]. Since h*: N(T) ~ R —
N(T) is the multiplication map by degh, the subspace #*N(T") of N(X) is an
eigenspace of f* with eigenvalue degh. This implies ([@). Assertion (@) follows
from [44] Lem. 2.31(2)] and from () in the case where S = 0. We have impli-
cations (@) = () and () = @) by properties on 1-log-terminal pairs (cf. [45]
Fact 2.5]). Thus, it is enough to prove ().

@): We set Gy := 7 1(t) for t € T. Let S be the set of points ¢t € T such that
(X,S + Gy) is not log-canonical along Gy. It suffices to show that S = 0. If 7 is
smooth along G; and 7|s: S — T is étale along S N Gy, then t ¢ S. In particular,
S is a finite set.

We shall show that h™1S C S, or equivalently that if t ¢ S, then h(t) € S.
We have a connected open neighborhood U of ¢ such that V := h(U) is open,
hly: U — V is finite, and =1 (h(t)) NU = {t}, by [45, Cor. 1.8]. Then ¢ =
fle—1: 77U — 71V is finite and q’)_lGh(t) = G;. By [45] Lem. 1.39],

Koy + Sla1y + Gy = ¢" (Kr1y + Slr1y + Gry) + Ay

for an effective divisor A; on 7~ 'U/ having no common prime component with
S|p-1y + Gi. Now (X, 8 + Gy)|r-100 = (77U, S|z-1y + Gy) is log-canonical along
Gibyt & S. Thus, (X, S+Gp)|r-1v = (771, 8]r-11,4+G) ) is also log-canonical
along Gj,p) by [45, Prop. 2.12(1)]. Hence, h(t) € S.

Therefore, h~1S C S, and there is a positive integer n such that (h")~1(¢) = {t}
for any t € S by Lemma[2Z2l Then (f*)~'G; = G; for any t € S, and it implies that
(X, S+ G,) is log-canonical by Theorem [[] since S+ Gy is f™-completely invariant.
This is a contradiction. Therefore S = (3, and we are done. ([

Finally in Section B3] we shall show:

Lemma 3.18. For a non-singular projective curve T, let f: P'xT = P! x T be a
surjective endomorphism such that ps o f = hops for an endomorphism h of T and
for the second projection pa: P! x T — T. Then f = g x h for an endomorphism
g: Pt — Pt
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Proof. This is a consequence of Horst’s theorem [26, Thm. 3.1] for P1. We shall give
another proof. The endomorphism f is induced by h and a morphism ®: P! x T —
P!, ie., f = (®,hopy). Since p(P! x T) = 2, ® is factored by either the first
projection p; : P! x T — P! or the second projection po: P! xT — T. But the latter
case does not occur, since f is surjective. Thus, ® = g o p; for an endomorphism
g: P! — P! and we have f = g x h. O

3.4. Application of the minimal model theory. We can consider a kind of
“equivariant” minimal model program for normal Moishezon surfaces with non-
isomorphic surjective endomorphisms.

Proposition 3.19. Let X be a normal Moishezon surface with a non-isomorphic
surjective endomorphism f and let S be an f-completely invariant divisor. Assume
that Kx + S is not pseudo-effective. Then X is projective with p(X) = p(X) and
there exists a birational morphism ¢: X — X to a normal projective surface X
with an endomorphism f such that
(1) fogp=do f* for a positive integer k,
(2) S := ¢.S is completely invariant under f,
(3) the characteristic completely invariant divisor Sy of f equals ¢Sy, and
(4) one of the following two conditions is satisfied:
(a) —(Kx+S) is ample and p(X) = p(X) = 1;
(b) X has only quotient singularities, p(X) = p(X) = 2, and there is
a fibration m: X — T to a non-singular projective curve T with a
surjective endomorphism h(gy: T — T such that
—(Kx +5) is m-ample,
Freq ~ P! for any fiber F of =,
mo(f)2=hgom,
deg hg) | (deg f)*.
In @), if cI(F) is an eigenvector of (f)*: N(X) — N(X), then there is an endo-
morphism h: T — T such that mo f = hom, hy = h?, and degh | deg f.

Proof. The pair (X,S) is log-canonical by Theorem [E] and X is projective with
p(X) = p(X) by Corollary [LTT|[). By applying Theorems[[.9]and [ TOlsuccessively
to the non-nef Q-divisor Kx + S, we have a birational morphism ¢: X — X to a
normal projective surface X as the composite of contraction morphisms of extremal
rays, in which one of the following holds, where S = ¢, S:

(i) p(X) = p(X) =1, and —(Kx + S) is ample;
(i) p(X) = p(X) = 2, and there is a fibration 7: X — T to a non-singular
curve T such that — (K~ + S) is m-ample and that F,eq ~ P! for any fiber

F of «.

By applying Lemmas 314 and to the birational morphism ¢, we have an
endomorphism f of X satisfying (I)- (&) above.

Since ({) is identical to (4al), it remains to check properties in (@h]) assuming ().
By Lemma B (f2)*: N(X) — N(X) preserves the extremal ray R = R cl(F) of

NE(X) for a general fiber F' of . Hence, we have an endomorphism h: T — T
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satisfying h(s) o m = 7o f? by Lemma 316l Here, degh(z) | deg f? = (deg f)?, and
X has only quotient singularities by Proposition BI7 If cI(F) is an eigenvector of
f*, then f* preserves R and we have h: T — T satisfying hom = wo f and he) = h?
by Lemma [B16 Here, degh | deg f by Proposition BI7 Thus, we are done. O

We shall give an application of Proposition B.19 to polarized endomorphisms.

Definition 3.20 ([11], [64], [47]). An endomorphism ¢: Z — Z of a normal pro-
jective variety Z is said to be polarized if there is an ample divisor A such that
Y*A ~ gA for a positive number g > 1.

Remark. By [47, Lem. 2.2], we see that the endomorphism t: Z — Z is polarized
if * A & qA for an ample divisor A and a positive number ¢ > 1. Furthermore ¢ is
an integer by [47, Lem. 2.1] (cf. Corollary B4([2) in the 2-dimensional case).

Remark. For a surjective endomorphism f of a normal projective surface, if a power
f¥ is polarized, then Ay = §¢. In fact, this is derived from Corollary B.[2H), since
)\fk = ()\f)k and (5fk = (5f)k

The following result is due to Zhang (cf. the proof of [63, Thm. 2.7]):

Lemma 3.21. In Definition B.20, if a power ¥ is polarized for some k > 0, then
W is polarized provided that degtp = qi™Z for an integer q.

Proof. Let A be an ample divisor such that (¢*)*A ~ bA for some b > 1. Then
b= ¢* by deg* = (deg))* = ¢"F = b" for n = dim Z. Thus, for the ample divisor

k—1

1T k—i )i\ *
A=) A4
we have 1/)*;1\ ~ q;l\. O

Theorem 3.22. Let X be a normal Moishezon surface admitting a non-isomorphic
surjective endomorphism f. If p(X) # 2 and if Kx is not pseudo-effective, then
(f%)*: N(X) — N(X) is a scalar map for some k > 0. In particular, \; = &;.
Moreover, in the situation, X is projective and the square f? is polarized.

Proof. By Proposition applied to the case where S = 0, we see that X is
projective and p(X) = p(X). If (f*)*: N(X) — N(X) is a scalar map, then it is
the multiplication map by &, by Proposition B3|()). Moreover, in this case, f*
is a polarized endomorphism, and hence, f? is also a polarized endomorphism by
Lemma B.21] since 02 = deg f € Z. Thus, it is enough to prove that f*: N(X) —
N(X) is a scalar map assuming that p(X) > 3, Kx is not pseudo-effective, and f
is sufficiently iterated.

Let ¢: X — X be the birational morphism in Proposition in the case
where S = 0. Since f is sufficiently iterated, any ¢-exceptional prime divisor is
f-completely invariant and ¢ o f = f o ¢ by Lemma B.14l It suffices to prove that
f*: N(X) — N(X) is a scalar map, by Lemma B.I4I[3]). Thus, we may assume that

p(X) =2.
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Since p(X) > 3, there is a negative curve I' on X contracted to a point P
of X. For the P!-fibration 7: X — T in Proposition B.I9(@R), let G be the set-
theoretic fiber over 7(P), i.e., G = 7w~ !(w(P)). Here, G is a prime divisor and
its proper transform G’ in X is a negative curve, since P € G. Hence, f*G’ =
§;G' by Corollary BA(B), and we have f*G = §;G by applying ¢. (cf. the proof
of Lemma [BI5). It implies that f*: N(X) — N(X) preserves the extremal ray
R> cl(G@), and hence, f* is a scalar map by Lemma 371 Thus, we are done. O

As a corollary of Theorem [3.22] we have the following on endomorphisms f with
As = ds: Essentially the same result is obtained by Zhang in [63, Thm. 2.7] under
an assumption similar to that f is a polarized endomorphism:

Corollary 3.23. Let f be a non-isomorphic surjective endomorphism of a normal
Moishezon surface X such that Ay = §;. Then (f*)*: N(X) — N(X) is a scalar
map for some k > 0 unless Kx &0 and p(X) > 3.

Proof. By Lemma [B7] and Theorem B22] we may assume that Kx is pseudo-
effective and Kx & 0. Then Kx = f*Kx by Lemma Thus, cl(Kx) is an
eigenvector of f* with eigenvalue 1, and Ay = deg f # ¢y by Proposition B3@). O

Proposition 3.24. Let f be a non-isomorphic surjective endomorphism of a nor-
mal Moishezon surface X such that Ay > §¢. Then S(X, f;07) = 0. In particular,
X contains no negative curve. If Ay = deg f, then cl(©) € Rxgvy for any prime
component © of Ry for the vector vy in Proposition B3} in particular, Supp Ry is
empty or a disjoint union of prime divisors.

Proof. Now, p(X) = p(X) =2 or Kx is pseudo-effective by Proposition and
Theorem B:2221 If p(X) = 2, then J; is not an eigenvalue of f*: N(X) — N(X) by
Lemma 7 and hence, S(X, f;d7) = 0. If Kx is pseudo-effective, then Ry = 0
by Lemma in particular, Sy = 0 and S(X, f;d7) = 0. Hence, in any case,
S(X, f*,6;:) =0 for any k > 1, and X has no negative curve by Corollary BAI[).

Assume that Ay = deg f and Ry # 0. Then Kx is not pseudo-effective, p(X) =
p(X) = 2, and NE(X) = Nef(X) is generated by v, and v_ by Lemma B7E),
where f*vy = (deg f)vy, fivy = vy, and (vy,vy) = 0 (cf. Proposition B3]). We
have (vy,cl(Ry)) = 0 by the ramification formula Kx = f*Kx + Ry and by

(s, A(EX)) = (favs A(Kx)) = (o, cl(f*Kx)).
Since R>qv is an extremal ray of Nef(X) = NE(X), it contains cl(0) for any prime
component © of Ry, by Lemma [[0I[). In particular, ©0’ = 0 for any other prime
component ©’ of R;. Hence, Supp Ry is a disjoint union of prime divisors. ([l

Proposition 3.25. Let X be a normal Moishezon surface with a reduced divisor
S such that Kx + S is not pseudo-effective. Suppose that S is completely invariant
under a non-isomorphic surjective endomorphism f of X satisfying A\ > 6¢. Then
X is a projective surface with only quotient singularities, X contains no negative
curve, p(X) = 2, and there exists a fibration w: X — T to a non-singular projective
curve T with an endomorphism h: T — T satisfying the following conditions:

(1) mof=hom, degh|deg f, and Ay = max{degh,deg f/degh};
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(2) (Kx +S)F <0 and Freq ~P* for any fiber F of 7.

Proof. Theorem and Propositions and prove the assertion except the
existence of h. Now, f*: N(X) — N(X) preserves each extremal ray of Nef(X) =
NE(X) by Lemma [B71 Thus, we have the expected endomorphism h by the last
assertion of Proposition O

4. FIBRATIONS PRESERVED BY ENDOMORPHISMS

We shall study the structure of a fibration 7: X — T from a normal Moishezon
surface X to a non-singular projective curve T in which X admits a non-isomorphic
surjective endomorphism f and 7" admits an endomorphism h satisfying 7o f = hom.
In Section B3] we have shown some elementary properties of X, f, and h. Espe-
cially, X is a projective surface with only quotient singularities and degh | deg f
(cf. Proposition BIT). In Section Il we shall study the base change of = by a
finite surjective morphism 77 — T from another non-singular projective curve T”
admitting an endomorphism as a lift of h (or a power h¥). In Section 2], we shall
show some fundamental properties in the case where h is étale. In Section [£.3] we
shall prove a structure theorem on X — T as Theorem [£9 below in the case where
h is an automorphism. Applying results in Sections and 3] we shall deter-
mine the structure of irrational ruled surfaces admitting non-isomorphic surjective
endomorphisms in Section A4l

4.1. Base changes of endomorphisms preserving fibrations.

Lemma 4.1. Let 7: X — T be a fibration from a normal surface X to a non-
singular curve T and let f: X — X and h: T — T be finite surjective endomor-
phisms such that o f = how. Let T: T — T be a finite surjective morphism from
a non-singular curve T' with an endomorphism h': T' — T’ such that Toh! = hor.
Then the fiber product X x1T" is irreducible, and the normalization X' of X xp T’
admits a finite surjective endomorphism f': X' — X' such that vo f' = fov and
7w’ o f' = h' on’ for the induced morphisms v: X' — X and n’': X' — T":

v

X — X

2 |

T

7 ——— T.
Proof. The fiber product X xp T’ is irreducible by the flatness of 7 and the
connectedness of a general fiber of 7w (cf. [45] Lem. 1.13]). The endomorphism
fxh: X xT — X xT induces the expected endomorphism f’ of X”’. O

Lemma 4.2. Let 7: X — T be a fibration from a normal surface X to a non-
singular curve T with a finite subset ¥ such that

o the fiber w*(t) is reduced for any t € T\ X, and

o ift €, then () = myn—1(t) for an integer my > 1.
Let 7: T — T be a finite surjective morphism from a non-singular curve T' and
let X' be the normalization of X X1 T'. Then the following three conditions are
equivalent:
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(i) The induced finite morphism v: X' — X is étale in codimension 1 and the
fibration ©': X' — T has only reduced fibers.
(ii) The morphism T is étale over T\ X and 7*(t) = my7~1(t) for any t € X.
(iii) One has an equality

(IV-1) Ky = (Kp + Ztez(l —my ).

Moreover, if one of these conditions is satisfied, then the Galois closure 7" : T" — T
of T also satisfies the same condition.

Proof. The equivalence () < (i) is shown directly by the ramification formula for
7. For the Galois closure 7"/ and the induced morphism 7" — T”, the normalization
X" of X xpT" is also the normalization of X’ x¢+ T", and the induced morphism
V' X" — X is the Galois closure of v: X’ — X. Thus, if () holds, then every
fiber of the induced fibration X" — T" is reduced and v is étale in codimension
1, i.e., 7" also satisfies (). Thus, it is enough to show the equivalence [{l) < ().
@) = (@): Let U be the maximal open subset of X such that 7|y: U — T is
smooth. Then U is the complement of Z U7~ !'¥ in X for a discrete set = by the
assumption on X. Since v is étale in codimension 1, v~ 'U is étale over U and the
composite v 1(U) — U — T is smooth. It implies that T\ 7713 is étale over
T\ X. For a point t € T, we set I'; := 7~ 1(t). Then v*T; is reduced as v is étale in
codimension 1. Thus, v*T'; = 7#"*(771(¢)), and 7*(¢t) = m;7~*(¢) for any ¢t € ¥ by

() = vt (t) = m Ty = mtﬂ'/*(T_l(t))'

@) = (@): The morphism v='U — T"\ 77!¥ induced by 7’ is again smooth,
since it is the base change of U — T\ ¥. Thus, the fiber of 7’ over any point of
T\ 7713 is reduced. For a point t € ¥, let us take a point z € I'; = 7~ 1(¢) at
which X and I’y are non-singular. For any t' € 771(t), the local ring of X x7 7" at
the point (z,¢') is isomorphic to C{x,y}/(x™* —y™) by (). Hence, the morphism
v: X' — X is étale along v~ !(z), and 7': X’ — T” is smooth along v~1(x). Thus,
7’ has only reduced fibers and v is étale in codimension 1. ([l

An affirmative answer to Fenchel’s conjecture (cf. [5], [14], [6], [48]) is applied in
the proof of the following:

Proposition 4.3. In the situation of Lemma L2, assume that X and T are pro-
jective and that there exist endomorphisms f: X — X and h: T — T satisfying:
(i) mof=hom;
(ii) every prime component of the refined ramification divisor Ay (cf. Defini-
tion 2I6) dominates T

Then there is a finite Galois cover 7: T' — T satisfying Lemma E2M) with an
endomorphism k': T — T’ such that T o b/ = h* o1 for some k > 0, except the
following two cases:

(1) degh =1, T ~ P!, and §¥ = 1;

(2) degh =1, T ~ P, §% =2, and my, # my, for ¥ = {t1,t2}.
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Ifdegh > 1 and X # (), then 2 < #¥ < 4 and one can take k as 1. If the following
condition (m) stronger than () s satisfied in addition, then §% > 3 and T can be
taken as a cyclic cover from an elliptic curve T':

(ii") Bvery prime component of the ramification divisor Ry of f dominates T'.

Proof. If ¥ = (), then we can take 7: 7" — T as the identity morphism of T, where
h' is given as h. Hence, we may assume that ¥ = ().

If degh =1 and if any of cases (l) and ([2)) does not occur, then, by an affirma-
tive answer to Fenchel’s conjecture, there exists a finite cover 7: T" — T satisfying
Lemma F2[@) (cf. [48, Thm. 1.2.15)). In this case, we can find an expected auto-
morphism »/: T/ — T' by Lemma 2.7

Thus, we may assume that degh > 1. By (@) and by Lemma R2IT@]), ev-
ery prime component of Ay dominates T" and Sy = Sy for any [ > 0. Thus,
715}, is the union of prime components of Ry not dominating 7" for some [ > 0
by Lemma ZT[), since we can choose [ so that Supp Ry = Sy U SuppAp (cf.
Lemma ZI7@)). In particular, if @i) holds, then Sj, = 0. For ¢t € T, let d; be the
ramification index of h at ¢, i.e., d; = mult; h*(h(t)) = mult; Ry + 1, and let m; be
the positive integer defined by 7*(t) = mymw~1(t). Then m; is the same number as
in Lemma 2] for t € 3, and m; = 1 for any ¢t € ¥. By the description of 7715},
above and by 7*h*(h(t)) = f*n*(h(t)) (cf. (), we see that f*(7~1(t)) is reduced
and dymy = myy) for any t € T\ Sy, Then 2 < 3 < 4, and §¥ > 3 when S}, = 0, by
Proposition [ZOI2]). Moreover, we have an expected finite Galois cover 7: T" — T
with an endomorphism #': T/ — T’ by @) and (@) in Proposition except the
case where

(2') T =P deg Sy =2, S, =%, and my, # my, for {t1,t2} = X.

It is enough to derive a contradiction assuming (7). We assume that m;, < my,
and let 0: T — T be the cyclic cover of degree my, branched at ¥. For ¢ =1, 2, let
t; € T be the point lying over t;. Since h is a cyclic cover branched at ¥, there is
an endomorphism h: T — T such that o = hof and S} = {tl,tg} =073, Let
X be the normalization of X x7 T and let #: X — T and T8 X — X be induced
morphisms:

X

X
T 5T
By an argument in the proof of Lemma2lshowing (i) = (i), we see that Supp R, C

771 (), the fiber 7*(#1) is reduced, but
#(t2) =

Since my, < my,, the assumption of Lemma B2l for 7 and ¥ is also satisfied for
# and 3 : {tg} By Lemma [} there is an endomorphism f: X — X such
thatwof*howand,uof*fop Then 7~ S CS and p~ 1SffS by
Lemma 2-T9[2), and we have an equality

(IV-2) pRp+ Ry = "R, + R;

th U P
_ T ta).
ged(my,, me,) (t2)



51

for ramification divisors R,, and R i of u and f , respectively. Here,
Supp R, C 7 '(ts) C 7#71S; C S

Let © be a prime component of Af. Then © C R; and 0 Sf by Lemma 2ZT7H).
Hence, © C p~! Supp Ay by (IV=2)), since 1Sy = Sy and Supp Ry C SyUSupp Ay
(cf. Lemma 2I7H)). Therefore, u(0©) is a prime component of Ay, and 7(0) = T
by @). Thus, (f,h,#) also satisfies @) and (@) instead of (f,h,n). However, we
have #5 > 2 by Proposition 2O(@). This is a contradiction. Hence, @) does not
occur, and we are done. O

4.2. Endomorphisms inducing étale endomorphisms of base curves. In
Section 2] we fix

e a normal Moishezon surface X with a non-isomorphic surjective endomor-
phism f,

e a fibration 7: X — T to a non-singular projective curve T', and

e an étale endomorphism h: T — T such that mo f = ho .

Note that X is a projective surface with only quotient singularities and that degh
is an eigenvalue of f*: N(X) — N(X) satisfying degh | deg f (cf. Proposition BI7]).

Lemma 4.4. In the situation, the following hold, where F' is a general fiber of m:

(1) Every prime component of Sy dominates T, and Sy is non-singular.

(2) Ewery fiber of w is irreducible.

(3) If degh > 1, then T is an elliptic curve. If deg f = degh, then f is étale,
and 7 is smooth: In particular, Sing X =0 and Ry = Sy = 0.

(4) If deg f # degh, then deg f > degh, and F is a rational or elliptic curve:
In more detail, if RgF >0 (resp. = 0), then F is rational (resp. elliptic).

(5) If Sy #0, then deg f > degh, f*Sy = (deg f/degh)Sy, 1 < S§F <2, and
F is rational.

(6) If degh =1 and Sy # 0, then Sy N Supp Ay = (0. Moreover, in this case,
Ay =0 if and only if Sy F = 2.

Proof. ([@): Since Sy = 0, this follows from Lemma [ZT9[2)) and Proposition BI7IH]).

@): A prime component of a reducible fiber is a negative curve, which is a prime
component of Sy by Proposition Z20(B). Thus, () is a consequence of ().

@): The first assertion is trivial, since h is étale. By Lemma RI7H), it is
enough to prove that f is étale and 7 is smooth in the case where deg f = degh.
The fiber product X" = X X7, T is a normal variety, since the second projection
X" — T has only connected fibers and the first projection p;: X"* — X is a finite
étale morphism. There is a morphism ¢: X — X" such that f = p; o q. Since
degp; = degh = deg f, g is an isomorphism, and hence, f: X — X is étale. The
smoothness of 7 follows if the scheme-theoretic fiber F; = 7*(t) is non-singular for
any t € T. Let A be the set of points ¢ € T such that F} is singular (including the
case where F} is non-reduced). Since f and h are étale, we have h™'A C A. Thus,
h~'A = A by Lemma [I2 which implies that A = @) as degh > 1. Therefore, 7 is
smooth.
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M@): We set b := deg f/degh, which is an integer > 1 by Proposition BI7().
Then f*F & (degh)F, and we have f.F & bF by f.(f*F) = (deg f)F. Thus,

0<R;F=—(b—1)KxF

by Kx = f*Kx + Ry. In particular, 2¢g(F) — 2= KxF < 0. If 7(SuppRy) =T
(resp. # T'), or equivalently, if RyF > 0 (resp. = 0), then KxF =2g(F)—-2<0
(resp. = 0); thus, F is a rational (resp. elliptic) curve.

@): Assume that Sy # 0. Then SfF > 1 by (), and deg f > degh and F ~ P!
by @) and {@). For b = deg f/degh > 1, we have

(IV-3) 0<AF =—(b—1)(Kx + Sp)F

as in Proposition Z20(B]). Thus, SyF < 2. We shall show f*Sy = bSy. If Sy is
irreducible, this holds by (@) and by (f*S;)F = S;(f«F) = bSyF. If S} is reducible,
then Sy = Cq + Cs for two sections C; and Cs of m by (@) and by S;F < 2. If
f71C; = Cj for some i, j € {1,2}, then f*C; = bC; by (f*Ci))F = Ci(f.F) =
bC;F =b. Thus, f*Sy = bSy even if Sy is reducible.

@): Since degh =1 is an eigenvalue of f*: N(X) — N(X), we have Ay = deg f
and Sy N SuppAy = 0 by @) and (7) of Proposition B3l Moreover, AyF = 0 if
and only if S;F = 2 by (IV=3). If Ay # 0, then every prime component of Ay
dominates T by SyNSupp Ay = () and by () and (2)), and it implies that A;F > 0.
Thus, we are done. [l

Definition 4.5. For a point ¢t € T, we set F} to be the scheme-theoretic fiber 7*(t).
Then F} is irreducible for any ¢ by Lemmali@2). We set I'y := (F})yeq = 7 (t) and
set m; to be the multiplicity of the fiber Fy, i.e., F; = mI';. We define ¥ = X(n)
as the set of points ¢ € T such that m; > 1.

Lemma 4.6. The following hold for ¥ = 3(m) and the ramification divisor Ry:

(1) The inverse image h™'% equals 3, and h|s: ¥ — ¥ is bijective. In partic-
ular, if ¥ # 0, then h is an automorphism.

(2) If2g(T) — 2+ 43 > 0, then h is an automorphism of finite order.

(3) Every prime component of Ry dominates T. In particular, if f is not étale
in codimension 1, then a general fiber of ™ is a rational curve.

(4) Ifdeg f > degh, then f(Supp Ry) is not a section of 7.

(5) If a general fiber of 7 is a rational curve, then p(X) =2, Ty =~ P! for any
t € T, and the restriction X \ 77 'Y — T\ X of 7 is a P'-bundle.

(6) The restriction m|s,: Sy — T of m is étale over T'\ X.

(7) If a general fiber of w is an elliptic curve, then f is étale in codimension 1
and 7 is smooth over T \ X. Moreover, Iy is a non-singular rational curve
or an elliptic curve for anyt € X.

Proof. ([@): Let 7": X" = X x7,;, T — T be the base change of 7 by h. As in the
proof of Lemma EL4B)), we have a finite surjective morphism ¢: X — X" such that
7 =mn"ogand f = p;oq for the first projection p;: X" — X. The scheme-theoretic
fiber F}* of 7" over a point ¢ is isomorphic to F(1), and q*(F}') = F;. Hence, if F;
is reduced, then so is Fj ;). Thus, h~'¥ C ¥, which implies that h~'¥ = ¥ and
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that h|s: ¥ — X is bijective by Lemma 22 If ¥ # (), then h is an automorphism,
since h is étale.

@): This follows from (Il) and Lemma 26

@): For a point t € T, let r,(f) be the ramification index of f along I';, which
is equal to the multiplicity of f*(I'; ;) along I'y. Since h is étale, f*(Fj ) is the
disjoint union of Fy for all ¢’ € h™*(h(t)). Hence, my = ry(f)mp(). Assume that
7¢(f) > 1 for some t € T. Then t € ¥, and hence, degh = 1 and h¥(t) = ¢ for
some k > 0 by (@). Here, we have r;(f¥) = 1 by m; = r.(f¥)my, but r.(f*) > r:(f)
by Rgx > Ry. This is a contradiction. Therefore, ri(f) = 1 for any ¢t € T'. This
means that, if Ry # 0, then every prime component of Ry dominates T. The last
assertion follows from (B) and (@) of Lemma 4] since Ry = 0 if and only if f is
étale in codimension 1.

@): Assume that f(Supp Ry) is a section of m. Note that f is étale over X,eg \
f(Supp Ry). We can take a general point ¢ € T so that F; and Fj,) are both
smooth fibers of 7. Then f|r, : Fy — Fj(y) is étale over Fyy) \ f(Supp Ry) ~ C, but
deg(f|r,) = deg f/degh > 1. This is a contradiction.

(E): This follows from Lemma EA2]) and from (4) and (6) of [44, Prop. 2.33].

(@): We may assume that Sy # 0. Then a general fiber of 7 is rational by
Lemma EAH), and X \ 77X — T\ ¥ is a P'-bundle by (). Furthermore, Sy is
non-singular and each prime component dominates 7' by Lemma [4Y]). Let = be
the set of points ¢ € T\ ¥ such that Sy — T is not étale over ¢. If 2 # ), then S
is irreducible and deg(S;/T) = 2 by Lemma L4B]). Moreover, if ¢t € Z, then the
smooth fiber F; intersect Sy tangentially at one point, and hence, (X, Sy + Fy) is
not log-canonical contradicting Proposition B.I7([@]). Therefore, = =

([@): In this case, f is étale in codimension 1 by (B]). First, we shall prove the last
assertion of (7)) assuming that ¥ # (). Then h is an automorphism and h=!¥ = 3
by (). Hence, we have f*D = D for the reduced divisor D =}, T';. Thus,
D = D® in Definition B9 and hence, any prime component of D is P! or an
elliptic curve by Lemma [3.11] and Proposition B.I3l This proves the last assertion.

It remains to prove that 7 is smooth over T'\ 3, i.e., A = ) for the set A of points
t € T\ ¥ such that F} is singular. We shall show that h~'A C A. For a point
t €T\ (X UA), let us take a connected open neighborhood U of ¢ in T such that
UN K7 (h(t)) = {t}. Then W := 71U is a connected open neighborhood of the
smooth fiber Fy. Here, Fy, ;) is reduced by h(t) ¢ ¥ = A1, and Fy = J*Fralw by
Ry = 0. By [45, Lem. 1.39] applied to the non-degenerate morphism f|y: W — X,
we have an effective divisor D on W such that

Kw + Fy = (flw)" (Kx + Fpe)) +D.

Since (X, F}) is 1-log-terminal along Fy, (X, Fj,()) is 1-log-terminal along Fj,«;) by
[45, Prop. 2.12(2)]. In particular, Fj is non-singular (cf. [45, Fact 2.5]), i.e.,
h(t) ¢ A. Hence, h™*A C A by h™1¥ = . Then h~!A = A and h|p: A — Ais
bijective by Lemma If A # (), then the étale morphism A is an automorphism
and the non-zero reduced divisor S := 7, _, F; satisfies f*S = S, ie., S = S>)
in Definition Then S is non-singular by Proposition [B.13] and it contradicts
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the definition of A. Therefore, A = @), and 7 is smooth over 7'\ . Thus, we are
done. O

Corollary 4.7. If degh = 1, then w|x\z-15: X \ 7 'S = T\ ¥ is a P'-bundle
or a smooth elliptic fibration. If degh > 1, then T 1is an elliptic curve and 7w is a
smooth fibration. In both cases, Sy N Supp Ay = (.

Proof. Let F be a general fiber of 7. First, assume that degh = 1. Then F is
rational or elliptic by Lemma EA@). If F is rational (resp. elliptic), then X \
7718 — T\ X is a P-bundle (resp. smooth elliptic fibration) by (&) (resp. (@) of
Lemma [£.6l Moreover, Sy N Supp Ay = () by Lemma F4Y{@]).

Next, assume that degh > 1. Then T is elliptic and X = () by Lemma E6|[T]).
If deg f = degh, then 7 is smooth and Sy = Ay = 0 by Lemma @) (cf.
Lemma [ZT7@)). Thus, we may assume that deg f # degh. Then deg f > degh,
and F of 7 is rational or elliptic by Lemma E4@). In both cases, 7 is smooth
by ¥ = 0 and by (@) and (@) of Lemma If Sy # 0, then F is rational and
f*S; = (deg f/ deg h)S; by Lemma EAE): thus, Sy = S}T) in Definition 39 and
we have Sy N Supp Ay = () by Lemma BTTI([2)). O

Corollary 4.8. If X contains a negative curve C, then degh = d5, T is an elliptic
curve, m: X — T is a P'-bundle, and C is a unique negative section of .

Proof. The existence of negative curve implies Ay = §; by Proposition Then
d¢ is a unique positive eigenvalue of f*: N(X) — N(X) by Proposition B3IH).
Therefore, 67 = degh by Proposition BIT([2). In particular, degh > 1. Thus, T is
an elliptic curve, and 7 is a P!-bundle by Lemma E4E) and Corollary ET since
C < Sf. By Lemma[l.T4] C is a unique negative section of =. a

4.3. Endomorphisms inducing automorphisms of base curves.

Theorem 4.9. Let f be a non-isomorphic surjective endomorphism of a mormal
Moishezon surface X. Let m: X — T be a fibration to a non-singular projective
curve T with an automorphism h satisfying wo f = how. Then there exists a finite
Galois cover 7: T — T from a non-singular projective curve T’ satisfying the
following conditions )@l for the normalization X' of X xr T' and for induced
morphisms ' : X' = T’ and v: X' — X making a commutative diagram

v

X — X

W/J( Jrﬂ'
7 —— T:
(1) There is an isomorphism X' ~ C xT" over T" for a non-singular projective
curve C. If Ry # 0 (resp. = 0), then C is rational (resp. elliptic).
(2) The induced Galois cover v: X' — X is étale in codimension 1.
(3) There exist an automorphism h' of T', a non-isomorphic surjective endo-
morphism f' of X', and a positive integer k such that vo f' = fFou,
Toh' =hFor, and ' o f' =h' on'.
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(4) Assume that C is rational. Then there is an endomorphism g of C' such that
the endomorphism f' in @) corresponds to g x h': C xT" — C x T by the
isomorphism X' ~ C x T' in [@M). In particular, degg = deg f. Moreover,
v*Sy = Sy = p&(Sg) for the first projection pc: X' ~ C x T — C, and
deg S, < 2.

Remark 4.10. If Ry # 0 (resp. = 0), then a general fiber of 7 is rational (resp. ellip-

tic) by LemmaL6[B) (resp. LemmalLA{)). Thus, the latter half of Theorem FOYTI)
follows from the first half.

After showing preliminary results, we shall prove Theorem (9 at the end of
Section [£:3] For the discussion below, we apply results in Sections ] and and
the theory of elliptic surfaces by Kodaira ([31], [32]). We also use the same notation
as in Section (e.g. X, my, etc.).

Proposition 4.11. Assume that X = () (c¢f. Definition ER). Then there exists
a finite étale cover 7: T' — T such that X xpT' ~ C x T" over T' for a non-
singular projective curve C which is rational or elliptic. If C is elliptic, then f
is €tale. If C is rational, then the inverse image of Supp Ry by the projection
CxT ~XxpT — X is a union of fibers of the projection C x T' — C.

Proof. By assumption and by Corollary &7, 7: X — T is a P'-bundle or a smooth
elliptic fibration. In the latter case, Ry = 0 by Lemma [L0l@]), and the assertion fol-
lows from Lemma 12 below, which is well known in the theory of elliptic surfaces.
Thus, we may assume that 7 is a P'-bundle. In the proof below, we use arguments
similar to those in the proof of [40, Thm. 15].

Note that X contains no negative curve by Corollary By [35, Thm. 3.1],
—K 7 is nef with (—Kx,7)? = 0 and NE(X) = Rxocl(F) + R for a fiber F of w
and for the ray R := R>¢ cl(—Kx,r) (cf. Section [L4). Since & is an automorphism,
we have f*F' & F, Kr = h*Kr, and f*Kx/r & (deg f)Kx,r. In particular,
Ry = Kxr — f*Kx/r 8 (1 —deg f)Kxr, and 0 # cl(Ry) € R. We set D :=
F*(f«(Rf))rea- Since f*R = R, by Lemma [[.T5] we see that cl(D) € R, D is non-
singular, and 7|p: D — T is étale; moreover, if deg D/T = degn|p > 3, then
X xp T ~ P! x T for a finite étale cover 7: 7' — T, where D xp T’ is a union
of fibers of the projection X x7 1" ~ P! x T — P'. On the other hand, we have
deg D/T > deg f(Supp Rf)/T > 2 by Lemma [A06[[). Hence, we may assume that
deg D/T = 2.

Then D = (Rf)req and f~'D = D. If D is irreducible, then the endomorphism
flp: D — D is compatible with h, i.e., (7|p) o f|p = ho7|p, and hence, Xp :
X X7 D has an endomorphism compatible with f and f|p for the projections
Xp — X and Xp — D, by Lemma[Il Thus, by replacing X — T with Xp — D,
we may assume that D is reducible. Then D is a disjoint union of two sections
©,, O, of 7. By replacing f with f2, we may assume that f~1Q; = ©, for i = 1,
2. Then ©7 = 0 and f*©,; = (deg f)O; for i = 1, 2, since cl(0;) € R. Now,
X ~ Pp(Or ® Op(L)) for a divisor L on T such that 7*L ~ ©; — ©y. Here,
degL = 0 by (01 — ©3)0; = 0. We have 7*(h*L) = f*(n*L) ~ (deg f)n*L by
f*0; = (deg f)©;. It implies that h*L ~ (deg f)L.
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It suffices to prove that L ~g 0. If g(T) = 0, then L ~ 0 by degL = 0. If
g(T) > 2, then h* = idr for some k > 0, and L ~g 0 by L = (h*)*L ~ (deg f)*L.
If g(T) = 1, then some power h* is the translation morphism tr(a): z + 2 + a
by some a € T with respect to a group structure of 7. In this case, (h*)*L ~ L
by deg L = 0, and we have L ~g 0 by L ~ (h*)*L ~ (deg f)*L. Thus, we are
done. O

In the proof of Proposition LTIl we use Lemma below, for which several
proofs are known. We shall give a proof based on Kodaira’s theory of elliptic
surfaces in [31] (see [39], §1] for a sheaf theoretic argument).

Lemma 4.12. Let ¢: Y — T be a smooth elliptic fibration over a non-singular
projective curve T'. Then there exists a finite étale cover T — T such that Y x T ~
C x T over T' for an elliptic curve C.

Proof. For a point t € T, let
prpy s (T, t) = Aut(Hy (o' (1), 2))

be the monodromy representation associated with . First, we shall show that the
monodromy representation p(rv 4y associated with the base change Y x7T" — T" is
trivial for a finite étale cover 7" — T and a point ¢’ € T”. The J-function associated
with the elliptic fibration is constant, since it is a holomorphic map T" — C from
the compact variety T'. Hence, any fiber of 7 is isomorphic to a fixed elliptic curve
C. For the period z € H:= {z € C | Imz > 0} of C, i.e., C =~ C/(Zz + Z), the
monodromy group p(w1(7T,t)) is contained in the stabilizer group of z in SL(2,Z).
Thus, the monodromy group is finite. Let 7/ — T be the finite étale cover with a
point ' lying over ¢ such that 71 (7",t') corresponds to the kernel of p(r ;). Then
perr 4y is trivial.  Therefore, by replacing T' with T”, we may assume that the
monodromy representation p(r ;) is trivial.

Second, we apply Kodaira’s theory of elliptic surfaces in [31]. The smooth elliptic
fibration Y — T is expressed as the twist B”7 — T of a basic smooth elliptic fibration
B — T by an element 7 of the cohomology group H*(T,Or(B)). Here, the basic
smooth elliptic fibration B — T is characterized by properties that it is a smooth
elliptic fibration admitting a global section and that it has the same data of the
period map and the monodromy representation as those of V) — T. Furthermore,
B — T has a structure of relative Lie group, and Or(B) is the sheaf of germs
of sections of B — T. Now, the period map is constant and the monodromy
representation is trivial. Hence, B ~ C x T over T In particular, if ) — T admits
a global section, then Y ~ C' x T. Thus, we assume that }) — T has no global
section. Then Y ~ (C' x T)" with n # 0. By [31, Thm. 11.5], 7 is a torsion element,
since ) is projective. Let m be the order of 7. Then we have a finite étale morphism

V: Y= (CxT)" 5 (CxT)"~CxT

over T by gluing multiplication maps C x Ty 3 ((,t) — (m(,t) € C x T for an
open covering 7' = [JTy. Let 77 C Y be a connected component of %=1 ({P} x T)
for a point P € C. Then T’ is étale over T, and Y xp T' — T’ admits a global
section. Hence, Y x7T' ~ C x T’ over T", and we are done. O
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We have the following reduction for the proof of Theorem

Lemma 4.13. Suppose that there is a finite surjective morphism T' — T satisfy-
ing Theorem EEAE) and the following condition () weaker than the first half of

Theorem EIN[I):

(1) The induced morphism ' X' — T’ is smooth.

Then there exists a finite Galois cover T — T satisfying all the conditions ()@
in Theorem L9l

Proof. By assumption, T" — T satisfies LemmalL2|fl). We may assume that 7" — T
is Galois by Lemma It also satisfies Theorem [L9IB]) by Lemmas 27 and ET1
We can apply Proposition 1T to X’ — T’ and f’ by () and by Theorem E9(3).
Then, by replacing T’ by a further étale cover, we may assume that 77 — T
satisfies the first half of Theorem EI(I), which is stronger than (). The latter
half of Theorem O[] is satisfied by Remark 10l

The first half of Theorem 9] follows from Lemmal[3I8 It remains to show the
last half of Theorem [LOH]). Since v is étale in codimension 1 (cf. Theorem ELII])),
by Lemmas ZT7B) and ZIN@), we have v*Sy = v*Sp = v 18 = Sy for the
endomorphism f’ and the integer k in Theorem ELA@B]). Moreover, Sy = p&(S,) by
Lemma [ZT92]) for the endomorphism g: C' — C in the first half of Theorem F9|{).
Here, deg S, < —deg K¢ =2 by degg = deg f > 1 and by

Ko+ 5y =g"(Kc+5g) + 4y
(cf. Lemma 2I7Y[2)). This shows Theorem [Z9{Hl), and we are done. O

Proposition 4.14. Assume that T and a general fiber of m are rational and that
i < 2. Then there exists a surjective morphism ®: X — P! such that
o the induced morphism ¢ := (®,7): X — P! x T is finite surjective, and
o {I'; | t € X} equals the set of prime components I' of the ramification divisor
R, of ¢ satisfying ®(I') = PL.
Moreover, if > = 0, then ¢ is an isomorphism, and if X # 0, then > = 2 and
my = degp > 2 for any t € X.

Proof. By Lemmas FLA(@) and BB and Corollary .8 we see that 7(Supp R;) =
T, p(X) = 2, and X contains no negative curves. Since Ay = deg f, by Lemma 371
there is a nef Q-divisor L such that f*L & (degf)L, L?* = 0, and NE(X) =
R>ocl(F) + R>ocl(L) for a general fiber F of 7. The numerical equivalence re-
lation & coincides with the Q-linear equivalence relation ~g for Q-divisors on X
by [44, Lem. 2.31(4)], since X is rational and has only quotient singularities (cf.
Proposition BI7@)). In particular, f*F' ~g F and we may assume that L is a
Cartier divisor satisfying f*L ~g (deg f)L. Let a and b be rational numbers de-
fined by —Kx ~qg aF +bL. Then Ry = Kx — f*(Kx) ~q (deg f — 1)bL, and
cl(®) € Rxgcl(L) for any prime component © of R; by Lemma [[6(3]). Thus,
k(L,X) > 0, since some positive multiple of © is linearly equivalent to a positive
multiple of L.

Claim. The divisor L is semi-ample.
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Proof. Assume the contrary. Then (L, X) = 0 by Lemma [[L4l Hence, there is a
unique prime divisor © such that Supp Ry = © and that any effective divisor D
with cl(D) € R>gcl(L) is a multiple of ©, since & coincides with ~g. In particular,
f*© = (deg f)O. Consequently, Sy = © and Ay = 0. Then © is non-singular and
mlo: © — T is étale over T'\ ¥ by Lemmas [L41]) and[A.6l[6). Moreover, degm|o = 2
by Lemmas EAI[FE) and EBI@). Since £ < 2, we have © ~ P! and % = 2. We
set Ty := O and define 71: T3 — T as the double-cover 7|g. Let hy: Ty — Ty be
the automorphism corresponding to f|le. Then 71 0o hy = h o 7. By Lemma AT
the normalization X; of X xp T} is irreducible and it admits an endomorphism
f1: X1 — X such that 71 o fi = hy oy for the induced fibration m1: X; — T7.
Now, there is a commutative diagram

X, 25 X

SR
T, — 27T

and (m1: X1 — Th, f1,he, 74 12) satisfies the conditions in the assumption required
for (7: X — T, f,h,X). Here, vfO is reducible as ©® X7 O is so. This implies that
k(viL,X1) > 1, but this contradicts x(viL, X1) = «(L, X) (cf. 27, Thm. 4], [4T]
IT, Lem. 3.11)). O

Proof of Proposition [L14 continued. By the Claim, there is a fibration ®: X —
B ~ P! such that Ox(mL) ~ ®*O(n) for some m > 0 and n > 0. We may replace
L with a general fiber of ®. Then Ox(L) ~ ®*O(1). By an argument before
the Claim, every prime component of R is a fiber of ®. Since f* preserves the
ray R>¢cl(L), by Lemma [B.T6, we have an endomorphism fp: B — B such that
deg fg =deg f and ®o f = fg o .

The morphism ¢ = (®,7): X — B x T over T defined by ® is finite, since
©*: N(B x T) — N(X) is an isomorphism. The fiber F; = 7*(t) over ¢ € T equals
©*(B x {t}). Since F; = m;Tt, we have

(IV-4) degyp = LFy = mLI'y and multr, R, =m; —1

for any ¢t € T" and for the ramification divisor R, of ¢. Comparing the ramification
divisorsof p: X - BxT, f: X - X, and fg x h: BxT — B x T, we have

(IV-5) f(Ry) = Ry = =Ry + " (Ryy).

Let &, be the set of prime components of R, which dominates B by ®: X —
B. If I € &, then every prime component I'" of f~'T belongs to S,. In fact,
(@) = ®(f(I)) = () = B, and we have

0 < (multrs f*T) multr R, = multy f*R, = multr R,
by ([V=5), since Supp R; and Supp ®*(Ry,) are contained in fibers of ®. By
Lemma applied to the finite set &, and by iterating f, we may assume that
ST =T for any I' € &,. Then f*I' =T for any I' € &, since the eigenvalues

of f*: N(X) — N(X) are 1 and deg f and since cl(T') € Rcl(L). Therefore, every
member I' of &, is set-theoretically a fiber of 7. This is never a smooth fiber, since
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any smooth fiber 7*(t) = ¢*(B x {t}) is not contained in the ramification locus of
¢. Thus, 6, = {I'; | t € £} by the second equality of ([V=4).

It remains to prove the last assertion. Now, L is a general fiber of ®. For the
point o := ®(L) € B, the induced finite morphism ¢ := ¢|r: L — {0} x T~ T has
degree F'L = deg ¢, and its ramification divisor Ry equals

Ryl = ZteE(mt — DTy

by ([V=4)). In particular,
(IV-6) 2g(L) —2=deg K, = deg(v"Kr) +deg Ry = —2FL+ R,L

= FL(-2+ Z@u —1/my)).

Note that >, (1 —1/m;) < 2 by 3 < 2. Thus, g(L) = 0 by ([V=6). If ¥ = 0,
then degyp = FL = 1 and ¢ is an isomorphism. If 3 # (), then degyp = FL > 2,
and ), (1 —1/my) > 1 by (IV=G)); thus ¥ = 2. Assume that ¥ = {t;,t2} with
tl 75 tQ. Then

2= (deg 90)(1/mt1 + 1/mt2) = LFtl + Lrtz
by (V=4 and ([[V=6). Therefore, LT;, = LT, = 1 and degy = my, = my,. Thus,
we are done. g

Lemma 4.15. Assume that a general fiber of m is an elliptic curve. If T ~ P! and
if 1 <3 <2, then X = {t1,ta} with t; # ta and my, = my,.

Proof. The elliptic fibration 7: X — T is smooth over T\ ¥ by Corollary A7l Thus,
the period map is constant, since the universal covering space of T\ 3 is isomorphic
to C. In particular, the associated monodromy representation p: m (T \ X) —
SL(2,Z) has a finite image. We shall prove the assertion by the following 3 steps.

Step 1. We shall show that if the monodromy representation p is trivial, then
X is non-singular and T'y is an elliptic curve for any t € ¥: Let u: M — X be
the minimal resolution of singularities and let 7wy : Y — T be the relative minimal
model over T of the elliptic fibration m o u: M — T. Then my o d = mo pu for a
birational morphism d: M — Y. Here, X and Y are isomorphic to each other over
T\ . Since p is trivial, by Kodaira’s theory of elliptic surfaces [31] (cf. [39] §5]),
we know that the scheme-theoretic fiber 73 (¢) is a multiple of an elliptic curve for
any t € 3. The proper transform of the elliptic curve in M can not be contracted
by u, since X has only quotient singularities (cf. Proposition BI7([B])). Therefore,
Y ~ X over T, and this proves the assertion of Step 1.

Step 2. We shall show the Q-linear equivalence relation

(IV-7) Kx+),  Teron (Kr+3),

where ¥ in the right hand side is regarded as a reduced divisor on T Let 7: T ~
P! — T be a finite surjective morphism such that 7 is étale over 7'\ ¥ and that the
subgroup 7, (T\77'%) of 1 (T'\ ¥) is the kernel of the monodromy representation
p. The morphism 7 exists and is unique up to isomorphism. If p is trivial, then
7 is an isomorphism. Otherwise, §2 = 2 and 7 is a cyclic cover branched at X.
By an argument in the proof of Lemma 2.7 we have an automorphism hiT —T
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such that # o h = hor. Let X be the normalization of X X T. Then X admits a
non-isomorphic surjective endomorphism compatible with f and h by Lemma E.11
Moreover, the monodromy representation of the induced elliptic fibration 7 : X7
is trivial. Hence, by Step 1, X is non-singular and fibers of 7 are multiples of an
elliptic curve. For a point € f, we write ff for the set-theoretic fiber #~1(%).
Since the period map of 7 is constant, we have

(IV-8) Kg+) . Tive 7 (K +77'%)
by the canonical bundle formula (cf. [32, Thm. 12], [61, App.]). On the other hand,
A—1lyy _ o M o~k
Kp+i '8 =7"(Kr+3) and Kg+) Di=o"(Kx+) TV

by [45, Lem. 1.39], since 7 is étale over T\ and the induced finite cover 7: X — X
is étale over X \ 7713, Combining with ([V=8)), we have

Vi (Kx + Ztez ') ~Q Vi (r* (Kt + X)),

which implies the expected Q-linear equivalence relation (IV=7)) by applying v..

Step 3. Final step. By % < 2 and by (IV=17), Kx + I'; is not nef for any ¢ € X.
Thus, (Kx +I't)R < 0 for an extremal ray R of NE(X) (cf. Theorem [L3). Now, X
contains no negative curve by Corollary £.8 Hence, the contraction morphism of
R is a fibration ¢: X — B to a non-singular projective curve B, and p(X) = 2 (cf.
Theorem [[LT0). Here, T'; is a section of ¢, since 0 > (Kx +T';)G = -2+ TG for a
general fiber G of . In particular, B is an elliptic curve. Hence, FG = m[':G = m;
for a general fiber F' of m. It is enough to show: #X # 1. If ¥ = {¢}, then
Kx + Ty ~qg 7 (Kr + t) by (IV=7) and it implies that

—1=(Kx+T4)G=7"(Kr +t)G=—-FG = —m,.
This contradicts: m; > 2. Thus, §% # 1, and we are done. O
Finally in Section 3] we shall prove Theorem (.9

Proof of Theorem 9. By Lemma[£.13] it is enough to construct a finite surjective
morphism 7: T" — T such that 7’: X’ — T" is smooth and v: X’ — X is étale in
codimension 1 for the normalization X’ of X x7 T’. If ¥ = (), then we can take 7
as the identity morphism of T' by Corollary @7l If ¥ # @, then one of the following
is satisfied by Proposition .14] and Lemma

*g(T) > 1L;

e g(T) =0 and % > 3;

e g(T) =0, X =2, and my, = my, for {¢1,t2} = 2.
Hence, we have an expected cover 7: T/ — T by Lemmas and [LOIB) and by
Proposition in the case where degh = 1. Thus, we are done. O

4.4. Structure of irrational ruled surfaces. Applying Lemma [£.4] and Theo-
rem [£9, we shall prove the following structure theorem on irrational ruled normal
projective surfaces admitting non-isomorphic surjective endomorphisms. Note that,
by [, Prop. 7], a normal Moishezon surface is projective if it is ruled.
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Theorem 4.16. Let X be an irrational ruled normal projective surface admitting
a non-isomorphic surjective endomorphism f. Then one of the following holds:

(1) There exist a finite cover v: P x T — X étale in codimension 1 for a non-
singular projective curve T of genus > 2 and endomorphisms g: P! — P!
and h: T — T such that vo (g x h) = f¥ov for some k > 0.

(2) The surface X is a P-bundle over an elliptic curve.

(3) The surface X is a projective cone over an elliptic curve (cf. Defini-

tion [LI0]).

Proof. Let u: M — X be the minimal resolution of singularities. The Albanese
morphism of M gives a P!-fibration ma;: M — T to an irrational non-singular
projective curve T. Let Y be the normalization of the graph of the rational map
T=mpyop i X--—=T,andlet my: Y — T and o: Y — X be induced morphisms.
Then the endomorphism f induces an étale endomorphism h: T" — T such that
mo f =hom. In fact, the rational map p~'o fou: M ---— M induces h, since Ty,
is given by the Albanese morphism of M. Thus, f x h induces an endomorphism
fy:Y =Y such that ny o fy =hony and oo fy = foo.

First, we consider the case where ¢ is an isomorphism, i.e., m: X — T is holo-
morphic. Then 7 is a P'-fibration. If 7 is smooth and T is an elliptic curve, then
@) holds. If g(T) > 2, then h is an automorphism, and () holds by Theorem
Hence, we may assume that T is an elliptic curve and 7 is not smooth, i.e., the set
Y = ¥(m) in Definition is not empty (cf. Lemma [L6l[B)). Then h is an auto-
morphism by Lemma FLGI[2]), and we have a finite surjective morphism 7: 77 — T
from a non-singular projective curve 7" satisfying conditions of Theorem [£.9] Here,
g(T") > 1 by (IV=]) in Lemma 2l Thus, () holds.

Next, we consider the case where o is not an isomorphism. Applying the previous
argument to Y and the endomorphism fy, we see that Y satisfies (0l) or (2). There
is a negative curve C' on Y as a o-exceptional divisor dominating 7. Thus, T is
an elliptic curve, my is a P!'-bundle, and C is a unique negative section of 7y, by
Corollary [£8 Hence, X is a projective cone over T, i.e., (@) holds. Thus, we are
done. 0

Remark. In Theorem any two of (I)-(B]) are not satisfied at the same time.
In fact, p(X) =1 in the case (@), but p(X) = 2 in cases ([l) and (@)). Moreover, in
the case (@), any finite cover over X étale in codimension 1 is a P!-bundle over an
elliptic curve; thus X does not satisty ().

5. CLASSIFICATION IN THE PSEUDO-EFFECTIVE CASE: PROOF OF THEOREM [A]

Theorem [Alin the introduction is a structure theorem on pairs (X, S) of a normal
Moishezon surfaces X and a reduced divisor S such that K x +.5 is pseudo-effective
and that S is completely invariant under a non-isomorphic surjective endomorphism
f: X — X. This section is devoted to proving Theorem [Al The pair (X, S) is log-
canonical by Theorem [El and moreover, Kx + S is semi-ample with (K x +5)? = 0,
S > 8¢, and flx\s: X\ S = X \ S is étale in codimension 1, by Theorem 224
Thus, we have the following three cases:



62

o Kx + 5 ¢q 0;
e Kx +S~g0and S =0;
e Kx +S~g0and S #0.

The proof of Theorem [Alis divided into these three cases, which are treated sepa-
rately in Sections 5.l 5.2, and 5.3 below.

5.1. The case: Kx + S 7 0. Let f: X — X and S be as in Theorem [A] and
assume that K x +S #g 0. Our purpose is to construct a finite Galois cover v: V —
X étale in codimension 1 satisfying () or () of Theorem [A] and to construct an
endomorphism fy : V — V satisfying v o fyy = f! o v for some I > 0.

Let w: X — T be the fibration associated with the semi-ample divisor Kx + S,
i.e., T is a non-singular projective curve and m(Kx +S5) ~ 7* A for a positive integer
m and for an ample divisor A on T. Note that Ay = deg f by Proposition B.3|{),
since f*(Kx +5) = Kx + S (cf. Theorem 224). By Lemma [3.16, we have an
endomorphism h: T — T such that hom = mo f. Here, degh = 1, since h*A ~ A
by m(Kx + S) ~ 7*A. Then, by Theorem 0] there exist a finite Galois cover
7: T" — T from a non-singular curve 7" with an endomorphism h': T/ — T, an
endomorphism f’ of the normalization X’ of X x7T" and a positive integer k such
that

e X'~ C x T over T' for a rational or elliptic curve C,
e the induced Galois cover v: X’ — X is étale in codimension 1,
e 7oh! = h¥or, vof’ = fFov, and pryof’ = h'opr, for the second projection
pry: X' ~Cx T = T.
Here, v*Sy = v*Syr = Sy by Lemmas 2I7([B) and ZTUB). Hence, by replacing X
with X’ and replacing S with v*S, we may assume that X = C' x T. Thus, the
proof of Theorem [A]in the case where Kx + S #g 0 is reduced to the following:

Lemma 5.1. Let X be the direct product C x T of non-singular projective curves,
where C' is either rational or elliptic. Let pry: X — C and pry: X — T be the first
and second projections, respectively. Let f: X — X and h: T — T be surjective
endomorphisms such that deg f > 1, degh = 1, and pryof = homy. Let S be an
f-completely reduced divisor on X such that m(Kx + S) ~ prs A for an integer
m > 0 and an ample divisor A on T.
(1) If C is rational, then Sy = pri(P1 + P2) and S = prj(P1 + P») + pr5 D
for two points Py # Py € C and for a reduced divisor D on T such that
(2) If C is elliptic, then Sy = 0 and S = pr5 D for a reduced diwisor D on T
such that m(Kr + D) ~ A.

Proof. ([I): In this case, S > Sf, Ay =0, and Ry = f*S;—S; # 0 by Theorems[2.24]
and LI([). Thus, SyF = 2 for a general fiber F' of pry by Lemma EA[G]), and
Sy = pri(P1 + P) for two points P; # P, € C by Theorem ELIH). Hence,
(S—8p)F =—(Kx+S¢)F =0, and Supp(S — Sy) is a union of fibers of w. Thus,
S — Sy =pr3 D for a reduced divisor D on 1. Therefore,

Kx+ S ~pri(Kc+ P1+ P2) +prs(Kr + D) ~ pry(Kr + D),
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and we have m(Kp + D) ~ A.
@): In this case, Sy = Ry = 0 by Theorem AI|[I)). Hence, f*S =S, and S is a
union of fibers of pry, i.e., S = pr3 D for a reduced divisor D on T. Therefore,

Kx + 5 ~pri Ko +pry(Kr + D) ~ pry(Kr + D),
and we have m(Kr + D) ~ A. O

5.2. The case: S =0 and Kx ~g 0. Let f: X — X and S be as in Theorem [A]
and assume that S = 0 and Kx ~g 0. We shall construct a finite Galois cover
v: V — X étale in codimension 1 from an abelian surface V and construct an
endomorphism fy: V — V such that v o fiy = fowv. Note that X has only log-
canonical singularities by Theorem [E] and f is étale in codimension 1, i.e., Ry = 0,
by Lemma 2221 We begin with the case: Ky ~ 0.

Proposition 5.2. Let X be a normal Moishezon surface admitting non-isomorphic
surjective endomorphism f. Assume that Kx ~ 0. Then X has only rational double
points as singularities, and there is a finite surjective morphism V. — X étale in
codimension 1 from an abelian surface V.

Proof. Let = be the set of irrational singular points of X. Then f~!Z C Z, since
any irrational singularity cannot be dominated by a rational singularity by a finite
morphism. By Lemma 2, we may assume that f~1(P) = P for any P € = by
iterating f when E # (). The open subset X \ = has only rational double points
as singularities, since X is Gorenstein. Let #: V' — X be the Galois closure of
fE: X — X for k > 0. Then V \ #7'Z is non-singular and e(V \ §7'Z) = 0
by Lemma [Z4l Here, Ky ~ 0 and V has only log-canonical singularities by [45]
Lem. 2.10(1)], since 6 is étale in codimension 1. In particular, if = = (), i.e., X has
only rational double points as singularities, then V is non-singular, Ky ~ 0, and
e(V) = 0; consequently, V' is an abelian surface.

Thus, it suffices to derive a contradiction assuming: = # (). In this case, 712 =
Sing V', and Sing V' consists of simple elliptic singularities or cusp singularities,
by the classification of Gorenstein log-canonical singularities (cf. [53, App.], [28|
Thm. 9.6], [33, Ch. 3]). Let 6: W — V be the minimal resolution of singularities.
Then Ky = 6* Ky — © ~ —0 for the reduced exceptional divisor © := §~1(0~1Z).
In particular, W is ruled. By [44] Lem. 4.5], a connected component of © is an
elliptic curve or a cyclic chain of rational curves (cf. [44, Def. 4.3]). Thus, e(O)
equals the number of rational curves contained in © (cf. [44] Rem. 4.4]). Therefore,
e(0) < p(W) — 1. Since e(W \ ©) = e(V \ §71Z) = 0, we have e(W) = e(0) <
p(W) — 1. On the other hand,

e(W) =2 — 4q(W) + by(V) > 2 — 4q(W) + p(W)

for the irregularity q(W) = dim H*(W, Oy ) and the second Betti number by(W)
of W. Thus g(W) > 1, and we have a P!-fibration 7: W — T to a non-singular
projective curve T with g(T") = g(W). For a general fiber F' of m, we have OF =
—KwF = 2. Thus, a prime component of © dominates T, and we have g(T) = 1,
since every prime component of © has genus < 1. If a connected component of
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© is not an elliptic curve, then it is a cyclic chain of rational curves, and it is
contained in a fiber of 7, which contradicts R'm,Ow = 0. Hence, e(0) = e(W) = 0.
Consequently, by(W) = 2, and W is a Pl-bundle over the elliptic curve T. In
particular, K%V = 0, but it contradicts K2, = 62 < 0. Therefore, = = (), and we
are done. (]

Proof of Theorem [Al in the case where S =0 and Kx ~g 0. Let X — X be the
index 1 cover with respect to Kx ~g 0 (cf. [45, Def. 4.18(2)]). Then X — X
is étale in codimension 1, K¢ ~ 0, and f lifts to a non-isomorphic surjective
endomorphism f: X - X’, by [45, Lem. 4.21(1)]. Applying Proposition to X
and f, we have a finite surjective morphism v/': V' — X étale in codimension 1
from an abelian surface V’. For the set of finite surjective morphisms V" — X étale
in codimension 1 from abelian surfaces V", let us choose one member v: V — X
such that degv is minimal in the set. Then v is Galois and unique up to non-
canonical isomorphism over X; this is called the Albanese closure in [47, Lem. 2.6].
For the proof of Theorem [Alin this case, it is enough to construct an endomorphism
fr:V—=Vasalift of f: X — X. Let V xx X be the fiber product of v: V" — X
and f: X — X over X, and let V be a connected component of the normalization
of V xx X which dominates V and X. Then we have a commutative diagram

~

| AN, V4

al l”
x 1 x,

where induced finite covers g and o are étale in codimension 1. Since V is abelian,
g is étale and V is also an abelian surface. Thus, dego > degv by the minimality
of degv. On the other hand, dego < deg(V xx X — X) = degv by construction.
Therefore, dego = degv, and we have an isomorphism ¢: V — V over X, ie.,
v =o00¢. Then fy := go ¢ is an endomorphism of V satisfying vo fiy = fowv.
Thus, we are done. O

5.3. The case: S # 0and Kx+S ~g 0. Let f: X — X and S be as in Theorem [A]
and assume that S # 0 and Ky +S ~g 0. Then X is projective by [4, Prop. 7]. We
shall construct a finite Galois cover v: V' — X étale in codimension 1 satisfying one
of @), (), and (@) of Theorem [Al and to construct an endomorphism fy: V — V
such that v o fiy = f owv. The strategy is as follows: First, we study the structure
of (X,S, f) in the case where Kx + S ~ 0 applying Theorem on the irrational
ruled surfaces, and considering the Galois closure of f*: X — X for k> 0, as in
the proof of Proposition above. Second, we shall reduce to the first case by
taking the index 1 cover X — X with respect to Kx 4+ 5 ~g 0.

Lemma 5.3. Assume that Kx + 5 ~ 0. Then SN Sing X C SingS, and any
connected component of S is either an elliptic curve or a cyclic chain of rational
curves. If X is rational, then S is connected and X has only rational singularities;
in particular, any singular point of X \ S is a rational double point.
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Proof. Since (X,S) is log-canonical (cf. Theorem [E]), the first assertion follows
from [44l, Cor. 4.6] by Kx + S ~ 0. Assume that X is rational. Then X has only
rational singularities by [44, Lem. 2.31(3)]. Hence, X \ S has only rational double
points as singularities by Kx + S ~ 0. From the exact sequence 0 — Ox (Kx) ~
Ox(=S) = Ox — Og — 0, we have a surjection C ~ H°(X,Ox) — H°(S,Ogs),
since H'(X,0x(Kx)) ~ H'(X,0x)" = 0 by the rationality of X. Therefore, S is
connected. ]

Lemma 5.4. If Kx + 5 ~ 0 and X is irrational, then one of the following holds:

(1) X is a P-bundle over an elliptic curve and S is a disjoint union of two
sections;
(2) X is a projective cone over an elliptic curve and S is a cross section.

Proof. Since X is irrational and ruled, one of the three cases of Theorem
occurs. First, we shall prove (2) in the case Theorem [LIG|[), i.e., X is a projective
cone over an elliptic curve T'. Since (X, S) is log-canonical, X has at most quotient
singularities along S (cf. Remark B8]). Hence, the vertex P of X is not contained
in S. For the minimal resolution p: M — X of singularity and for the exceptional
curve E = p~1(P), we have Ky + E + p*S = u*(Kx +S5) ~ 0 and ENp*S = 0.
Thus, 1*S is a section of the P'-bundle obtained as the Albanese morphism of M.
Therefore, S is a cross section of the projective cone X, and (2 holds.

Next, we shall prove (Il in the other cases of Theorem The Albanese
morphism of the minimal resolution of singularities of X induces a P!-fibration
m: X — T to an irrational non-singular projective curve T'. There is also an étale
endomorphism h: T — T satisfying w o f = h o by the proof of Theorem
There is a prime component C' of S such that 7(C) = T, since SF = —KxF = 2
for a general fiber ' of 7. Then C is an elliptic curve contained in X, and is
a connected component of S by Lemma B3l In particular, T is an elliptic curve
and m|¢c: C — T is étale. Thus, any fiber of 7 is reduced by C' C X,eq, and 7 is a
Pl-bundle by Lemma 6l[HE). Now S contains no fibers of 7, since C' is a connected
component of S. By SF = 2, we see that § is either a disjoint union of two sections
of m or an étale double-cover over T. However, the latter case does not occur. In
fact, in this case, the exact sequence 0 — Ox (Kx) — Ox(Kx+S) — Os(Ks) — 0
of Ox-modules induces an exact sequence

0— W*Ox(KX + S) — W*Os(Ks) — Rlﬂ'*OX(Kx) —0
of Opr-modules with isomorphisms
W*Ox(KX'FS) ’:OT, W*Os(Ks) Z’N*Os, Rl’lT*OX(Kx) ’:OT(KT)’:OT.

In particular, det 7,0g ~ Og. On the other hand, since 7|g: S — T is étale,
705 ~ O ®N for an invertible sheaf A" on T such that A" ¢ Or and N®2 ~ O.
Hence, we have a contradiction: A ~ detm,Og ~ Or. Therefore, S is a disjoint
union of two sections of 7, and () holds. Thus, we are done. ]

In order to study the case where Kx + S ~ 0 and X is rational, we introduce a
special finite Galois cover over X as follows:
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Definition 5.5. For an integer k > 0, let 0;: Vi, — X be the Galois closure of the
k-th power f*: X — X of f, and let 7,: V;, — X be the induced morphism such
that 0, = f* o1 (cf. Lemma 23). We fix a sufficiently large integer k, and set
Vi=Vi,v:=7,:V — X, and Sy := v~ 15. Moreover, we define §: W — V to be
the minimal resolution of singularities and set Sy := p~1Sy.

Lemma 5.6. Assume that Kx +.5 ~ 0 and X is rational. Then the following hold
by a suitable choice of k > 0:

(1) v: V = X is étale over X,eq U S;

(2) V'\ Sy is non-singular with e(V '\ Sy ) = 0;

(3) (V,Sy) is log-canonical with Ky + Sy ~ 0;

(4) W is a ruled surface, Kw + Sw ~ 0, and Sw is a normal crossing divisor
whose connected component is either an elliptic curve or a cyclic chain of

rational curves.

Proof. Now, f|x\s: X\ S — X\ S is étale in codimension 1 by Ry = f*S — S (cf.
Theorem [Z24). Then (@) holds and v = 73 is étale in codimension 1 on V' \ Sy
by Lemma [Z4] since X \ S has only rational double points as singularities (cf.
Lemma [5.3) and since we take k > 0. We have Ky + Sy = v*(Kx +5) ~ 0 by [45,
Lem. 1.39]. Thus, @) holds, since (X,S) is log-canonical. Hence, Sy N Sing V' C
Sing Sy and a connected component of Sy is either an elliptic curve or a cyclic
chain of rational curves, by [44, Cor. 4.6]. In particular, ¢ is an isomorphism
outside Sing Sy, and we have Ky + Sw = 6*(Ky + Sy) ~ 0, since V'\ Sy — V is
a toroidal embedding at any point of Sing Sy . Thus, we have [ ) by [44, Cor. 4.6].
It remains to prove (). Note that X,.; U S is an open subset of X whose
complement Sing X \ S is a finite set. Since v is étale over X, \ S and since
(f¥)~1S = S, it suffices to prove that v = 7}, is étale along 6, '(P) for any P € S.
Assume first that P € Sieq. Then P € X, by S N Sing X C SingS (cf.
Lemma B3), and f~1(P) C Syeq by f~!Sing S = Sing S (cf. Lemma B.12). Thus,
for any point P’ € (f*¥)~!(P), the morphism f*: (X,P’) — (X, P) of germs of
surfaces is a cyclic cover branched possibly along S. Moreover the degree m of
(X,P") — (X, P) is independent of the choice of P’ € (f¥)~1(P), since (f*)*C =
mC’ for the prime component C' of S containing P and for the prime component
C" = (f*)71C of (f*)~18 = S. Hence, v is étale along 6, ' (P) by Lemma 25
Assume next that P € Sing S. Then P is a node of S, and (f*)~!(P) = {P'} for
a node P’ of S by f~!SingS = SingS. Since X \ S C X is a toroidal embedding
at P, the fundamental group w1 (U \ S) is abelian and f~1(U \ S) — U\ S is
étale for a sufficiently small open neighborhood ¢4 C X of P. Thus, the morphism
fF: (X, P") = (X, P) of germs of surfaces is a Galois cover. Hence, v is étale along
0, ' (P) by Lemma Thus, () holds, and we are done. O

Lemma 5.7. In the situation of Lemma B8], assume that V is rational. Then:

(1) V is a toric surface with Sy as the boundary divisor;
(2) v71U is the universal cover of U for the open subset U := Xyeg U S;
(3) V' admits an endomorphism fy satisfying v o fy = fowv.
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As a consequence of (@), the isomorphism class of v = 1;,: V = Vi, = X is inde-
pendent of the choice of k> 0.

Proof. By Lemma BE.0@) and [44] Rem. 4.4], e(Sw) equals the number of rational
curves in Sy. Now, e(W \ Sy) = e(V \ Sy) = 0 by Lemma B6|([), and we have
e(Sw) = e(W) = p(W)+2, since W is a non-singular rational surface. Then W is a
toric surface with Sy, as the boundary divisor by Lemma [5.6l@]) and by Shokurov’s
criterion of toric surface [58, Thm. 6.4] (cf. [44] Thm. 1.3]). Hence, we have () by
[44, Lem. 3.9], since the exceptional locus of §: W — V is in Sy (cf. LemmaE.GI[2)).
The complement of v ~!U in V is a finite set v~ *(Sing X'\ S) contained in V;es. Thus,
the complement of §~*(v=*U) in W is also a finite set, and §~1(v~1U) ~ v=1U
is simply connected. Then Lemma BE6|[I) implies ([Z) and the last assertion. In
particular, the morphism gx: Vxyr1 — V% in Lemma 23] is an isomorphism, and we
have an endomorphism fy in ([B]) as the composite hy, o g,:l: Vi — Vi, for the other
morphism hy: Vi1 — Vi in Lemma 2.3 O

Lemma 5.8. In the situation of Lemma B.6l, assume that V' is irrational. Then

(1) V is a P-bundle over an elliptic curve,
(2) S is an elliptic curve contained in Xeg,
(3) —Kx is nef with K% =0, and
(4) there ewist a P!-fibration m: X — T ~ P! and an endomorphism h: T — T
such that mo f = hom and NE(X) = Nef(X) = Rsgcl(—=Kx) + R>g cl(F)
for a fiber F of .
Let 3 be the set of points t € T such that 7*(t) is not reduced. Then

(5) m is smooth over T \ X,
(6) X coincides with the branch locus of the double-cover w|g: S — T,
(7) 7 () =27~ (t) for any t € 2.

Proof. Let 1y : W — Z be the P!-fibration to an irrational non-singular projective
curve Z induced by the Albanese morphism of W. By Lemma [E.6(Hl), we see that Z
is an elliptic curve and a connected component of Sy is an elliptic curve dominating
Z. If another connected component of Sy is not an elliptic curve, then it is a cyclic
chain of rational curves (cf. Lemma [B.0(])), and hence, it is contained in a fiber
of Yy : this contradicts Ry .Ow = 0. Therefore, Sy is a union of elliptic
curves. Consequently, Sy is also a union of elliptic curves and V is non-singular
by [44, Cor. 4.6] and by () and (@) of Lemma In particular, §: W — V is
an isomorphism. Now, e(V) = e(V \ Sy) + e(Sy) = 0 by Lemma BE6([Z). Thus,
Y=Yy od .V ~W — Zis a Pl-bundle, and we have proved ().

We shall show @) and @). Now, S is connected and S N Sing X C Sing S by
Lemma[53l Moreover, v|g, : Sy — S is étale by Lemma [E6|[I]) and we have proved
that each connected component of Sy is an elliptic curve. Thus, (2) holds. Note
that Ky = v*Ky by LemmaB.6([)) and that K% = 0 by (). Hence, K% = 52 =0
by Kx + S ~ 0. Thus, —Kx is nef, and we have ().

The action of the Galois group of v on V descends to Z by the P'-bundle ¢: V —
Z. By taking quotients, we have a P1-fibration 7: X — T ~ P! with a commutative
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diagram

zZ —— T

For a general fiber F' of m and a fiber F of ¥ lying over F', we have SF = Sy F =
—~KxF = —KyF =2by Kx +85 ~ 0 and Ky + Sy ~ 0. Thus, deg(Sy/Z) =
deg(S/T) = 2. On the other hand, v|g, : Sy — S is étale with deg(Sy/S) = degv
by Lemma B6|[). Therefore, deg(Z/T) = degv. As a consequence, V is the
normalization of Z xp X.

We shall show {). We have p(X) = 2 by the diagram. Now, F and —Kx
are nef with F?2 = K% = 0 and KxF < 0 (cf. @)). Thus, NE(X) = Nef(X) =
R>ocl(—Kx)+Rxq cl(F). Since S is irreducible (cf. @), f*S = mS for a positive
integer m. In particular, f*: N(X) — N(X) preserves the ray R>gcl(—Kx) =
R>ocl(S), and hence, f* preserves also the other extremal ray R>¢ cl(F) (cf. the
proof of Lemma [B7)). Then we have an endomorphism h: T — T satisfying wo f =
hom by Lemma BT6l Thus, [ has been shown.

Finally, we shall show remaining assertions (B)—(d) on the set . For a point
t € T, let F} denote the fiber 7*(t) and set I'y := 7~ 1(t) = (F})rea. Then I'y ~ P! for
any t € T (cf. Theorem [[LTO@)). In particular, F; = mI'; for an integer m; > 0,
and we have ¥ = {t € T | my > 1} as in Definition We have () by [44],
Prop. 2.33(4)]. Since S C X,eq (cf. @), S intersects I'; transversely for any ¢ € T'
by Proposition BI7(). Thus, 2 = SF, = m; ST, and ST, = §S N F; = #(7|s) "1 (¢)
for any t € T. Therefore, t € 3 if and only if m; = 2. This implies (@) and ().
Thus, we are done.

Corollary 5.9. In the situation of Lemma B8, let 7: T' — T be the double-cover
7wls: S = T, and let X' be the normalization of the fiber product X xrT" of m and
7. Then the following hold:

(1) The double-cover v': X' — X induced by the first projection X xoT' — X
s étale in codimension 1.

(2) The morphism ' X' — T induced by the second projection X xpT' — T’
is a P -bundle.

(3) The pullback v'=1(S) is a disjoint union of two sections of m'.

(4) There is an endomorphism f': X' — X' such that f' ov' =1 o f.

Proof. Let h': T — T’ be the endomorphism f|s: S — S. Then roh’ = hor
for the endomorphism 4 in Lemma BE8(@]). Thus, we have an endomorphism f’ of
X' satisfying v' o f’ = forv and 7' o f/ = W' on’ by Lemma [£1l In particular,
@) holds. Here, b’ is étale, since 77 = S is an elliptic curve (cf. Lemma B.8(2]).
We can apply results in Section @l to (f': X' — X', «": X' —» T/ h': T — T").
By @)—(0) of Lemma (.8 and by Lemma [£2] we have () and every fiber of 7’ is
reduced. Moreover, we have (2 by Lemma [6I[). By construction, S’ = v/~1(S)
is reducible. Now, v/|g/: S’ — S is an étale morphism of degree 2 by () and by
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S C Xyeg (cf. Lemma [5.8(2)). Therefore, S’ is a disjoint union of two copies of S
which are both sections of #’. This shows (@), and we are done. O

Finally in Section [5 we finish the proof of Theorem [Al by proving it in the case
where Kx + 5 ~g 0 and S # 0.

Proof of Theorem [Al in this case. Let 0: X — X be the index 1 cover with respect
to Kx + S ~g 0 (cf. [45} Def. 4.18(2)]), and set S := 6*S. By [45, Lem. 4.21(1)], 6
is étale in codimension 1, S is reduced, K5 + S ~ 0, and there is an endomorphism
f: XX satisfying o f = fo6. In particular, S is completely invariant under f.
Therefore, we can apply Lemmas 64 E7 and B8 and Corollary | B9 to (X f, s ).

First, assume that X is irrational. Then, by LemmalB54l (§: X — X, f) satisfies
conditions required for (v: V — X, fi/) in Theorem [A] where either @) or (&) of
Theorem [Al is satisfied.

Second, assume that X is rational and the surface V in Lemma is also
rational. Then, by Lemma 5.7 there exists a finite Galois cover v: V — X étale in
codimension 1 from a toric surface V' with v (S ) as the boundary divisor and with
a lift f': V — V of the endomorphism f. The open subset U := (X )reg US of X
is preserved by the action of the Galois group of 8 on X and v~ 1U is the universal
cover of U by Lemma B.7 Thus, the composite §# o v: V — X is Galois. Hence,
(fov:V — X, fy) satisfies Theorem [A][6]).

Finally, assume that X is rational and the surface V in Lemma [5.6] is irrational.
Then, by Lemma 5.8 S is an elliptic curve contained in )}reg and there exists a
Pl fibration 7#: X — T ~ P! as the contraction morphlsm of an extremal ray. Let
7:T — T be the double-cover Tlg: S — T and let X be the normalization of
X X7 T Then, by Corollary B9 the induced morphism o: X — X is étale in
codimension 1 and the other induced morphism 7 : X — T is a Pl-bundle in which
5= p~1(8) is a disjoint union of two sections of 7
o b 0

!

Moreover, there is an endomorphism f X = X satisfying 0o f = f o?p. Thus, f is

>

X

=N
Ny ——

—

a lift of f: X — X. By construction, the Galois group of # preserves not only the
fibration 7: X — T but also the double-cover 7|5 S — T. Hence, the composite
0 o i is Galois and (f o 0: X — X, f) satisfies Theorem [B|H). This completes the
proof of Theorem [Al O

6. APPLICATIONS OF THEOREM [Al

A normal Moishezon surface admitting a non-isomorphic surjective endomor-
phism is always projective. This is the statement of Corollary [Bl which has been
proved in the introduction by applying Theorem [Al We shall give some other appli-
cations of Theorem [Al First, we shall prove Theorem below concerning the case
where X is irrational or Kx is pseudo-effective. As a corollary of Theorem [B.1]
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we have Proposition below on possible singularities on X. Proposition [(] in
the introduction is a consequence of Proposition Finally, we shall prove Theo-
rem [D] in the introduction on the first dynamical degree by applying Theorem
and previous results in Sections Bl B4l and 11

Theorem 6.1. Let X be a normal projective surface such that X is irrational or
Kx is pseudo-effective. If X admits a non-isomorphic surjective endomorphism,
then one of the following conditions is satisfied:

(1) There is a finite Galois cover C x T — X étale in codimension 1 for an
elliptic curve C' and a non-singular projective curve T of genus at least 2.

(2) There is a finite Galois cover A — X étale in codimension 1 from an abelian
surface A.

(3) There is a finite Galois cover P* x T — X étale in codimension 1 for a
non-singular projective curve T of genus at least 2.

(4) The surface X is a P-bundle over an elliptic curve.

(5) The surface X is a projective cone over an elliptic curve.

Proof. Assume that Ky is pseudo-effective. By Theorem [A] applied to the case
where S = 0, there is a finite Galois cover v: V — X étale in codimension 1
satisfying either (@) or (@) of Theorem [Al This is equivalent to saying that either
@ or @) above is satisfied.

Next assume that X is irrational and Kx is not pseudo-effective. Then X is
ruled, and one of the conditions (3)), ), and (B above is satisfied by Theorem [£.16
Thus, we are done. [l

Proposition 6.2. Let X be a normal projective surface admitting a non-isomorphic
surjective endomorphism. If X has an irrational singular point, then X is a pro-
jective cone over an elliptic curve.

Proof. Assume that X has an irrational singular point. Then either X is irrational
or Kx is pseudo-effective by [44, Lem. 2.31(3)]. Thus, we can apply Theorem [61]
where only Theorem [E.I[]) remains as the possible case. O

Proof of Proposition [Cl. Let X be a normal projective surface admitting a non-
isomorphic surjective endomorphism. If X is a projective cone over an elliptic curve,
then p(X) = p(X) = 1 by Lemma [[.T8 If not, X has only rational singularities
by Proposition [6.2} hence, X is Q-factorial by [44, Lem. 2.31], and it implies that

p(X) = p(X). O
Finally, we shall prove Theorem

Proof of Theorem [Dl Let f be a non-isomorphic surjective endomorphism of a nor-
mal projective surface X. If Kx & 0, then Theorem [A[3) holds, and we have Theo-
rem [DIE) by Corollary B8l Assume that Kx is pseudo-effective and Kx 5 0. Then
Theorem [E.I)(]) holds, and we have Theorem [DIB]) except the equality: Ay = deg f,
but it has already been shown in Section [B.Il In fact, the semi-ample divisor Ky
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defines a fibration 7: X — T to a non-singular projective curve 7" and an auto-
morphism h: T — T satisfying mw o f = honw. Thus, degh = 1 is an eigenvalue of
f*: N(X) = N(X), and Ay = deg f by Proposition B3|{#).

Therefore, we may assume that Kx is not pseudo-effective. If p(X) # 2 or if
(Ar)? = deg f, then we have Theorem [Di]) by Theorem and Corollary
If (Af)? > deg f, then we have Theorem [Di[2)) by Propositions and Thus,
we are done. |

APPENDIX A. ON DYNAMICAL DEGREES

In Section B, we have introduced the first dynamical degree for a surjective
endomorphism of a normal Moishezon surface. Originally, dynamical degrees were
introduced in the study of complex dynamical systems on compact Kahler manifolds
(cf. [60], [9], [25]). The purpose of Appendix [Alis to prove that the first dynamical
degree Ay of a surjective endomorphism f of a normal Moishezon surface X defined
in Definition B.] coincides with the first dynamical degree in the sense of complex
dynamics of the induced meromorphic map v~ !o fov: Z--— Z for a non-singular
projective surface Z with a birational map v: Z ---— X (cf. Corollary below).
Our discussion simplifies and clarifies arguments in the proof of [25, Prop. 1.2(iii)],
which deals with non-singular projective varieties of any dimension.

After proving some useful algebraic results on spectral radii of endomorphisms of
real vector spaces in Section [A.I] we shall prove Theorem [A 9 and Corollary [A.1(]
on the comparison of two first dynamical degrees in Section

A.1. Spectral radii of endomorphisms of vector spaces. The spectral radius
of an endomorphism of a finite-dimensional real vector space is by definition the
maximum of the absolute values of eigenvalues. We shall give some results on
spectral radii of endomorphisms which preserve a strictly convex closed cone.

To begin with, we recall some basics on convex cones (cf. [49, App.]). Let V be
a real vector space of dimension n < co. A convex cone C of V is by definition a
subset such that R.oC C C and C+ C C C. For a convex cone C, the minus —C is
also a convex cone, and C + (—C) is the vector subspace generated by C. If a convex
cone C contains 0, then the intersection CN(—C) is also a vector subspace. A strictly
convez cone is by definition a convex cone C such that C N (—=C) C {0}. The dual
cone CV of C is a closed convex cone of the dual vector space VV = Homg(V,R)
defined by

CY ={xeVY|x(x)>0for any x € C}.
It is known that (CY)Y = C and (C; NC3)Y = CY 4+ CJ for any closed convex cones

C, C1, and Cy of V. In particular, C + (—C) = V if and only if CV is strictly convex.
It is an exercise to prove the following;:

Lemma A.1l. Suppose that C 4+ (—C) =V for a closed convex cone C of V. Then
the interior of C is non-empty. For a vector u in the interior of C, there exists a
basis (z1,...,Tn) of V such that z; € C for any i and that u =Y. | x;.
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Definition A.2. Let C be a strictly convex closed cone of V' and w a vector in the
interior of C. We define a norm || - || = || - ||lc,. of V by

||| :=inf{r e R>g | —v+ru e C and v +ru € C}

for any v € V.

Remark. The norm ||v|| is well-defined. In fact, for any v € V,
e u+t (1/r)v eC for r >0,
e ||rv]| =7 - ||v|| for any r > 0, and
e ||v|| = 0 implies that v € C N (—C) = {0},
since C is strictly convex and closed. Moreover, since ||v||u + v € C, we have
o [lvall + flvall = flor + vel| for any vi, va € V.
Remark A.3. For the norm || - ||¢..,, we have |lullc,, = 1. If C is the polyhedral cone
> Rsge; for a basis (e1,...,e,) of Vand if u= Y7, e;, then, for any a; € R,
= maxlgign |G,z‘

n
H E . a4
=1 C,u

Lemma A.4. Let x be a vector in the dual space VV = Homg(V,R). Let C; and
Co be two closed convex cones of V' such that C; C Ca, C1 + (—C1) =V and that
X >0 on Ca\ {0}. Let u be a vector in the interior of C1 and let || - ||« be a norm of
End(V) = Homg(V, V). Then there exist positive real numbers ¢1 < cg such that

cil|gll« < x(p(w)) < cof| 0]«
for any ¢ € End(V) satisfying ¢(C1) C Ca.
Proof. Since x > 0 on C3 \ {0}, we have C; N (—Cy) = CaN (—Cq) = {0}, i.e., C; and
C, are strictly convex. For the proof, we may replace C; with any closed convex
cone Cf C C; such that v is in the interior of C;. Therefore, by Lemma [A] we may
assume that C; = Y 1" | Rsox; and w = >, a; for a basis (z1,...,2,) of V. Let
Il -1 ==l llc,,u be the norm of V' defined in Definition [A2l Since x > 0 on Cy \ {0}
and since {y € Cq; |ly|| = 1} is compact, there exist positive real numbers £; < €9
such that
(A-1) erllyll < x(y) < elyl
for any y € Co. Let || - ||op be the operator norm of End(V') defined by

[¥]lop == sup{ll¢>(v)[|; v € V' such that [jo]| =1}

for 1) € End(V). Since any two norms of the finite-dimensional vector space End(V)
are “equivalent” to each other, we may assume that || - ||+ = || - |lop- Let ¢ be an
arbitrary endomorphism of V' such that ¢(C1) C C2. Then

X(o(w)) < e2flp(u)]| < e2ll¢lop
by the right inequality of (A=I) and by |jul| = 1. If v = Y} | a;x; € V satisfies

lv]| = 1, then max;<i<yp |a;| = 1 by Remark [A.3] and moreover,

o)l <D lal - o)l < Yl < et D x((@:) = &7 x(b(w)
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by the left inequality of (A=I). In particular, ||¢|lop < €7 *x(¢(u)). Therefore, it is
enough to set (c¢1,c2) = (e1,2). ]

Convention. For an endomorphism ¢: V' — V of a finite-dimensional real vector
space V, the spectral radius is denoted by p(¢).

Remark A.5. By considering the Jordan normal form of the matrix representation
of ¢, we see that p(¢) < 1 if and only if lim,, . ¢ = 0 in End(V). Based on the
property, we have:

[8llop > p(6) = limpm oo [l 2/
for the operator norm || - ||op associated with any norm || - || of V' and for any norm
I ||« of End(V).

By Lemma [A4] and Remark [A-5] we have:

Corollary A.6. Let V, x, C1, and Coy be the same as in Lemma [A4l Let ¢1, ¢o,
@3, ...be an infinite sequence of endomorphisms of V such that ¢;(C1) C Co for
any v > 1. Then

01500 X(9n (1)) /™ = Tl s [[9m 12 2 Tl 0 p( ) /™,
B0 X (S ()" = T 27 2 Titn, o ()
for any vector u in the interior of Cy and for any norm || - ||« of End(V).

Proposition A.7. Let V be a finite-dimensional real vector space, x: V — R a
linear function, and C a closed convex cone of V' such that C+(—C) =V and x >0
on C\{0}. Let u be a vector in the interior of C and let 1, P2, d3, ... be an infinite
sequence of endomorphisms V. — V such that

(i) ¢m(C) CC for any m > 1, and

(i) dm, (Pmsy(2)) = dmymy(u) € C for any my, ma > 1.
Then one has

limy, 00 X(¢m(u))1/m = limy, 00 ||¢mH’1f/m = limy, 00 p(¢)m)1/m
= inf>1 p(dm) /™

for any norm || - ||« of End(V).

Proof. We apply the argument in the proof of Lemma [A4] to the case where C; =

Cy = C. Let || - || be the norm || - ||c,,, defined in Definition [A.22l Then we may

replace || - ||« with the operator norm || - ||op With respect to || - || as in the proof of

Lemma[A4l By () and (),

(A-2) Py © Py O 0 P (U) — Py 4o, (1) €C

holds for any positive integers my, ..., mg. This is shown by induction on s as

follows: If s = 2, then this is just (@). Assume that (A=2) holds for integers mso,
, mg. Then

(bml (¢m2 o ¢)m2 -0 ¢m5 (u) - ¢m2+~-+ms (U,)) ecC
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by (@), since ¢m,(C) € C. On the other hand, ¢m,(¢;(u)) — Gm,+i(u) € C for
l=my+---+ms by ([@). Thus, (A=2)) holds true by induction.

Let k be an arbitrary positive integer and fix it. Any positive integer m is
expressed as m = lk + r for non-negative integers | = Lm/k1 and r < k. Then

G (dr (1) — dm(u) €C
by (A=2). Hence, there is a positive real number ¢y such that

X(m(w) < x((¢r(u)) < ca| Bl
for any m and | = um/kJ by Lemma [A4] and we have

- . 1/k
T 00 X (@ (w)) /™ < limy o0 (Ilcbklli/l) = p(¢n)'/*

by Remark As a consequence,

mm—)oo X(¢m(u))1/m < infk21 p((rbk)l/k < 0.

By inequalities in Corollary [AL6] we have the expected equalities. O

A.2. The first dynamical degree for a normal Moishezon surface. First,

we recall the definition of dynamical degrees in the sense of complex dynamics (cf.
B0, p. 917, Def], [9, p. 960], [25, Def. 1.1]):

Definition A.8. Let ¢: Z--— Z be a dominant meromorphic map for a compact
Kahler manifold Z of dimension n. Let u: Y — Z be a bimeromorphic morphism
from another compact Kéhler manifold Y such that ¢ := popu: Y — Z is holomor-
phic. For a Kéhler form w on Z and for an integer 1 <[ < n, we set

i) = [ e ne = [ nurer,

where w’ stands for the (i,i)-form Alw, and p*(w?) := p,(P*w?) as a current on Z.
The number §;(p,w) is independent of the choice of . The [-th dynamical degree
Ai(p) is defined as
Ai(p) == limy, oo 5l(<pm,w)1/m.

Remark. The limit exists by [10, Cor. 7]. By definition, \,(p) is equal to the
mapping degree deg ¢ (= deg ). The dynamical degree \;(p) is independent of the
choice of the Kéahler form w, and moreover, it is determined by ¢ up to conjugation
by the bimeromorphic maps Z ---— Z (cf. [I0 Cor. 7]).

Remark. The dynamical degrees are defined and studied in connection with topo-
logical entropies in several articles of complex dynamics including [50], [8], [9], [10],
and [25].

The purpose of Section [A2]is to prove:

Theorem A.9. Let f: X ---— X be a dominant meromorphic map for a mormal
Moishezon surface X. Let v: Z-+-— X be a birational map from a mon-singular
projective surface Z and let @: Z ---— Z be the meromorphic map v~ o fov. Then

A1 () = limp, o0 p ((F7))™.
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Here, (f™)*: N(X) — N(X) is a linear map in Definition [AT1T] below defined for
the m-th power f™: X -—-— X, and p((f™)*) is the spectral radius.

Corollary A.10. In Theorem [A9], assume that f is holomorphic. Then A1 (p)
equals Ny defined in Definition Bl

Proof. We have p ((f™)*) = p(f*)™ = A} for any m > 1, since (f™)* = (f*)™ as
an endomorphism of N(X). Thus, A;(¢) = Ay by Theorem O

The proof of Theorem is given at the end. We begin with

Definition A.11. Let f: X ---—Y be a dominant meromorphic map of normal
Moishezon surfaces. For an R-divisor D on Y, we define the total pullback f*D as
t«(h*D) for a birational morphism p: X’ — X from another normal Moishezon
surface X’ such that h:= fopu: X’ — Y is holomorphic (cf. [45] Def. 1.30]). Here,
f*D does not depend on the choice of u: X’ — X (cf. [45) Lem. 1.31(2)]). We set
f*: N(Y) = N(X) to be the homomorphism defined by D — f*D. This is just the
composite p, o h*: N(Y) = N(X’) — N(X).

Lemma A.12. In the situation of Definition [AT1), if D is nef (resp. effective, resp.
big), then so is f*D. In particular, f* Nef(Y) C Nef(X) and f*NE(Y) C NE(X)
for the homomorphism f*: N(Y) — N(X) (cf. [44, Rem. 2.13]).

Proof. If D is effective, then h*D and p.(h*D) = f*D are so. Suppose that
D is big. Then h*D is so, since h is generically finite, and h*D > eu*A for
a numerically ample divisor A on X and a rational number ¢ > 0. It implies:
f*D = pe(h*D) > epy(u*A) = eA. Thus, f*D is big. Suppose next that D is nef.
Then, for any effective divisor E on X, we have

(/D E) = (4.(h*D) - E) = ("D - 5" E) = (D hu (4" E)) = 0,
since u*E and h,(u*E) are effective. Thus, f*D is also nef. O

Lemma A.13. Let f: X ---— X be a dominant meromorphic map for a normal
Moishezon surface X. Then

(A-3) im0 (B - (f™)*B)Y™ = im0 p((f™)) /™

for any nef and big R-divisor B on X, where (f™)*: N(X) — N(X) is the endo-
morphism defined in Definition [A 11l for the m-th power f™: X ---— X.

Proof. Let A be a numerically ample R-divisor on X. Then cl(A) lies in the interior
of Nef(X), and x4 > 0 on NE(X) \ {0} for the linear function x4: N(X) — R
defined by D ~ (D - A) for R-divisors D. Here, (f™)* NE(X) C NE(X) for any
m > 1 by Lemma [A.12] and
(P (72 4) 2 (Fmem) A

for any mq, me > 1 by [45] Cor. 1.33]. Thus, we can apply Proposition to:
V =N(X), C = NE(X), ¢, = (f™)*, u = cl(A4), and x = xa. As a consequence,
we have (A-3)) for the numerically ample divisor A instead of B. Now, there exist
positive real numbers « and 8 such that B — «A is big and A — B is numerically
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ample. Then (f™)*A and (f™)*B are nef and (f™)*(4 — 8B) and (f™)*(B — aA)
are big for any m > 1 by Lemma [A12] Thus, we have inequalities
(A-(f™)"A) = B(B - (f")"A) = B*(B - (f")"B) and
(B-(f™)"'B) 2 a(A-(f™)"B) 2 a*(A- (f™)"A)
and hence,
1m0 (B - (f™)* B)Y™ = lim,, o0 (A - (f™)*A)V/™.
Therefore, (A=3)) holds. O

Corollary A.14. In Lemma [AI3, suppose that X is a non-singular projective
surface. Then

M (f) = oo p((f™) )™ =ty oo (B - (f7) B)Y/™
for any nef and big R-divisor B.
Proof. By Lemma [AT3] it is enough to show
(A-4) M(f) = im0 (B - (f7)"B)Y™

assuming that B is an ample divisor. Let w be a Ké&hler form on X such that
[w] = c1(B) in H?(X,R). Let u: X’ — X be a birational morphism from a non-

singular projective surface X’ such that h := f o u: X’ — X is holomorphic.
Then 6;(f,w) = (h*B - p*B) = (B - f*B) by Definition [A.8 Hence, d;(f™,w) =
(B - (f™)*B) for any m > 1, and we have (A=]). O

Lemma A.15. Assume that the meromorphic map v: Z ---— X in Theorem [A.9
is holomorphic. Then

(V" A1 - (¢) (V" Ag)) = (A1 - (f7)" Ag)
for any m > 1 and for any R-divisors A1 and Ay on X, where ¢: Z ---— Z is the
meromorphic map v—' o f ov in Theorem [A.9l

Proof. Without loss of generality, we may assume that m = 1, since ¢ = v~ ! o

fmowv. Let p: X’ — X and fi: Z' — Z be birational morphisms from normal
projective surfaces X’ and Z’ such that h:= fou: X' - X, h:=pofu: Z' ---— Z,

and v/ := p~lovoji: Z' — X' are holomorphic. Then we have a commutative
diagram

AR/ R

X x i x

of holomorphic maps, where ¢ = ho fi~' and f = hop~! as meromorphic maps.
Hence,

(V' A-¢"(v'B)) = (V" A ji.(W* (" B))) = (i (v* A) - B (" B))
— V(W A) -V (W B)) = (" A- " B) = (A- p.(h"B)) = (A- [ B)

by projection formulas for , and * on intersection numbers. O
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Finally, we shall prove Theorem

Proof of Theorem [A9l Let o: Z' — Z be a birational morphism from a non-
singular projective surface Z’ such that v/ = voo: Z’ — X is also holomorphic.
Let ¢': Z'---— Z' be the induced meromorphic map ¢ ' opoo = v/l o for
Then the diagram

X<~——7 —=7Z
J IR
X" gz _°7 .z

of meromorphic maps is commutative, where v = v/ oo ~!. For a numerically ample
divisor A on X and an ample divisor H on Z, we have

= 1m0 (A - (F™)* A)Y™ = limy, oo (H - (™) H)Y™ = X\ (p)

by Corollary [A.14] and Lemma [AT5] since 2’ and o are holomorphic and since v'* A
and o*H are nef and big. Therefore,

AL(9) =l soo (A - (f7) A)Y™ = Timgn oo p((F7)")

by Lemma [A.13l Thus, we are done. (]
REFERENCES

[1] V. Alexeev, Boundedness and K2 for log surfaces, Internat. J. Math. 5 (1994), 779-810.
[2] M. Artin, Algebraization of formal moduli: II. Existence of modifications, Ann. Math., 91
(1970), 88-135.
[3] G. Birkhoff, Linear transformations with invariant cones, Amer. Math. Monthly 74 (1967),
274-276.
[4] L. Brenton, Some algebraicity criteria for singular surfaces, Invent. Math. 41 (1977), 129-147.
[5] S. Bundgaard and J. Nielsen, On normal subgroups with finite index in F-groups, Mat.
Tidsskr. B. (1951), 56-58.
[6] T.C. Chau, A note concerning Fox’s paper on Fenchel’s conjecture, Proc. Amer. Math. Soc.
88 (1983), 584-586.
[7] D. Chen and C. Schnell, Surfaces with big anticanonical class, preprint 2008.
[8] J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123
(2001), 1135-1169.
[9] T-C. Dinh and N. Sibony, Regularization of currents and entropy, Ann. Sci. Ecole Norm. Sup.
(4) 37 (2004), 959-971.
[10] T-C. Dinh and N. Sibony, Une borne supérieque pour ’entropie topologique d’une application
rationelle, Ann. of Math. 161 (2005), 1637-1644.
[11] N. Fakhruddin, Questions on self maps of algebraic varieties, J. Ramanujan Math. Soc. 18
(2) (2003), 109-122.
[12] C. Favre, Holomorphic self-maps of singular rational surfaces, Publ. Mat. 54 (2010), 389-432.
[13] G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer-Verlag, 1976.
[14] R. H. Fox, On Fenchel’s conjecture about F-groups, Mat. Tidsskr. B. (1952), 61-65.
[15] Y. Fujimoto, Endomorphisms of smooth projective 3-folds with nonnegative Kodaira dimen-
sion, Publ. RIMS, Kyoto Univ. 38 (2002), 33-92.
[16] Y. Fujimoto and N. Nakayama, Compact complex surfaces admitting non-trivial surjective
endomorphisms, Tohoku Math. J. 57 (2005), 395-426.



78
(17]

(18]
(19]

20]
(21]

22]
23]

24]

[25]
[26]

27)
(28]

29]

[30]
[31]
32
[33]
[34]

(35]

(36]

37)
(38]

39]

[40]

[41]

Y. Fujimoto and N. Nakayama, Endomorphisms of smooth projective 3-folds with nonnegative
Kodaira dimension, II, J. Math. Kyoto Univ. 47 (2007), 79-114.

T. Fujita, On Zariski Problem, Proc. Japan Acad. 55, Ser. A (1979), 106-110.

T. Fujita, Fractionally logarithmic canonical rings of algebraic surfaces, J. Fac. Sci. Univ.
Tokyo Sect. IA 30 (1984), 685-696.

W. Fulton, Introduction to Toric Varieties, Ann. of Math. Studies 131, Princeton Univ.
Press, 1993.

H. Grauert, Uber Modifikationen und exzeptionelle analytische Mengen, Ann. Math. 146
(1962), 331-368.

H. Grauert and R. Remmert, Komplexe Réume, Math. Ann. 136 (1958), 245-318.

A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique: II, Etude globale
élémentaire de quelques classes de morphismes, Publ. Math. I.H.E.S., 8 (1961), 5-222.

A. Grothendieck and Mme M. Raynaud, Revétements Etales et Groupe Fondamental (SGA1),
Lecture Notes in Math. 224, Springer-Verlag, 1971; A new updated edition: Documents
Math. 3, Soc. Math. France, 2003.

V. Guedj, Ergodic properties of rational mappings with large topological degree, Ann. of
Math. 161 (2005), 1589-1607.

C. Horst, Compact varieties of surjective holomorphic endomorphisms, Math. Z. 190 (1985),
499-504.

S. Iitaka, On D-dimensions of algebraic varieties, J. Math. Soc. Japan 23 (1971), 356-373.
Y. Kawamata, Crepant blowing-up of 3-dimensional canonical singularities and its application
to degenerations of surfaces, Ann. of Math. 127 (1988), 93-163.

Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the minimal model problem,
Algebraic geometry, Sendai, 1985 (ed. T. Oda), Adv. Stud. Pure Math. 10, pp. 283-360,
Kinokuniya and North-Holland, 1987.

G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal Embeddings, I, Lecture
Notes in Math. 339, Springer-Verlag, 1973.

K. Kodaira, On complex analytic surfaces, II, Ann. of Math., 77 (1963), 563-626; III, ibid.
78 (1963), 1-40.

K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J. Math., 86
(1964), 751-798.

J. Kollar et al., Flips and Abundance for Algebraic Threefolds, Astérisque 211, Soc. Math.
de France, 1992.

J. Kollar and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math.
134, Cambridge Univ. Press, 1998.

Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic Ge-
ometry Sendai 1985 (ed. T. Oda), pp. 449-476, Adv. Stud. in Pure Math. 10, Kinokuniya
and North-Holland, 1987.

B. G. Moishezon, On n-dimensional compact varieties with n algebraically independent mero-
morphic functions, I, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 133-174; II, ibid. 345-386;
III, ibid. 621-656: Amer. Math. Soc. Translations Ser. 2, 63 (1967), 51-177.

S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116
(1982), 133-176.

D. Mumford, The topology of normal surface singularities of an algebraic surface and a
criterion for simplicity, Publ. Math. LH.E.S., 9 (1961), 5-22.

N. Nakayama, Local structure of an elliptic fibration, Higher Dimensional Birational Geom-
etry (eds. S. Mori and Y. Miyaoka), pp. 185-295, Adv. Stud. in Pure Math. 35, Math. Soc.
Japan, 2002.

N. Nakayama, Ruled surfaces with non-trivial surjective endomorphisms, Kyushu J. Math.
56 (2002), 433-446.

N. Nakayama, Zariski-decomposition and Abundance, MSJ Memoirs 14, Math. Soc. Japan,
2004.



42]
[43]

[44]

[45]
[46]
[47]
48]
[49]
[50]
[51]
[52]
(53]

[54]

[55]

79

N. Nakayama, Classification of log del Pezzo surfaces of index two, J. Math. Sci. Univ. Tokyo
14 (2007), 293-498.

N. Nakayama, On complex normal projective surfaces admitting non-isomorphic surjective
endomorphisms, unpublished preprint 2008.

N. Nakayama, A variant of Shokurov’s criterion of toric surface, Algebraic Varieties and
Automorphism Groups (eds. K. Masuda, et al.), pp. 287-392, Adv. Stud. in Pure Math. 75,
Math. Soc. Japan, 2017.

N. Nakayama, Singularity of normal complex analytic surfaces admitting non-isomorphic
finite surjective endomorphisms, preprint RIMS-1920, 2020.

N. Nakayama, On the structure of normal projective surfaces admitting non-isomorphic sur-
jective endomorphisms, in preparation.

N. Nakayama and D.-Q. Zhang, Polarized endomorphisms of complex normal varieties, Math.
Ann. 346 (2010), 991-1018.

M. Namba, Branched coverings and algebraic functions, Pitman Res. Notes in Math. 161,
Longman Scientific & Technical, 1987.

T. Oda, Convex Bodies and Algebraic Geometry — An Introduction to the Theory of Toric
Varieties, Ergebnisse der Math. (3) 15, Springer-Verlag, 1988.

A. Russakovskii and B. Shiffman, Value distribution for sequences of rational mappings and
complex dynamics, Indiana Univ. Math. J. 46 (1997), 897-932.

F. Sakai, Anticanonical models of rational surfaces, Math. Ann. 269 (1984), 389-410.

F. Sakai, Weil divisors on normal surfaces, Duke Math. J. 51 (1984), 877-888.

F. Sakai, The structure of normal surfaces, Duke Math. J. 52 (1985), 627-648.

F. Sakai, Ample Cartier divisors on normal surfaces, J. reine und angew. Math. 366 (1986),
121-128.

F. Sakai, Classification of normal surfaces, Algebraic Geometry Bowdoin 1985 (ed. S. Bloch),
Proc. Symp. in Pure Math. 46, Part 1, pp. 451-465, Amer. Math. Soc., 1987.

[56] F. Sakai, On polarized normal surfaces, Manuscripta Math. 59 (1987), 109-127.
[67) V. V. Shokurov, 3-fold log flips, Izv. Russ. Acad. Nauk. Ser. Mat. 56 (1992), 105-203; (English

translation) Russian Acad. Sci. Izv. Math. 40 (1993), 95-202.

[58] V. V. Shokurov, Complements on surfaces, J. Math. Sci. New York 102, No. 2 (2000), 3876—

3932.

[69] D. Testa, A. Vérilly-Alvarado, and M. Velasco, Big rational surfaces, Math. Ann. 351 (2011),

95-107.

[60] S. Tsunoda and M. Miyanishi, The structure of open algebraic surfaces II, Classification

of Algebraic and Analytic Manifolds (ed. K. Ueno), Progress in Math. 39, pp. 499-544,
Birkhauser, 1983.

[61] K. Ueno, Kodaira dimensions for certain fibre spaces, Complex Analysis and Algebraic Ge-

ometry (eds. W. L. Baily, Jr. and T. Shioda), pp. 280-292, Iwanami Shoten Publishers and
Cambridge Univ. Press, 1977.

[62] O. Zariski, The theorem of Riemann—Roch for high multiples of an effective divisor on an

algebraic surface, Ann. Math. 76 (1962), 560-615.

[63] D.-Q. Zhang, Polarized endomorphisms of uniruled varieties, Compos. Math. 146 (2010),

145-168.

[64] S.-W. Zhang, Distributions in algebraic dynamics, Surveys in Differential Geometry 10,

pp. 381-430, Int. Press, 2006.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES
KyoTo UNIVERSITY, KYOTO 606-8502 JAPAN
Email address: nakayama@kurims.kyoto-u.ac.jp



	web-title
	NMSEndo
	Introduction
	Organization of this article
	Background
	Acknowledgement
	Notation and conventions

	1. Some basic results on normal Moishezon surfaces
	1.1. Basics on divisors on normal surfaces
	1.2. Semi-ampleness criteria
	1.3. Minimal model program
	1.4. P1-bundles and projective cones over curves

	2. Endomorphisms of normal varieties
	2.1. Endomorphisms of sets
	2.2. Galois closure of an endomorphism
	2.3. Endomorphisms of curves
	2.4. Characteristic completely invariant divisor
	2.5. Refined ramification divisor

	3. Endomorphisms of normal Moishezon surfaces
	3.1. The first dynamical degree
	3.2. The singularities on the pair (X, S) along S
	3.3. Endomorphisms preserving a fibration
	3.4. Application of the minimal model theory

	4. Fibrations preserved by endomorphisms
	4.1. Base changes of endomorphisms preserving fibrations
	4.2. Endomorphisms inducing étale endomorphisms of base curves
	4.3. Endomorphisms inducing automorphisms of base curves
	4.4. Structure of irrational ruled surfaces

	5. Classification in the pseudo-effective case: Proof of Theorem A
	5.1. The case: K+S ≠ 0
	5.2. The case: S = 0 and K =0
	5.3. The case: S ≠ 0 and K+S = 0

	6. Applications of Theorem A
	Appendix A. On dynamical degrees
	A.1. Spectral radii of endomorphisms of vector spaces
	A.2. The first dynamical degree for a normal Moishezon surface

	References


