
RIMS-1924

The Geometry of Hyperbolic Curvoids

By

Yuichiro HOSHI

September 2020

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES

KYOTO UNIVERSITY, Kyoto, Japan



The Geometry of Hyperbolic Curvoids

Yuichiro Hoshi

September 2020

———————————–

Abstract. — The main purposes of the present paper are to introduce the notion of a
hyperbolic curvoid and to study the geometry of hyperbolic curvoids. A hyperbolic curvoid
is defined to be a certain profinite group and may be considered to be “group-theoretic ab-
straction” of the notion of a hyperbolic curve from the viewpoint of anabelian geometry. One
typical example of a hyperbolic curvoid is a profinite group isomorphic to the étale funda-
mental group of a hyperbolic curve either over a number field or over a mixed-characteristic
nonarchimedean local field. The first part of the present paper centers around establishments
of a construction of the “geometric subgroup” of hyperbolic curvoids and a construction of the
“collection of cuspidal inertia subgroups” of hyperbolic curvoids. Moreover, we also consider
respective analogues for hyperbolic curvoids of the theory of partial compactifications of hy-
perbolic curves and the theory of quotient orbicurves of hyperbolic curves by actions of finite
groups.
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Introduction

Let K be either an NF [i.e., a number field — cf. the discussion entitled “Numbers”
in §0] or an MLF [i.e., a mixed-characteristic nonarchimedean local field — cf. the dis-
cussion entitled “Numbers” in §0]. Moreover, let K be an algebraic closure of K and
X a hyperbolic curve over K [cf. the discussion entitled “Curves” in §0]. Write π1(X),
π1(X ×K K) for the respective étale fundamental groups of X, X ×K K [relative to some
choices of basepoints]. Thus, we have an exact sequence of profinite groups

1 // π1(X ×K K) // π1(X) // Gal(K/K) // 1.

2010 Mathematics Subject Classification. — 14H30.
Key words and phrases. — hyperbolic curvoid, hyperbolic curve, anabelian geometry.
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Now let us recall that it follows from [13, Theorem 2.6, (v), (vi)] that, roughly speaking,
one may reconstruct “group-theoretically”, from the profinite group π1(X), the geometric
subgroup of π1(X), i.e., the normal closed subgroup π1(X×kK) ⊆ π1(X) of π1(X), hence
also the above exact sequence of profinite groups. Moreover, it follows immediately from
[13, Lemma 4.5, (v)] that, roughly speaking, one may reconstruct “group-theoretically”,
from the profinite group π1(X), the collection of inertia subgroups of π1(X ×k K) asso-
ciated to the cusps of the hyperbolic curve X.
The main purposes of the present paper are to introduce the notion of a hyperbolic

curvoid and to study the geometry of hyperbolic curvoids. A hyperbolic curvoid [cf.
Definition 2.1] is defined to be a certain profinite group and may be considered to be
“group-theoretic abstraction” of the notion of a hyperbolic curve from the viewpoint of
anabelian geometry. One typical example of a hyperbolic curvoid is a profinite group
isomorphic to the étale fundamental group [relative to some choice of basepoint] of a
hyperbolic curve either over an NF or over an MLF [cf. Corollary 6.7, (ii)]. In the
remainder of the present Introduction, let □ be an element of the set {MLF,NF} and

Π

a hyperbolic □-curvoid [cf. Definition 2.1].
The first part of the present paper [cf. §2] centers around establishments of

• a “group-theoretic” construction of the “geometric subgroup” of hyperbolic curvoids
[cf. Definition 2.4, (i)] and

• a “group-theoretic” construction of the “collection of cuspidal inertia subgroups” of
hyperbolic curvoids [cf. Definition 2.8, (i)].

Put another way, in the first part of the present paper, we give a “group-theoretic”
construction of a normal closed subgroup ∆(Π) ⊆ Π of Π [cf. Definition 2.4, (i)] such
that

• the quotient G(Π)
def
= Π/∆(Π) [cf. Definition 2.4, (ii)] of Π by ∆(Π) ⊆ Π is isomorphic

to the absolute Galois group [relative to some choice of algebraic closure] of an MLF
(respectively, NF) whenever □ = MLF (respectively, □ = NF) [cf. Proposition 2.5, (ii)],
and, moreover,

• if one applies this construction of “∆(−)” to the hyperbolic □-curvoid π1(X) [i.e.,
obtained by forming the étale fundamental group of the above hyperbolic curve X],
then the resulting normal closed subgroup, i.e., ∆(π1(X)), coincides with the geometric
subgroup π1(X ×k K) of π1(X) [cf. Remark 3.4.1; Corollary 6.7, (i)].

In particular, one may associate, to the hyperbolic □-curvoid Π, an exact sequence of
profinite groups

1 // ∆(Π) // Π // G(Π) // 1.

Moreover, in the first part of the present paper, we also give a “group-theoretic” con-
struction of a collection of closed subgroups of ∆(Π) [cf. Definition 2.8, (i)] such that if
one applies this construction to the hyperbolic □-curvoid π1(X) [i.e., obtained by form-
ing the étale fundamental group of the above hyperbolic curve X], then the resulting
collection of closed subgroups of ∆(π1(X)) = π1(X ×k K) coincides with the collection
of inertia subgroups of π1(X ×k K) associated to the cusps of the hyperbolic curve X [cf.
Remark 3.7.1; Corollary 6.7, (iii)].
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In §4 of the present paper, we introduce and discuss partial compactifications of hyper-
bolic curvoids [cf. Definition 4.5]. One main result, related to partial compactifications,
of the theory of hyperbolic curvoids is as follows [cf. Theorem 4.10].

THEOREM A. — Let □ be an element of the set {MLF,NF}, Π a hyperbolic □-curvoid
[cf. Definition 2.1], and S a subset of the set of ∆(Π)-conjugacy classes of cuspidal inertia
subgroups of Π [cf. Definition 2.8, (i)]. Write

Π•S

for the quotient of Π by the normal closed subgroup of Π normally topologically generated
by the cuspidal inertia subgroups of Π that belong to elements of S [cf. Definition 4.5] and

∆(Π)•S

for the image of ∆(Π) in Π•S [cf. Definition 4.5]. [So we have a commutative diagram of
profinite groups

1 // ∆(Π) //

����

Π //

����

G(Π) // 1

1 // ∆(Π)•S // Π•S // G(Π) // 1

— where the horizontal sequences are exact, and the vertical arrows are surjective.]
Then the following three conditions are equivalent:

(1) The profinite group Π•S is a hyperbolic □-curvoid.
(2) The profinite group Π•S is a hyperbolic □-curvoid such that the equality

∆(Π•S) = ∆(Π)•S holds.

(3) The profinite group ∆(Π)•S is not abelian.

In §5 of the present paper, we prove that a suitable outer continuous action of a finite
group on a hyperbolic curvoid gives rise to a hyperbolic orbicurvoid [cf. Definition 3.1]
that may be thought of as an analogue [i.e., in the theory of hyperbolic curvoids] of the
notion of a quotient orbicurve. More precisely, for instance, we prove the following result
[cf. Theorem 5.4, (i)].

THEOREM B. — Let □ be an element of the set {MLF,NF} and Π a hyperbolic □-
curvoid [cf. Definition 2.1]. Write Aut(Π) for the group of continuous automorphisms of
Π [cf. the discussion entitled “Profinite Groups” in §0]; Out(Π), Out(G(Π)) [cf. Defini-
tion 2.4, (ii)] for the groups of outer continuous automorphisms of Π, G(Π), respectively
[cf. the discussion entitled “Profinite Groups” in §0]. Let J ⊆ Out(Π) be a finite subgroup
of Out(Π). Write

Π[J ]
def
= Aut(Π)×Out(Π) J

for the fiber product of the natural surjective homomorphism Aut(Π)↠ Out(Π) and the
natural inclusion J ↪→ Out(Π) [cf. Definition 5.3, (ii)]. Suppose that J is contained
in the kernel of the natural homomorphism Out(Π) → Out(G(Π)) whenever □ = MLF.
Then the profinite group Π[J ] [cf. Remark 5.3.1, (i)] [fits into an exact sequence of profinite
groups

1 // Π // Π[J ] // J // 1
3



— cf. Definition 5.3, (ii) — and] is a hyperbolic □-orbicurvoid [cf. Definition 3.1].
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0. Notations and Conventions

Sets. — If S is a finite set, then we shall write ]S for the cardinality of S.

Numbers. — We shall write
Primes

for the set of prime numbers. We shall refer to a finite extension of the field of rational
numbers as a number field, or an NF, for short. We shall refer to a finite extension of
the p-adic completion, for some prime number p, of the field of rational numbers as a
mixed-characteristic nonarchimedean local field, or an MLF, for short.

Profinite Groups. — Let G be a profinite group and N ⊆ G a normal closed subgroup

of G. Write Q
def
= G/N . Then we shall write

AutQ(G)

for the group of continuous automorphisms of G over Q and

Aut(G)

for the “AutQ(G)” in the case where we take the “N” to be G, i.e., the group of continuous
automorphisms of G. Now observe that the image of the homomorphism N → AutQ(G)
by conjugation is normal. We shall write

AutQ(G)

for the quotient of AutQ(G) by this image of N and

Out(G)

for the “AutQ(G)” in the case where we take the “N” to be G, i.e., the group of outer
continuous automorphisms of G.

Let G be a profinite group and H ⊆ G a closed subgroup of G. Then we shall write

ZG(H)
def
= { g ∈ G | gh = hg for every h ∈ H }

for the centralizer of H in G,

CG(H)
def
= { g ∈ G | H ∩ gHg−1 is of finite index both in H and in gHg−1 }

for the commensurator of H in G, and

Gab
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for the topological abelianization of G, i.e., the quotient of G by the normal closed sub-
group normally topologically generated by the commutators. We shall say that the closed
subgroup H ⊆ G of G is commensurably terminal if the inclusion CG(H) ⊆ H, or, al-
ternatively, the equality CG(H) = H, holds. We shall say that the closed subgroup
H ⊆ G of G is characteristic if the equality α(H) = H holds for an arbitrary continuous
automorphism α ∈ Aut(G) of G.

Curves. — Let S be a scheme and (g, r) a pair of nonnegative integers. Then we shall
say that a scheme X over S is a smooth curve of type (g, r) over S if there exist

• a scheme X+ over S smooth, proper, geometrically connected, and of relative di-
mension 1 over S and

• a [possibly empty] closed subscheme D ⊆ X+ of X+ finite and étale over S

such that

• each geometric fiber of X+ over S is of genus g,

• the finite étale covering D of S is of degree r, and, moreover,

• the scheme X is isomorphic to X+ \D over S.

We shall define a hyperbolic curve of type (g, r) over S to be a smooth curve of type (g, r)
over S such that 2− 2g − r < 0. Moreover, we shall define a smooth curve (respectively,
hyperbolic curve) over S to be a smooth curve (respectively, hyperbolic curve) of type
(g′, r′) over S for some pair (g′, r′) of nonnegative integers.

Let k be a field and X a generically scheme-like algebraic stack over k. Then we shall
say that the stack X over k is a hyperbolic orbicurve over k if there exist a hyperbolic
curve Y over a finite extension of k and a finite étale Galois covering Y → X over k.

1. Some Profinite Group Theory

In the present §1, we discuss certain aspects of abstract profinite groups, as they relate
to the theory of hyperbolic curvoids.

DEFINITION 1.1. — Let G be a profinite group.

(i) We shall say that G is slim [cf. the discussion entitled “Topological Groups” in
[13, §0]] if the equality ZG(H) = {1} holds for every open subgroup H of G.

(ii) We shall say that G is elastic [cf. [13, Definition 1.1, (ii)]] if every closed subgroup
of G that is

• nontrivial,

• normal in an open subgroup of G, and

• topologically finitely generated as an abstract profinite group

is of finite index in G.

(iii) We shall say that G is very elastic [cf. [13, Definition 1.1, (ii)]] if G is elastic and
not topologically finitely generated.

5



LEMMA 1.2. — Let G be a profinite group. Suppose that there exists a normal closed
subgroup N ⊆ G of G such that both N and G/N are slim. Then G is slim.

Proof. — This assertion follows immediately from the various definitions involved. □

DEFINITION 1.3. — Let G be a profinite group.

(i) We shall say that G is of MLF-type [cf. [4, Definition 1.1], [4, Proposition 1.2, (i),
(ii)]] (respectively, of NF-type [cf. [4, Definition 3.2]]) if G is isomorphic, as an abstract
profinite group, to the absolute Galois group [relative to some choice of algebraic closure]
of an MLF (respectively, NF).

(ii) Suppose that G is either of MLF-type or of NF-type. Then we shall write

Λ(G)

for the cyclotome associated to G [cf. [4, Theorem 1.4, (9)], [4, Proposition 3.7, (4)]].

REMARK 1.3.1.

(i) It is well-known that a profinite group of MLF-type is infinite. Let us recall that
a profinite group of MLF-type is also topologically finitely generated [cf. [15, Theorem
7.4.1]], slim [cf. [13, Theorem 1.7, (ii)]], and elastic [cf. [13, Theorem 1.7, (ii)]].

(ii) It is well-known that a profinite group of NF-type is infinite. Let us recall that a
profinite group of NF-type is also slim [cf. [13, Theorem 1.7, (iii)]] and very elastic [cf.
[13, Theorem 1.7, (iii)]].

PROPOSITION 1.4. — Let G be a profinite group of NF-type. Then the group Aut(G)
has a natural structure of profinite group of NF-type, with respect to which the
homomorphism G→ Aut(G) by conjugation is an open injective continuous homo-
morphism. Let us regard Aut(G) as a profinite group of NF-type by this structure.

Proof. — This assertion follows immediately from [16, Theorem], together with the
slimness portion of Remark 1.3.1, (ii) [cf. also [4, Proposition 5.2, (4)]]. □

DEFINITION 1.5. — Let G be a profinite group and N ⊆ G a normal closed subgroup of
G.

(i) We shall say that N is of co-MLF-type if G/N is of MLF-type.

(ii) We shall say that N is pseudo-MLF-geometric if the following two conditions are
satisfied:

(1) The normal closed subgroup N is of co-MLF-type and topologically finitely
generated.

(2) For each open subgroupH ⊆ G ofG, the maximalH-stable torsion-free quotient
of the abelian profinite group (H ∩N)ab on which the resulting action of H is trivial has

a natural structure of [necessarily finitely generated — cf. (1)] free Ẑ-module.
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LEMMA 1.6. — Let G be a profinite group. Then the following assertions hold:

(i) Let H ⊆ G be an open subgroup of G and N ⊆ G a normal closed subgroup of G.
Suppose that N is of co-MLF-type (respectively, pseudo-MLF-geometric). Then
the normal closed subgroup H ∩ N of H is of co-MLF-type (respectively, pseudo-
MLF-geometric).

(ii) Suppose that G has a pseudo-MLF-geometric normal closed subgroup. Then
G is topologically finitely generated.

(iii) Suppose that G has a pseudo-MLF-geometric normal closed subgroup. For
each open subgroup H ⊆ G of G, write

ζ(H)
def
= sup{ dimQl

(Hab ⊗Ẑ Ql)− dimQl′
(Hab ⊗Ẑ Ql′) | l, l′ ∈ Primes } (<∞)

[cf. (i), (ii)];

∆(G) ⊆ G

for the normal closed subgroup of G obtained by forming the intersection of the normal
open subgroups H ⊆ G of G such that the equality ζ(H) = ζ(G) · [G : H] holds. [Note
that the equality “ζ(H) = ζ(G) · [G : H]” holds if one takes the “H” to be G.] Then, for
a normal closed subgroup of G, the following two conditions are equivalent:

(1) The normal closed subgroup coincides with ∆(G).

(2) The normal closed subgroup is pseudo-MLF-geometric.

(iv) The set of pseudo-MLF-geometric normal closed subgroups of G is of car-
dinality ≤ 1.

Proof. — Assertion (i) follows immediately from [4, Remark 1.2.1], together with the
various definitions involved. Assertion (ii) follows from Remark 1.3.1, (i), and condition
(1) of Definition 1.5, (ii). Next, we verify assertion (iii). Let N ⊆ G be a pseudo-MLF-

geometric normal closed subgroup of G and H ⊆ G an open subgroup of G. Write QH
def
=

H/(H ∩ N) ⊆ QG
def
= G/N . Thus, since [it follows from condition (1) of Definition 1.5,

(ii), and assertion (i) that] QH is of MLF-type, it follows immediately from [5, Lemma
1.2, (i)], [5, Lemma 1.7], and [5, Proposition 3.6] that,

(a) for each prime number l, the equality

dimQl
(Qab

H ⊗Ẑ Ql) =

{
1 if l 6= p(QH)

d(QH) + 1 if l = p(QH)

[cf. [5, Definition 3.5, (i), (ii)]] holds.

Next, let us observe that it follows immediately from [15, Theorem 7.2.6] that, for each
prime number l, the Leray spectral sequence of the group extension 1→ H ∩N → H →
QH → 1 yields an exact sequence

0 // H1(QH ,Ql/Zl) // H1(H,Ql/Zl) // H1(H ∩N,Ql/Zl)
QH // 0.

— where we write H1(H ∩N,Ql/Zl)
QH for the submodule of H1(H ∩N,Ql/Zl) of QH-

invariants. In particular, for each prime number l, the natural continuous homomor-
phisms H ∩N ↪→ H ↠ QH determine an exact sequence of Ql-vector spaces

0 //
(
(H ∩N)ab

)
QH
⊗Ẑ Ql

// Hab ⊗Ẑ Ql
// Qab

H ⊗Ẑ Ql
// 0

7



— where we write ((H ∩ N)ab)QH
for the maximal QH-stable quotient of (H ∩ N)ab on

which the resulting action of QH is trivial — which thus implies that

(b) the equality

dimQl
(Hab ⊗Ẑ Ql) = dimQl

((
(H ∩N)ab

)
QH
⊗Ẑ Ql

)
+ dimQl

(Qab
H ⊗Ẑ Ql).

holds.

Next, let us observe that it follows from condition (2) of Definition 1.5, (ii), that the
dimension “dimQl

(((H ∩ N)ab)QH
⊗Ẑ Ql)” does not depend on the choice of the prime

number “l”. Thus, it follows from (a), (b) that

ζ(H) = d(QH).

In particular, since d(QH) = d(QG) · [QG : QH ] [cf. [5, Proposition 3.6]], it holds that the
equality ζ(H) = ζ(G) · [G : H] holds if and only if H contains N . Thus, we conclude that
N = ∆(G), as desired. This completes the proof of assertion (iii). Assertion (iv) follows
from assertion (iii). This completes the proof of Lemma 1.6. □

DEFINITION 1.7. — Let G be a profinite group and N ⊆ G a normal closed subgroup of
G.

(i) We shall say that N is of co-NF-type if G/N is of NF-type.

(ii) We shall say thatN is pseudo-NF-geometric ifN is of co-NF-type and topologically
finitely generated.

LEMMA 1.8. — Let G be a profinite group. Then the following assertions hold:

(i) Let H ⊆ G be an open subgroup of G and N ⊆ G a normal closed subgroup of
G. Suppose that N is of co-NF-type (respectively, pseudo-NF-geometric). Then
the normal closed subgroup H ∩ N of H is of co-NF-type (respectively, pseudo-NF-
geometric).

(ii) Suppose that G has a pseudo-NF-geometric normal closed subgroup. Then
a pseudo-NF-geometric normal closed subgroup of G is the uniquely determined
minimal normal closed subgroup of co-NF-type of G.

(iii) The set of pseudo-NF-geometric normal closed subgroups of G is of cardi-
nality ≤ 1.

Proof. — Assertion (i) follows immediately from [4, Remark 3.2.1, (i)], together with
the various definitions involved. Next, we verify assertion (ii). Let N1 ⊆ G be a pseudo-
NF-geometric normal closed subgroup of G and N2 ⊆ G a normal closed subgroup of
co-NF-type of G. Then since N1 is topologically finitely generated and normal in Π, and
Π/N2 is very elastic [cf. Remark 1.3.1, (ii)], it follows immediately that the image of N1 in
Π/N2 is trivial, i.e., that N1 ⊆ N2, as desired. This completes the proof of assertion (ii).
Assertion (iii) follows from assertion (ii). This completes the proof of Lemma 1.8. □

REMARK 1.8.1. — Lemma 1.8, (ii), may lead us to a consideration of the validity of the
following assertion:
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(∗): Let G be a profinite group. Suppose that G has a pseudo-MLF-
geometric normal closed subgroup. Then a pseudo-MLF-geometric normal
closed subgroup of G is the uniquely determined minimal normal closed
subgroup of co-MLF-type of G.

On the other hand, this assertion (∗) does hot hold in general. A counter-example may be
obtained as follows: Let Q be a profinite group of MLF-type and F a finitely generated

discrete free group of rank ≥ 3. Write F̂ for the profinite completion of F and G
def
=

F̂ × Q. [So it is immediate from Remark 1.3.1, (i), that G is naturally identified with
the profinite completion of F × Q.] Then since the absolute Galois group [relative to
some choice of algebraic closure] of the 2-adic completion Q2 of the field of rational
numbers is topologically generated by 3 elements [cf. [15, Theorem 7.4.1]], there exists
a surjective continuous homomorphism from G to the absolute Galois group of Q2 that

factors through the first projection G ↠ F̂ . In particular, since the absolute Galois
group of Q2 is nontrivial [cf. Remark 1.3.1, (i)], to verify that the present situation yields
a counter-example of the assertion (∗), it suffices to verify that the normal closed subgroup

F̂ × {1} ⊆ F̂ ×Q = G of G is pseudo-MLF-geometric.
To this end, let us observe that it is immediate that the normal closed subgroup

F̂ × {1} ⊆ G satisfies condition (1) of Definition 1.5, (ii). To verify the assertion that

the normal closed subgroup F̂ ×{1} ⊆ G satisfies condition (2) of Definition 1.5, (ii), let
us observe that it is immediate that an arbitrary open subgroup of G may be naturally
identified with the profinite completion of a subgroup of F ×Q of finite index. Thus, the

desired assertion follows immediately from the [well-known] flatness of Ẑ over Z.

DEFINITION 1.9. — Let G be a profinite group and N ⊆ G a normal closed subgroup of
G. Then we shall say that a normal closed subgroup J ⊆ G of G is a co-elastic hull of
N if J contains N as an open subgroup, and, moreover, the quotient G/J is infinite and
elastic.

LEMMA 1.10. — Let G be a profinite group and N ⊆ G a normal closed subgroup of G.
Then the set of co-elastic hulls of N in G is of cardinality ≤ 1.

Proof. — Let J1, J2 ⊆ G be co-elastic hulls of N . Now let us observe that one
verifies immediately that, to verify J1 = J2, we may assume without loss of generality, by
replacing G by G/N , that N = {1}, which thus implies that both J1 and J2 are finite.
Thus, since G/J1 is infinite and elastic, the image of J2 in G/J1 is trivial, i.e., J2 ⊆ J1.
Moreover, it follows from a similar argument to this argument that J1 ⊆ J2. In particular,
the equality J1 = J2 holds, as desired. This completes the proof of Lemma 1.10. □

2. Hyperbolic Curvoids

In the present §2, we introduce and discuss the notion of a hyperbolic curvoid [cf.
Definition 2.1 below].

DEFINITION 2.1. — Let Π be a profinite group. Then we shall say that Π is a hyperbolic
MLF-curvoid (respectively, hyperbolic NF-curvoid) if there exist

9



(a) a normal closed subgroup N ⊆ Π of Π,

(b) a semi-graph G of anabelioids of pro-Primes PSC-type [cf. [12, Definition 1.1, (i)]]
— whose PSC-fundamental group [cf. [12, Definition 1.1, (ii)]] we denote by ΠG — and

(c) an outer continuous isomorphism N
∼→ ΠG

that satisfy the following four conditions:

(1) The normal closed subgroup N ⊆ Π of Π is of co-MLF-type (respectively, of
co-NF-type).

(2) There exists a normal open subgroup H ⊆ Π of Π such that H contains N , and,
moreover, N is pseudo-MLF-geometric (respectively, pseudo-NF-geometric) as a normal
closed subgroup of H.

(3) The composite

Π/N // Out(N) // Out(ΠG)

— where the first arrow is the outer continuous action by conjugation, and the second
arrow is the isomorphism obtained by conjugation by the outer continuous isomorphism
N

∼→ ΠG of (c) — factors through the closed subgroup Aut(G) ⊆ Out(ΠG) of Out(ΠG)
discussed at the beginning of [12, §2].
(4) For each prime number l, there exists an open subgroup Ul ⊆ Π/N of Π/N such

that

• the restriction to Ul ⊆ Π/N of the continuous character Π/N → Z×
l obtained by

forming the composite of the resulting homomorphism Π/N → Aut(G) [cf. (3)] and the
pro-l cyclotomic character Aut(G)→ Z×

l [cf. [12, Lemma 2.1]]

coincides with

• the restriction to Ul ⊆ Π/N of the continuous character Π/N → Z×
l determined

by the maximal pro-l quotient of the cyclotome Λ(Π/N) associated to Π/N [cf. (1);
Definition 1.3, (ii)].

REMARK 2.1.1. — We will give some examples of hyperbolic curvoids that arise from
scheme theory in Theorem 6.5, (i), below and Theorem 6.6, (i), below.

In the remainder of the present §2, let □ be an element of the set {MLF,NF} and

Π

a hyperbolic □-curvoid.

PROPOSITION 2.2. —Every open subgroup of a hyperbolic MLF-curvoid (respectively,
hyperbolic NF-curvoid) is a hyperbolic MLF-curvoid (respectively, hyperbolic
NF-curvoid).

Proof. — Suppose that we are in the situation of Definition 2.1, and that □ = MLF
(respectively, □ = NF). Let U ⊆ Π be an open subgroup of Π. Then, to verify the
open subgroup U is a hyperbolic MLF-curvoid (respectively, hyperbolic NF-curvoid), let
us observe that it follows from Lemma 1.6, (i) (respectively, Lemma 1.8, (i)), that the
normal closed subgroup U ∩ N ⊆ U of U satisfies conditions (1), (2) of Definition 2.1.
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Fix a continuous isomorphism N
∼→ ΠG that lifts the outer continuous isomorphism of

(c) of Definition 2.1. Write

• H → G for the connected finite étale covering of G that corresponds to the open
subgroup of ΠG obtained by forming the image of U ∩ N ⊆ N by the fixed continuous
isomorphism N

∼→ ΠG and

• ΠH (⊆ ΠG) for the PSC-fundamental group of H.
Then it follows immediately from [4, Theorem 1.4, (iv)] (respectively, [4, Theorem 3.8,
(i)]) and the final portion of [12, Lemma 2.1], together with the various definitions in-
volved, that the collection of data consisting of

• the normal closed subgroup U ∩N ⊆ U of U ,

• the semi-graph H of anabelioids of pro-Primes PSC-type, and

• the outer continuous isomorphism U ∩N ∼→ ΠH determined by the fixed continuous
isomorphism N

∼→ ΠG

satisfies conditions (3), (4) of Definition 2.1. This completes the proof of Proposition 2.2.
□

LEMMA 2.3. — Suppose that Π is a hyperbolic MLF-curvoid (respectively, hyper-
bolic NF-curvoid). Then the following assertions hold:

(i) For a normal closed subgroup N0 ⊆ Π of Π, the following two conditions are
equivalent:

(1) The normal closed subgroup N0 satisfies conditions (1), (2) of Definition 2.1
[i.e., imposed on “N”].

(2) There exist a normal open subgroup J ⊆ Π of Π and a normal closed subgroup
∆ ⊆ Π of Π such that

• the inclusions ∆ ⊆ N0 ⊆ J hold,

• ∆ is pseudo-MLF-geometric (respectively, pseudo-NF-geometric) as a
normal closed subgroup of J , and, moreover,

• N0 is a co-elastic hull of ∆ in Π.

(ii) The set of normal closed subgroups of Π that satisfy conditions (1), (2) of Defi-
nition 2.1 is of cardinality 1.

Proof. — First, we verify the implication (1) ⇒ (2) of assertion (i). Suppose that
condition (1) is satisfied. Then one verifies easily from Remark 1.3.1, (i) (respectively,
Remark 1.3.1, (ii)), and condition (1) of Definition 2.1 that N0 is a co-elastic hull of
N0. Thus, since N0 satisfies condition (2) of Definition 2.1, we conclude that the normal
closed subgroup N0 ⊆ Π of Π satisfies condition (2), as desired. This completes the proof
of the implication (1) ⇒ (2) of assertion (i).
Next, we verify the implication (2)⇒ (1) of assertion (i) and assertion (ii). Let J ⊆ Π

be a normal open subgroup of Π and ∆ ⊆ Π a normal closed subgroup of Π such that

• J contains ∆,

• ∆ is pseudo-MLF-geometric (respectively, pseudo-NF-geometric) as a normal closed
subgroup of J , and, moreover,

11



• ∆ has a co-elastic hull C ⊆ Π of ∆ in Π.

Suppose that we are in the situation of Definition 2.1. Then let us observe that one
verifies immediately [cf. the implication (1) ⇒ (2) of assertion (i) already verified] that,
to verify the implication (2) ⇒ (1) of assertion (i) and assertion (ii), it suffices to verify
that C = N .

Next, to verify C = N , let us observe that it is immediate that

(a) C is a co-elastic hull of H ∩∆ in Π.

Next, let us observe that it follows from Lemma 1.6, (i) (respectively, Lemma 1.8, (i)),
together with condition (2) of Definition 2.1, that both H∩∆ and J∩N are pseudo-MLF-
geometric (respectively, pseudo-NF-geometric) normal closed subgroups of J ∩H. Thus,
it follows from Lemma 1.6, (iv) (respectively, Lemma 1.8, (iii)), that H ∩∆ = J ∩N . In
particular, it follows from condition (1) of Definition 2.1, together with Remark 1.3.1, (i)
(respectively, Remark 1.3.1, (ii)), that

(b) N is a co-elastic hull of H ∩∆ in Π.

Thus, it follows from (a), (b), together with Lemma 1.10, that C = N , as desired. This
completes the proofs of the implication (2) ⇒ (1) of assertion (i) and assertion (ii). □

DEFINITION 2.4.

(i) We shall write

∆(Π) ⊆ Π

for the uniquely determined [cf. Lemma 2.3, (ii)] normal closed subgroup of Π that satisfies
conditions (1), (2) of Definition 2.1 [i.e., the uniquely determined normal closed subgroup
of Π that satisfies condition (2) of Lemma 2.3, (i), imposed on “N0” — cf. Lemma 2.3,
(i), (ii)] and refer to ∆(Π) as the geometric subgroup of Π.

(ii) We shall write

G(Π)
def
= Π/∆(Π)

and refer to G(Π) as the arithmetic quotient of Π.

Thus, we have an exact sequence of profinite groups

1 // ∆(Π) // Π // G(Π) // 1.

PROPOSITION 2.5. — The following assertions hold:

(i) The geometric subgroup ∆(Π) of Π is topologically finitely generated, slim,
and elastic.

(ii) If the profinite group Π is a hyperbolic MLF-curvoid (respectively, hyperbolic
NF-curvoid), then the arithmetic quotient G(Π) of Π is of MLF-type (respectively,
of NF-type).

(iii) Let H ⊆ Π be an open subgroup of Π. [So H is a hyperbolic □-curvoid —
cf. Proposition 2.2]. Then the geometric subgroup of H, i.e., ∆(H) ⊆ H, is given by
H ∩∆(Π). In particular, the natural inclusion H ↪→ Π fits into a commutative diagram
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of profinite groups

1 // ∆(H) //
� _

��

H //
� _

� �

G(H) //
� _

��

1

1 // ∆(Π) // Π // G(Π) // 1

— where the horizontal sequences are exact, and the vertical arrows are open injective.

Proof. — First, we verify assertion (i). Let us first observe that one verifies immedi-
ately from the existence of the outer continuous isomorphism of (c) of Definition 2.1 and
[12, Remark 1.1.3] that ∆(Π) is isomorphic, as an abstract profinite group, to the étale
fundamental group of some hyperbolic curve over an algebraically closed field of charac-
teristic zero. Thus, assertion (i) follows from [13, Proposition 2.2] and [13, Proposition
2.3, (i)]. This completes the proof of assertion (i). Assertion (ii) follows from condition
(1) of Definition 2.1. Assertion (iii) follows immediately from the proof of Proposition 2.2.
This completes the proof of Proposition 2.5. □

DEFINITION 2.6. — Let l be a prime number, G a profinite group, M a Ql-vector space
of finite dimension equipped with a continuous action of G, and χ : G→ Z×

l a continuous
character.

(i) We shall say that M is quasi-trivial if the action of G on M factors through a
finite quotient of G.

(ii) We shall write

τ(M)

for the sum of the Ql-dimensions of the quasi-trivial subquotients “Mi/Mi+1” by a com-
position series {0} = Mn ⊆ . . . ⊆M1 ⊆M0 = M of the Ql-vector space M equipped with
a continuous action of G. Note that one verifies easily that this sum does not depend on
the choice of the composition series “{0} = Mn ⊆ . . . ⊆M1 ⊆M0 = M” of M .

(iii) We shall write

dχ(M)
def
= τ

(
M(χ−1)

)
− τ

(
HomQl

(M,Ql)
)

— where M(χ−1) denotes the result of “twisting” M by the character χ−1 : G→ Z×
l .

LEMMA 2.7. — Suppose that the profinite group ∆(Π) is free. Let l be a prime number.

For each open subgroup U ⊆ G(Π) of G(Π), write χl-cyc
U : U → Z×

l for the continuous
character obtained by forming the restriction to U ⊆ G(Π) of the continuous character
G(Π) → Z×

l determined by the maximal pro-l quotient of the cyclotome Λ(G(Π)) asso-
ciated to G(Π) [cf. Proposition 2.5, (ii)]. Moreover, for each open subgroup H ⊆ ∆(Π)
of ∆(Π), write H(l) for the maximal pro-l quotient of H. Then the following assertions
hold:

(i) Let H ⊆ ∆(Π) be a characteristic open subgroup of ∆(Π). Write

C̃l(H)

for the set of maximal closed subgroups I ⊆ H(l) of H(l) that satisfy the following two
conditions:
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• The profinite group I is isomorphic, as an abstract profinite group, to Zl. Write
I l ⊆ I for the uniquely determined open subgroup of I of index l.

• Let J ⊆ H(l) be a characteristic open subgroup of H(l); Ĩ · J , Ĩ l · J ⊆ Π open

subgroups of Π such that the geometric subgroups ∆(Ĩ · J), ∆(Ĩ l · J) [cf. Proposition 2.2]
are given by the inverse images of I · J , I l · J ⊆ H(l) by the natural surjective continuous
homomorphism H ↠ H(l), respectively [cf. Proposition 2.5, (iii)]. Then the inequality

dχl-cyc

G(Ĩl·J)

(
(I l · J)ab ⊗Zl

Ql

)
+ 1 < l ·

(
dχl-cyc

G(Ĩ·J)

(
(I · J)ab ⊗Zl

Ql

)
+ 1

)
holds [cf. Proposition 2.5, (i), (iii)].

Then an arbitrary ∆(Π)-conjugate of an element of C̃l(H) is an element of C̃l(H).

(ii) In the situation of (i), the quotient

Cl(H)

of C̃l(H) by the action of H, i.e., by conjugation [cf. (i)], is finite.

(iii) Let H1 ⊆ H2 ⊆ ∆(Π) be characteristic open subgroups of ∆(Π). Then the

assignment “I 7→ CH2(Im(I))”, where we write Im(I) ⊆ H
(l)
2 for the image of I ⊆ H

(l)
1

in H
(l)
2 , determines a ∆(Π)-equivariant [cf. (i)] map

C̃l(H1) // C̃l(H2),

which thus determines a ∆(Π)-equivariant map

Cl(H1) // Cl(H2)

[cf. (ii)].

(iv) Write

Il
for the set of subgroups of ∆(Π) obtained by forming the stabilizers of elements of the
profinite set [cf. (ii)]

lim←−
H

Cl(H)

— where the projective limit is taken over the characteristic open subgroups H ⊆ ∆(Π)
of ∆(Π) [cf. (iii)] — i.e., with respect to the action of ∆(Π) on the profinite set [cf. (iii)].
Then, for a closed subgroup of ∆(Π), the following two conditions are equivalent:

(1) The closed subgroup is an element of Il.
(2) In the situation of Definition 2.1, the image of the closed subgroup of ∆(Π) by

some [or, alternatively, an arbitrary] continuous isomorphism ∆(Π) = N
∼→ ΠG that lifts

the outer continuous isomorphism of (c) is a cuspidal subgroup of ΠG [cf. [12, Definition
1.1, (ii)]].

In particular, the set Il does not depend on the choice of the prime number l.

Proof. — These assertions follow immediately — in light of conditions (3), (4) of
Definition 2.1, [4, Theorem 1.4, (iv)], and [4, Theorem 3.8, (i)] — from a similar argument
to the argument applied in the proof of [13, Lemma 4.5, (iv)] [cf. also [14, Remark 1.2.2,
(ii)]]. □
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DEFINITION 2.8.

(i) If the profinite group ∆(Π) is not free, then we shall define the set of cuspidal
inertia subgroups of Π to be the empty set. If the profinite group ∆(Π) is free, then we
shall say that a closed subgroup of ∆(Π) is a cuspidal inertia subgroup of Π if the closed
subgroup satisfies condition (1) of Lemma 2.7, (iv), for some [or, alternatively — cf. the
final portion of Lemma 2.7, (iv) — an arbitrary] prime number l.

(ii) We shall say that a closed subgroup of Π is a cuspidal decomposition subgroup of
Π if the closed subgroup is obtained by forming the commensurator in Π of a cuspidal
inertia subgroup of Π.

(iii) We shall write

Cusp(Π)

for the set of ∆(Π)-conjugacy classes [cf. condition (1) of Lemma 2.7, (iv)] of cuspidal
inertia subgroups of Π.

REMARK 2.8.1. — It follows from the existence of the outer continuous isomorphism
of (c) of Definition 2.1 and [12, Remark 1.1.3] that the geometric subgroup of a hyper-
bolic □-curvoid is isomorphic, as an abstract profinite group, to the étale fundamental
group of some hyperbolic curve over an algebraically closed field of characteristic zero
[or, alternatively, to the profinite completion of the topological fundamental group of
some hyperbolic Riemann surface of finite type]. Moreover, it follows immediately from
Lemma 2.7, (iv), that one may take such a continuous isomorphism so as to induce a bi-
jective map between the set of cuspidal inertia subgroups and the set of inertia subgroups
associated to cusps of the hyperbolic curve.

PROPOSITION 2.9. — The following assertions hold:

(i) Every cuspidal inertia (respectively, decomposition) subgroup of Π is commensu-
rably terminal in ∆(Π) (respectively, Π). In particular, the intersection of the geometric
subgroup and a cuspidal decomposition subgroup is a cuspidal inertia subgroup.

(ii) The set Cusp(Π) is finite. In particular, the image in G(Π) of every cuspidal
decomposition subgroup of Π is open.

(iii) Let H ⊆ Π be an open subgroup of Π. [So H is a hyperbolic □-curvoid —
cf. Proposition 2.2.] Then the assignments “I 7→ H ∩ I”, “J 7→ C∆(Π)(J)” determine a
bijective map between the set of cuspidal inertia subgroups of Π and the set of cuspidal
inertia subgroups of H. In particular, the second assignment determines a surjective
map

Cusp(H) // // Cusp(Π).

Proof. — First, we verify assertion (i). The commensurable terminality of a cuspi-
dal inertia subgroup in ∆(Π), hence also the final portion of assertion (i), follows from
Lemma 2.7, (iv), and [12, Proposition 1.2, (ii)]. The commensurable terminality of a
cuspidal decomposition subgroup in Π follows immediately from the final portion of as-
sertion (i) already verified, together with Lemma 2.7, (iv), and [12, Proposition 1.2, (i)].
This completes the proof of assertion (i).

Next, we verify assertion (ii). The first portion of assertion (ii) follows, in light of Re-
mark 2.8.1, from the well-known structure of the étale fundamental groups of hyperbolic
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curves over algebraically closed fields of characteristic zero. Thus, since [one verifies easily
that] the action of Π on Cusp(Π), i.e., by conjugation, is continuous, the final portion of
assertion (ii) follows. This completes the proof of assertion (ii). Assertion (iii) follows,
in light of Remark 2.8.1, from the well-known structure of the étale fundamental groups
of hyperbolic curves over algebraically closed fields of characteristic zero. This completes
the proof of Proposition 2.9. □

DEFINITION 2.10.

(i) Let H ⊆ Π be an open subgroup of Π. [So H is a hyperbolic □-curvoid —
cf. Proposition 2.2.] Then we shall define a [necessarily connected] semi-graph [cf. the
discussion at the beginning of [11, §1]]

G(H)

as follows: The set of vertices of G(H) is defined to be the set [necessarily of cardinality
1] consisting of the profinite group H. The set of closed edges of G(H) is defined to be
the empty set. The set of open edges of G(H) is defined to be the set Cusp(H). Every
open edge of G(H) abuts to the unique vertex H.

(ii) Let H1 ⊆ H2 ⊆ Π be open subgroups of Π. [So H1 and H2 are hyperbolic
□-curvoids — cf. Proposition 2.2.] Then the map Cusp(H1) ↠ Cusp(H2) obtained by
applying the final portion of Proposition 2.9, (iii), naturally determines a morphism of
semi-graphs [cf. the discussion at the beginning of [11, §1]]

G(H1) // G(H2).

We shall write

G̃(Π)
def
=

(
G(H)

)
H⊆Π

for the projective system of semi-graphs consisting of the various G(H)’s — where H
ranges over the open subgroups of Π.

(iii) One verifies easily that the profinite group Π acts on the projective system G̃(Π)
by conjugation. Moreover, one also verifies immediately from Remark 2.8.1, together with

the various definitions involved, that the projective system G̃(Π) of semi-graphs and the

[restriction to ∆(Π) ⊆ Π of the] resulting action of Π on G̃(Π) naturally determine

(1) a semi-graph of anabelioids of pro-Primes PSC-type that has no node

G(Π)

and

(2) an outer continuous isomorphism

∆(Π)
∼ // ΠG(Π)

— where we write ΠG(Π) for the PSC-fundamental group of G(Π) —
such that

(a) the collection of data consisting of

• the normal closed subgroup ∆(Π) ⊆ Π of Π,

• the semi-graph G(Π) of anabelioids of pro-Primes PSC-type of (1), and
16



• the outer continuous isomorphism ∆(Π)
∼→ ΠG(Π) of (2)

satisfies the four conditions (1), (2), (3), (4) of Definition 2.1 [i.e., imposed on the collec-
tion of data consisting of (a), (b), (c) of Definition 2.1],

(b) the restriction to ∆(Π) ⊆ Π of the action of Π on G̃(Π) determines an identifi-
cation between

• the set of cuspidal inertia subgroups of Π and

• the set of stabilizers [i.e., with respect to the action of ∆(Π) on G̃(Π)] of com-

patible systems of open edges in G̃(Π), and, moreover,

(c) the outer continuous isomorphism of (2) determines a ΠG(Π)-orbit of bijective
maps between

• the set of cuspidal inertia subgroups of Π and

• the set of cuspidal subgroups of ΠG(Π),

hence also a bijective map Cusp(Π)
∼→ Cusp(G(Π)) [cf. [6, Definition 1.1, (i)]], by means

of which let us identify Cusp(Π) with Cusp(G(Π)):

Cusp(Π) = Cusp
(
G(Π)

)
.

(iv) We shall write

Λ(Π)
def
= ΛG(Π)

[cf. [7, Definition 3.8, (i)]] and refer to Λ(Π) as the geometric cyclotome associated to Π.

(v) Let I ⊆ ∆(Π) be a cuspidal inertia subgroup of Π. Then it follows from [7,
Corollary 3.9, (v)] [cf. also (c) of (iii)] that we have a natural isomorphism “synb” of I
with Λ(Π) functorial with respect to isomorphisms of the pair “(Π, I)”. We shall write

synI : I
∼ // Λ(Π)

for this isomorphism.

REMARK 2.10.1.

(i) It follows from [7, Definition 3.8, (i)] that the geometric cyclotome associated to a

hyperbolic □-curvoid is isomorphic, as an abstract Ẑ-module, to Ẑ.
(ii) Let l be a prime number. Then it follows — in light of condition (a) of Defini-

tion 2.10, (iii) — from condition (4) of Definition 2.1 and [7, Remark 3.8.1] that there
exists an open subgroup Ul ⊆ G(Π) of G(Π) such that

• the restriction to Ul ⊆ G(Π) of the continuous character G(Π)→ Z×
l determined

by the maximal pro-l quotient of the geometric cyclotome Λ(Π) associated to Π [cf. (i)]

coincides with

• the restriction to Ul ⊆ G(Π) of the continuous character G(Π)→ Z×
l determined

by the maximal pro-l quotient of the cyclotome Λ(G(Π)) associated to G(Π).
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LEMMA 2.11. — Let H ⊆ Π be an open subgroup of Π. [So H is a hyperbolic □-
curvoid — cf. Proposition 2.2.] Then the homomorphism

Λ(Π) // Λ(H)

induced by the natural inclusion H ↪→ Π [cf. Proposition 2.5, (iii); Proposition 2.9, (iii)]
is an injective homomorphism whose image is given by

[∆(Π) : ∆(H)] · Λ(H) ⊆ Λ(H).

Proof. — This assertion follows — in light of Remark 2.10.1, (i) — from [7, Theorem
3.7, (v)], together with the various definitions involved. □

DEFINITION 2.12. — Suppose that Π is a hyperbolic NF-curvoid. Let D be an element

of Ṽ(G(Π)) [cf. Proposition 2.5, (ii); [4, Proposition 3.5, (1)]].

(i) We shall write

Π|D
def
= Π×G(Π) D

for the fiber product of the natural surjective homomorphism Π↠ G(Π) and the natural
inclusion D ↪→ G(Π) and refer to Π|D as the localization of Π at D. Thus, we have a
commutative diagram of profinite groups

1 // ∆(Π) // Π|D //
� _

� �

D //
� _

��

1

1 // ∆(Π) // Π // G(Π) // 1

— where the horizontal sequences are exact, and the vertical arrows are injective.

(ii) We shall say that D ∈ Ṽ(G(Π)) is curvoidal if the localization Π|D at D is a
hyperbolic MLF-curvoid whose geometric subgroup is given by ∆(Π) ⊆ Π|D [cf. the
diagram of (i)].

PROPOSITION 2.13. — Suppose that Π is a hyperbolic NF-curvoid. Let D be a cur-
voidal element of Ṽ(G(Π)). Then the natural inclusion Π|D ↪→ Π determines an iso-
morphism of semi-graphs of anabelioids [cf. [11, Definition 2.1]]

G(Π|D)
∼ // G(Π).

In particular, the natural inclusion Π|D ↪→ Π determines

• a D-equivariant isomorphism

Λ(Π|D)
∼ // Λ(Π)

and

• a bijective map between the set of cuspidal inertia subgroups of Π|D and the set of
cuspidal inertia subgroups of Π, which thus gives

• a bijective map

Cusp(Π|D)
∼ // Cusp(Π).
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Proof. — Let us observe that it follows immediately from condition (a) of Defini-
tion 2.10, (iii), and [4, Theorem 3.8, (ii)] that conditions (3), (4) of Definition 2.1 in the

case where one takes the collection “(Π, N,N
∼→ ΠG)” of data of Definition 2.1 to be the

collection of data consisting of

• the hyperbolic MLF-curvoid Π|D,
• the geometric subgroup ∆(Π|D) (= ∆(Π)) of Π|D, and

• the outer continuous isomorphism ∆(Π|D)
∼→ ΠG(Π) obtained by forming the com-

posite of the outer continuous isomorphism ∆(Π|D)
∼→ ∆(Π) determined by the natural

identification ∆(Π|D) = ∆(Π) and the outer continuous isomorphism ∆(Π)
∼→ ΠG(Π) of

(2) of Definition 2.10, (iii),

are satisfied. Thus, Proposition 2.13 follows immediately from Lemma 2.7, (iv), and [12,
Proposition 1.5, (ii)]. This completes the proof of Proposition 2.13. □

3. Hyperbolic Orbicurvoids

In the present §3, we introduce and discuss the notion of a hyperbolic orbicurvoid [cf.
Definition 3.1 below].

DEFINITION 3.1. — Let Π be a profinite group. Then we shall say that Π is a hyperbolic
MLF-orbicurvoid (respectively, hyperbolic NF-orbicurvoid) if there exist a normal closed
subgroup N ⊆ Π of Π and a normal open subgroup H ⊆ Π of Π that satisfy the following
two conditions:

(1) The normal closed subgroup N is slim and of co-MLF-type (respectively, of co-
NF-type).

(2) The normal open subgroup H is a hyperbolic MLF-curvoid (respectively, hyper-
bolic NF-curvoid) whose geometric subgroup is given by H ∩N .

REMARK 3.1.1. — We will give some examples of hyperbolic orbicurvoids that arise from
scheme theory in Corollary 6.7, (i), below.

In the remainder of the present §3, let □ be an element of the set {MLF,NF} and

Π

a hyperbolic □-orbicurvoid.

PROPOSITION 3.2. — The following assertions hold:

(i) A hyperbolic MLF-curvoid (respectively, hyperbolic NF-curvoid) is a hy-
perbolic MLF-orbicurvoid (respectively, hyperbolic NF-orbicurvoid).

(ii) Suppose that Π is a hyperbolic MLF-orbicurvoid (respectively, hyperbolic
NF-orbicurvoid). Then every open subgroup of Π is a hyperbolic MLF-orbicurvoid
(respectively, hyperbolic NF-orbicurvoid).
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(iii) The profinite group Π is slim.

(iv) The following three conditions are equivalent:

(1) The profinite group Π is a hyperbolic MLF-orbicurvoid, i.e., □ = MLF.

(2) The profinite group Π is not a hyperbolic NF-orbicurvoid, i.e., □ 6= NF.

(3) The profinite group Π is topologically finitely generated.

Proof. — Assertion (i) follows from Proposition 2.5, (i), (ii). Assertion (ii) follows from
Lemma 1.6, (i) (respectively, Lemma 1.8, (i)), Proposition 2.2, and Proposition 2.5, (iii).
Assertion (iii) follows, in light of condition (1) of Definition 3.1, from Lemma 1.2 and
Remark 1.3.1, (i) (respectively, Remark 1.3.1, (ii)).

Finally, we verify assertion (iv). The implication (2) ⇒ (1) is immediate. The impli-
cation (1) ⇒ (3) follows, in light of condition (2) of Definition 2.1 and condition (2) of
Definition 3.1, from Lemma 1.6, (ii). The implication (3)⇒ (2) follows, in light of condi-
tion (1) of Definition 3.1, from Remark 1.3.1, (ii). This completes the proof of assertion
(iv), hence also of Proposition 3.2. □

LEMMA 3.3. — Suppose that Π is a hyperbolic MLF-orbicurvoid (respectively, hyperbolic
NF-orbicurvoid). Then the following assertions hold:

(i) For a normal closed subgroup N ⊆ Π of Π, the following two conditions are
equivalent:

(1) The normal closed subgroup N is slim and of co-MLF-type (respectively,
of co-NF-type), and, moreover, there exists a normal open subgroup H ⊆ Π of Π such
that H is a hyperbolic MLF-curvoid (respectively, hyperbolic NF-curvoid) whose
geometric subgroup is given by H ∩N .

(2) There exists a normal open subgroup J ⊆ Π of Π such that J is a hyperbolic
MLF-curvoid (respectively, hyperbolic NF-curvoid), and, moreover, N is a co-
elastic hull of ∆(J) in Π. [Note that one verifies easily that the closed subgroup ∆(J) ⊆
Π of Π is normal.]

(ii) The set of normal closed subgroups of Π that satisfy (1) of (i) is of cardinality
1.

Proof. — First, we verify the implication (1)⇒ (2) of assertion (i). Suppose that con-
dition (1) is satisfied. Then it follows from Remark 1.3.1, (i) (respectively, Remark 1.3.1,
(ii)), that N is a co-elastic hull of H ∩ N in Π, as desired. This completes the proof of
the implication (1) ⇒ (2) of assertion (i).

Next, we verify the implication (2)⇒ (1) of assertion (i) and assertion (ii). Let J ⊆ Π
be a normal open subgroup of Π such that J is a hyperbolic MLF-curvoid (respectively,
hyperbolic NF-curvoid), and, moreover, the geometric subgroup ∆(J) of J has a co-
elastic hull C ⊆ Π in Π. Moreover, let N ⊆ Π be a normal closed subgroup of Π that
satisfies condition (1) of assertion (i) [cf. conditions (1), (2) of Definition 3.1], which thus
implies that there exists a normal open subgroup H ⊆ Π of Π such that H is a hyperbolic
MLF-curvoid (respectively, hyperbolic NF-curvoid) whose geometric subgroup is given
by H ∩ N . Then let us observe that one verifies immediately [cf. the implication (1) ⇒
(2) of assertion (i) already verified] that, to verify the implication (2) ⇒ (1) of assertion
(i) and assertion (ii), it suffices to verify that C = N .
Next, to verify C = N , let us observe that it is immediate that
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(a) the normal closed subgroup C is a co-elastic hull of H ∩∆(J) in Π.

Next, let us observe that it follows from Proposition 2.2 and Proposition 2.5, (iii), that
H ∩ ∆(J) = ∆(J ∩ H) = J ∩ H ∩ N . In particular, it follows from Remark 1.3.1, (i)
(respectively, Remark 1.3.1, (ii)), that

(b) the normal closed subgroup N is a co-elastic hull of H ∩∆(J) in Π.

Thus, it follows from (a), (b), together with Lemma 1.10, that C = N , as desired. This
completes the proofs of the implication (2) ⇒ (1) of assertion (i) and assertion (ii). □

DEFINITION 3.4.

(i) We shall write

∆(Π) ⊆ Π

for the uniquely determined [cf. Lemma 3.3, (ii)] normal closed subgroup of Π that satisfies
condition (1) of Lemma 3.3, (i) [i.e., the uniquely determined normal closed subgroup of
Π that satisfies condition (2) of Lemma 3.3, (i) — cf. Lemma 3.3, (i), (ii)], and refer to
∆(Π) as the geometric subgroup of Π.

(ii) We shall write

G(Π)
def
= Π/∆(Π)

and refer to G(Π) as the arithmetic quotient of Π. Thus, we have an exact sequence of
profinite groups

1 // ∆(Π) // Π // G(Π) // 1.

(iii) Let Π1 and Π2 be hyperbolic MLF-orbicurvoids (respectively, hyperbolic NF-
orbicurvoids). Then we shall say that an open continuous homomorphism Π1 → Π2 is an
arithmetic equivalence if the open continuous homomorphism maps ∆(Π1) to ∆(Π2), and,
moreover, the [necessarily open continuous] induced homomorphism G(Π1) → G(Π2) is
a continuous isomorphism.

REMARK 3.4.1. — One verifies easily from Proposition 2.5, (i), (ii), that if Π is a hyper-
bolic □-curvoid, hence also a hyperbolic □-orbicurvoid [cf. Proposition 3.2, (i)], then the
notions of the geometric subgroup, arithmetic quotient of Π in the sense of Definition 2.4,
(i), (ii), coincide with the notions of the geometric subgroup, arithmetic quotient of Π in
the sense of Definition 3.4, (i), (ii), respectively.

PROPOSITION 3.5. — The following assertions hold:

(i) The geometric subgroup ∆(Π) of Π is topologically finitely generated, slim,
and elastic.

(ii) If the profinite group Π is a hyperbolic MLF-orbicurvoid (respectively, hy-
perbolic NF-orbicurvoid), then the arithmetic quotient G(Π) of Π is of MLF-type
(respectively, of NF-type).

(iii) Let H ⊆ Π be an open subgroup of Π. [So H is a hyperbolic □-orbicurvoid
— cf. Proposition 3.2, (ii).] Then the geometric subgroup of H, i.e., ∆(H) ⊆ H, is
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given by H ∩∆(Π). In particular, the natural inclusion H ↪→ Π fits into a commutative
diagram of profinite groups

1 // ∆(H) //
� _

��

H //
� _

� �

G(H) //
� _

��

1

1 // ∆(Π) // Π // G(Π) // 1

— where the horizontal sequences are exact, and the vertical arrows are open injective.

Proof. — First, we verify assertion (i). It follows from Proposition 2.5, (i), that ∆(Π)
is topologically finitely generated. Moreover, it follows from condition (1) of Lemma 3.3,
(i), that ∆(Π) is slim. Thus, it follows from Proposition 2.5, (i), and [13, Proposition 1.3,
(i)] that ∆(Π) is elastic. This completes the proof of assertion (i). Assertion (ii) follows
from condition (1) of Lemma 3.3, (i). Assertion (iii) follows immediately — in light of
Lemma 1.6, (i), and Lemma 1.8, (i) — from Proposition 2.5, (iii). This completes the
proof of Proposition 3.5. □

LEMMA 3.6. — Let I ⊆ ∆(Π) be a closed subgroup of ∆(Π). Then the following two
conditions are equivalent:

(1) For every open subgroup H ⊆ Π of Π that is a hyperbolic □-curvoid, the inter-
section ∆(H) ∩ I is a cuspidal inertia subgroup of H, and, moreover, the equality
I = C∆(Π)(∆(H) ∩ I) holds.

(2) There exist an open subgroup H ⊆ Π of Π that is a hyperbolic □-curvoid and
a cuspidal inertia subgroup J ⊆ ∆(H) of H such that the equality I = C∆(Π)(J)
holds.

Proof. — The implication (1) ⇒ (2) is immediate. The implication (2) ⇒ (1) follows
immediately — in light of Proposition 2.2 and Proposition 2.5, (iii) — from Proposi-
tion 2.9, (iii). □

DEFINITION 3.7.

(i) We shall say that a closed subgroup of ∆(Π) is a cuspidal inertia subgroup of Π if
the closed subgroup satisfies condition (1) of Lemma 3.6.

(ii) We shall say that a closed subgroup of Π is a cuspidal decomposition subgroup of
Π if the closed subgroup is obtained by forming the commensurator in Π of a cuspidal
inertia subgroup of Π.

(iii) We shall write

Cusp(Π)

for the set of ∆(Π)-conjugacy classes [cf. condition (1) of Lemma 2.7, (iv)] of cuspidal
inertia subgroups of Π.

REMARK 3.7.1. — One verifies easily from Proposition 2.9, (iii), and Remark 3.4.1 that
if Π is a hyperbolic □-curvoid, hence also a hyperbolic □-orbicurvoid [cf. Proposition 3.2,
(i)], then the notions of a cuspidal inertia subgroup, cuspidal decomposition subgroup of
Π in the sense of Definition 2.8, (i), (ii), coincide with the notions of a cuspidal inertia
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subgroup, cuspidal decomposition subgroup of Π in the sense of Definition 3.7, (i), (ii),
respectively. In particular, it follows from Remark 3.4.1 that the set Cusp(Π) in the
sense of Definition 2.8, (iii), may be naturally identified with the set Cusp(Π) in the
sense of Definition 3.7, (iii).

PROPOSITION 3.8. — The following assertions hold:

(i) Every cuspidal inertia (respectively, decomposition) subgroup of Π is commensu-
rably terminal in ∆(Π) (respectively, Π). In particular, the intersection of the geometric
subgroup and a cuspidal decomposition subgroup is a cuspidal inertia subgroup.

(ii) The set Cusp(Π) is finite. In particular, the image in G(Π) of every cuspidal
decomposition subgroup of Π is open.

(iii) Let H ⊆ Π be an open subgroup of Π. [So H is a hyperbolic □-orbicurvoid —
cf. Proposition 3.2, (ii).] Then the assignments “I 7→ H ∩ I”, “J 7→ C∆(Π)(J)” determine
a bijective map between the set of cuspidal inertia subgroups of Π and the set of cuspidal
inertia subgroups of H. In particular, the second assignment determines a surjective
map

Cusp(H) // // Cusp(Π).

Proof. — First, we verify assertion (i). The commensurable terminality of a cuspidal
inertia subgroup in ∆(Π), hence also the final portion of assertion (i), follows from the
definition of the notion of a cuspidal inertia subgroup. The commensurable terminality
of a cuspidal decomposition subgroup in Π follows immediately from the final portion of
assertion (i) already verified, together with Lemma 2.7, (iv), and [12, Proposition 1.2,
(i)]. This completes the proof of assertion (i). Assertion (ii) is a formal consequence of
Proposition 2.9, (ii). Assertion (iii) follows immediately from assertion (i). This completes
the proof of Proposition 3.8. □

DEFINITION 3.9. — We shall write

Λ(Π)
def
= [∆(Π) : ∆(H)] · Λ(H)

[cf. Definition 2.10, (iv)] for some open subgroup H ⊆ Π of Π such that H is a hyperbolic
□-curvoid [cf. condition (2) of Definition 3.1] and refer to Λ(Π) as the geometric cyclotome
associated to Π. Note that it follows from Lemma 2.11 that Λ(Π) does not depend on
the choice of the open subgroup “H”.

REMARK 3.9.1. — One verifies easily from the various definitions involved that if Π
is a hyperbolic □-curvoid, hence also a hyperbolic □-orbicurvoid [cf. Proposition 3.2,
(i)], then the geometric cyclotome associated to Π in the sense of Definition 2.10, (iv),
may be naturally identified with the geometric cyclotome associated to Π in the sense of
Definition 3.9.

REMARK 3.9.2. — It follows from Remark 2.10.1, (i), that the geometric cyclotome

associated to a hyperbolic □-orbicurvoid is isomorphic, as an abstract Ẑ-module, to Ẑ.
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DEFINITION 3.10. — Suppose that Π is a hyperbolic NF-orbicurvoid. Let D be an

element of Ṽ(G(Π)) [cf. Proposition 3.5, (ii); [4, Proposition 3.5, (1)]].

(i) We shall write

Π|D
def
= Π×G(Π) D

for the fiber product of the natural surjective continuous homomorphism Π↠ G(Π) and
the natural inclusion D ↪→ G(Π) and refer to Π|D as the localization of Π at D. Thus,
we have a commutative diagram of profinite groups

1 // ∆(Π) // Π|D //
� _

� �

D //
� _

��

1

1 // ∆(Π) // Π // G(Π) // 1

— where the horizontal sequences are exact, and the vertical arrows are injective.

(ii) We shall say that D ∈ Ṽ(G(Π)) is orbicurvoidal if the localization Π|D at D is a
hyperbolic MLF-orbicurvoid whose geometric subgroup is given by ∆(Π) ⊆ Π|D [cf. the
diagram of (i)].

PROPOSITION 3.11. — Suppose that Π is a hyperbolic NF-orbicurvoid. Let D be an

orbicurvoidal element of Ṽ(G(Π)). Then the natural inclusion Π|D ↪→ Π determines

• a D-equivariant isomorphism

Λ(Π|D)
∼ // Λ(Π)

and

• a bijective map between the set of cuspidal inertia subgroups of Π|D and the set of
cuspidal inertia subgroups of Π, which thus gives

• a bijective map

Cusp(Π|D)
∼ // Cusp(Π).

Proof. — This assertion follows immediately, in light of Proposition 2.2, from Propo-
sition 2.13 and Proposition 3.8, (iii). □

DEFINITION 3.12. — We shall say that the hyperbolic □-orbicurvoid Π is relatively core-
like if, for an arbitrary open subgroup H ⊆ Π of Π and an arbitrary open injective
continuous homomorphism φ : H ↪→ Π over G(Π) [i.e., such that

• the composite of the open injective continuous homomorphism φ : H ↪→ Π and the
natural surjective continuous homomorphism Π↠ G(Π)

coincides with

• the composite of the natural inclusion H ↪→ Π and the natural surjective continuous
homomorphism Π↠ G(Π)],

the following condition is satisfied:

• The restriction φ|∆(H) : ∆(H) ↪→ ∆(Π) [cf. Proposition 3.2, (ii)] of φ to ∆(H) ⊆ H
[cf. Proposition 3.5, (iii)]

24



coincides with

• some ∆(Π)-conjugate of the restriction ∆(H) ↪→ ∆(Π) of the natural inclusion
H ↪→ Π to ∆(H) ⊆ H [cf. Proposition 3.5, (iii)].

PROPOSITION 3.13. — Suppose that one of the following two conditions is satisfied:

(1) There exists an open subgroup H ⊆ Π of Π such that the hyperbolic □-orbicurvoid
H [cf. Proposition 3.2, (ii)] is relatively core-like, and, moreover, the natural inclusion

H ↪→ Π restricts to a continuous isomorphism ∆(H)
∼→ ∆(Π).

(2) The profinite group Π is a hyperbolic NF-orbicurvoid, and, moreover, there

exists an orbicurvoidal element D of Ṽ(G(Π)) such that the hyperbolic MLF-orbicurvoid
Π|D is relatively core-like.

Then the hyperbolic □-orbicurvoid Π is relatively core-like.

Proof. — This assertion follows immediately from Proposition 3.5, (iii), together with
the various definitions involved. □

DEFINITION 3.14. — Suppose that Π is a hyperbolic NF-orbicurvoid. Then, by applying
the functorial “group-theoretic” algorithm established in [4] [cf. [4, Theorem A]] to the
profinite group G(Π) of NF-type [cf. Proposition 3.5, (ii)], we obtain an algebraically
closed field

F (Π)
def
= F̃

(
G(Π)

)
[cf. [4, Theorem A]] equipped with a continuous action of G(Π) such that

• the subfield

F (Π)
def
= F (Π)G(Π)

of F (Π) consisting of G(Π)-invariants is an NF, and, moreover,

• the continuous action of G(Π) on F (Π) determines a continuous isomorphism

G(Π)
∼ // Gal

(
F (Π)/F

(
Π)

)
.

4. Partial Compactifications

In the present §4, we introduce and discuss partial compactifications of hyperbolic
curvoids [cf. Definition 4.5 below, Theorem 4.10 below, and Theorem 4.11 below]. In the
present §4, let □ be an element of the set {MLF,NF} and

Π

a hyperbolic □-curvoid.

DEFINITION 4.1.

(i) We shall write

∆(Π)ab/cusp
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for the quotient of the abelian profinite group ∆(Π)ab by the [necessarily normal] closed
subgroup topologically generated by the images of the cuspidal inertia subgroups of Π.

(ii) It follows from Remark 2.8.1, together with the well-known structure of the étale
fundamental groups of hyperbolic curves over algebraically closed fields of characteristic
zero, that the abelian profinite group ∆(Π)ab/cusp of (i) has a natural structure of free

Ẑ-module of even rank. We shall write

g(Π)
def
= rankẐ

(
∆(Π)ab/cusp

)
/2.

Thus, g(Π) is a nonnegative integer.

(iii) Let us recall from Proposition 2.9, (ii), that the set Cusp(Π) is finite. We shall
write

r(Π)
def
= ]Cusp(Π).

Thus, r(Π) is a nonnegative integer.

PROPOSITION 4.2. — The following assertions hold:

(i) The inequality 2− 2g(Π)− r(Π) < 0 holds.

(ii) Suppose that Π is a hyperbolic NF-curvoid. Let D be a curvoidal element of

Ṽ(G(Π)). Then the equality (g(Π), r(Π)) = (g(Π|D), r(Π|D)) holds.

Proof. — Assertion (i) follows from Remark 2.8.1, together with the well-known struc-
ture of the étale fundamental groups of hyperbolic curves over algebraically closed fields
of characteristic zero. Assertion (ii) follows from Proposition 2.13. □

LEMMA 4.3. — Let J1 ⊆ J2 ⊆ ∆(Π)ab be closed subgroups of ∆(Π)ab. Suppose that the
following four conditions are satisfied:

(1) The closed subgroups J1 ⊆ J2 are contained in the kernel of the natural surjective
continuous homomorphism ∆(Π)ab ↠ ∆(Π)ab/cusp.

(2) The quotient J2/J1 is torsion-free.

(3) The continuous action of Π by conjugation on ∆(Π)ab preserves the closed sub-
groups J1 ⊆ J2 ⊆ ∆(Π)ab.

(4) The resulting [cf. (3)] continuous action of Π on J2/J1 is trivial.

Then the equality J1 = J2 holds.

Proof. — This assertion follows immediately — in light of the existence of the isomor-
phism “synI” of Definition 2.10, (v), and Remark 2.10.1, (ii) — from [4, Theorem 1.4,
(iv)] and [4, Proposition 3.7, (iii)]. □

DEFINITION 4.4.

(i) We shall write

Cusp(Π)
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for the set of Π-conjugacy classes of cuspidal inertia subgroups of Π. Thus, we have a
natural surjective map

Cusp(Π) // // Cusp(Π).

(ii) We shall say that a subset S of Cusp(Π) is Π-stable if S is preserved by the action
of Π on Cusp(Π) by conjugation, or, alternatively, the inverse image by the natural
surjective map of (i) of the image by the natural surjective map of (i) of S coincides with
S.

REMARK 4.4.1. — One verifies easily from Proposition 2.9, (i), that there exists a natural
bijective map between the set Cusp(Π) and the set of Π-conjugacy classes of cuspidal
decomposition subgroups of Π.

DEFINITION 4.5. — Let S be a subset of Cusp(Π). Then we shall write

Π•S

for the quotient of Π by the normal closed subgroup normally topologically generated by
the cuspidal inertia subgroups of Π that belong to elements of S and refer to Π•S as the
partial compactification of Π with respect to S. Moreover, we shall write

∆(Π)•S

for the image of ∆(Π) in Π•S. Thus, we have a commutative diagram of profinite groups

1 // ∆(Π) //

����

Π //

����

G(Π) // 1

1 // ∆(Π)•S // Π•S // G(Π) // 1

— where the horizontal sequences are exact, and the vertical arrows are surjective.

REMARK 4.5.1. — In the situation of Definition 4.5, one verifies easily that if we write
T ⊆ Cusp(Π) for the [uniquely determined] minimal Π-stable subset that contains S,
then Π•S = Π•T .

PROPOSITION 4.6. — Suppose that Π is a hyperbolic NF-curvoid. Let S be a Π-
stable subset of Cusp(Π) and D a curvoidal element of Ṽ(G(Π)). Write SD ⊆ Cusp(Π|D)
for the subset of Cusp(Π|D) obtained by forming the inverse image of S ⊆ Cusp(Π) by

the bijective map Cusp(Π|D)
∼→ Cusp(Π) of Proposition 2.13. Then the natural inclusion

Π|D ↪→ Π determines a continuous isomorphism over D

(Π|D)•SD ∼ // Π•S ×G(Π) D,

that restricts to a continuous isomorphism

∆(Π|D)•SD // ∆(Π)•S.
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Let us identify (Π|D)•SD , ∆(Π|D)•SD with Π•S ×G(Π) D, ∆(Π)•S by means of these con-
tinuous isomorphisms determined by the natural inclusion Π|D ↪→ Π, respectively:

(Π|D)•SD = Π•S ×G(Π) D, ∆(Π|D)•SD = ∆(Π)•S.

Proof. — This assertion follows immediately from the various definitions involved. □

LEMMA 4.7. — Let S be a subset of Cusp(Π) and H ⊆ Π•S an open subgroup of

Π•S. Write H̃ ⊆ Π for the inverse image of H ⊆ Π•S by the natural surjective con-

tinuous homomorphism Π ↠ Π•S. [Thus, H̃ is an open subgroup of Π, hence — cf.

Proposition 2.2 — also a hyperbolic □-curvoid.] Write, moreover, T ⊆ Cusp(H̃) for

the subset of Cusp(H̃) obtained by forming the inverse image, by the surjective map

Cusp(H̃)↠ Cusp(Π) of Proposition 2.9, (iii), of the minimal Π-stable subset of Cusp(Π)

that contains S. Then the natural surjective continuous homomorphism H̃ ↠ H deter-

mines a continuous isomorphism H̃•T ∼→ H. Let us identify H̃•T with H by means of
this continuous isomorphism determined by the natural surjective continuous homomor-

phism H̃ ↠ H:

H̃•T = H.

Proof. — This assertion follows immediately, in light of Remark 2.8.1, from the well-
known structure of the étale fundamental groups of smooth curves over algebraically
closed fields of characteristic zero. □

LEMMA 4.8. — Let d be a positive integer and x an element of Cusp(Π). Then the
following three conditions are equivalent:

(1) The fiber of the natural surjective map Cusp(Π)↠ Cusp(Π) at x is of cardinality
d.

(2) The image in G(Π) of every cuspidal decomposition subgroup of Π that belongs to
the Π-conjugacy class of cuspidal decomposition subgroups corresponding to x ∈ Cusp(Π)
[cf. Remark 4.4.1] is of index d.

(3) The image in G(Π) of some cuspidal decomposition subgroup of Π that belongs to
the Π-conjugacy class of cuspidal decomposition subgroups corresponding to x ∈ Cusp(Π)
is of index d.

Proof. — This assertion follows immediately from the various definitions involved. □

DEFINITION 4.9. — Let d be a positive integer.

(i) We shall say that an element of Cusp(Π) is of degree d if the positive integer d and
the element of Cusp(Π) satisfy condition (1) of Lemma 4.8 [i.e., imposed on “(d, x)”].

(ii) We shall say that a subset of Cusp(Π) is of degree d if the sum of the degrees of
the elements of the subset is equal to d.

(iii) We shall say that a subset of Cusp(Π) is of degree d if the subset of Cusp(Π)
determined by the subset is of degree d.
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THEOREM 4.10. — Let

Π

be a hyperbolic MLF-curvoid (respectively, hyperbolic NF-curvoid), d a positive
integer, and S a subset of Cusp(Π) of degree d. Then the following five conditions are
equivalent:

(1) The profinite group Π•S is a hyperbolic MLF-curvoid (respectively, hyperbolic
NF-curvoid).

(2) The profinite group Π•S is a hyperbolic MLF-curvoid (respectively, hyperbolic
NF-curvoid) whose geometric subgroup is given by ∆(Π)•S ⊆ Π•S.

(3) The profinite group ∆(Π)•S is not abelian.

(4) The profinite group ∆(Π)•S is slim.

(5) The inequality 2− 2g(Π)− r(Π) < −d holds.

Proof. — First, to verify the equivalences

(3) ks +3 (4) ks +3 (5),

let us observe that one verifies easily from Remark 2.8.1, together with the well-known
structure of the étale fundamental groups of smooth curves over algebraically closed
fields of characteristic zero, that the profinite group ∆(Π)•S is isomorphic, as an abstract
profinite group, to the étale fundamental group of a smooth curve of type (g(Π), r(Π)−d)
over an algebraically closed field of characteristic zero [cf. also Remark 4.5.1]. Thus,
the equivalences (3) ⇔ (4) ⇔ (5) follow from the well-known structure of the étale
fundamental groups of smooth curves over algebraically closed fields of characteristic
zero [cf. also [13, Proposition 2.3, (i)]].

The implication

(2) +3 (1)

is immediate. Next, we verify the implication

(1) +3 (2).

Suppose that condition (1) is satisfied. Then it follows from the diagram of Definition 4.5
that ∆(Π)•S ⊆ Π•S satisfies condition (1) of Definition 2.1. Next, to verify the assertion
that ∆(Π)•S ⊆ Π•S satisfies condition (2) of Definition 2.1, let us observe that one verifies
immediately [cf. also Proposition 2.2 and Proposition 2.5, (iii)] that we may assume
without loss of generality, by replacing Π by “H” as in condition (2) of Definition 2.1
[i.e., with respect to ∆(Π) ⊆ Π] and S by a suitable subset of Cusp(Π) that contains S,
that ∆(Π) ⊆ Π is pseudo-MLF-geometric (respectively, pseudo-NF-geometric). Then if
Π is a hyperbolic NF-curvoid, then [since ∆(Π) ⊆ Π is pseudo-NF-geometric] one verifies
easily that ∆(Π)•S ⊆ Π•S is pseudo-NF-geometric, hence also satisfies condition (2) of
Definition 2.1, as desired. In particular, to verify the desired assertion, it suffices to verify
that if Π is a hyperbolic MLF-curvoid, then ∆(Π)•S ⊆ Π•S is pseudo-MLF-geometric. On
the other hand, since [we have assumed that] ∆(Π) ⊆ Π is pseudo-MLF-geometric, one
verifies easily that ∆(Π)•S ⊆ Π•S satisfies condition (1) of Definition 1.5, (ii). Thus, to
verify the desired assertion, it suffices to verify that ∆(Π)•S ⊆ Π•S satisfies condition (2)
of Definition 1.5, (ii). In particular, it follows immediately from Lemma 4.7, together
with Lemma 1.6, (i), and Proposition 2.5, (iii), that, to verify the desired assertion, it
suffices to verify the following assertion:
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(a) The maximal G(Π)-stable torsion-free quotient of the abelian profinite group
(∆(Π)•S)ab on which the resulting action of G(Π) is trivial has a natural structure of free

Ẑ-module.

To verify (a), let us observe that it is immediate that the kernel of the surjective contin-
uous homomorphism ∆(Π)ab ↠ (∆(Π)•S)ab induced by the natural surjective continuous
homomorphism ∆(Π) ↠ ∆(Π)•S is contained in the kernel of the natural surjective
continuous homomorphism ∆(Π)ab ↠ ∆(Π)ab/cusp. Thus, it follows from Lemma 4.3
that the natural surjective continuous homomorphism from ∆(Π)ab onto the maximal
G(Π)-stable torsion-free quotient of the abelian profinite group ∆(Π)ab on which the re-
sulting action of G(Π) is trivial factors through the surjective continuous homomorphism
∆(Π)ab ↠ (∆(Π)•S)ab. Thus, since [we have assumed that] ∆(Π) ⊆ Π is pseudo-MLF-
geometric, we conclude that (a) holds, as desired. This completes the proof of (a), hence
also of the implication (1) ⇒ (2).

The implication

(2) +3 (4)

follows from Proposition 2.5, (i). Finally, we verify the implication

(5) +3 (1).

Suppose that condition (5) is satisfied. Let us first observe that one verifies immediately
from a similar argument to the argument applied in the proof of the implication (1)⇒ (2)
that ∆(Π)•S ⊆ Π•S satisfies conditions (1), (2) of Definition 2.1. Write T ⊆ Cusp(G(Π))
for the subset of Cusp(G(Π)) that corresponds [cf. the final portion of Definition 2.10, (iii)]
to the minimal Π-stable subset of Cusp(Π) that contains S. Then one verifies immediately
[cf. also Remark 4.5.1] that condition (5) implies that this subset T ⊆ Cusp(G(Π)) is
omittable [cf. [7, Definition 2.4, (i)]]. Moreover, one also verifies easily [cf. condition (c)

of Definition 2.10, (iii)] that the outer continuous isomorphism ∆(Π)
∼→ ΠG(Π) of (2) of

Definition 2.10, (iii), fits into a commutative diagram of profinite groups

∆(Π)
∼ //

����

ΠG(Π)

����
∆(Π)•S

∼ // ΠG(Π)•T

— where we write ΠG(Π)•T for the PSC-fundamental group of G(Π)•T [cf. [7, Definition
2.4, (ii)]]; the left-hand vertical arrow is the outer surjective continuous homomorphism
determined by the natural surjective continuous homomorphism ∆(Π) ↠ ∆(Π)•S; the
right-hand vertical arrow is the outer surjective continuous homomorphism of the final
portion of [7, Definition 2.4, (ii)]; the lower horizontal arrow is an outer continuous
isomorphism. In particular, it follows immediately from condition (a) of Definition 2.10,
(iii), and [7, Corollary 3.9, (ii)] that the collection of data consisting of

• the normal closed subgroup ∆(Π)•S ⊆ Π•S,

• the semi-graph G(Π)•T of anabelioids of pro-Primes PSC-type, and

• the lower horizontal arrow ∆(Π)•S
∼→ ΠG(Π)•T of the above commutative diagram

satisfies conditions (3), (4) of Definition 2.1. This completes the proof of the implication
(5) ⇒ (1), hence also of Theorem 4.10. □
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THEOREM 4.11. — In the situation of Theorem 4.10, suppose that the five conditions
(1), (2), (3), (4), (5) of Theorem 4.10 are satisfied. Then the following assertions hold:

(i) The natural surjective continuous homomorphism Π ↠ Π•S is an arithmetic
equivalence and determines a continuous isomorphism ∆(Π)•S

∼→ ∆(Π•S). Let us
identify ∆(Π)•S, G(Π) with ∆(Π•S), G(Π•S) by means of the continuous isomorphisms
determined by the natural surjective continuous homomorphism Π↠ Π•S, respectively:

∆(Π)•S = ∆(Π•S), G(Π) = G(Π•S).

(ii) For a closed subgroup of ∆(Π)•S = ∆(Π•S) [cf. (i)], the following two conditions
are equivalent:

• The closed subgroup is a cuspidal inertia subgroup of Π•S.

• The closed subgroup is obtained by forming the image of a cuspidal inertia
subgroup of Π.

(iii) The equality (
g(Π•S), r(Π•S)

)
=

(
g(Π), r(Π)− d

)
holds.

Proof. — First, we verify assertion (i). It follows from condition (2) of Theorem 4.10
that the natural surjective continuous homomorphism Π↠ Π•S determines a continuous
isomorphism ∆(Π)•S

∼→ ∆(Π•S). Thus, it follows from the diagram of Definition 4.5 that
the natural surjective continuous homomorphism Π ↠ Π•S is an arithmetic equivalence.
This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that it follows immediately from
condition (c) of Definition 2.10, (iii), together with the proof of the implication (5)⇒ (1)
of Theorem 4.10, that, to verify assertion (ii), it suffices to verify that, in the situation
of the proof of the implication (5) ⇒ (1) of Theorem 4.10, for a closed subgroup of ΠG•T ,
the following two conditions are equivalent:

• The closed subgroup is a cuspidal subgroup of ΠG(Π)•T .

• The closed subgroup is obtained by forming the image, by some lifting of the outer
surjective continuous homomorphism ΠG(Π) ↠ ΠG(Π)•T of the final portion of [7, Definition
2.4, (ii)], of a cuspidal subgroup of ΠG(Π).

On the other hand, this equivalence follows from the definition of the semi-graph
G(Π)•T of anabelioids and the definition of the outer surjective continuous homomor-
phism ΠG(Π) ↠ ΠG(Π)•T of the final portion of [7, Definition 2.4, (ii)]. This completes
the proof of assertion (ii). Assertion (iii) follows immediately from assertions (i), (ii),
together with the various definitions involved [cf. also Remark 4.5.1]. This completes the
proof of Theorem 4.11. □

5. Quotient Orbicurvoids by Outer Actions of Finite Groups

In the present §5, we prove that a suitable outer continuous action of a finite group
on a hyperbolic orbicurvoid gives rise to a hyperbolic orbicurvoid that may be thought
of as an analogue [i.e., in the theory of hyperbolic curvoids] of the notion of a quotient
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orbicurve [cf. Theorem 5.4 below and Corollary 5.5 below]. In the present §5, let □ be
an element of the set {MLF,NF} and

Π

a hyperbolic □-orbicurvoid.

LEMMA 5.1. — The natural homomorphism Aut(Π) → Aut(G(Π)) and the exact se-
quence of Definition 3.4, (ii), fit into a commutative diagram of groups

1

��

1

��

1

��
1 // ∆(Π) //

��

Π //

��

G(Π) //

��

1

1 // AutG(Π)(Π) //

��

Aut(Π) //

��

Aut
(
G(Π)

)
��

1 // AutG(Π)(Π) //

��

Out(Π) //

��

Out
(
G(Π)

)
��

1 1 1

— where the upper vertical arrows are the continuous actions by conjugation, and the
sequences are exact. By means of the left-hand lower horizontal arrow of this diagram,
let us regard AutG(Π)(Π) as a subgroup of Out(Π):

AutG(Π)(Π) ⊆ Out(Π).

Proof. — This assertion follows immediately from the slimness of ∆(Π) [cf. Proposi-
tion 3.5, (i)], the slimness of Π [cf. Proposition 3.2, (iii)], and the slimness of G(Π) [cf.
Remark 1.3.1, (i), (ii); Proposition 3.5, (ii)]. □

REMARK 5.1.1.

(i) Suppose that Π is a hyperbolic MLF-orbicurvoid, which thus [cf. Proposition 3.2,
(iv)] implies that Π is topologically finitely generated. Thus, the topology of Π admits a
basis of characteristic open subgroups, which thus induces a profinite topology on Aut(Π),
hence also a profinite topology on Out(Π). Let us regard Aut(Π), Out(Π) as profinite
groups by means of these profinite topologies, respectively. Thus, it follows from Propo-
sition 3.2, (iii), that we have an exact sequence of profinite groups

1 // Π // Aut(Π) // Out(Π) // 1.

(ii) Suppose that Π is a hyperbolic NF-orbicurvoid, and that AutG(Π)(Π) is finite.
Then it follows from Proposition 1.4 and Proposition 3.5, (ii), that Out(G(Π)), hence
[cf. Lemma 5.1] also Out(Π), is finite. Thus, it follows from Lemma 5.1 that the homo-
morphism Π→ Aut(Π) by conjugation is an injective homomorphism whose image is of
finite index, which thus implies that the profinite topology of Π determines a profinite
topology on Aut(Π), hence also a profinite topology on Out(Π). Let us regard Aut(Π),
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Out(Π) as profinite groups by means of these profinite topologies, respectively. Thus, it
follows from Proposition 3.2, (iii), that we have an exact sequence of profinite groups

1 // Π // Aut(Π) // Out(Π) // 1.

PROPOSITION 5.2. — The following assertions hold:

(i) The natural homomorphism

AutG(Π)(Π) // Aut
(
∆(Π)

)
,

hence also the natural homomorphism

AutG(Π)(Π) // Out
(
∆(Π)

)
,

is injective.

(ii) Suppose that Π is a hyperbolic NF-orbicurvoid. Let D be a(n) [not necessarily

orbicurvoidal] element of Ṽ(G(Π)). Then the natural homomorphism

AutG(Π)(Π) // AutD(Π|D)

is injective.

(iii) Suppose that Π is relatively core-like. Then the group AutG(Π)(Π) is trivial.

Proof. — Assertion (i) follows from the slimness of ∆(Π) [cf. Proposition 3.5, (i)] and [1,
Lemma 4.10]. Next, we verify assertion (ii). Let us observe that it is immediate that the
homomorphism of the second display of assertion (i) factors through the homomorphism
under consideration. Thus, assertion (ii) follows from assertion (i). This completes the
proof of assertion (ii). Assertion (iii) follows immediately from assertion (i), together
with the various definitions involved. This completes the proof of Proposition 5.2. □

DEFINITION 5.3. — Let J ⊆ Out(Π) be a finite subgroup of Out(Π).

(i) We shall write

∆(J)
def
= J ∩ AutG(Π)(Π), G(J)

def
= J/∆(J) ⊆ Out

(
G(Π)

)
[cf. Lemma 5.1].

(ii) We shall write

Π[J ]
def
= Aut(Π)×Out(Π) J

for the fiber product of the natural surjective homomorphism Aut(Π)↠ Out(Π) and the
natural inclusion J ↪→ Out(Π),

∆(Π)
out
o ∆(J)

def
= AutG(Π)(Π)×AutG(Π)(Π) ∆(J)

for the fiber product of the natural surjective homomorphism AutG(Π)(Π)↠ AutG(Π)(Π)
and the natural inclusion ∆(J) ↪→ AutG(Π)(Π), and

G(Π)
out
o G(J)

def
= Aut

(
G(Π)

)
×

Out
(
G(Π)

) G(J)
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for the fiber product of the natural surjective homomorphism Aut(G(Π))↠ Out(G(Π))
and the natural inclusion G(J) ↪→ Out(G(Π)). Thus, it follows from Remark 1.3.1, (i),
(ii); Proposition 3.2, (iii); Proposition 3.5, (i), (ii), that we have exact sequences of groups

1 // Π // Π[J ] // J // 1,

1 // ∆(Π) // ∆(Π)
out
o ∆(J) // ∆(J) // 1,

1 // G(Π) // G(Π)
out
o G(J) // G(J) // 1.

REMARK 5.3.1. — Let J ⊆ Out(Π) be a finite subgroup of Out(Π).

(i) Since J is a finite group, it is immediate that Π (respectively, ∆(Π); G(Π)) is

of finite index in Π[J ] (respectively, ∆(Π)
out
o ∆(J); G(Π)

out
o G(J)) [cf. the exact se-

quences of the final display of Definition 5.3, (ii)]. Thus, the natural inclusion Π ↪→ Π[J ]

(respectively, ∆(Π) ↪→ ∆(Π)
out
o ∆(J); G(Π) ↪→ G(Π)

out
o G(J)) and the profinite topol-

ogy of Π (respectively, ∆(Π); G(Π)) determine a profinite topology on Π[J ] (respectively,

∆(Π)
out
o ∆(J); G(Π)

out
o G(J)), with respect to which the first (respectively, second;

third) exact sequence of the final display of Definition 5.3, (ii), is an exact sequence of

profinite groups. Let us regard Π[J ] (respectively, ∆(Π)
out
o ∆(J); G(Π)

out
o G(J)) as a

profinite group by means of this profinite topology.

(ii) Let us recall that it follows immediately from the various definitions involved that
we have a commutative diagram of groups

1 // Π // Π[J ] //
� _

��

J //
� _

��

1

1 // Π // Aut(Π) // Out(Π) // 1

— where the horizontal sequences are exact, and the right-hand square is cartesian —
which thus determines a commutative diagram of groups

1 // G(Π) // Π[J ]/∆(Π) //
� _

��

J //
� _

��

1

1 // G(Π) // Aut(Π)/Inn
(
∆(Π)

)
/ / Out(Π) // 1

— where we write Inn(∆(Π)) for the group of inner automorphisms of Π determined by
elements of ∆(Π) ⊆ Π, the horizontal sequences are exact, and the right-hand square
is cartesian. Thus, the natural inclusion ∆(J) ↪→ (AutG(Π)(Π) ⊆) Aut(Π)/Inn(∆(Π))
determines a splitting of the right-hand upper horizontal arrow Π[J ]/∆(Π) ↠ J on the
subgroup ∆(J) ⊆ J . Now let us observe that one verifies immediately from the various
definitions involved [cf. also (i)] that the natural inclusion AutG(Π)(Π) ↪→ Aut(Π) restricts
to a continuous isomorphism of

• the subgroup ∆(Π)
out
o ∆(J) ⊆ AutG(Π)(Π) of AutG(Π)(Π) with

• the inverse image of the image of this splitting ∆(J) ↪→ Π[J ]/∆(Π) by the natural
surjective continuous homomorphism Π[J ]↠ Π[J ]/∆(Π).
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Let us identify ∆(Π)
out
o ∆(J) with the inverse image of the image of this splitting ∆(J) ↪→

Π[J ]/∆(Π) by the natural surjective continuous homomorphism Π[J ] ↠ Π[J ]/∆(Π) by
means of the resulting continuous isomorphism. In particular, we have an injective con-
tinuous homomorphism [cf. (i)]

∆(Π)
out
o ∆(J) �

� // Π[J ].

(iii) Next, let us also observe that one verifies immediately from the various definitions
involved that the diagram of Lemma 5.1 and the injective continuous homomorphism

∆(Π)
out
o ∆(J) ↪→ Π[J ] of the final display of (ii) determine a commutative diagram of

groups

1 // ∆(Π) //
� _

��

Π //
� _

��

G(Π) //
� _

��

1

1 // ∆(Π)
out
o ∆(J) //
� _

��

Π[J ] //
� _

��

G(Π)
out
o G(J) //
� _

��

1

1 // AutG(Π)(Π) // Aut(Π) / / Aut
(
G(Π)

)
— where the horizontal sequences are exact, the lower vertical arrows are injective, and
the upper vertical arrows are open injective [cf. (i)]; in particular, the two left-hand
squares are cartesian.

(iv) Suppose that AutG(Π)(Π) is finite if Π is a hyperbolic NF-orbicurvoid. Then one
verifies immediately from the various definitions involved that each of the middle vertical
arrows Π ↪→ Π[J ] ↪→ Aut(Π) of the diagram of (iii) is continuous [cf. (i); Remark 5.1.1,
(i), (ii)].

THEOREM 5.4. — Let

Π

be a hyperbolic MLF-orbicurvoid (respectively, hyperbolic NF-orbicurvoid) and
J ⊆ Out(Π) a finite subgroup of Out(Π). Suppose that J is contained in the subgroup
AutG(Π)(Π) ⊆ Out(Π) [cf. Lemma 5.1] whenever Π is a hyperbolic MLF-orbicurvoid.
Then the following assertions hold:

(i) The profinite group Π[J ] [cf. Remark 5.3.1, (i)] is a hyperbolic MLF-orbicurvoid
(respectively, hyperbolic NF-orbicurvoid) whose geometric subgroup is given by

∆(Π)
out
o ∆(J) ⊆ Π[J ] [cf. Remark 5.3.1, (ii)]:

∆(Π[J ]) = ∆(Π)
out
o ∆(J).

(ii) It holds that the natural inclusion Π ↪→ Π[J ] is an arithmetic equivalence [cf.
(i)] if and only if J is contained in AutG(Π)(Π).

(iii) Suppose that Π is a hyperbolic NF-orbicurvoid, and that J is contained in

AutG(Π)(Π). Let D be an orbicurvoidal element of Ṽ(G(Π)). Write JD ⊆ AutD(Π|D)
for the image of J ⊆ AutG(Π)(Π) by the injective homomorphism AutG(Π)(Π) ↪→ AutD(Π|D)
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of Proposition 5.2, (ii). Then the natural inclusion Π|D ↪→ Π determines a continu-

ous isomorphism Π|D[JD]
∼→ Π[J ]|D over D [cf. (i), (ii)]. Let us identify Π|D[JD]

with Π[J ]|D by means of this continuous isomorphism induced by the natural inclusion
Π|D ↪→ Π:

Π|D[JD] = Π[J ]|D.

(iv) Suppose that Π is relatively core-like. Then the natural inclusion Π ↪→ Π[J ]

restricts to a continuous isomorphism ∆(Π)
∼→ ∆(Π[J ]), and, moreover, the hyper-

bolic MLF-orbicurvoid (respectively, hyperbolic NF-orbicurvoid) Π[J ] [cf. (i)] is relatively
core-like.

Proof. — First, we verify assertion (i). Let H ⊆ Π be a normal open subgroup of
Π as in Definition 3.1. Now it follows from Proposition 2.2 and Proposition 2.5, (iii),
that we may assume without loss of generality, by replacing H by the intersection of the
Π[J ]-conjugates of H, that H is normal in Π[J ]. Then since the left-hand upper square
of the diagram of Remark 5.3.1, (iii), is cartesian, we conclude that the pair consisting of

the normal closed subgroup ∆(Π)
out
o ∆(J) ⊆ Π[J ] of Π[J ] and the normal open subgroup

H ⊆ Π[J ] of Π[J ] satisfies condition (2) of Definition 3.1. Thus, to verify assertion (i), it

suffices to verify that the normal closed subgroup ∆(Π)
out
o ∆(J) ⊆ Π[J ] of Π[J ] satisfies

condition (1) of Definition 3.1, i.e., that ∆(Π)
out
o ∆(J) is slim and of co-MLF-type

(respectively, of co-NF-type).

The slimness of ∆(Π)
out
o ∆(J) follows immediately from the slimness of ∆(Π) [cf.

Proposition 3.5, (i)] and Proposition 5.2, (i), together with the definition of ∆(Π)
out
o

∆(J).

Next, we verify the assertion that ∆(Π)
out
o ∆(J) is of co-MLF-type if Π is a hyperbolic

MLF-orbicurvoid. Suppose that Π is a hyperbolic MLF-orbicurvoid. Then since [we
have assumed that] J ⊆ AutG(Π)(Π) [i.e., J = ∆(J)], the right-hand upper vertical

arrow G(Π) ↪→ G(Π)
out
o G(J) of the diagram of Remark 5.3.1, (iii), is a continuous

isomorphism. Thus, one verifies easily from Proposition 3.5, (ii), that ∆(Π)
out
o ∆(J) is

of co-MLF-type, as desired. This completes the proof of the assertion that ∆(Π)
out
o ∆(J)

is of co-MLF-type if Π is a hyperbolic MLF-orbicurvoid.

Next, we verify the assertion that ∆(Π)
out
o ∆(J) is of co-NF-type if Π is a hyperbolic

NF-orbicurvoid. Suppose that Π is a hyperbolic NF-orbicurvoid. Then since G(Π) is
of NF-type [cf. Proposition 3.5, (ii)], it follows immediately from Proposition 1.4 that

Aut(G(Π)) is of NF-type, and the composite G(Π) ↪→ G(Π)
out
o G(J) ↪→ Aut(G(Π))

of the right-hand vertical arrows of the diagram of Remark 5.3.1, (iii) — hence also

the right-hand lower vertical arrow G(Π)
out
o G(J) ↪→ Aut(G(Π)) of the diagram of

Remark 5.3.1, (iii) — is an open injective continuous homomorphism. Thus, we conclude

from [4, Remark 3.2.1, (i)] that G(Π)
out
o G(J) is of NF-type, which thus implies that

∆(Π)
out
o ∆(J) is of co-NF-type, as desired. This completes the proof of the assertion

that ∆(Π)
out
o ∆(J) is of co-NF-type if Π is a hyperbolic NF-orbicurvoid, hence also of

assertion (i).
Assertions (ii), (iii) follow immediately from assertion (i) and the diagram of Re-

mark 5.3.1, (iii). Finally, we verify assertion (iv). It follows immediately — in light
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of Proposition 3.5, (iii) — from assertion (i) and Proposition 5.2, (iii), that the natural

inclusion Π ↪→ Π[J ] restricts to a continuous isomorphism ∆(Π)
∼→ ∆(Π[J ]). Thus, it

follows from Proposition 3.13 that Π[J ] is relatively core-like, as desired. This completes
the proof of assertion (iv), hence also of Theorem 5.4. □

COROLLARY 5.5. — Let Π be a relatively core-like hyperbolic NF-orbicurvoid.
Then the profinite group Aut(Π) [cf. Remark 5.1.1, (ii); Proposition 5.2, (iii)] is a rela-
tively core-like hyperbolic NF-orbicurvoid. Moreover, the natural inclusion Π ↪→
Aut(Π) by conjugation [cf. Proposition 3.2, (iii)] fits into a commutative diagram of
profinite groups

1 // ∆(Π) //

≀
��

Π //
� _

� �

G(Π) //
� _

��

1

1 // ∆
(
Aut(Π)

)
// Aut(Π) // G

(
Aut(Π)

)
// 1

— where the horizontal sequences are exact, the vertical arrows are open injective,
and the left-hand vertical arrow is a continuous isomorphism.

Proof. — Let us first observe that it follows from Proposition 1.4 and Proposition 3.5,
(ii), that Out(G(Π)), hence [cf. Lemma 5.1 and Proposition 5.2, (iii)] also Out(Π), is
finite. Thus, Corollary 5.5 follows — in light of Remark 5.3.1, (iv) — from Theorem 5.4,
(i), (iv), i.e., in the case where we take the “J” to be Out(Π). This completes the proof
of Corollary 5.5. □

6. Examples from Scheme Theory

In the present §6, we give some examples of hyperbolic curvoids that arise from scheme
theory [cf. Theorem 6.5 below, Theorem 6.6 below, and Corollary 6.7 below].

DEFINITION 6.1. — Let k be an MLF, k an algebraic closure of k, and X a hyperbolic
curve over k.

(i) We shall write

π1(X), π1(X ×k k)

for the respective étale fundamental groups of X, X ×k k [relative to some choices of
basepoints]. Thus, we have an exact sequence of profinite groups

1 // π1(X ×k k) // π1(X) // Gal(k/k) // 1.

(ii) We shall write

GX

for the dual semi-graph of the special fiber of the stable model [i.e., over the ring of
integers of k] of the hyperbolic curve X ×k k,

πtop
1 (GX)
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for the topological fundamental group of GX [relative to some choice of basepoint], and

πtop
1 (GX)

∧

for the profinite completion of πtop
1 (GX). Thus, we have a natural outer surjective con-

tinuous homomorphism

π1(X ×k k) // // πtop
1 (GX)

∧.

LEMMA 6.2. — Suppose that we are in the situation of Definition 6.1. Then the natural
surjective continuous homomorphism from π1(X ×k k)

ab onto the maximal Gal(k/k)-
stable torsion-free quotient of the abelian profinite group π1(X ×k k)ab on which
the resulting action of Gal(k/k) is trivial factors through the surjective continuous
homomorphism π1(X×k k)

ab ↠ (πtop
1 (GX)

∧)ab induced by the outer surjective continuous
homomorphism of the final display of Definition 6.1, (ii).

Proof. — This assertion follows immediately from [13, Lemma 2.7, (ii)] and the proof
of [13, Theorem 2.11, (iii)]. □

DEFINITION 6.3. — Let k be an MLF and k an algebraic closure of k. Write K def
= k((t)).

Let K be an algebraic closure of K that contains k and X a hyperbolic curve over K.
Write O ⊆ K for the integral closure in K of the subring k[[t]] ⊆ k((t)) = K of K. [So
the residue field of O may be naturally identified with k.]

(i) We shall write

π1(X), π1(X ×K K)

for the respective étale fundamental groups of X, X ×K K [relative to some choices of
basepoints] and

IK ⊆ Gal(K/K)

for the kernel of the natural surjective continuous homomorphism Gal(K/K)↠ Gal(k/k),
i.e., induced by the natural inclusion k ↪→ K. [So it is well-known that the profinite group

IK is abelian, and there exists a natural isomorphism IK
∼→ Ẑ(1) of Gal(k/k)-modules

— where the “(1)” denotes a “Tate twist”.] Thus, we have exact sequences of profinite
groups

1 // π1(X ×K K) // π1(X) // Gal(K/K) // 1,

1 // IK // Gal(K/K) // Gal(k/k) // 1.

(ii) We shall write

GX
for the semi-graph of anabelioids of pro-Primes PSC-type determined by the special fiber
of the stable model [i.e., over O] of the hyperbolic curve X ×K K [cf. [12, Definition 1.1,
(i)]],

ΠGX

for the PSC-fundamental group of GX ,
GX
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for the underlying semi-graph of GX ,

πtop
1 (GX)

for the topological fundamental group of GX [relative to some choice of basepoint], and

πtop
1 (GX)

∧

for the profinite completion of πtop
1 (GX). Thus, we have a natural π1(X)-conjugacy class

of continuous isomorphisms

ΠGX

∼ // π1(X ×K K),

by means of which let us identify ΠGX
with π1(X ×K K), and a natural outer surjective

continuous homomorphism

ΠGX
// // πtop

1 (GX)
∧.

LEMMA 6.4. — In the situation of Definition 6.3, let

G ⊆ Gal(K/K)

be a closed subgroup of Gal(K/K) such that the composite G ↪→ Gal(K/K) ↠ Gal(k/k)
is a continuous isomorphism. Write

ΠG
def
= π1(X)×Gal(K/K) G

for the fiber product of π1(X)↠ Gal(K/K) and G ↪→ Gal(K/K). Thus, we have an exact
sequence of profinite groups

1 // ΠGX
// ΠG

// G // 1.

Then the following assertions hold:

(i) Let v be a vertex of GX and Πv ⊆ ΠGX
a verticial subgroup of ΠGX

associated to
v [cf. [12, Definition 1.1, (ii)]]. Write Gv ⊆ G for the [necessarily open] subgroup of G
obtained by forming the image of the composite CΠG

(Πv) ↪→ ΠG ↠ G. Then there exist
a finite extension kv ⊆ k of k, a hyperbolic curve Xv over kv, and a commutative
diagram of profinite groups

1 // Πv
//

≀
��

CΠG
(Πv) //

≀
��

Gv
//

≀
��

1

1 // π1(Xv ×kv kv) // π1(Xv) // Gal(k/kv) // 1

— where we apply the notational conventions introduced in Definition 6.1 in the case
where we take the “(k, k,X)” of Definition 6.1 to be (kv, k,Xv), the horizontal sequences
are exact, and the vertical arrows are continuous isomorphisms.

(ii) Let v be a vertex of GX and Πv ⊆ ΠGX
a verticial subgroup of ΠGX

associated to
v. Consider the composite

Πab
v

∼ // π1(Xv ×kv k)
ab // //

(
πtop
1 (GXv)

∧)ab
of the continuous isomorphism Πab

v
∼→ π1(Xv×kvk)

ab induced by the left-hand vertical con-
tinuous isomorphism of the diagram of (i) and the surjective continuous homomorphism
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π1(Xv ×kv k)
ab ↠ (πtop

1 (GXv)
∧)ab induced by the outer surjective continuous homomor-

phism of the final display of Definition 6.1, (ii), in the case where we take the “(k, k,X)”
of Definition 6.1 to be (kv, k,Xv). Then this composite factors through the quotient

Πab
v ↠ Π

ab/edge
v defined in [6, Definition 1.3, (iii)].

(iii) For each vertex v of GX , take a verticial subgroup Πv ⊆ ΠGX
of ΠGX

associated to
v. Then the various natural inclusions Πv ↪→ ΠGX

— where v ranges over the vertices of
GX — and the natural outer surjective continuous homomorphism ΠGX

↠ πtop
1 (GX)

∧ of
the final display of Definition 6.3, (ii), determine an exact sequence of abelian profinite
groups

0 //
⊕
v

Πab/edge
v

// Π
ab/edge
GX

//
(
πtop
1 (GX)

∧)ab // 0

— where we write “(−)ab/edge” for the quotient of “(−)” defined in [6, Definition 1.3, (i),
(iii)].

(iv) Write

Π
ab/edge
GX

// // M

for the quotient of the abelian profinite group Π
ab/edge
GX

by the [necessarily normal closed]
subgroup generated by the kernels of the resulting [cf. (ii)] surjective continuous homo-

morphisms Π
ab/edge
v ↠ (πtop

1 (GXv)
∧)ab [cf. (iii)] — where v ranges over the vertices of

GX . [Thus, we have a commutative diagram of abelian profinite groups

0 //
⊕
v

Πab/edge
v

//

����

Π
ab/edge
GX

//

����

(πtop
1 (GX)

∧)ab // 0

0 //
⊕
v

(πtop
1 (GXv)

∧)ab // M // (πtop
1 (GX)

∧)ab // 0

— where the horizontal sequences are exact, and the vertical arrows are surjective.]
Then there exist a finitely generated free Z-module M0 equipped with a continuous

action of Gal(K/K) and a Gal(K/K)-equivariant continuous isomorphism M0⊗Z Ẑ
∼→

M .

(v) Write

Πab
GX

// // Q

for the maximal G-stable torsion-free quotient of the abelian profinite group Πab
GX

on
which the resulting action of G is trivial. Then this surjective continuous homomorphism
Πab

GX
↠ Q factors through the surjective continuous homomorphism Πab

GX
↠M of (iv).

(vi) The quotient Q of Πab
GX

of (v) has a natural structure of free Ẑ-module.

Proof. — Assertion (i) follows immediately from the various definitions involved, to-
gether with the commensurable terminality of Πv in ΠGX

[cf. [12, Proposition 1.2, (ii)]].
Assertion (ii) is immediate. Assertion (iii) follows from [6, Lemma 1.4].

Next, we verify assertion (iv). Let us first observe that, by associating,

• to a vertex v of GX , the connected temperoid [cf. [11, Definition 3.1, (ii)]] determined
by the category of topological coverings with countably many connected components of
the topological space associated to the [necessarily finite connected] semi-graph GXv and,
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• to an edge of GX , the connected temperoid Btemp({1}) [cf. the discussion at the
beginning of [11, §3]],
we obtain a connected semi-graph GX of temperoids [cf. [8, Definition 2.1, (i)]] whose
underlying semi-graph is given by GX . Then one verifies immediately from the various
definitions involved that the category Btp(GX) defined in [8, Definition 2.1, (vi)] is a
connected temperoid, and, moreover, the abelian profinite group M may be naturally
identified with the profinite completion of the abelianization of the tempered fundamental
group [cf. [11, Remark 3.2.1]] of this connected temperoid Btp(GX) [cf. also the proof of
[6, Lemma 1.4]]. In particular, we conclude that the abelianization M0 of the tempered
fundamental group of the connected temperoid Btp(GX), equipped with the natural action

of Gal(K/K) [i.e., induced by the natural actions of Gal(K/K) on the semi-graphs GX

and GXv ’s — where v ranges over the vertices of GX ], satisfies the desired condition. This
completes the proof of assertion (iv).

Next, we verify assertion (v). Let us first observe that since [one verifies easily that]

there is no nontrivial G-stable torsion-free quotient of the abelian profinite group Ẑ(1)
— where the “(1)” denotes a “Tate twist” — on which the resulting action of G is trivial,
the natural surjective continuous homomorphism Πab

GX
↠ Q factors through the natural

surjective continuous homomorphism Πab
GX
↠ Π

ab/edge
GX

. Thus, it follows from assertion (i)

and Lemma 6.2 that the natural surjective continuous homomorphism Πab
GX
↠ Q factors

through the natural surjective continuous homomorphism Πab
GX
↠ (Π

ab/edge
GX

↠) M , as
desired. This completes the proof of assertion (v). Assertion (vi) follows from assertions

(iv), (v), together with the [well-known] flatness of Ẑ over Z. This completes the proof
of Lemma 6.4. □

THEOREM 6.5. — In the situation of Lemma 6.4, the following assertions hold:

(i) The profinite group ΠG is a hyperbolic MLF-curvoid whose geometric sub-
group is given by ΠGX

⊆ ΠG. Moreover, the normal closed subgroup ΠGX
⊆ ΠG of ΠG is

pseudo-MLF-geometric.

(ii) For a closed subgroup of ΠGX
, the following three conditions are equivalent:

(1) The closed subgroup is an inertia subgroup of π1(X ×K K) = ΠGX
associated

to a cusp of the hyperbolic curve X over K.

(2) The closed subgroup is a cuspidal subgroup of ΠGX
associated to a cusp of

GX .
(3) The closed subgroup is a cuspidal inertia subgroup in ∆(ΠG) = ΠGX

of the
hyperbolic MLF-curvoid ΠG [cf. (i)].

(iii) Write Π(GX)⇝Node(GX )
for the PSC-fundamental group of the semi-graph (GX)⇝Node(GX)

of anabelioids of pro-Primes PSC-type defined in [7, Definition 2.8] [cf. also [6, Definition
1.1, (i)]] and ΠG(ΠG) for the PSC-fundamental group of the semi-graph G(ΠG) of anabe-
lioids of pro-Primes PSC-type of (1) of Definition 2.10, (iii) [i.e., in the case where we
take the “Π” of Definition 2.10 to be ΠG — cf. (i)]. Then the composite of the natural
outer continuous isomorphism

Π(GX)⇝Node(GX )

∼ // ΠGX
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of [7, Proposition 2.9, (i)] and the outer continuous isomorphism

ΠGX
= ∆(ΠG)

∼ // ΠG(ΠG)

[cf. (i)] of (2) of Definition 2.10, (iii) [i.e., in the case where we take the “Π” of Defini-
tion 2.10 to be ΠG — cf. (i)], is graphic [cf. [12, Definition 1.4, (i)]], i.e., arises from an
isomorphism of semi-graphs of anabelioids

(GX)⇝Node(GX)
∼ // G(ΠG).

(iv) Suppose that the hyperbolic curve X over K is of type (g, r). Then the equality
(g(ΠG), r(ΠG)) = (g, r) [cf. (i)] holds.

Proof. — First, we verify assertion (i). Let us first observe that it follows from the
exact sequence preceding assertion (i) of Lemma 6.4 that the normal closed subgroup
ΠGX

⊆ ΠG of ΠG is of co-MLF-type. Next, let us observe that it follows from [12, Remark
1.1.3] that the profinite group ΠGX

is topologically finitely generated. Moreover, it follows
immediately from Lemma 6.4, (vi), that the normal closed subgroup ΠGX

⊆ ΠG of ΠG

satisfies condition (2) of Definition 1.5, (ii). In particular, one concludes that

(a) the normal closed subgroup ΠGX
⊆ ΠG of ΠG is pseudo-MLF-geometric, hence also

satisfies conditions (1), (2) of Definition 2.1.

Next, let us observe that one verifies immediately that the composite

Gal(K/K) = π1(X)/π1(X ×K K) // Out
(
π1(X ×K K)

) ∼ // Out(ΠGX
)

— where the “=” is the equality that arises from the exact sequence of the first line of
the final display of Definition 6.3, (i); the first arrow is the outer continuous action by
conjugation; the second arrow is the isomorphism obtained by conjugation by a continuous
isomorphism ΠGX

∼→ π1(X ×K K) that lifts the π1(X)-conjugacy class of continuous
isomorphisms of the sixth display of Definition 6.3, (ii) — factors through the closed
subgroup Aut(GX) ⊆ Out(ΠGX

) [cf. condition (3) of Definition 2.1]; moreover, one also
verifies immediately from [7, Corollary 3.9, (ii), (iii)] that, for each prime number l, the
continuous character Gal(K/K)→ Z×

l obtained by forming the composite of the resulting
homomorphism Gal(K/K)→ Aut(GX) and the pro-l cyclotomic character Aut(GX)→ Z×

l

of [12, Lemma 2.1] coincides with the l-adic cyclotomic character of Gal(K/K). Thus,
one concludes from [4, Theorem 1.4, (iv)] [cf. also (a)] that assertion (i) holds. This
completes the proof of assertion (i).

Assertion (ii) follows immediately from the argument of the second paragraph of the
proof of assertion (i), together with Lemma 2.7, (iv). Assertion (iii) follows immediately,
in light of [12, Proposition 1.5, (ii)], from assertion (ii), condition (c) of Definition 2.10,
(iii), and condition (1) of [7, Proposition 2.9, (i)].

Finally, we verify assertion (iv). The equality r(ΠG) = r follows from assertion (ii)
and [12, Proposition 1.2, (i)]. Thus, the equality g(ΠG) = g follows from the well-known
structure of the étale fundamental groups of hyperbolic curves over algebraically closed
fields of characteristic zero. This completes the proof of assertion (iv), hence also of
Theorem 6.5. □

THEOREM 6.6. — Let F be an NF, F an algebraic closure of F , V a normal variety
over F [cf. [2, Definition 1.4]], and X a hyperbolic curve over V . Write π1(X), π1(V ),
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π1(V ×F F ) for the respective étale fundamental groups of X, V , V ×F F [relative to some
choices of basepoints]. Thus, we have an exact sequence of profinite groups

1 // π1(V ×F F ) // π1(V ) // Gal(F/F ) // 1.

Moreover, the structure morphism X → V induces an outer surjective continuous ho-
momorphism

π1(X) // // π1(V )

[cf. [2, Proposition 2.4, (i)]], whose kernel we denote by

∆X/V .

Let s : Gal(F/F ) → π1(V ) be a pro-Primes Galois section of V [cf. [3, Definition
5.2]]. Write

Πs
def
= π1(X)×π1(V ) Gal(F/F )

for the fiber product of π1(X) ↠ π1(V ) and s : Gal(F/F ) → π1(V ). Thus, we have an
exact sequence of profinite groups

1 // ∆X/V
// Πs

// Gal(F/F ) // 1.

Then the following assertions hold:

(i) The profinite group Πs is a hyperbolic NF-curvoid whose geometric subgroup
is given by ∆X/V ⊆ Πs. Moreover, the normal closed subgroup ∆X/V ⊆ Πs of Πs is
pseudo-NF-geometric.

(ii) For a closed subgroup of ∆X/V , it holds that the closed subgroup is an inertia
subgroup associated to a cusp of a geometric fiber of the hyperbolic curve X over V
[cf. the final portion of [2, Proposition 2.4, (i)]] if and only if the closed subgroup is a
cuspidal inertia subgroup of the hyperbolic NF-curvoid Πs [cf. (i)].

(iii) Suppose that the hyperbolic curve X over V is of type (g, r). Then the equality
(g(Πs), r(Πs)) = (g, r) [cf. (i)] holds.

(iv) Let D be an element of Ṽ(G(Πs)) [cf. (i); Proposition 2.5, (ii); [4, Proposition
3.5, (1)]]. Suppose that V is a smooth curve over F , and that the pro-Primes Galois
section s of V is geometric at the nonarchimedean prime of F [cf. [3, Definition 5.11]]

determined by D ∈ Ṽ(G(Πs)) [cf. (i); [4, Proposition 3.5, (i)]]. Then the element D ∈
Ṽ(G(Πs)) is curvoidal [cf. (i)].

Proof. — First, we verify assertion (i). Let us first observe that it follows from the
exact sequence preceding assertion (i) that the normal closed subgroup ∆X/V ⊆ Πs of Πs

is of co-NF-type. Next, let us observe that it follows from [2, Proposition 2.4, (iii)] that
the profinite group ∆X/V is topologically finitely generated. In particular, one concludes
that

(a) the normal closed subgroup ∆X/V ⊆ Πs of Πs is pseudo-NF-geometric, hence also
satisfies conditions (1), (2) of Definition 2.1.

Next, write GX for the semi-graph of anabelioids of pro-Primes PSC-type determined
by a fixed geometric fiber of the hyperbolic curve X over V [cf. [12, Definition 1.1, (i)]]
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and ΠGX
for the PSC-fundamental group of GX . Thus, it follows from [2, Proposition 2.4,

(i)] that there exists a natural π1(X)-conjugacy class of continuous isomorphisms

ΠGX

∼ // ∆X/V .

Next, let us observe that one verifies immediately that the composite

π1(V ) = π1(X)/∆X/V
// Out(∆X/V )

∼ // Out(ΠGX
)

— where the “=” is the equality that arises from the definition of ∆X/V , the first arrow
is the outer continuous action by conjugation, the second arrow is the isomorphism ob-
tained by conjugation by a continuous isomorphism ΠGX

∼→ ∆X/V that lifts the above
π1(X)-conjugacy class of continuous isomorphisms — factors through the closed subgroup
Aut(GX) ⊆ Out(ΠGX

) [cf. condition (3) of Definition 2.1]; moreover, one also verifies im-
mediately from [7, Corollary 3.9, (ii), (iii)] that, for each prime number l, the continuous
character π1(V )→ Z×

l obtained by forming the composite of the resulting homomorphism
π1(V )→ Aut(GX) and the pro-l cyclotomic character Aut(GX)→ Z×

l of [12, Lemma 2.1]
factors through the quotient π1(V )↠ Gal(F/F ), and, moreover, the resulting character
Gal(F/F ) → Z×

l coincides with the l-adic cyclotomic character of Gal(F/F ). Thus,
one concludes from [4, Proposition 3.7, (iii)] [cf. also (a)] that assertion (i) holds. This
completes the proof of assertion (i).

Assertion (ii) follows immediately from the argument of the second paragraph of the
proof of assertion (i), together with Lemma 2.7, (iv). Next, we verify assertion (iii). The
equality r(Πs) = r follows from assertion (ii) and [12, Proposition 1.2, (i)]. Thus, the
equality g(Πs) = g follows from [2, Proposition 2.4, (i)], together with the well-known
structure of the étale fundamental groups of hyperbolic curves over algebraically closed
fields of characteristic zero. This completes the proof of assertion (iii). Assertion (iv)
follows from assertion (i) and Theorem 6.5, (i). This completes the proof of Theorem 6.6.

□

COROLLARY 6.7. — Let K be an MLF (respectively, NF), K an algebraic closure of K,
and X a hyperbolic orbicurve over K. Write π1(X), π1(X ×K K) for the respective
étale fundamental groups of X, X ×K K [relative to some choices of basepoints]. Thus,
we have an exact sequence of profinite groups

1 // π1(X ×K K) // π1(X) // Gal(K/K) // 1.

Then the following assertions hold:

(i) The profinite group π1(X) is a hyperbolic MLF-orbicurvoid (respectively, hy-
perbolic NF-orbicurvoid) whose geometric subgroup is given by π1(X ×K K) ⊆
π1(X).

(ii) Suppose that the hyperbolic orbicurve X over K is a hyperbolic curve over K.
Then the hyperbolic MLF-orbicurvoid (respectively, hyperbolic NF-orbicurvoid) π1(X) [cf.
(i)] is a hyperbolic MLF-curvoid (respectively, hyperbolic NF-curvoid). If, more-
over, the hyperbolic curve X is of type (g, r), then the equality (g(π1(X)), r(π1(X))) =
(g, r) holds.

(iii) For a closed subgroup of π1(X ×K K), it holds that the closed subgroup is an
inertia subgroup associated to a cusp of the hyperbolic orbicurve X over K if and only
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if the closed subgroup is a cuspidal inertia subgroup of the hyperbolic MLF-orbicurvoid
(respectively, hyperbolic NF-orbicurvoid) π1(X) [cf. (i)].

(iv) It holds that the hyperbolic orbicurve X over K is a K-core [cf. [10, Re-
mark 2.1.1]] if and only if the hyperbolic MLF-orbicurvoid (respectively, hyperbolic NF-
orbicurvoid) π1(X) [cf. (i)] is relatively core-like.

Proof. — First, we verify assertion (i). Let us first observe that it follows from the
exact sequence in the display in the statement of Corollary 6.7 that the normal closed
subgroup π1(X ×K K) ⊆ π1(X) of π1(X) is of co-MLF-type (respectively, of co-NF-
type). Next, let us observe that it follows from [13, Proposition 2.3, (i)] that the profinite
group π1(X ×K K) is slim. In particular, one concludes that the normal closed subgroup
π1(X×K K) ⊆ π1(X) of π1(X) satisfies condition (1) of Definition 3.1. Thus, one verifies
immediately from Theorem 6.5, (i) (respectively, Theorem 6.6, (i)), that assertion (i)
holds. This completes the proof of assertion (i).

The first portion of assertion (ii) follows from Theorem 6.5, (i) (respectively, Theo-
rem 6.6, (i)). The final portion of assertion (ii) follows from Theorem 6.5, (iv) (respectively,
Theorem 6.6, (iii)). Assertion (iii) follows from Theorem 6.5, (ii) (respectively, Theo-
rem 6.6, (ii)), together with Proposition 3.8, (iii). Assertion (iv) follows immediately
from [9, Theorem A] and [2, Proposition 3.2, (i)], together with the various definitions
involved. This completes the proof of Corollary 6.7. □
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