
RIMS-1926

Internal Indecomposability of Various Profinite

Groups in Anabelian Geometry

By

Arata MINAMIDE and Shota TSUJIMURA

September 2020

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES

KYOTO UNIVERSITY, Kyoto, Japan



Internal Indecomposability of Various Profinite

Groups in Anabelian Geometry

Arata Minamide and Shota Tsujimura

September 30, 2020

Abstract

It is well-known that various profinite groups appearing in anabelian
geometry satisfy distinctive group-theoretic properties such as the slim-
ness [i.e., the property that every open subgroup is center-free] and the
strong indecomposability [i.e., the property that every open subgroup has
no nontrivial product decomposition]. In the present paper, we consider
another group-theoretic property on profinite groups, which we shall re-
fer to as strong internal indecomposability — this is a stronger property
than both the slimness and the strong indecomposability — and prove that
various profinite groups appearing in anabelian geometry [e.g., the étale
fundamental groups of hyperbolic curves over number fields, p-adic local
fields, or finite fields; the absolute Galois groups of Henselian discrete
valuation fields with positive characteristic residue fields or Hilbertian
fields] satisfy this property. Moreover, by applying the pro-prime-to-p
version of the Grothendieck Conjecture for hyperbolic curves over finite
fields of characteristic p [established by Saidi and Tamagawa], together
with some considerations on almost surface groups, we also prove that
the Grothendieck-Teichmüller group satisfies the strong indecomposabil-
ity. This gives an affirmative answer to an open problem posed in a first
author’s previous work.
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Introduction

For a connected Noetherian scheme S, we shall write ΠS for the étale fun-
damental group of S, relative to a suitable choice of basepoint. For any field F ,
we shall write F sep for the separable closure [determined up to isomorphisms]

of F ; GF
def
= Gal(F sep/F ). Let p be a prime number.

Let X be an algebraic variety [i.e., a separated, of finite type, and geomet-
rically integral scheme] over a field. In anabelian geometry, we often consider

whether or not the algebraic variety X may be “reconstructed” from
the étale fundamental group ΠX .

For instance, if X is a hyperbolic curve over a number field [i.e., a finite exten-
sion field of the field of rational numbers Q], then Mochizuki and Tamagawa
proved that X may be “reconstructed” from ΠX [cf. [23], Theorem A; [27],
Introduction; [36], Theorem 0.4]. However, it seems far-reaching to specify the
precise class of algebraic varieties which may be “reconstructed” from their étale
fundamental groups [i.e., the class of “anabelian varieties”].

On the other hand, it has been observed that various profinite groups ap-
pearing in anabelian geometry [e.g., the étale fundamental groups of hyperbolic
curves over number fields] tend to satisfy group-theoretic properties such as the
slimness and the strong indecomposability [cf. [21], [22]]. For our purposes,
let us recall the definition of the slimness and the strong indecomposability of
profinite groups. Let G be a profinite group. Then we shall say that

• G is slim if every open subgroup of G is center-free;

• G is strongly indecomposable if every open subgroup of G is indecompos-
able, i.e., has no nontrivial product decomposition.

However, at the time of writing the present paper, the authors do not know
the precise relation between the class of “anabelian varieties” and the class of
algebraic varieties that satisfy the above group-theoretic properties. It seems to
the authors that a further examination of this relation would be important.

In this context, it is natural to pose the following question:

Question 1: Do various profinite groups appearing in anabelian ge-
ometry satisfy stronger properties than the slimness and the strong
indecomposability?
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With regard to Question 1, in the present paper, we consider the notion of strong
internal indecomposability, which is a stronger property than both the slimness
and the strong indecomposability [cf. Theorem A below; Remark 1.1.4].

Let H ⊆ G be a normal closed subgroup. Then we shall say that:

• H is normally decomposable in G if there exist nontrivial normal closed
subgroups H1 ⊆ G and H2 ⊆ G such that H = H1 ×H2.

• H is normally indecomposable in G if H is not normally decomposable in
G.

• G is internally indecomposable if every normal closed subgroup of G is
center-free and normally indecomposable in G.

• G is strongly internally indecomposable if every open subgroup of G is
internally indecomposable.

Note that, ifG is strongly internally indecomposable, then it follows immediately
from the various definitions involved thatG is slim and strongly indecomposable.
Moreover, we also note that

G is internally indecomposable if and only if, for every nontrivial
normal closed subgroup J ⊆ G, the centralizer of J in G is trivial
[cf. Proposition 1.2].

In anabelian geometry, this latter property has been considered and proved for
special “J ⊆ G” [cf. [12], Lemma 2.13, (ii); [28], Lemma 2.7, (vi)]. Thus, it
would be important to establish generalities on this property [cf. §1].

Let n be a positive integer; Σ a nonempty set of prime numbers; k a field;
Y a smooth curve over k of type (g, r) [cf. Definition 3.1]. If Y is a hyperbolic
curve over k, i.e., 2g − 2 + r > 0, then we write Yn for the n-th configuration
space associated to Y [cf. Definition 3.8, (i)]. [Note that Y1 = Y .] Then our
first main result is the following [cf. Theorems 2.1; 2.3; 2.7; 3.7, (i), (ii); 3.9;
3.11, (i), (ii); Corollary 3.5]:

Theorem A.

(i) Suppose that k is a Henselian discrete valuation field of residue charac-
teristic p. Then Gk is strongly internally indecomposable. Moreover, if k
contains a primitive p-th root of unity in the case where k is of character-
istic 0, then any almost pro-p-maximal quotient of Gk [cf. Definition 1.4]
is strongly internally indecomposable.

(ii) Suppose that k is a Hilbertian field [i.e., a field for which Hilbert’s ir-
reducibility theorem holds — cf. Remark 2.7.1]. Then Gk is strongly
internally indecomposable.

(iii) Suppose that

• Σ does not contain the characteristic of k;
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• k is an algebraically closed field;

• Y is a hyperbolic curve over k.

Then ΠΣ
Y is strongly internally indecomposable.

(iv) Suppose that

• p ∈ Σ;

• k is an algebraically closed field of characteristic p;

• (g, r) ̸= (0, 0), (1, 0).

If r = 0, i.e., Y is proper, then we write σ(Y ) for the p-rank of [the
Jacobian variety of] Y . Then the following hold:

(a) Suppose that Σ = {p}, and σ(Y ) ̸= 1 if r = 0. Then Πp
Y is strongly

internally indecomposable.

(b) Suppose that Σ ⊋ {p}. Then ΠΣ
Y is strongly internally indecompos-

able.

(v) Suppose that k is an algebraically closed field of characteristic 0, and Y
is a hyperbolic curve over k. Then ΠYn

and Πp
Yn

are strongly internally
indecomposable.

(vi) Suppose that

• k is a number field or a p-adic local field [i.e., a finite extension field
of the field of p-adic numbers];

• Y is a hyperbolic curve over k.

Then ΠYn
is strongly internally indecomposable.

(vii) Suppose that

• k is a finite field of characteristic p;

• (g, r) ̸= (0, 0), (1, 0) (respectively, 2g − 2 + r > 0).

Then ΠY (respectively, the geometrically pro-prime-to-p quotient of ΠY

[cf. Definition 3.10]) is strongly internally indecomposable.

Next, we consider the Grothendieck-Teichmüller group GT. Let us recall
that GT has been considered to be a combinatorial approximation of GQ [cf.
[4]; [8]; [10]; [13], Introduction]. Indeed, the natural faithful outer actions of GQ
and GT on the étale fundamental group of the projective line minus the three
points 0, 1, ∞, over Q determine the inclusion

GQ ⊆ GT,

and there exists a famous open question concerning this inclusion [cf. [34], §1.4]:
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Question 2: Is the natural inclusion GQ ⊆ GT bijective?

With regard to Question 2, in the authors’ knowledge, there is no [strong] ev-
idence to believe that the inclusion GQ ⊆ GT is bijective. Here, we note that
André defined a p-adic avatar GTp of GT and formulated a p-adic analogue of
Question 2 by using his theory of tempered fundamental groups [cf. [1], [2]]. In
this local setting, the second author constructed a natural splitting GTp ↠ GQp

of the inclusion GQp
⊆ GTp [cf. [37], Corollary B]. It seems to the authors that

the existence of such a splitting may be regarded as a strong evidence to believe
that the inclusion GQp ⊆ GTp is bijective. However, the construction of the
splitting GTp ↠ GQp

heavily depends on a certain rigidity of tempered funda-
mental groups [cf. [37], Theorem C]. Thus, at the time of writing the present
paper, the authors do not regard the existence of the splitting in the local setting
as an evidence to believe that the inclusion GQ ⊆ GT is bijective.

Since Question 2 is far-reaching, the following question has been considered
to be important in the literatures [cf. [34], §1.4]:

Question 3: Let P be a group-theoretic property that GQ satisfies.
Then does GT satisfy the property P?

Concerning Question 3, for instance, Lochak-Schneps proved a remarkable result
that the normalizer of a complex conjugation ι ∈ GT coincides with the group [of
order 2] generated by ι [cf. [19], Proposition 4, (ii)]. [Note that the analogous
result for GQ follows from the approximation theorem — cf. [31], Corollary
12.1.4.] On the other hand, the first author posed the following question [cf.
[21], Introduction]:

Question 4: Is GT strongly indecomposable?

[Note that the strong indecomposability of GQ follows from the fact that number
fields are Hilbertian — cf. [7], Proposition 13.4.1; [7], Corollary 13.8.4.] We
remark that the indecomposability of GT follows from Lochak-Schneps’s result
[cf. Remark 4.10.1]. However, this argument does not work for open subgroups
of GT that do not contain ι. In the present paper, we also give a complete
[much more general] affirmative answer to Question 4.

Let K (⊆ Q) be a number field; Z a hyperbolic curve of genus 0 over K.

Write ZQ
def
= Z ×K Q;

Out|C|(ΠZQ
) ⊆ Out(ΠZQ

)

for the subgroup of outer automorphisms of ΠZQ
that induce the identity auto-

morphisms on the set of the conjugacy classes of cuspidal inertia subgroups of
ΠZQ

[i.e., the stabilizer subgroups associated to pro-cusps of the pro-universal

covering of the hyperbolic curve ZQ]. Then the natural outer action of GK on
ΠZQ

determines an injection GK ↪→ Out(ΠZQ
) [cf. [14], Theorem C]. We shall

regard GK as a subgroup of Out(ΠZQ
) via this injection. Recall that, if we take

Z to be the projective line minus the three points 0, 1, ∞, over K, then GT
may be regarded as a closed subgroup of Out|C|(ΠZQ

) [cf. Remark 4.4.1]. Then

our second main result is the following [cf. Theorem 4.10]:
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Theorem B. Let G ⊆ Out|C|(ΠZQ
) be a closed subgroup such that G contains

an open subgroup of GK . Then G is strongly indecomposable. In particular, the
Grothendieck-Teichmüller group GT is strongly indecomposable.

Note that the first author proved that a pro-l analogue of Theorem B holds
[cf. Remark 4.10.2; [21], Theorem 6.1]. However, the proof heavily depends

on the [easily verified] fact that Zl is indecomposable. In contrast, since Ẑ is
decomposable, a similar argument to the argument applied in the proof of [21],
Theorem 6.1 does not work in our situation. To overcome this difficulty, we
apply [highly nontrivial] Saidi-Tamagawa’s result on the pro-prime-to-p version
of the Grothendieck Conjecture for hyperbolic curves over finite fields of char-
acteristic p [cf. [33], Theorem 1], together with some considerations on almost
surface groups [cf. Definition 3.2].

On the other hand, we recall that Q is Hilbertian. Then it follows from
Theorem A, (ii), that GQ is strongly internally indecomposable. Thus, from the
viewpoint of Question 3, it is natural to pose the following question, which may
be regarded as a further generalization of [the second assertion of] Theorem B:

Question 5: Is GT strongly internally indecomposable?

However, at the time of writing the present paper, the authors do not know
whether the answer is affirmative or not.

The present paper is organized as follows. In §1, we introduce the notion
of internal indecomposability of profinite groups and examine some basic prop-
erties of this notion which will be of later use. In §2, by applying the results
obtained in §1 of the present paper and [22], we prove that the absolute Galois
groups of Henselian discrete valuation fields with positive characteristic residue
fields and Hilbertian fields are strongly internally indecomposable [cf. Theorem
A, (i), (ii)]. In §3, by applying the results obtained in §1, §2, of the present pa-
per, we prove the strong internal indecomposability of various profinite groups
appearing in anabelian geometry [cf. Theorem A, (iii), (iv), (v), (vi), (vii)].
Finally, in §4, we first recall the definition of the Grothendieck-Teichmüller
group GT. Then we apply various Grothendieck Conjecture-type results, to-
gether with some considerations on almost surface groups, to prove that GT is
strongly indecomposable [cf. Theorem B].

Notations and Conventions

Numbers: The notation Primes will be used to denote the set of prime num-
bers. The notation Q will be used to denote the field of rational numbers. The
notation Z will be used to denote the ring of integers. The notation Ẑ will be
used to denote the profinite completion of the underlying additive group of Z.
The notation Z≥1 will be used to denote the set of positive integers. We shall
refer to a finite extension field of Q as a number field. If p is a prime number,
then the notation Qp will be used to denote the field of p-adic numbers; the
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notation Zp will be used to denote the ring of p-adic integers; the notation Fp

will be used to denote the finite field of cardinality p. We shall refer to a finite
extension field of Qp as a p-adic local field. If A is a commutative ring, then the
notation A× will be used to denote the group of units of A.

Fields: Let F be a field; F sep a separable closure of F ; p a prime number.

Then we shall write char(F ) for the characteristic of F ; GF
def
= Gal(F sep/F );

F ((t)) for the one parameter formal power series field over F ; Fp∞ ⊆ F sep for
the subfield obtained by adjoining p-power roots of unity to F . If char(F ) ̸= p,
then we shall fix a primitive p-th root of unity ζp ∈ F sep. If F is perfect, then

we shall also write F
def
= F sep.

Schemes: Let S be a scheme. Then we shall write Aut(S) for the group
of automorphisms of S. Let K be a field; K ⊆ L a field extension; X an
algebraic variety [i.e., a separated, of finite type, and geometrically integral

scheme] over K. Then we shall write XL
def
= X ×K L; AutK(X) for the group

of automorphisms of X over K; P1
K for the projective line over K.

Profinite groups: Let Σ ⊆ Primes be a nonempty subset of prime numbers;
G a profinite group. Then we shall write GΣ for the maximal pro-Σ quotient
of G; Aut(G) for the group of automorphisms of G [in the category of profinite
groups], Inn(G) ⊆ Aut(G) for the group of inner automorphisms of G, and

Out(G)
def
= Aut(G)/Inn(G). If p is a prime number, then we shall also write

Gp def
= G{p}; G(p)′ def

= GPrimes\{p}.
Suppose that G is topologically finitely generated. Then G admits a basis

of characteristic open subgroups [cf. [32], Proposition 2.5.1, (b)], which thus
induces a profinite topology on the groups Aut(G) and Out(G).

Fundamental groups: Let S be a connected locally Noetherian scheme. Then
we shall write ΠS for the étale fundamental group of S, relative to a suitable
choice of basepoint. [Note that, for any field F , ΠSpec(F )

∼= GF .]

1 Basic properties of internal indecomposability

In the present section, we introduce the notion of internal indecomposability
of profinite groups and examine basic properties.

Let p be a prime number.

Definition 1.1 ([27], Notations and Conventions; [27], Definition 1.1, (ii)). Let
G be a profinite group; H ⊆ G a closed subgroup of G.

(i) We shall write ZG(H) for the centralizer of H in G, i.e., the closed sub-

group {g ∈ G | ghg−1 = h for any h ∈ H}; Z(G)
def
= ZG(G); NG(H) for

the normalizer of H in G, i.e., the closed subgroup {g ∈ G | gHg−1 = H}.
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(ii) We shall say that G is slim if ZG(U) = {1} for every open subgroup U of
G.

(iii) We shall say that G is elastic if every nontrivial topologically finitely
generated normal closed subgroup of an open subgroup of G is open. If G
is elastic, but not topologically finitely generated, then we shall say that
G is very elastic [cf. [22], Proposition 1.2, (ii)].

(iv) We shall say that G is decomposable if there exist nontrivial normal closed
subgroups H1 ⊆ G and H2 ⊆ G such that G = H1 × H2. We shall say
that G is indecomposable if G is not decomposable. We shall say that G is
strongly indecomposable if every open subgroup of G is indecomposable.

(v) We shall say that H is normally decomposable in G if there exist nontrivial
normal closed subgroups H1 ⊆ G and H2 ⊆ G such that H = H1 ×H2.
We shall say that H is normally indecomposable in G if H is not normally
decomposable in G.

(vi) We shall say that G is internally indecomposable if every nontrivial nor-
mal closed subgroup of G is center-free and normally indecomposable in G.
[Note that the trivial subgroup of G is center-free and normally indecom-
posable in G.] We shall say that G is strongly internally indecomposable
if every open subgroup of G is internally indecomposable.

Remark 1.1.1. Let G be a strongly internally indecomposable profinite group.
Then it follows immediately from [22], Proposition 1.2, (i), that G is slim.

Remark 1.1.2. Let G be a profinite group. Then it follows immediately from
the various definitions involved that:

(i) G is normally decomposable in G if and only if G is decomposable.

(ii) If G is internally indecomposable (respectively, strongly internally inde-
composable), then G is indecomposable (respectively, strongly indecom-
posable).

Remark 1.1.3. Let G be a nonabelian finite simple group. Then it follows im-
mediately from the various definitions involved that G is not strongly internally
indecomposable but internally indecomposable.

Remark 1.1.4. Let X be a proper hyperbolic curve over Q; Q ⊆ Q(t) a purely
transcendental extension of transcendence degree 1. Then ΠXQ(t)

is slim and
strongly indecomposable [cf. [21], Corollary 4.5], but not internally indecom-
posable. Indeed, it follows immediately from [9], Exposé X, Corollaire 1.7,
that the normal closed subgroup ΠXQ(t)

⊆ ΠXQ(t)
is isomorphic to the product

ΠXQ
×GQ(t).
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Next, we give a useful criterion of the internal indecomposability.

Proposition 1.2. Let G be a profinite group. Then G is internally indecom-
posable if and only if ZG(H) = {1} for every nontrivial normal closed subgroup
H ⊆ G.

Proof. First, we verify sufficiency. Suppose that ZG(H) = {1} for every non-
trivial normal closed subgroup H ⊆ G. Let H ⊆ G be a nontrivial normal closed
subgroup. Then Z(H) ⊆ ZG(H) = {1}. On the other hand, let H1 ⊆ G and
H2 ⊆ G be normal closed subgroups such that H = H1 × H2, and H1 ̸= {1}.
Then H2 ⊆ ZG(H1) = {1}. Thus, we conclude that H is center-free and nor-
mally indecomposable in G, hence that G is internally indecomposable.

Next, we verify necessity. Suppose that G is internally indecomposable.
Let H ⊆ G be a nontrivial normal closed subgroup. Since H is center-free,
H ∩ ZG(H) = Z(H) = {1}. In particular, we obtain a normal closed subgroup
H ×ZG(H) ⊆ G. Thus, since G is internally indecomposable, and H ̸= {1}, we
conclude that ZG(H) = {1}. This completes the proof of Proposition 1.2.

Next, we recall basic notions concerning profinite groups.

Definition 1.3 ([29], Definition 1.1, (i), (ii)). Let C be a family of finite groups
including the trivial group. Then:

(i) We shall refer to a finite group belonging to C as a C-group.

(ii) We shall refer to C as a full-formation if C is closed under taking quotients,
subgroups, and extensions.

(iii) We shall write ΣC for the set of primes l such that Z/lZ is a C-group.

Definition 1.4 ([27], Definition 1.1, (iii)). Let G, Q be profinite groups; q :
G ↠ Q an epimorphism [in the category of profinite groups]; C a full-formation;
Σ ⊆ Primes a nonempty subset of prime numbers. Then we shall say that Q is
an almost pro-C-maximal quotient of G if there exists a normal open subgroup
N ⊆ G such that Ker(q) coincides with the kernel of the natural surjection
N ↠ NC , where NC denotes the maximal pro-C quotient of N . Suppose that
Q is an almost pro-C-maximal quotient of G, and C is the family of all finite
groups Γ such that every prime divisor of the order of Γ is an element of Σ.
Then we shall say that Q is an almost pro-Σ-maximal quotient of G. If Σ = {p},
then we shall also say that Q is an almost pro-p-maximal quotient of G.

Remark 1.4.1. Let C be a full-formation. Then it follows immediately from the
various definitions involved that the maximal pro-C quotient of a profinite group
is an almost pro-C-maximal quotient.
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Next, we recall the following result, which is one of the motivations of our
study.

Proposition 1.5 ([32], Proposition 8.7.8). Let C be a full-formation; F a free
pro-C group of rank ≥ 2. Then F is strongly internally indecomposable [cf.
Proposition 1.2; [32], Theorem 3.6.2, (a)].

Proposition 1.6. Let G be a slim profinite group. Suppose that there exists an
open subgroup H ⊆ G such that H is internally indecomposable (respectively,
strongly internally indecomposable). Then G is internally indecomposable (re-
spectively, strongly internally indecomposable).

Proof. To verify Proposition 1.6, it suffices to prove the non-resp’d case. Fix
such an open subgroup H ⊆ G. Let N ⊆ G be a nontrivial normal closed

subgroup. Write C
def
= ZG(N). Since G is slim, it follows from [22], Lemma 1.3,

that N ∩H ̸= {1}. Note that since H is internally indecomposable, it follows
from Proposition 1.2 that C ∩H ⊆ ZH(N ∩H) = {1}. Again, since G is slim,
it follows from [22], Lemma 1.3, that C = {1}. Thus, we conclude that G is
internally indecomposable [cf. Proposition 1.2]. This completes the proof of
Proposition 1.6.

Proposition 1.7. Let G be a profinite group; {Gi}i∈I a directed subset of the
set of closed subgroups of G — where j ≥ i ⇔ Gi ⊆ Gj — such that

G =
∪
i∈I

Gi.

Suppose that, for each i ∈ I, Gi is internally indecomposable (respectively,
strongly internally indecomposable). Then G is internally indecomposable (re-
spectively, strongly internally indecomposable).

Proof. To verify Proposition 1.7, it suffices to prove the non-resp’d case. Let
H ⊆ G be a nontrivial normal closed subgroup. Then since G =

∪
i∈I Gi, there

exists i ∈ I such that
H

∩
Gi ̸= {1}.

Fix such i ∈ I. Write Ii
def
= {j ∈ I | j ≥ i}; C def

= ZG(H). Since {Gi}i∈I is a
directed set, it holds that

G =
∪
j∈Ii

Gj .

Let j ∈ Ii be an element. Observe that

• H ∩Gj ̸= {1},

• H ∩Gj and C ∩Gj are normal closed subgroups of Gj , and
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• H ∩Gj ⊆ ZGj (C ∩Gj).

Then since Gj is internally indecomposable, it holds that C ∩Gj = {1}. Thus,
it follows from the equality

C =
∪
j∈Ii

(C
∩

Gj)

that C = {1}, hence that G is internally indecomposable [cf. Proposition 1.2].
This completes the proof of Proposition 1.7.

Proposition 1.8. Let G be a profinite group; {Gi}i∈I a directed subset of the
set of normal closed subgroups of G — where j ≥ i ⇔ Gj ⊆ Gi — such that
the natural homomorphism

G→ lim←−
i∈I

G/Gi

is an isomorphism. Suppose that, for each i ∈ I, G/Gi is internally indecom-
posable (respectively, strongly internally indecomposable). Then G is internally
indecomposable (respectively, strongly internally indecomposable).

Proof. To verify Proposition 1.8, it suffices to prove the non-resp’d case. For
each i ∈ I, write ϕi : G ↠ G/Gi for the natural surjection. Let H ⊆ G be a
nontrivial normal closed subgroup. Then since G

∼→ lim←−i∈I
G/Gi, there exists

i ∈ I such that
ϕi(H) ̸= {1}.

Fix such i ∈ I. Write Ii
def
= {j ∈ I | j ≥ i}; C def

= ZG(H). Since {Gi}i∈I is a
directed set, the natural homomorphism

G→ lim←−
j∈Ii

G/Gj

is an isomorphism. Let j ∈ Ii be an element. Observe that

• ϕj(H) ̸= {1},

• ϕj(H) and ϕj(C) are normal closed subgroups of G/Gj , and

• ϕj(H) ⊆ ZG/Gj
(ϕj(C)).

Then since G/Gj is internally indecomposable, it holds that ϕj(C) = {1} [cf.
Proposition 1.2]. Thus, it follows from the equality∩

j∈Ii

Gj = {1}

that C = {1}, hence that G is internally indecomposable [cf. Proposition 1.2].
This completes the proof of Proposition 1.8.
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Proposition 1.9. Let G be an elastic profinite group; H ⊆ G a normal closed
subgroup. Suppose that

• G is very elastic or slim,

• H is internally indecomposable (respectively, strongly internally indecom-
posable), and

• every normal closed subgroup (respectively, every normal closed subgroup
of any open subgroup) of G/H is topologically finitely generated.

Then G is internally indecomposable (respectively, strongly internally indecom-
posable).

Proof. To verify Proposition 1.9, it suffices to prove the non-resp’d case. Let
N ⊆ G be a nontrivial normal closed subgroup. Write

C
def
= ZG(N), CH

def
= ZH(N ∩H).

Our goal is to prove that C = {1} [cf. Proposition 1.2].
First, we consider the case where G is very elastic. Then since N ̸= {1}, N is

not topologically finitely generated. Thus, it follows from our third assumption
that N ∩ H ̸= {1}. Next, since H is internally indecomposable, it holds that
CH = {1}. In particular, C ∩ H = {1}. Again, it follows from our third
assumption that C is topologically finitely generated. Thus, since G is very
elastic, it holds that C = {1}.

Next, we consider the case where G is slim. If N ∩H = {1}, then it follows
from our third assumption that N is topologically finitely generated. In par-
ticular, since G is elastic, and N ̸= {1}, it holds that N ⊆ G is open. Thus,
we conclude from our assumption that G is slim that C = {1}. Here, we note
that since G is slim, and N ̸= {1}, it holds that C ⊆ G is a normal closed
subgroup of infinite index. Then, if N ∩H ̸= {1}, then it follows from a similar
argument to the argument applied in the preceding paragraph that C = {1}.
This completes the proof of Proposition 1.9.

Next, we give a variant of [21], Lemma 1.6.

Lemma 1.10. Let G be an internally indecomposable profinite group; H ⊆ G
a nontrivial normal closed subgroup; α ∈ Aut(G). Suppose that, for any h ∈ H,
it holds that α(h) = h. Then α is the identity automorphism.

Proof. Lemma 1.10 follows from a similar argument to the argument applied in
the proof of [21], Lemma 1.6, together with Proposition 1.2.

Proposition 1.11. Let

1 −→ G1 −→ G −→ G2 −→ 1

be an exact sequence of profinite groups. Write ρ : G2 → Out(G1) for the outer
representation associated to this exact sequence. Then the following hold:

12



(i) Suppose that

• G1 is internally indecomposable (respectively, strongly internally in-
decomposable);

• G2 is internally indecomposable (respectively, strongly internally in-
decomposable);

• ρ is injective.

Then G is internally indecomposable (respectively, strongly internally in-
decomposable).

(ii) Suppose that

• G1 is internally indecomposable (respectively, strongly internally in-
decomposable);

• G2 is abelian;

• ρ is injective, or G is center-free (respectively, slim).

Then G is internally indecomposable (respectively, strongly internally in-
decomposable).

Proof. It follows immediately from [21], Lemma 1.7, (i), together with Remark
1.1.1, that, to verify Proposition 1.11, it suffices to prove the non-resp’d case.
Let N ⊆ G be a nontrivial normal closed subgroup. Write

C
def
= ZG(N), C1

def
= ZG1(N ∩G1).

Our goal is to prove that C = {1} [cf. Proposition 1.2].
First, we verify assertion (i). Let us begin by observing the following asser-

tion:

Claim 1.11.A: Let H ⊆ G be a nontrivial normal closed subgroup.
Suppose that ZG(H) ⊆ G1. Then ZG(H) = {1}.

Indeed, suppose that ZG(H) ̸= {1}. Then sinceG1 is internally indecomposable,
and ZG(H) ⊆ G1 is normal, it holds thatH ⊆ ZG(G1) [cf. Lemma 1.10]. On the
other hand, it follows immediately from our assumption that ρ is injective that
ZG(G1) ⊆ Z(G1). Moreover, since G1 is center-free, it holds that ZG(G1) =
{1}, hence that H = {1}. This is a contradiction. Thus, we conclude that
ZG(H) = {1}. This completes the proof of Claim 1.11.A.

Suppose that N ∩ G1 = {1}. Then since N ̸= {1}, and G2 is internally
indecomposable, it holds that C ⊆ G1. Thus, by applying Claim 1.11.A to the
nontrivial normal closed subgroup N ⊆ G, we conclude that C = {1}.

Suppose that N ∩ G1 ̸= {1}. Then since G1 is internally indecomposable,
it holds that C ∩ G1 ⊆ C1 = {1}. If C ̸= {1}, then since G2 is internally
indecomposable, it holds that

{1} ̸= N ⊆ ZG(C) ⊆ G1.

13



However, this contradicts Claim 1.11.A [in the case where H = C]. Thus, we
conclude that C = {1}. This completes the proof of assertion (i).

Next, we verify assertion (ii). Recall that G1 is center-free. Then, if ρ
is injective, then G is also center-free. Thus, we may assume without loss of
generality that G is center-free. Next, we verify the following assertion:

Claim 1.11.B: Let H ⊆ G be a nontrivial normal closed subgroup.
Then H ∩G1 ̸= {1}.

Indeed, since H ̸= {1}, and Z(G) = {1}, there exist elements g ∈ G, h ∈ H

such that 1 ̸= x
def
= g · h · g−1 · h−1 ∈ G. Fix such elements. Then since G2 is

abelian, the image of x via the surjection G ↠ G2 is trivial. Moreover, since
H ⊆ G is normal, it holds that x ∈ H. In particular, we have x ∈ H∩G1 ̸= {1}.
This completes the proof of Claim 1.11.B.

Then, by applying Claim 1.11.B to the nontrivial normal closed subgroup
N ⊆ G, we conclude that N ∩G1 ̸= {1}. Thus, since G1 is internal indecompos-
ability, it holds that C ∩G1 ⊆ C1 = {1}. Finally, it follows from Claim 1.11.B
[in the case where H = C] that C = {1}. This completes the proof of assertion
(ii), hence of Proposition 1.11.

2 Strong internal indecomposability of the ab-
solute Galois groups

In the present section, we prove that the absolute Galois groups of

• Henselian discrete valuation fields with positive characteristic residue fields
and

• Hilbertian fields

are strongly internally indecomposable [cf. Definition 1.1, (vi)].
Let p be a prime number.

Theorem 2.1. Let K be a Henselian discrete valuation field of characteristic
p; N ⊆ GK a normal open subgroup. Then GK , as well as the almost pro-p-
maximal quotient

GN
def
= GK/Ker(N ↠ Np)

associated to N , is strongly internally indecomposable.

Proof. Note thatNp ⊆ GN is an open subgroup. Recall that GN is slim [cf. [22],
Theorem 2.10], and Np is a free pro-p group of infinite rank [cf. [31], Proposition
6.1.7; [22], Lemma 3.1]. Then it follows immediately from Propositions 1.5, 1.6,
that GN is strongly internally indecomposable. Moreover, by varying N , we
conclude that GK is strongly internally indecomposable [cf. Proposition 1.8].
This completes the proof of Theorem 2.1.
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Next, we recall the following well-known fact [cf. [6], Chapter III, §5; [38]]:

Theorem 2.2. Let K be a mixed characteristic complete discrete valuation field
such that the residue field of K is perfect and of characteristic p. Then the field
of norms

N(Kp∞/K)

is isomorphic to k((t)), where k denotes the residue field of the [Henselian]
valuation field Kp∞ . Moreover, GKp∞ is isomorphic to Gk((t)).

Theorem 2.3. Let K be a mixed characteristic Henselian discrete valuation
field of residue characteristic p. Then GK and GKp∞ , as well as any almost pro-
p-maximal quotient of GKp∞ , are strongly internally indecomposable. Moreover,
if ζp ∈ K, then any almost pro-p-maximal quotient of GK is strongly internally
indecomposable.

Proof. First, it follows immediately from Proposition 1.6, together with [22],
Theorem 2.8, (i), that we may assume without loss of generality that

ζp ∈ K.

Moreover, it follows from Propositions 1.6, 1.8, together with [22], Theorem
2.8, (ii), that it suffices to prove that Gp

K and Gp
Kp∞

are strongly internally

indecomposable. Write k for the residue field of K.
Next, we verify the following assertion:

Claim 2.3.A: Suppose that k is perfect. Then Gp
Kp∞

is strongly

internally indecomposable.

Indeed, Claim 2.3.A follows immediately from Theorems 2.1, 2.2, together with
[22], Lemma 3.1.

Next, we verify the following assertion:

Claim 2.3.B: Gp
Kp∞

is strongly internally indecomposable.

Indeed, let {ti (i ∈ I)} be a p-basis of k; t̃i ∈ K a lifting of ti. For each j ∈ Z≥1,

let t̃i,j ∈ K be a pj-th root of t̃i ∈ K such that t̃pi,j = t̃i,j−1, where t̃i,0
def
= t̃i.

Write
L (⊆ K)

for the field obtained by adjoining the elements {t̃i,j ((i, j) ∈ I × Z≥1)} to K.
Then L is a mixed characteristic Henselian discrete valuation field such that the
residue field of L is perfect and of characteristic p. Therefore, it follows from
Claim 2.3.A that Gp

Lp∞
(⊆ Gp

Kp∞
) is strongly internally indecomposable. On

the other hand, we note that

• Gp
Kp∞

is slim [cf. [22], Theorem 2.8, (ii)];
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• Gal(Lp∞/Kp∞) is abelian.

Thus, it follows immediately from Proposition 1.11, (ii), that Gp
Kp∞

is strongly

internally indecomposable. This completes the proof of Claim 2.3.B.
Finally, we note that Gp

K/Gp
Kp∞

is isomorphic to Zp [Recall that ζp ∈ K].

Thus, in light of Claim 2.3.B, it follows immediately from Proposition 1.11, (ii),
together with [22], Theorem 2.8, (ii), that Gp

K is strongly internally indecom-
posable. This completes the proof of Theorem 2.3.

Remark 2.3.1. It is natural to pose the following questions:

Question 1: Is the absolute Galois group of any discrete valuation
field with a positive characteristic residue field strongly internally
indecomposable?

Question 2: More generally, is the absolute Galois group of any
subfield of a discrete valuation field with a positive characteristic
residue field strongly internally indecomposable?

Question 3: In the notation of Theorem 2.3, can the assumption
that ζp ∈ K be dropped?

However, at the time of writing the present paper, the authors do not know
whether these questions are affirmative or not.

Next, we review the definition of higher local fields.

Definition 2.4 ([5], Chapter I, §1.1). Let K be a field; d ∈ Z≥1.

(i) A structure of local field of dimension d on K is a sequence of complete

discrete valuation fields K(d) def
= K,K(d−1), . . . ,K(0) such that

• K(0) is a perfect field;

• for each integer 0 ≤ i ≤ d−1, K(i) is the residue field of the complete
discrete valuation field K(i+1).

(ii) We shall say that K is a higher local field if K admits a structure of local
field of some positive dimension. In the remainder of the present paper,
for each higher local field, we fix a structure of local field of some positive
dimension.

Definition 2.5. Let K be a field. Then we shall say that K is stably µp∞-finite
if, for every finite extension field M of K, the group of p-power roots of unity
∈M is finite.
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Corollary 2.6. Let K be a higher local field. Then the following hold:

(i) Suppose that the residue characteristic of K is p. Then GK is strongly in-
ternally indecomposable. Moreover, if ζp ∈ K in the case where char(K) =
0, then any almost pro-p-maximal quotient of GK is strongly internally in-
decomposable.

(ii) Suppose that char(K(0)) ̸= 0, and K(0) is a stably µl∞-finite field for any
prime number l. Then GK is strongly indecomposable. In particular, if
K(0) is finite, then GK is strongly indecomposable.

Proof. Assertion (i) follows immediately from Theorems 2.1, 2.3.
Next, we verify assertion (ii). It follows immediately from assertion (i) that

we may assume without loss of generality that the residue characteristic of K is
0. Since every finite extension ofK is a higher local field of residue characteristic
0, it suffices to prove that GK is indecomposable. Suppose that there exist
normal closed subgroups H1 ⊆ GK and H2 ⊆ GK such that

GK = H1 ×H2.

Write i ∈ Z≥1 for the positive integer such that char(K(i+1)) > 0. Recall from
Cohen’s structure theorem that

K ∼= K(i)((t1)) · · · ((tm)).

Then we have an exact sequence of profinite groups

1 −→ Ẑ(1)⊕m −→ GK −→ GK(i) −→ 1,

where “(1)” denotes the Tate twist. Here, we note that GK(i) is internally

indecomposable [cf. (i)]. In particular, it holds that H1 ⊆ Ẑ(1)⊕m or H2 ⊆
Ẑ(1)⊕m. We may assume without loss of generality that H1 ⊆ Ẑ(1)⊕m. Then
since GK = H1×H2, and H1 is abelian, it holds that H1 ⊆ Z(GK). Thus, since
Z(GK) = {1} [cf. [22], Corollary 2.11, (iii)], we conclude that H1 = {1}. This
completes the proof of assertion (ii), hence of Corollary 2.6.

Remark 2.6.1. Let K be a field of characteristic 0. Then we have an exact
sequence of profinite groups

1 −→ Ẑ(1) −→ GK((t)) −→ GK −→ 1.

Note that Ẑ(1) ⊆ GK((t)) is a normal closed subgroup, and Ẑ(1) is not center-
free. Thus, we conclude that GK((t)) is not internally indecomposable.

Theorem 2.7. Let K be a Hilbertian field. Then GK is strongly internally
indecomposable.
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Proof. Since every finite separable extension ofK is Hilbertian [cf. [7], Corollary
12.2.3], it suffices to prove that GK is internally indecomposable. Let N ⊆ GK

be a nontrivial normal closed subgroup. Write C
def
= ZG(N). Then it follows

immediately from the various definitions involved that

C ∩N = Z(N) ⊆ GK

is an abelian normal closed subgroup. Thus, by applying [7], Proposition
16.11.6, we conclude that C ∩N = {1}, hence that C ·N = C ×N ⊆ GK .

Next, we recall that GK is slim [cf. [21], Theorem 2.1]. Since N ⊆ GK is
nontrivial normal closed subgroup, it follows immediately from [22], Lemma 1.3,
that N is infinite. Let N† ⊊ N be a proper nontrivial normal open subgroup.
Then C × N† ⊊ C × N = C · N is a proper normal open subgroup. Thus, by
applying [7], Theorem 13.9.1, (b), we conclude that C × N† is isomorphic to
the absolute Galois group of a Hilbertian field. In particular, C × N† is inde-
composable [cf. [7], Corollary 13.8.4; [21], Theorem 2.1]. Since N† ̸= {1}, this
implies that C = {1}. Thus, we conclude that GK is internally indecomposable
[cf. Proposition 1.2]. This completes the proof of Theorem 2.7.

Remark 2.7.1. It is well-known that the following hold:

(i) The field of fractions of an arbitrary integral domain that is finitely gen-
erated over Z is Hilbertian [cf. [7], Proposition 13.4.1].

(ii) Finitely generated transcendental extension field of an arbitrary field is
Hilbertian [cf. [7], Proposition 13.4.1].

(iii) The field of fractions of an arbitrary Noetherian integral domain of dimen-
sion ≥ 2 is Hilbertian [cf. [7], Theorem 15.4.6; [20], p296, Mori-Nagata’s
integral closure theorem].

In particular, it follows from Theorem 2.7 that the absolute Galois groups of
the above fields are strongly internally indecomposable.

Remark 2.7.2. It is natural to pose the following question:

Question: In the notation of Theorem 2.7, is any almost pro-p-
maximal quotient of GK is strongly internally indecomposable?

However, at the time of writing the present paper, the authors do not know
whether this question is affirmative or not.
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3 Strong internal indecomposability of the étale
fundamental groups of hyperbolic curves

In the present section, we prove the strong internal indecomposability of
various profinite groups appearing in anabelian geometry of hyperbolic curves.

Let p be a prime number. First, we begin by recalling basic notions sur-
rounding hyperbolic curves.

Definition 3.1. Let k be a field; k an algebraic closure of k; X a smooth curve
[i.e., a one-dimensional, smooth, separated, of finite type, and geometrically
connected scheme] over k. Write Xk for the smooth compactification of Xk

over k. Then we shall say that X is a smooth curve of type (g, r) over k if the
genus of Xk is g, and the cardinality of the underlying set of Xk \Xk is r. If
X is a smooth curve of type (g, r) over k, and 2g− 2 + r > 0, then we shall say
that X is a hyperbolic curve over k.

Definition 3.2 ([29], Definition 1.2). Let C be a full-formation; Σ ⊆ Primes
a nonempty subset of prime numbers; Π a profinite group. Then we shall say
that Π is a pro-C surface group (respectively, an almost pro-C surface group)
if Π is isomorphic to the maximal pro-C quotient (respectively, to some almost
pro-C-maximal quotient) of the étale fundamental group of a hyperbolic curve
over an algebraically closed field of characteristic 0. Suppose that Π is a pro-C
surface group (respectively, an almost pro-C surface group), and C is the family
of all finite groups Γ such that every prime divisor of the order of Γ is an element
of Σ. Then we shall say that Π is a pro-Σ surface group (respectively, an almost
pro-Σ surface group). If Σ = {p}, then we shall also say that Π is a pro-p surface
group (respectively, an almost pro-p surface group).

Next, we prove the strong internal indecomposability of almost pro-C surface
groups, which may be regarded as a partial generalization of Proposition 1.5.

Lemma 3.3. Let Π be a pro-p surface group; H ⊆ Π an abelian normal closed
subgroup. Then H = {1}.

Proof. Note that every open subgroup of Π is not abelian. Then the subgroup
H ⊆ Π is of infinite index. Thus, by calculating the second cohomology, we
conclude that H is a free pro-p group [cf. [11], Lemma 2.1; [13], Proposition
1.4]. Then since H is abelian, it holds that H is topologically finitely generated
[of rank ≤ 1]. Thus, since Π is elastic [cf. [29], Theorem 1.5], and H ⊆ Π is of
infinite index, we conclude that H = {1}. This completes the proof of Lemma
3.3.

Proposition 3.4. Let C be a full-formation; Π an almost pro-C surface group.
Then Π is strongly internally indecomposable.
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Proof. Observe that, if ΣC = ∅, then Π = {1} is strongly internally indecompos-
able. Thus, we may assume without loss of generality that ΣC ̸= ∅. Let l ∈ ΣC
be an element. Here, we note that any almost pro-l maximal quotient of Π is an
almost pro-l surface group. Then it follows immediately from Proposition 1.8
that we may assume without loss of generality that Π is an almost pro-l surface
group. Recall that Π is slim [cf. [29], Proposition 1.4]. Thus, we may assume
without loss of generality that Π is a pro-l surface group [cf. Proposition 1.6].
Note that every open subgroup of Π is a pro-l surface group. In particular, it
suffices to prove that Π is internally indecomposable.

Let N ⊆ Π be a nontrivial normal closed subgroup. Write C
def
= ZΠ(N).

Then since C ∩N = Z(N) ⊆ Π is an abelian normal closed subgroup, it follows
from Lemma 3.3 that C ∩N = {1}, hence that C ·N = C ×N ⊆ Π.

Suppose that the subgroup C · N ⊆ Π is of finite index. Then since Π is
strongly indecomposable [cf. [21], Theorem A, (i)], and N ̸= {1}, it holds that
C = {1}.

Suppose that the subgroup C ·N ⊆ Π is of infinite index. Then, by calculat-
ing the second cohomology, we conclude that C×N is a free pro-l group. Thus,
since N ̸= {1}, it follows immediately from Proposition 1.5 that C = {1}, hence
that Π is internally indecomposable [cf. Proposition 1.2]. This completes the
proof of Proposition 3.4.

Corollary 3.5. Let k be an algebraically closed field; Σ a nonempty set of
prime numbers such that char(k) /∈ Σ; X a hyperbolic curve over k. Then ΠΣ

X

is strongly internally indecomposable.

Proof. Corollary 3.5 follows immediately from Proposition 3.4, together with
[9], EXPOSÉ XIII, Corollaire 2.12.

On the other hand, we also prove the following generalization of [21], Theo-
rem 3.6.

Lemma 3.6. Let k be an algebraically closed field of characteristic p; X a
smooth curve of type (g, r) over k. Suppose that (g, r) ̸= (0, 0), (1, 0), and g ≤ 1.
Then there exists a normal open subgroup N ⊆ ΠX such that N ⊆ ΠX is of
index p, and the domain curve of the covering associated to N ⊆ ΠX has genus
≥ 2.

Proof. Lemma 3.6 follows immediately from the proof of [21], Lemma 3.3.

Theorem 3.7. Let Σ be a set of prime numbers such that p ∈ Σ; k an alge-
braically closed field of characteristic p; X a smooth curve of type (g, r) over
k. Suppose that (g, r) ̸= (0, 0), (1, 0). If r = 0, i.e., X is proper, then we write
σ(X) for the p-rank of [the Jacobian variety of] X. Then the following hold:
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(i) Suppose that Σ = {p}, and σ(X) ̸= 1 if r = 0. Then Πp
X is strongly

internally indecomposable.

(ii) Suppose that Σ ⊋ {p}. Then ΠΣ
X is strongly internally indecomposable.

Proof. First, we verify assertion (i). Recall that, if r ̸= 0 (respectively, r = 0),
then Πp

X is a free pro-p group of infinite rank (respectively, of rank σ(X)) [cf.
[35], Theorem 4.9.4]. Thus, it follows immediately from Proposition 1.5 that Πp

X

is strongly internally indecomposable. This completes the proof of assertion (i).
Next, we verify assertion (ii). By applying Proposition 1.6; Lemma 3.6; the

proof of [21], Theorem 3.6, we may assume without loss of generality that g ≥ 2.
Let l ∈ Σ be such that l ̸= p; Q an almost pro-l-maximal quotient of ΠΣ

X . Then
it suffices to verify that Q is strongly internally indecomposable [cf. Proposition
1.8]. Observe that there exists a finite Galois covering Y → X that determines
an exact sequence of profinite groups

1 −→ Πl
Y −→ Q −→ Gal(Y/X) −→ 1.

Note that the outer representation Gal(Y/X) → Out(Πl
Y ) associated to the

above exact sequence is injective [cf. [21], Lemma 3.4]. In particular, since Πl
Y

is slim [cf. [21], Proposition 3.2], it holds that Q is slim. Thus, since Πl
Y is

strongly internally indecomposable [cf. Corollary 3.5], it follows immediately
from Proposition 1.6 that Q is strongly internally indecomposable. This com-
pletes the proof of assertion (ii), hence of Theorem 3.7.

Remark 3.7.1. In the notation of Theorem 3.7, suppose that r = 0, and σ(X) =
1. Then since Πp

X
∼= Zp, it follows immediately from the various definitions

involved that Πp
X is not strongly internally indecomposable.

Next, we recall the definition of a configuration space group which plays a
central role in combinatorial anabelian geometry [cf. [24], [25], [26], [14], [15],
[16], [17], [18]].

Definition 3.8 ([29], Definitions 2.1, 2.3).

(i) Let n ∈ Z≥1 be an element; k a field; X a hyperbolic curve over k. Write

Xn
def
= X×n \ (

∪
1≤i<j≤n

∆i,j),

where X×n denotes the fiber product of n copies of X over k; ∆i,j denotes
the diagonal divisor of X×n associated to the i-th and j-th components.
We shall refer to Xn as the n-th configuration space associated to X.

(ii) Let C be a full-formation; Π a profinite group. Then we shall say that Π is
a pro-C configuration space group if Π is isomorphic to the maximal pro-C
quotient of the étale fundamental group of a configuration space associated
to a hyperbolic curve over an algebraically closed field of characteristic 0.
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Then we observe the following generalization of [21], Theorem C, (i).

Theorem 3.9. Let C be a full-formation; Π a pro-C configuration space group.
Suppose that

• C is the family of all finite groups, or

• ΣC consists of a single element.

Then Π is strongly internally indecomposable.

Proof. First, we may assume without loss of generality that Π = ΠΣC
Xn

, where
Xn denotes the n-th configuration space associated to a hyperbolic curve X
over an algebraically closed field of characteristic 0. We prove Theorem 3.9 by
induction on n.

Recall that ΠΣC
X is strongly internally indecomposable [cf. Proposition 3.4].

On the other hand, we have an exact sequence of profinite groups

1 −→ ΠΣC
Y −→ ΠΣC

Xn
−→ ΠΣC

Xn−1
−→ 1,

where the arrow ΠΣC
Xn
→ ΠΣC

Xn−1
denotes a surjection induced by the projection

Xn → Xn−1 obtained by forgetting the final factor; Y denotes an open sub-
scheme of X such that the cardinality of the underlying set of X \Y is n−1 [cf.
[29], Proposition 2.2, (i)]. Then it is well-known that the outer representation
ΠΣC

Xn−1
→ Out(ΠΣC

Y ) determined by the above exact sequence is injective [cf.

[3], Theorem 1; [3], Remark following the proof of Theorem 1]. Thus, it follows
immediately from Proposition 1.11, (i), together with the induction hypothesis,
that ΠΣC

Xn
is strongly internally indecomposable. This completes the proof of

Theorem 3.9.

Definition 3.10. Let k be a field; k an algebraic closure of k; Z an algebraic
variety over k. Then we have an exact sequence of profinite groups

1 −→ ΠZk
−→ ΠZ −→ Gk −→ 1.

We shall write ρZ : Gk → Out(ΠZk
) for the outer representation determined

by the above exact sequence. Let Σ ⊆ Primes be a nonempty subset of prime
numbers. Then we shall write

ρΣZ : Gk → Out(ΠΣ
Zk

)

for the outer representation induced by ρZ ;

Π
[Σ]
Z

def
= ΠZ/Ker(ΠZk

↠ ΠΣ
Zk

).

If Σ = {p} (respectively, Σ = Primes \ {p}), then we shall also write ρpZ
def
= ρΣZ ;

Π
[p]
Z

def
= Π

[Σ]
Z (respectively, ρ

(p)′

Z
def
= ρΣZ ; Π

[p]′

Z
def
= Π

[Σ]
Z ).
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Next, we prove that the étale fundamental groups of configuration spaces as-
sociated to hyperbolic curves over “sufficiently arithmetic” fields such as number
fields, p-adic local fields, and finite fields, are also strongly internally indecom-
posable.

Theorem 3.11. Let n ∈ Z≥1 be an element; k a field; X a smooth curve of
type (g, r) over k. Then the following hold:

(i) Suppose that

• k is a number field or a p-adic local field;

• X is a hyperbolic curve over k.

Write Xn for the n-th configuration space associated to X. Then ΠXn is
strongly internally indecomposable.

(ii) Suppose that

• k is a finite field of characteristic p;

• (g, r) ̸= (0, 0), (1, 0) (respectively, 2g − 2 + r > 0).

Then ΠX (respectively, Π
[p]′

X ) is strongly internally indecomposable.

Proof. First, we verify assertion (i). Recall that ρXn is injective [cf. [14], Theo-
rem C, (ii)]. Thus, since Π(Xn)k

and Gk are strongly internally indecomposable
[cf. Theorems 2.3, 2.7, 3.9], it follows immediately from Proposition 1.11, (i),
that ΠXn

is strongly internally indecomposable. This completes the proof of
assertion (i).

Next, we verify assertion (ii). Since ΠXk
and Π

(p)′

Xk
are strongly internally

indecomposable [cf. Corollary 3.5, Theorem 3.7], and Gk is abelian, it follows

from Proposition 1.11, (ii), that it suffices to prove that ρX and ρ
(p)′

X are injec-
tive. Note that since Gk is torsion-free, by applying [21], Lemma 1.7, (i); [21],
Lemma 3.3, we may assume without loss of generality that g ≥ 2.

Write X for the smooth compactification of X over k. Then since

Hom(H2(Π
(p)′

Xk

, Ẑ(p)′), Ẑ(p)′)
∼→ Ẑ(p)′(1)

as Gk-modules, where “(1)” denotes the Tate twist, we conclude that ρ
(p)′

X
is

injective, hence that ρ
(p)′

X and ρX are also injective. This completes the proof
of assertion (ii), hence of Theorem 3.11.

Remark 3.11.1. In the present remark, we shall use the language of combina-
torial anabelian geometry [cf. [24], [25], [26], [14], [15], [16], [17], [18]]. Recall
that the notion of an outer representation of NN-type plays a central role. Let
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Σ ⊆ Primes be a nonempty subset of prime numbers; G a semi-graph of anabe-
lioids of pro-Σ PSC-type such that Node(G) ̸= ∅. Write ΠG for the fundamental
group of G. Note that ΠG may be identified with a pro-Σ surface group. Let

ρ : I → Out(ΠG)

be an outer representation of pro-Σ PSC-type. Then ρ determines an exact
sequence of profinite groups

1 −→ ΠG −→ ΠI
def
= ΠG

out
⋊ I −→ I −→ 1.

Suppose that ρ is of NN-type. Then it holds that I ∼= ẐΣ, and ρ is injective [cf.
our assumption that Node(G) ̸= ∅]. Thus, it follows immediately from Propo-
sition 3.4, together with Proposition 1.11, (ii), that ΠI is strongly internally
indecomposable.

4 Strong indecomposability of the Grothendieck-
Teichmüller group GT

In the present section, we prove that the Grothendieck-Teichmüller group
GT is strongly indecomposable. This gives a complete affirmative solution to
the problem posed by the first author of the present paper in [21], Introduction.

First, we begin by recalling the definition of GT.

Definition 4.1. Write X
def
= P1

Q\{0, 1,∞}; X2 for the second configuration

space associated to X; pi : ΠX2
→ ΠX for the outer surjection induced by the

i-th projection X2 → X, where i = 1, 2. Then we shall denote

OutFC(ΠX2) ⊆ Out(ΠX2)

by the subgroup of outer automorphisms σ ∈ Out(ΠX2) such that, for i = 1, 2,

• σ(Ker(pi)) = Ker(pi);

• σ induces a permutation on the set of the conjugacy classes of cuspidal
inertia subgroups of Ker(pi), where we note that Ker(pi) may be naturally
identified with the étale fundamental group of a hyperbolic curve of type
(0, 4) over Q. [Recall that the cuspidal inertia subgroups of the étale
fundamental group of this hyperbolic curve may be defined as the stabilizer
subgroups associated to pro-cusps of the pro-universal covering of the
hyperbolic curve.]

Recall that X2
∼→ M0,5, where M0,5 denotes the moduli stack over Q of hy-

perbolic curves of type (0, 5). Then we have a natural action of the symmetric
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group S5 on X2 by permuting ordered marked points. This action determines
an inclusion S5 ⊆ Out(ΠX2). Then we shall write

GT
def
= OutFC(ΠX2

) ∩ ZOut(ΠX2
)(S5) (⊆ Out(ΠX2

)).

We shall refer to GT as the Grothendieck-Teichmüller group. Since the natural
homomorphism OutFC(ΠX2

) → Out(ΠX) induced by p1 is injective [cf. [14],
Theorem B], GT may be regarded as a closed subgroup of Out(ΠX).

Remark 4.1.1. The Grothendieck-Teichmüller group GT was originally intro-
duced by V.G. Drinfeld [cf. [4]]. Let us note that, a priori, the original definition
is different from the above definition. However, it follows from a remarkable
theorem proved by Harbater-Schneps [cf. [10]] that these two definitions are
equivalent. Moreover, it follows from [13], Theorem C, that

Out(ΠX2
) = GT×S5.

Remark 4.1.2. Let us observe that there exists a natural homomorphism GQ →
GT. Note that it follows from Belyi’s theorem that this homomorphism deter-
mines an injection

GQ ⊆ GT.

With regard to the above inclusion, let us recall the following famous open
question [cf. [34], §1.4]:

Question: Is the inclusion GQ ⊆ GT bijective?

From the viewpoint of this question, the comparison of group-theoretic proper-
ties of GQ and GT has been considered to be important.

Lemma 4.2. Let G be a profinite group; {Gi}i∈I a directed subset of the set of
characteristic open subgroups of G — where j ≥ i ⇔ Gj ⊆ Gi — such that∩

i∈I

Gi = {1}.

Write ϕi : Out(G)→ Out(G/Gi) for the natural homomorphism. Then∩
i∈I

Ker(ϕi) = {1}.

Proof. Let σ ∈
∩

i∈I Ker(ϕi) (⊆ Out(G)) be an element; σ̃ ∈ Aut(G) a lifting
of σ ∈ Out(G). For each i ∈ I, write σ̃i ∈ Aut(G/Gi) for the automorphism
induced by σ̃. Then since σ ∈ Ker(ϕi), it holds that σ̃i is an inner automorphism.
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Let γi ∈ G/Gi be an element which determines the inner automorphism σ̃i.
Write

Ci
def
= γi · Z(G/Gi) ⊆ G/Gi.

Here, we note that, if i1 ≥ i2 (i1, i2 ∈ I), then the natural surjection G/Gi1 ↠
G/Gi2 induces a map Ci1 → Ci2 . Observe that since Ci (i ∈ I) is a finite
nonempty set, the inverse limit lim←−i∈I

Ci is nonempty. Let

γ ∈ lim←−
i∈I

Ci (⊆ lim←−
i∈I

G/Gi = G)

[cf. [32], Corollary 1.1.6] be an element. Then it follows immediately from the
various definitions involved that σ̃ is an inner automorphism determined by γ.
This completes the proof of Lemma 4.2.

Lemma 4.3. Let G be a topologically finitely generated profinite group; S ⊆
Primes a finite subset. Then the natural homomorphism

Out(G) −→
∏

p∈Primes\S

Out(G(p)′)

is injective.

Proof. Since G is topologically finitely generated, there exists a directed subset
{Gi}i∈I of the set of characteristic open subgroups of G — where j ≥ i ⇔
Gj ⊆ Gi — such that ∩

i∈I

Gi = {1}

[cf. [32], Proposition 2.5.1, (b)]. Fix such a family. For each i ∈ I, let pi ∈
Primes \ S be such that pi does not divide the order of the finite group G/Gi.
Then the natural surjection G ↠ G/Gi factors through the natural surjection
G ↠ G(pi)

′
. Thus, Lemma 4.3 follows immediately from Lemma 4.2.

Definition 4.4. Let k be an algebraically closed field; Σ ⊆ Primes a nonempty
subset of prime numbers such that char(k) /∈ Σ; Z a hyperbolic curve over k; Q
an almost pro-Σ maximal quotient of ΠZ . Then we shall write

Out|C|(Q) ⊆ Out(Q)

for the subgroup of outer automorphisms of Q that induce the identity auto-
morphisms on the set of the conjugacy classes of cuspidal inertia subgroups of
Q, where the cuspidal inertia subgroups of Q may be defined as the images of
the cuspidal inertia subgroups of ΠZ via the natural surjection ΠZ ↠ Q.
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Remark 4.4.1. In the notation of Definitions 4.1, 4.4, we note that since the
symmetric group S3 is center-free, it follows immediately from the various def-
initions involved that GT ⊆ Out|C|(ΠX).

Next, we observe the following corollaries [cf. Lemmas 4.5, 4.6, 4.7] of highly
nontrivial Grothendieck Conjecture-type results [cf. [23], Theorem A; [33], The-
orem 1]:

Lemma 4.5. Let l be a prime number; n ∈ Z≥1; K ⊆ Q a number field;
Z ⊆ P1

K\{0, 1,∞} an open subscheme obtained by forming the complement of
a finite subset of K-rational points of P1

K\{0, 1,∞}. [In particular, Z is a
hyperbolic curve of genus 0 over K.] Write (P1

Q ⊇) YQ → ZQ (⊆ P1
Q) for the

finite étale Galois covering of ZQ of degree n determined by t 7→ tn;

Q
def
= ΠZQ

/Ker(ΠYQ
↠ Πl

YQ
); ρ : GK → Out(Q)

for the homomorphism induced by the outer representation GK ⊆ Out|C|(ΠZQ
)

[where we regard GK as a subgroup of Out|C|(ΠZQ
) via the natural outer action

of GK on ΠZQ
— cf. [14], Theorem C]. Then

ZOut|C|(Q)(Im(ρ)) = {1}.

Proof. Let σ ∈ ZOut|C|(Q)(Im(ρ)) be an element. Recall that

• σ induces the identity automorphism on the set of the conjugacy classes
of cuspidal inertia subgroups [which are pro-cyclic subgroups] of Q;

• the normal open subgroup ΠYQ
⊆ ΠZQ

[determined by the finite étale Ga-

lois covering YQ → ZQ] may be characterized as the normal open subgroup
topologically generated by the cuspidal inertia subgroups of ΠZQ

that is

not associated to the cusps 0,∞, and the [unique] closed subgroups of the
cuspidal inertia subgroups of ΠZQ

associated to the cusps 0, ∞, of index
n.

Thus, any lifting ∈ Aut(Q) of σ induces an automorphism of Πl
YQ
. Let σ̃ ∈

Aut(Q) be a lifting of σ such that the automorphism σ̃|Πl
YQ
∈ Aut(Πl

YQ
) induced

by σ̃ preserves the Πl
YQ
-conjugacy class of cuspidal inertia subgroups of Πl

YQ

associated to the cusp 1. Here, we note that since σ̃ preserves the Q-conjugacy
class of cuspidal inertia subgroups of Q associated to the cusp 0 (respectively,
∞), and the finite étale Galois covering YQ → ZQ is totally ramified over the

cusp 0 (respectively, ∞), it holds that σ̃|Πl
YQ

preserves the Πl
YQ
-conjugacy class

of cuspidal inertia subgroups of Πl
YQ

associated to the cusp 0 (respectively, ∞).

Write
σY : Πl

YQ

∼→ Πl
YQ
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for the outer automorphism determined by σ̃|Πl
YQ
∈ Aut(Πl

YQ
). Observe that

since the outer action of GK , together with σY , on Πl
YQ

preserves the Πl
YQ
-

conjugacy class of cuspidal inertia subgroups of Πl
YQ

associated to the cusp 1,

it follows from our assumption that σ ∈ ZOut|C|(Q)(Im(ρ)) that σY commutes

with the outer action of GK on Πl
YQ
. Then it follows from the Grothendieck

Conjecture [cf. [23], Theorem A] that σY arises from a unique isomorphism
f : YQ

∼→ YQ of schemes over Q. Note that since σ̃|Πl
YQ

induces the identity

automorphism on the set of the Πl
YQ
-conjugacy classes of cuspidal inertia sub-

groups of Πl
YQ

associated to the cusps 0, 1,∞, it holds that f induces the identity

automorphism on the subset {0, 1,∞} ⊆ P1
Q. In particular, we conclude that

f is the identity automorphism, hence that σY is the identity outer automor-
phism. Recall that the automorphism σ̃|Πl

YQ
∈ Aut(Πl

YQ
) is the restriction of

σ̃ ∈ Aut(Q). Thus, since Q is slim [cf. [29], Proposition 1.4], it follows from
[21], Lemma 1.6, that σ̃ is an inner automorphism, hence that σ is the identity
outer automorphism. This completes the proof of Lemma 4.5.

Lemma 4.6. Let p be a prime number; Σ ⊆ Primes a nonempty subset of prime
numbers such that p ̸∈ Σ; k a finite field of characteristic p. In the notation
of Definition 3.10, suppose that Z is a hyperbolic curve of genus 0 over k such

that all cusps of Z are k-rational. Write ρ
def
= ρΣZ . Then the following hold:

(i) Suppose that Σ = Primes\{p}. Then the natural homomorphism Aut(Zk)→
Out(ΠΣ

Zk
) determines an isomorphism

Aut(Zk)
∼→ ZOut(ΠΣ

Z
k
)(ρ(Gk)).

(ii) Let l be a prime number ̸= p. Suppose that Σ = {l} or Σ = Primes \ {p}.
Then, if we write χΣ : Out|C|(ΠΣ

Zk
) → (ẐΣ)× for the pro-Σ cyclotomic

character [which is obtained by considering the actions on the cuspidal
inertia subgroups of ΠΣ

Zk
], then the natural composite

ZOut|C|(ΠΣ
Z
k
)(ρ(Gk)) ⊆ Out|C|(ΠΣ

Zk
)

χΣ−→ (ẐΣ)×

is injective.

Proof. First, we verify assertion (i). Write OutGk
(Π

[p]′

Z ) for the group of Π
(p)′

Zk
-

outer automorphisms of Π
[p]′

Z that lie over Gk [cf. Definition 3.10]. Then since

Π
(p)′

Zk
is center-free [cf. Corollary 3.5], it is well-known that the natural homo-

morphism

OutGk
(Π

[p]′

Z )→ Z
Out(Π

(p)′
Z
k

)
(ρ(Gk))
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is an isomorphism [cf. [36], Lemma 7.1]. On the other hand, since Gk is abelian,
it follows immediately from [33], Theorem 1, together with the definition of

OutGk
(Π

[p]′

Z ), that

Aut(Zk/Z)
∼→ OutGk

(Π
[p]′

Z ),

where Aut(Zk/Z) ⊆ Aut(Zk) denotes the subgroup consisting of automorphisms
of Zk that induce automorphisms of Z compatible with the natural morphism
Zk → Z.

Next, we verify the following assertion:

Claim 4.6.A: The inclusion Aut(Zk/Z) ⊆ Aut(Zk) is bijective.

Indeed, let α ∈ Aut(Zk) be an element; σ ∈ Gk (↪→ Aut(Zk)). Then since Gk

is abelian, it follows that

γ
def
= σ ◦ α ◦ σ−1 ◦ α−1 ∈ Autk(Zk).

Next, we note that γ induces the identity automorphism on the set of cusps of
Zk. Thus, we conclude that γ = 1, hence that α induces a unique automorphism
∈ Aut(Z) compatible with the natural morphism Zk → Z. This completes the
proof of Claim 4.6.A.

Thus, by applying Claim 4.6.A, we obtain a natural isomorphism

ϕ : Aut(Zk)
∼→ Z

Out(Π
(p)′
Z
k

)
(ρ(Gk)).

This completes the proof of assertion (i).
Next, we verify assertion (ii). If Σ = {l}, then the desired conclusion fol-

lows immediately from the latter half of the proof of [30], Proposition 2.2.4.
Thus, we may assume without loss of generality that Σ = Primes \ {p}. Write

Aut|C|(Zk) ⊆ Aut(Zk) for the subgroup of automorphisms of Zk that induce

the identity automorphisms on the set of cusps of Zk; χ
′ def
= χPrimes\{p}. Then

ϕ induces a composite

Aut|C|(Zk)
∼→ Z

Out|C|(Π
(p)′
Z
k

)
(ρ(Gk)) ⊆ Out|C|(Π

(p)′

Zk
)

χ′

−→ (Ẑ(p)′)×.

Observe that this composite factors as the composite of the natural injec-
tion Aut|C|(Zk) ↪→ GFp

with the pro-prime-to-p cyclotomic character GFp
↪→

(Ẑ(p)′)×. Thus, we conclude that the natural composite

Z
Out|C|(Π

(p)′
Z
k

)
(ρ(Gk)) ⊆ Out|C|(Π

(p)′

Zk
)

χ′

−→ (Ẑ(p)′)×

is injective. This completes the proof of assertion (ii), hence of Lemma 4.6.

Remark 4.6.1. It is natural to pose the following question:
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Question: In the notation of Lemma 4.6, (i), (ii), can the assump-
tions on the subset of prime numbers Σ ⊆ Primes be dropped?

However, at the time of writing the present paper, the authors do not know
whether the answer is affirmative or not.

Lemma 4.7. Let l be a prime number; K ⊆ Q a number field. In the notation
of Definition 3.10, suppose that k = K, and Z is a hyperbolic curve over K.

Write ρ
def
= ρlZ . Then Im(ρ) is nonabelian.

Proof. Let us recall that, since K is l-cyclotomically full, it holds that Im(ρ) is
infinite [cf. [21], Definition 4.1; [21], Lemma 4.2, (iv)]. Suppose that Im(ρ) is
abelian. Then since Im(ρ) ⊆ ZOut(Πl

ZQ
)(Im(ρ)), the centralizer ZOut(Πl

ZQ
)(Im(ρ))

is infinite. However, since AutK(Z) is finite, this contradicts the Grothendieck
Conjecture for hyperbolic curves over number fields [cf. [23], Theorem A]. Thus,
we conclude that Im(ρ) is nonabelian. This completes the proof of Lemma
4.7.

Lemma 4.8. Let l be a prime number; K ⊆ Q a number field. In the notation
of Definition 3.10, suppose that k = K, and Z is a hyperbolic curve of genus 0
over K. Write

ρl : Out|C|(ΠZQ
)→ Out|C|(Πl

ZQ
)

for the natural homomorphism. Let

G ⊆ Out|C|(ΠZQ
) (⊆ Out(ΠZQ

))

be a closed subgroup such that

• G contains an open subgroup of GK , where we regard GK as a subgroup of
Out(ΠZQ

) via the natural outer action of GK on ΠZQ
[cf. [14], Theorem

C];

• there exist normal closed subgroups G1 ⊆ G and G2 ⊆ G such that G =
G1 ×G2.

Then ρl(G1) = {1} or ρl(G2) = {1}.

Proof. First, by replacing K by a finite extension of K, we may assume without
loss of generality that GK ⊆ G. Let p be a maximal ideal of the ring of integers
of K such that

• the characteristic of the residue field at p is not equal to l, and

• Z has good reduction at p;

F ∈ GK (⊆ G) a lifting of the Frobenius element at p. We shall write,
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• for each i = 1, 2, pri : G ↠ Gi for the natural projection;

• I ⊆ GK for the closed subgroup topologically generated by F , where we
note that I is isomorphic to Ẑ;

• I1
def
= pr1(I)× {1} ⊆ G1 ×G2 = G, I2

def
= {1} × pr2(I) ⊆ G1 ×G2 = G.

Here, we note that, since I is abelian, it holds that

I ⊆ I1 × I2 ⊆ ZG(I),

hence that
ρl(I) ⊆ ρl(I1) · ρl(I2) ⊆ Zρl(G)(ρl(I)).

Thus, since Z has good reduction at p, it follows immediately from Lemma 4.6,
(ii), together with the theory of specialization isomorphism, that we have the
composite of natural injections

ρl(I) ⊆ ρl(I1) · ρl(I2) ⊆ Zρl(G)(ρl(I)) ⊆ ZOut|C|(Πl
ZQ

)(ρl(I)) ↪→ Z×
l .

Note that since ρl(I) is infinite [cf. [21], Lemma 4.2, (iv)], it holds that ρl(I1)
is infinite, or ρl(I2) is infinite. We may assume without loss of generality that

ρl(I1) is infinite.

Observe that every infinite closed subgroup of Z×
l is an open subgroup. In

particular, ρl(I1)∩ ρl(I) ⊆ ρl(I) is an open subgroup. Then since G2 ⊆ ZG(I1),
there exists an open subgroup †I ⊆ I such that

ρl(G2) ⊆ ZOut|C|(Πl
ZQ

)(ρl(
†I)) ↪→ Z×

l

[cf. Lemma 4.6, (ii)].
Suppose that ρl(G2) is infinite. Then since ρl(I) ⊆ ZOut|C|(Πl

ZQ
)(ρl(

†I)) (↪→

Z×
l ), it holds that ρl(G2) ∩ ρl(I) ⊆ ρl(I) is an open subgroup. On the other

hand, since G1 ⊆ ZG(G2), there exists an open subgroup ‡I ⊆ †I (⊆ I) such
that

ρl(G1) ⊆ ZOut|C|(Πl
ZQ

)(ρl(
‡I)) ↪→ Z×

l

[cf. Lemma 4.6, (ii)]. In particular, the closed subgroups

ρl(GK) ⊆ ρl(G) = ρl(G1) · ρl(G2) ⊆ ZOut|C|(Πl
ZQ

)(ρl(
‡I)) ↪→ Z×

l

are abelian. This contradicts Lemma 4.7. Thus, we conclude that ρl(G2) is
finite. Then there exists a finite extension L (⊆ Q) of K such that ρl(G2) ⊆
ZOut(Πl

ZQ
)(ρl(GL)). Thus, since ρl(G2) induces the identity automorphism on

the set of the conjugacy classes of cuspidal inertia subgroups of Πl
ZQ

, it follows

immediately from [23], Theorem A, that ρl(G2) = {1}. This completes the
proof of Lemma 4.8.
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Definition 4.9. Let G be a profinite group; Π a topologically finitely generated
profinite group; G→ Out(Π) a continuous homomorphism. Then we shall write

Π
out
⋊ G

for the profinite group obtained by pulling-back the continuous homomorphism
G→ Out(Π) via the natural surjection Aut(Π) ↠ Out(Π).

Theorem 4.10. Let K ⊆ Q be a number field; Z a hyperbolic curve of genus 0
over K;

G ⊆ Out|C|(ΠZQ
) (⊆ Out(ΠZQ

))

a closed subgroup such that G contains an open subgroup of GK , where we
regard GK as a subgroup of Out(ΠZQ

) via the natural outer action of GK on

ΠZQ
[cf. [14], Theorem C]. Then G is strongly indecomposable. In particular,

the Grothendieck-Teichmüller group GT is strongly indecomposable [cf. Remark
4.4.1].

Proof. First, since every open subgroup of G contains an open subgroup of
GK , it suffices to prove that G is indecomposable. Next, by replacing K by a
finite extension of K, we may assume without loss of generality that GK ⊆ G,
and all cusps of Z are K-rational. Moreover, we may assume without loss of
generality that Z is an open subscheme of P1

K\{0, 1,∞} obtained by forming
the complement of a finite subset of K-rational points of P1

K\{0, 1,∞}.
Suppose that there exist normal closed subgroups G1 ⊆ G and G2 ⊆ G such

that
G = G1 ×G2.

We shall write,

• for each i = 1, 2, pri : G ↠ Gi for the natural projection;

• for each n ∈ Z≥1, (P1
Q ⊇)

nYQ → ZQ (⊆ P1
Q) for the finite étale Galois

covering of ZQ of degree n determined by t 7→ tn;

• for each l ∈ Primes, Qn,l
def
= ΠZQ

/Ker(ΠnYQ
→ Πl

nYQ
);

• ρn,l : Out|C|(ΠZQ
)→ Out|C|(Qn,l) for the natural homomorphism [cf. the

second bullet in the proof of Lemma 4.5]; ρl
def
= ρ1,l.

Note that 1YQ = ZQ, and Q1,l = Πl
ZQ

.

Next, by applying Lemma 4.8, we have the following assertion:

Claim 4.10.A: Let l ∈ Primes be an element. Then ρl(G1) = {1} or
ρl(G2) = {1}.

Next, we verify the following assertion:
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Claim 4.10.B: Let n ∈ Z≥1 be an element; l ∈ Primes such that
ρl(G1) = {1}. Then ρn,l(G1) = {1}.

Indeed, let H ⊆ G, H1 ⊆ G1, and H2 ⊆ G2 be normal open subgroups such
that

• H = H1 ×H2;

• there exists an injection H ↪→ Out|C|(ΠnYQ
);

• there exists an injection ΠnYQ

out
⋊ H ↪→ ΠZQ

out
⋊ G that is compatible with

the inclusions between respective subgroups ΠnYQ
⊆ ΠZQ

and quotients
H ⊆ G.

[Note that the existence of such normal open subgroups H ⊆ G, H1 ⊆ G1, and
H2 ⊆ G2 follows from a similar argument to the argument applied in the proof
of [37], Lemma 1.2.] Then it follows immediately from Lemma 4.8, together
with [29], Proposition 1.4, that ρn,l(H1) = {1} or ρn,l(H2) = {1}. Suppose

that ρn,l(H2) = {1}. Here, we note that since Ql
n,l

∼→ Πl
ZQ

, it holds that ρl

factors as the composite of ρn,l with the natural homomorphism Out|C|(Qn,l)→
Out|C|(Πl

ZQ
). In particular, ρl(H2) = {1}. Then our assumption that ρl(G1) =

{1} implies that ρl(G1 × H2) = {1}, hence that ρl(GK) ⊆ ρl(G) is finite.
This is a contradiction [cf. [21], Lemma 4.2, (iv)]. Thus, we conclude that
ρn,l(H1) = {1}, hence that ρn,l(G1) is finite. In particular, there exists a finite
extension L (⊆ Q) of K such that ρn,l(G1) ⊆ ZOut|C|(Qn,l)

(ρn,l(GL)). Finally, it

follows immediately from Lemma 4.5 that ρn,l(G1) = {1}. This completes the
proof of Claim 4.10.B.

Write χ : Out|C|(ΠZQ
)→ Ẑ× for the cyclotomic character [which is obtained

by considering the actions on the cuspidal inertia subgroups of ΠZQ
]. Then it

follows immediately from Claims 4.10.A, 4.10.B, that χ(G1) = {1} or χ(G2) =
{1}. In particular, we may assume without loss of generality that

χ(G1) = {1}.

For each p ∈ Primes, write

ρ(p)
′
: Out(ΠZQ

)→ Out(Π
(p)′

ZQ
)

for the natural homomorphism.
Next, we verify the following assertion:

Claim 4.10.C: There exists a finite subset S ⊆ Primes such that, for
each p ∈ Primes \ S, it holds that ρ(p)′(G1) = {1}.

Indeed, let p be a maximal ideal of the ring of integers of K such that Z has
good reduction at p; F ∈ GK ⊆ G a lifting of the Frobenius element at p. Write
p ∈ Primes for the characteristic of the residue field at p; I ⊆ GK for the closed

33



subgroup topologically generated by F ; I1
def
= pr1(I)× {1}; I2

def
= {1} × pr2(I).

Then since I is abelian, it holds that

I ⊆ I1 × I2 ⊆ ZG(I).

Then it follows immediately from Lemma 4.6, (ii), together with the theory
of specialization isomorphism, that our assumption that χ(I1) ⊆ χ(G1) = {1}
implies that ρ(p)

′
(I1) = {1}. In particular, ρ(p)

′
(I) ⊆ ρ(p)

′
(I2). Thus, since

χ(G1) = {1}, and G1 ⊆ ZG(I2), we conclude from Lemma 4.6, (ii), that
ρ(p)

′
(G1) = {1}. Observe that there exists a finite subset S ⊆ Primes such

that Z has good reduction at any maximal ideal of the ring of integers of K
that lies over a prime number ∈ Primes \ S. Thus, we obtain the desired con-
clusion. This completes the proof of Claim 4.10.C.

Finally, by applying Claim 4.10.C and Lemma 4.3, we conclude that G1 =
{1}, hence that G is indecomposable. This completes the proof of Theorem
4.10.

Remark 4.10.1. Let ι ∈ GQ ⊆ GT be a complex conjugation; H ⊆ GT a closed
subgroup such that H contains a GT-conjugate of ι. Then

H is indecomposable.

Indeed, suppose that there exist normal closed subgroups H1 ⊆ H and H2 ⊆ H
such that

H = H1 ×H2.

By replacing H by a suitable GT-conjugate of H, we may assume without loss
of generality that ι ∈ H. Then there exist 2-torsion elements ι1 ∈ H1 ⊆ H and
ι2 ∈ H2 ⊆ H such that ι = ι1 · ι2. Note that ι1 and ι2 commute with ι. Recall
that

⟨ι⟩ = NGT(⟨ι⟩),

where ⟨ι⟩ denotes the closed subgroup generated by ι [cf. [19], Proposition
4, (ii)]. Thus, since ι ̸= 1, we conclude that ι1 = ι or ι2 = ι. In the case
where ι1 = ι (respectively, ι2 = ι), since ι1 (respectively, ι2) commutes with H2

(respectively, H1), and ⟨ι⟩ = NGT(⟨ι⟩), it holds that H2 = {1} (respectively,
H1 = {1}).

Remark 4.10.2. Let l be a prime number. In light of Lemma 4.6, (ii), it follows
from a similar argument to the argument applied in the proof of [21], Theorem
6.1, that the pro-l analogue of Theorem 4.10 also holds. Thus, it is natural to
pose the following question:

Question: More generally, for each nonempty subset of prime num-
bers Σ ⊆ Primes, does the pro-Σ analogue of Theorem 4.10 hold?

However, at the time of writing the present paper, the authors do not know
whether the answer is affirmative or not.
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Remark 4.10.3. Let us recall that strongly internally indecomposable profinite
groups are strongly indecomposable [cf. Remark 1.1.2, (ii)]. On the other
hand, since Q is Hilbertian [cf. Remark 2.7.1, (i)], GQ is strongly internally
indecomposable [cf. Theorem 2.7]. Thus, it is natural to pose the following
question:

Question: Is the Grothendieck-Teichmüller group GT strongly in-
ternally indecomposable?

However, at the time of writing the present paper, the authors do not know
whether the answer is affirmative or not.

Corollary 4.11. In the notation of Theorem 4.10, ΠZQ

out
⋊ G is strongly inde-

composable.

Proof. First, since ΠZQ
is center-free [cf. [29], Proposition 1.4], we have an exact

sequence of profinite groups

1 −→ ΠZQ
−→ ΠZQ

out
⋊ G −→ G −→ 1.

Next, since G contains an open subgroup of GK , it follows immediately from
the Grothendieck Conjecture for hyperbolic curves over number fields [cf. [23],

Theorem A; [36], Theorem 0.4] that G (⊆ Out|C|(ΠZQ
)) is slim. Thus, since

G is infinite, we conclude from Theorem 4.10, together with [21], Proposition

1.8, (i); [29], Proposition 1.4; [29], Proposition 3.2, that ΠZQ

out
⋊ G is strongly

indecomposable. This completes the proof of Corollary 4.11.
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