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SHUN ISHII

Abstract. In this paper, we study a function field analogue of the Uniform
Boundedness Conjecture on the torsion of abelian varieties. As a result, we
prove the p-primary Uniform Boundedness Conjecture for 1-dimensional fam-

ilies of Drinfeld modules of arbitary rank.
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1. Main Results

Let K be a function field of transcendental degree 1 over a finite field, and fix a
place∞ of K. Let A be the ring of the elements of K which are regular outside∞.
A Drinfeld A-module, which was first defined by Drinfeld in [7], is defined to be
the additive group scheme Ga with a suitable A-action. We can define the group of
torsion points (and the Tate module) of a Drinfeld A-module with regard to this A-
action. Drinfeld modules have many properties in common with abelian varieties,
and many studies building upon this similarity have been established until now.

For example, the Uniform Boundedness Conjecture for abelian varieties (resp.
the p-primary Uniform Boundedness Conjecture for abelian varieties) states that
for a fixed integer d > 0 and a number field L (resp. a fixed integer d > 0, a
number field L, and a rational prime p), there exists C := C(L, d) > 0 (resp.
C := C(L, d, p) > 0) such that for any d-dimensional abelian variety X over L,
|Xtors(L)| < C (resp.|X[p∞](L)| < C) holds.
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We review some results towards these conjectures. First, Manin [11,ТЕОРЕМ
А 0] proved the p-primary Uniform Boundedness Conjecture for elliptic curves (i.e.
d = 1). Later, Merel [12, Corollaire] proved the Uniform Boundedness Conjecture
for elliptic curves. More recently, Cadoret-Tamagawa [4, Theorem A] [5, Theorem
1.1] proved an analogue of the p-primary Uniform Boundedness Conjecture for 1-
dimensional families of abelian varieties.

Just as in the case of abelian varieties, the Uniform Boundedness Conjecture
for Drinfeld modules (resp. the p-primary Uniform Boundedness Conjecture for
Drinfeld modules) states that for a fixed integer d > 0 and a finitely generated
extension L of K (resp. a fixed integer d > 0, a finitely generated extension L
of K, and a maximal ideal p of A), there exists C := C(L, d) > 0 (resp. C :=
C(L, d, p) > 0) such that for any rank d Drinfeld module φ over L, |φtors(L)| <
C (resp. |φ[p∞](L)| < C) holds.

We review some results towards these conjectures. First, Poonen [18, Theorem 1]
proved the Uniform Boundedness Conjecture for Drinfeld modules of rank 1 using
explicit class field theory. He also proved the p-primary Uniform Boundedness
Conjecture for Drinfeld modules of rank 2 for A = Fq[T ], using Drinfeld modular
curves. Moreover, Cornelissen-Kato-Kool [6, Corollary I] proved a strong form of
the p-primary Uniform Boundedness Conjecture for Drinfeld modules of rank 2. On
the other hand, in contrast to the case of elliptic curves, the Uniform Boundedness
Conjecture for Drinfeld modules of rank 2 is still widely open except Pál’s result for
A = F2[T ] [14] and Armana’s results [1]. (For conditional results, see also Ingram
[9].)

In this paper, we prove the following analogue of the p-primary Uniform Bound-
edness Conjecture for 1-dimensional families of Drinfeld modules over a finitely
generated extension of K. This result can be regarded as a Drinfeld module ana-
logue of the Cadoret-Tamagawa’s result.

Theorem 1.1. Let p be a maximal ideal of A, L a finitely generated extension
of K, S a 1-dimensional scheme which is of finite type over L and φ a Drinfeld
A-module over S. Then there exists an integer N := N(φ, S, L, p) ≥ 0 such that
φs[p

∞](L) ⊂ φs[pN ](L) holds for every s ∈ S(L).

Next, we explain the strategy of the proof of Theorem 1.1. First, we prove the
following result.

Theorem 1.2. Let p be a maximal ideal of A, L an algebraically closed field con-
taining K, S a curve over L with a generic point η and φ a Drinfeld A-module
over S. Assume that φη is not L-isotrivial. Then, for every c ≥ 0, there exists
an integer N := N(c, φ, S, L, p) ≥ 0 such that gv ≥ c or pNv = 0 holds for every

v ∈ φη[p∞](L(S)). Here, gv denotes the genus of (the compactification of) the curve
Sv which corresponds to the stabilizer of v.

This theorem is proved by an analytic method. More precisely, we use Oesterlé’s
formula [13, Théorème 6] regarding the asymptotic behavior of sizes of images of an-
alytic sets under reduction maps, together with Breuer-Pink’s result [3] concerning
monodromy representations of non-isotrivial Drinfeld modules.

We give a sketch of the proof of Theorem 1.1. Just like Cadoret-Tamagawa and
Poonen, we use a positive characteristic analogue of Mordell’s conjecture proved by
Samuel (after using Theorem 1.2). However, Samuel’s theorem assumes that the
curves not only have genus at least 2, but also are non-isotrivial. Here, Poonen and
Cornelissen-Kato-Kool resorted to the non-isotriviality of Drinfeld modular curves,
but we do not assume non-isotriviality of the base curve, so we cannot conclude
the theorem. Instead, we use Samuel’s theorem to show the existence of a suitable
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model of the base field. Then, by using a specialization argument, we reduce the
theorem to the case when the base field is finite.

As a corollary, we can prove the p-primary Uniform Boundedness Conjecture
for Drinfeld modules of rank 2 over a finitely generated extension of K (which was
already proved by Poonen).

Theorem 1.3. Let L be a finitely generated extension of K, and p a maximal ideal
of A. Then there exists an integer N := N(L, p) ≥ 0 such that φ[p∞](L) ⊂ φ[pN ](L)
holds for every Drinfeld A-module φ of rank 2 over L.

Finally, we briefly explain the contents of this paper. In section 2, we recall
the theory of Drinfeld modules. In section 3, we prove an asymptotic formula
(Proposition 3.1) mentioned above, which is needed to prove Theorem 1.2 in section
4. In section 5, we prove Theorem 1.1 using a specialization argument, and in
section 6 we present some corollaries of Theorem 1.1.

Acknowledgement. This paper is essentially the author’s master thesis. He
would like to thank his advisor Akio Tamagawa for helpful comments and warm
encouragements.

Notation

We list some notations used throughout this paper.

• p: a rational prime.
• q: a power of p.
• K: a function field in one variable over Fq with K ∩ Fq = Fq.
• ∞: a place of K.
• A: the ring of elements of K which are regular outside ∞.
• p: a maximal ideal of A.
• Ap: the p-adic completion of A.
• Kp: the fraction field of Ap.
• Ga: the additive group scheme.
• A curve over a field L is defined to be a normal, separated, geometrically
integral 1-dimensional scheme which is of finite type over L. Note that if
L is algebraically closed, all curves over L are automatically smooth.

2. Drinfeld modules

In this section, we recall the theory of Drinfeld modules. First, we define Drin-
feld modules over fields, their torsion points, Tate modules, etc. Next, we define
Drinfeld modules over general schemes, moduli spaces of Drinfeld modules with
certain level structures, and the minimal models of Drinfeld modules. Then we
study monodromy representations associated to Drinfeld modules, introduce the
results of Breuer-Pink, and using their results we obtain a variant of the Néron-
Ogg-Shafarevich criterion (Theorem 2.43).

2.1. Drinfeld modules over A-fields.

Definition 2.1 (Drinfeld modules over A-fields). Let F be an A-field, i.e. a field
with Fp-homomorphism ι : A→ F .

(1) A Drinfeld A-module φ over F is an Fp-homomorphism A → End(Ga,F )
such that φ(A) 6⊂ F and that the composite of A→ End(Ga,F )→ F equals
to ι. Here, End(Ga,F ) → F denotes the differentiation at the origin of
Ga,F . If φ is a Drinfeld A-module, we write φa for φ(a) for a ∈ A.

(2) Let L be an A-field extension of F , i.e. an A-field with an A-algebra ho-
momorphism i : F → L and φ a Drinfeld A-module over F . Then the

3



composite of A
ϕ−→ End(Ga,F ) → End(Ga,L) induces a Drinfeld A-module

over L, and we denote it by φ×F L.
(3) Let φ and ψ be Drinfeld A-modules over F . A homomorphism f : φ → ψ

over F is an element of End(Ga,F ) which satisfies f ◦ φ = ψ ◦ ψ. A non-
zero homomorphism is called an isogeny. HomF (φ, ψ) denotes the set of
all homomorphisms from φ to ψ. It becomes an A-module in an obvious
manner. Let EndF (φ) := HomF (φ, φ).

Remark 2.2.

(1) If we write τ ∈ End(Ga,F ) for the q-th power Frobenius, End(Ga,F ) equals
to F{τ}, where F{τ} := {

∑
i aiτ

i (finite sum) | ai ∈ F}. With this identifi-
cation, the differentiation at the origin of of Ga,F is given by

∑
i aiτ

i 7→ a0.
(2) We define the degree map deg : F{τ} → Z ∪ {−∞} by deg(0) = −∞ and

a =
∑
i aiτ

i 7→ n for a 6= 0, where an 6= 0 and am = 0 for all m > n. Also,
we also define the height map ht : F{τ} → Z ∪ {∞} by ht(0) = ∞ and
a =

∑
i aiτ

i 7→ n for all a 6= 0, where an 6= 0 and am = 0 for all m < n.

Definition 2.3. Let (F, ι : A→ F ) be an A-field, and φ a Drinfeld A-module over
F .

(1) We define the characteristic of (F, ι) as ker(ι), and denote it by ch(F ) if no
confusion occurs. We say F has the generic characteristic if ch(F ) = (0)
and otherwise we say F has a special characteristic.

(2) Let d∞ := [κ(∞) : Fq] and let v∞ : K → Z ∪ {∞} be the normalized (ad-
ditive) valuation corresponding to ∞. Then it is known that deg ◦ φ :
A → Z ∪ {−∞} induces a valuation on K which is equivalent to v∞.
More precisely, there exists a unique rational number d ∈ Q>0 such that
deg(φa) = −dd∞v∞(a) holds for every a ∈ A. We define the rank of φ to
be d. It is known that d is in fact a positive integer.

(3) Assume that F has a special characterstic p. Let dp := [κ(p) : Fq], and
vp : K → Z ∪ {∞} be the normalized valuation corresponding to p. Then,
it is known that ht ◦ φ : A → Z ∪ {∞} induces a valuation on K which
is equivalent to vp. More precisely, there exists a unique rational number
h ∈ Q>0 such that ht(φa) = hdpvp(a) holds for every a ∈ A. We define the
height of φ to be h. It is known that h is in fact a non-negative integer.

Our main interest in this paper is Drifeld modules defined over various extensions
of K. In particular, they have the generic characteristic.

Definition 2.4. Let (F, ι : A→ F ) be an A-field, and φ a Drinfeld A-module over
F . Fix an algebraic closure F of F , and let L be an arbitary extension of F .

(1) For an ideal I of A, we define the I-torsion subgroup of φ over L to be
φ[I](L) := {x ∈ L | φa(x) = 0 | (∀a ∈ I)}.

(2) We define the torsion subgroup of φ over L to be φtors(L) := ∪0 ̸=I⊂Aφ[I](L).
Here, the index runs over all non-zero ideals I of A.

(3) We define the p-primary torsion subgroup of φ over L to be φ[p∞](L) :=
∪n≥1φ[p

n](L). For an integer n > 0, we define φ[pn]∗(L) := φ[pn](L) \
φ[pn−1](L) (φ[p0]∗(L) := φ[p0](L)).

(4) We define the p-adic Tate module of φ to be Tp(φ) := HomA(Kp/Ap, φ[p
∞](F )).

We define Tp(φ)
∗ := Tp(φ) \ pTp(φ). We define the rational p-adic Tate

module of φ to be Vp(φ) := Tp(φ)⊗Ap
Kp.

Remark 2.5. Let (F, ι : A → F ) be an A-field, φ a Drinfeld A-module over F ,
and I an ideal of A.
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(1) By definition, the I-torsion subgroup of a Drinfeld A-module has a natural
structure of (A/I)-module. In particular, the p-adic Tate module has a
natural structure of Ap-module.

(2) Let L be an arbitary extension of F . If I is generated by a1, . . . , as ∈ A,
then φ[I](L) = φ[a1](L) ∩ · · · ∩ φ[as](L) where φ[a](L) := Ker(φa : L→ L).
If I1 and I2 are ideals of A such that I1 + I2 = A, there exists a canonical
isomorphism φ[I1I2](L) ∼= φ[I1](L)⊕ φ[I2](L).

(3) If ch(F ) 6∈ V (I), then φ[I](F ) = φ[I](F sep) ⊂ F sep and it becomes an
(A/I)[GF ]-module.

The following are well-known results about the structure of torsion subgroups of
Drinfeld modules.

Proposition 2.6 (Drinfeld [7, Proposition 2.2]). Let (F, ι : A→ F ) be an A-field,
and φ a Drinfeld A module of rank d over F . Fix an algebraic closure F of F .

(1) Let I 6⊂ ch(F ) be an ideal of A. Then φ[I](F ) is a free (A/I)-module of
rank d.

(2) Assume that F has a special characteristic and let h be the height of φ. Let
I be a power of ch(F ). Then, φ[I](F ) is a free (A/I)-module of rank d− h.

(3) The p-adic Tate module of φ is a free Ap-module of rank d (resp. d− h) if
p 6= ch(F ) (resp. p = ch(F )).

Moreover, the following exact sequences hold for torsion subgroups of Drinfeld
modules.

Proposition 2.7. Let (F, ι : A → F ) be an A-field, and φ a Drinfeld A-module
over F . Let a and b be ideals of A, and a ∈ A an element of A which satisfies
a = ab+ (a). Then the following sequence is exact:

0→ φ[a](F )→ φ[ab](F )
ϕa−→ φ[b](F )→ 0

Proof. From the identity a = ab+ (a), we see φ[a](F ) = ker(φ[ab](F )
ϕa−→ φ[b](F ))

holds. Therefore, we only have to prove φa : φ[ab](F ) → φ[b](F )) is surjective,
which follows from Proposition 2.6. □
Corollary 2.8. Let (F, ι : A→ F ) be an A-field, and φ a Drinfeld A-module over
F . Fix a generator π of p. Then, for every non-negative integer n, the following
sequence is exact.

0→ φ[p](F )→ φ[pn+1](F )
ϕπ−−→ φ[pn](F )→ 0

In particular, the projective limit of {φ[pn](F )}n≥0 whose transition maps are in-
duced by φπ are isomorphic to the p-adic Tate module of φ.

Proof. This follows from the equality p = pn + (π) and Proposition 2.7. □
Next, we discuss the structure of homomorphisms between Drinfeld modules.

Proposition 2.9. Let (F, ι : A → F ) be an A-field, and φ and ψ Drinfeld A-
modules over F of rank d and d′, respectively. Let F be an algebraic closure of F ,
and F sep the separable closure of F in F .

(1) If d 6= d′, HomF (φ, ψ) is zero. Ohterwise, HomF (φ, ψ) is a projective A-
module of rank ≤ d2. In particular, EndF (φ) is a projective A-algebra of
rank ≤ d2.

(2) EndF (φ)⊗A K is a skew field.
(3) If F has the generic characteristic, then EndF (φ) is commutative and

rankAEndF (φ) ≤ d.
(4) Every homomorphism between φ×F F and ψ ×F F is defined over F sep.
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Proof. As for (1), (2), and (3), they follow from [7, Proposition 2.4の Corollary].
We prove (4). Take any f ∈ HomF (φ, ψ) and a ∈ A\Fq. Then the assertion follows
easily by comparing the coefficients of the identity f ◦ φa = ψa ◦ f starting from
their leading terms. □

Proposition 2.10 (Goss [8, Proposition 4.7.1]). Let (F, ι : A→ F ) be an A-field,
and φ and ψ Drinfeld A-modules over F . Then, if f ∈ HomF (φ, ψ) ⊂ F{τ} is an
isomorphism of Drinfeld modules, it is F -linear. That is, deg(f) = 0.

2.2. Reduction of Drinfeld modules. In this section, we briefly explain the
theory of reduction of Drinfeld modules. Throughout this section, we fix an A-field
(F, ι : A→ F ), and a (nontrivial) discrete valuation v on F , and we assume ι(A) is
contained in the valuation ring Ov ⊂ F of v. Let mv be the maximal ideal of Ov,
and kv := Ov/mv the residue field of Ov.

Definition 2.11 (Goss [8, Definition 4.10.1]). Let φ be a Drinfeld A-module over
F .

(1) We say φ has integral coefficients with respect to v if, for every a ∈ A,
all coefficients of φa ∈ End(Ga,F ) = F{τ} is contained in Ov, and the
composite of A→ Ov{τ} → kv{τ} defines a Drinfeld A-module over kv.

(2) We say φ has stable reduction at v if φ is isomorphic to a Drinfeld A-module
over F which has integral coefficients with respect to v.

(3) We say φ has good reduction at v if φ has stable reduction at v and the rank
of the resulting Drinfeld A-module over kv coincides with the rank of φ.

(4) We say φ has potentially stable (resp. good) reduction at v if there exists a
finite extension of discrite valuation fields (G,w) of (F, v) such that φ×F G
has stable (resp. good) reduction at w.

Example 2.12.

(1) Assume A = Fq[T ]. Let φ be a Drinfeld Fq[T ]-module of rank 2 over F
which is defined by φT = T+gτ+∆τ2. Then, for any u ∈ Aut(Ga,F ) = F ∗,

u−1φTu = T + guq−1τ + ∆uq
2−1τ2. So u−1φTu ∈ Ov{τ} is equivalent

to v(guq−1) ≥ 0 and v(∆uq
2−1) ≥ 0, i.e. v(u) ≥ −min( v(g)q−1 ,

v(∆)
q2−1 ).

Therefore, we can conclude that φ has stable reduction at v if and only

if min(v(g)q−1 ,
v(∆)
q2−1 ) ∈ Z. Moreover, we easily see that φ has good reduction

at v if and only if v(g)q−1 ≥
v(∆)
q2−1 and v(∆)

q2−1 ∈ Z.
(2) Along the same lines, for a general A, we can prove that every Drinfeld

A-module over F has potentially good reduction at v and every Drinfeld
A-module of rank 1 has potentially good reduction at v. (For more details,
see Goss [8, Corollary 4.10.4.].)

Takahashi [22, Theorem 1] proved the following Drinfeld module analogue of the
Néron–Ogg–Shafarevich criterion of abelian varieties.

Theorem 2.13 (Takahashi [22, Theorem 1]). Let φ be a Drinfeld A-module over
F and assume that p is different from ch(F ). Then the following are equivalent.

(1) φ has good reduction at v.
(2) φ[p∞](F ) is unramified at v, i.e. the inertia subgroup at v acts trivially on

φ[p∞](F ).

Next, we discuss the action of the inertia subgroup on p-adic Tate modules of
Drinfeld modules over a discrete valuation field. In the case of abelian varieties
over a discrete valuation field F , it is well-known that the inertia subgroup acts
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quasi-unipotently on `-adic Tate modules if ` is not equal to the characteristic of
F . We prove a Drinfeld module analogue of this result (Corollary 2.15).1

First, we recall the Tate-Drinfeld uniformization.

Proposition 2.14 (Drinfeld [7, §7, Proposition 7.2]). Let (F, v) be a pair of an
A-field F and a complete discrete valuation v on it. Let Ov be the valuation ring
of v, and kv the residue field of Ov. Let φ be a Drinfeld A-module of rank d over
F which has stable reduction at v, and d1 the rank of the Drinfeld A-module over
kv obtained from the reduction of φ. Then there exists a Drinfeld A-module of rank
d1 over F which has good reduction at v, and u ∈ 1 + Ov{{τ}}τ which converges
entirely on the completion of an algebraic closure of F such that uψa = φau holds
for every a ∈ A.

Corollary 2.15. Let (F, v), φ, and ψ be as in Propositon 2.14, and assume that
p is different from ch(F ). Then there exist an A[GF ]-module Λ which is finitely
generated as an A-module and the following exact sequence of A[GF ]-modules.

0→ Tp(ψ)→ Tp(φ)→ Λ⊗A Ap → 0

In particular, the action of the inertia subgroup of GF on the p-adic Tate module
of every Drinfeld A-module over F is quasi-unipotent.

Proof. Take u as in the above Proposition 2.14, and define Λ := Ker(u : F sep →
F sep). Then Λ has a natural structure of A-module induced by ψ. Since u ∈
Ov{{τ}}, Λ is closed under the natural GF -action on F sep.

We fix a positive integer h (e.g. the class number of A) so that ph is principal,
and a generator a of ph. First, for any n > 0, we prove that the following sequence
of (Ap/p

nh)[GF ]-modules is exact:

(∗) 0→ ψ[pnh](F sep) = ψ−1
an (0)→ ψ−1

an (Λ)/Λ
ψan−−→ Λ/pnhΛ→ 0

For the injectivity on the left side, it suffices to prove ψ[pnh](F sep) ∩ Λ = {0}.
Since ψ has good reduction at v, the valuations of the elements of ψ[pnh](F sep)\{0}
are non-negative. On the other hand, using Newton polygons, we see that the
valuations of the nonzero roots of u are negative. Thus, the injectivity follows. The
exactness in the middle is obvious. The surjectivity on the right side follows from
the fact that Λ ⊂ F sep.

Next, we observe that u induces an (A/pnh)[GF ]-module isomorphism:

ψ−1
an (Λ)/Λ

∼= φ[pnh](F sep) = φ−1
an (0)

So, taking the projective limit of (∗) gives the desired exact sequence.
Finally, we prove the quasi-unipotence of the action of the inertia subgroup. By

Theorem 2.13, the action of the inertia subgroup on Tp(ψ) is trivial. So, it suffices
to prove that the action of the inertia subgroup on Λ is finite. As Λ ⊂ F sep, it
suffices to prove that Λ is finitely generated as an A-module.

First, note that Λ/ψa(Λ) is finite. Fix a real number r > 1 such that the natural
map

B(0, r) ∩ Λ ↠ Λ/ψa(Λ)

is surjective. Here, B(0, r) denotes {x ∈ F sep | |x| ≤ r}. The left side B(0, r) ∩ Λ
is finite (which can be proved by using the Newton polygon of u). We will prove
that B(0, r) ∩ Λ generates Λ as an A-module.

Pick any element x ∈ Λ. We show that x is in the A-module generated by
B(0, r) ∩ Λ. If |x| ≤ r, then x ∈ B(0, r) ∩ Λ, so we may assume that |x| > r. Then
there exists y ∈ B(0, r) ∩Λ and x1 ∈ Λ such that x− y = ψa(x1). We may assume

1This result seems to be well-known to experts, but we include the proof because we cannot
find suitable references.
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that |x1| > r otherwise we conclude x = y+ψa(x1) is in the A-module generated by
B(0, r) ∩ Λ. Then, since ψa ∈ Ov{τ} has degree −d1d∞v∞(a) ≥ 1 and its leading

coefficient is in O∗
v , it follows that |ψa(x1)| = |x1|q

−d1d∞v∞(a)

. So, by using the
ultrametric triangle inequality, we see that

|x1|q
−d1d∞v∞(a)

= |ψa(x1)| = |x− y| = |x|

holds. In particular, |x| > rq
−d1d∞v∞(a)

holds. By repeating this argument for x1,
x2, . . . , we conclude that xn ∈ B(0, r) ∩ Λ for sufficienty large n. Thus, x is in the
A-module generated by B(0, r) ∩ Λ. This concludes the proof. □

Next, we briefly recall the theory of minimal models of Drinfeld modules by
Taguchi [21, 2]. Before that, we define A-module schemes over general A-schemes.

Definition 2.16. Let S be an A-scheme. An A-module scheme over S is defined
to be a pair (G,φ), where G is a commutative group scheme over S and φ : A →
End(G/S) is a homomorphism such that the A-action on the tangent space of G at
the origin induced by the natural map A → Γ(S,OS) equals the one induced by φ.
A homomorphism between two A-module schemes is defined to be a homomorphism
of group schemes which is compatible with the given A-actions.

In the rest of this section, we fix an integral, normal scheme S of finite type over
Spec(A), and let F be the function field of S which we regard as an A-field through
the homomorphism associated to the composite of Spec(F ) → S → Spec(A). We
are going to discuss S-models of Drinfeld A-modules over F .

In the following, if L is an invertible sheaf on S, we abbreviate the group scheme
SpecS(Sym(L∨)) over S to L. So, L represents a contravariant functor (Sch/S)→
(Grp) : (f : T → S) 7→ Γ(T, f∗L).

Definition 2.17 (Taguchi [21, 2, DEFINITION]). Let φ be a Drinfeld A-module
over F . A model of φ over S is defined to be a triple E = (L,ϕ, f) where L is an
invertible sheaf on S, (L,ϕ) is an A-module scheme over S, and f : (L,ϕ)⊗S F →
(Ga,F , φ) is an isomorphism of A-module schemes. A homomorphism between two
models of φ over S is defined to be a homomorphism of A-module schemes which
is compatible with the given isomorphisms to (Ga,F , φ).

Remark 2.18 (Taguchi [21, 2, Remarks]). Let φ be a Drinfeld A-module over F ,
and E = (L,ϕ, f) a model of φ over S. For every g ∈ F ∗, the multiplication by
g−1 induces an isomorphism between the following models:

(L,ϕ, f)
∼−→ (L⊗S OS(div(g)), g−1ϕg, fg)

Theorem 2.19 (Taguchi [21, 2, PROPOSITION (2.2)]). Let S and F be as above.
Assume that the notion of Weil divisor and that of Cartier divisor coincide on S.
Then, for every Drinfeld A-module φ over F , there exists uniquely (up to isomor-
phism) a model E = (L,ϕ, f) of φ over S which satisfies the following property:

For every model E′ of φ over S, there exists a unique homomorphism from E′

to E.

Definition 2.20. A model of φ over S which satisfies the property in Theorem 2.19
is called the minimal model of φ over S.

Remark 2.21. Let L be an A-field, S an integral, normal scheme of finite type
over Spec(L), and F the function field of S. The proof in [21, 2, PROPOSITION
(2.2)] also works in this case, i.e. if the notion of Weil divisor and that of Cartier
divisor coincide on S, the minimal model over S exists for every Drinfeld A-module
over F .
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2.3. Drinfeld modules which have nontrivial endomorphism rings and
their rational Tate modules.

In this section, we discuss a Drinfeld A-module which has a nontrivial endom-
phism ring, i.e. a Drinfeld A-module whose endomorphism ring E is strictly larger
than A. We show that we can roughly regard such a Drinfeld A-module as a “Drin-
feld E-module” up to isogeny. We also discuss how the structure of rational Tate
module depends on the endomorphism ring of Drinfeld module.

In this section, we fix an A-field (F, ι : A→ F ) which has the generic character-
istic and Drinfeld A-module φ of rank d over F . By Proposition 2.9, E := EndF (φ)
is a commutative projective A-algebra of rank ≤ d.

Lemma 2.22. There exists a unique place of Frac(E) above ∞. Moreover, this
place is induced by deg : E = EndF (φ) ⊂ F{τ} → Z ∪ {−∞}

Proof. From the proof of Goss [8, Proposition 4.7.17], it follows that Frac(E) ⊗K
K∞ ∼= E ⊗A K∞ is a field. Thus, there is a unique place of Frac(E) above ∞. As
the map deg : E = EndF (φ)→ Z∪{−∞} induces a nontrivial valuation of Frac(E)
above ∞, this concludes the proof. □

From this proposition, if E is an integrally closed domain, we can regard φ as a
Drinfeld E-module over F . (Here, we regard F as an E-field by the differentiation
map E ⊂ End(Ga)→ F ). Indeed, if the constant field Fq′ of E equals the coefficient

field Fq of A, this is obvious. In general, we can easily prove E ⊂ F{τ [Fq′ :Fq ]} and
regard φ as a Drinfeld E-module. The rank of the Drinfeld E-module obtained as
above is equal to d′ := d

rankA(E) .

The following proposition show that, up to isogeny, we can regard φ as a “Drinfeld
E-module” even if E is not integrally closed.

Proposition 2.23 (Goss [8, Proposition 4.7.19]2). Let (F, ι : A → F ) be an A-
field, and φ a Drinfeld A-module over F . Let O ⊂ EndF (φ) be an A-order of

a finite extension of K. Let Õ be the integral closure of O in its fraction field.
Then there exists a Drinfeld A-module ψ over F with an injective homomorphism
Õ ↪→ EndF (ψ) and an isogeny π : φ → ψ which is compatible with O-actions. If,
moreover, F has the generic characteristic and O is an A-order of Frac(EndF (φ)),

we can take Õ ↪→ EndF (ψ) to be an isomorphism.

Let Ẽ be the integral closure of E in its fraction field. From Proposition 2.23,
we see that there exists a Drinfeld A-module ψ over F which is isogenous to φ and
whose endomorphism ring equals Ẽ. We write ψẼ for the Drinfeld Ẽ-module over
F which is induced by ψ.

We make some observations. Let K and F be algebraic closures of K and F ,
respectively. If the rank of ψẼ is equal to 1, then by [8, Proposition 7.4.3], we see

that ψẼ×FF comes from a Drinfeld Ẽ-module defined overK. In particular, ψ×FF
comes from a Drinfeld A-module defined over K. Moreover, by [7, Proposition
2.3], the kernel of an isogeny between Drinfeld modules over an A-field which has
the generic characteristic is known to be a finite étale torsion A-module scheme.
Therefore, we conclude that φ×F F descends to a Drinfeld A-module over K.

To sum it up, we have proved the following corollary.

Corollary 2.24. Let (F, ι : A→ F ) be an A-field which has the generic character-
istic, and φ a Drinfeld A-module of rank d over F . Assume that the endomorphism
ring of φ ×F F is a projective A-algebra of rank d. Then, φ ×F F descends to a
Drinfeld A-module over K.

2The statement of Proposition 4.7.19 in Goss [8] is not correct, but the proof essentially works.
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Now we discuss the structure of the rational Tate module. By replacing F with
a finite separable extention of F if needed, we may assume that E = EndF (φ) =
EndF (φ). Take a Drinfeld A-module ψ over F and an isogeny π : φ → ψ as in
Proposition 2.23.

Let π be a generator of p. Let pẼ =
∏

P|p P
eP be the prime ideal decomposition

of p in Ẽ. Then, by Corollary 2.8, we have the following commutative diagram in
which two rows are exact for each n ≥ 1.

0 ψ[p](F sep) ψ[pn](F sep) ψ[pn−1](F sep) 0

0
⊕

P|p ψẼ [P
eP ](F sep)

⊕
P|p ψẼ [P

neP ](F sep)
⊕

P|p ψẼ [P
(n−1)eP ](F sep) 0

ψπ

∼

(ψẼ)π

∼ ∼

Here, F sep denotes the separable closure of F in F . By taking the projective
limit, we obtain an isomorphism

⊕
P|p TP(ψẼ)

∼−→ Tp(ψ). This isomorphism is

compatible with Ẽ ⊗A Ap(∼=
∏

P|p ẼP)-action and GF -action. Each TP(ψẼ) is

closed under GF -action.
Since ψ is isogeneous to φ, we have an injective Ap[GF ]-module homomorphism

Tp(φ)→ Tp(ψ) whose cokernel is finite. Thus, taking tensor products with Kp, we

have an isomorphism Vp(φ)
∼−→ Vp(ψ) ∼=

⊕
P|p VP(ψẼ) of Kp[GF ]-modules. This

decomposition is used in the proof of Proposition 2.43 and Theorem 1.2.

2.4. Drinfeld modules over general A-schemes.
In this section, we define Drinfeld modules over general A-schemes. In the fol-

lowing, for a scheme S and s ∈ S, k(s) denotes the residue field of S at s.

Definition 2.25 (Drinfeld [7, p.575, Definition]). Let S be an A-scheme.

(1) We call the image of S in Spec(A) the characteristic of S. If S consists of
the generic point of Spec(A), we say S has the generic characteristic.

(2) Let d be a positive integer. A Drinfeld A-module of rank d over S is an
A-module scheme (L, φ) where L is an invertible sheaf on S such that, for
all s ∈ S, the pullback of (L, φ) to s ∈ S defines a Drinfeld A-module of
rank d over k(s).

Remark 2.26.

(1) Let L be an invertible sheaf on an A-scheme S. Then End(L/S) is identified

with {
∑
i aiτ

i(Zariski locally finite sums) | ai ∈ Γ(S,L⊗(1−qi))} where τ
denotes the q-th Frobenius map.

(2) By (1), we can rephrase the definition of Drinfeld modules as follows: A
Drinfeld A-module of rank d over S is a pair of an invertible sheaf L over
S and a homomorphism φ : A → End(L/S) such that the following condi-
tions hold: If we write φa =

∑
i ai(a)τ

i for every a ∈ A \ {0}, a0(a) coin-
cides with the image of a under the natural homomorphism A→ Γ(S,OS).
Moreover, a−dd∞v∞(a)(a) is nonzero in L⊗(1−q−dd∞v∞(a)) ⊗S k(s) for all

s ∈ S and ai(a) becomes zero in L⊗(1−qi) ⊗S k(s) for all s ∈ S and for all
i > −dd∞v∞(a).

Definition 2.27. Let S be an A-scheme, and let d be a positive integer. A stan-
dard Drinfeld A-module of rank d over S is a pair of an invertible sheaf L and a
homomorphism φ : A → End(L/S) such that the following conditions hold: If we
write φa =

∑
i ai(a)τ

i for every a ∈ A \ {0}, a0(a) coincides with the image of
a under the natural homomorphism A → Γ(S,OS). Moreover, a−dd∞v∞(a)(a) is
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nonzero in L⊗(1−q−dd∞v∞(a)) ⊗S k(s) for all s ∈ S and ai(a) becomes zero for all
i > −dd∞v∞(a).

If (L, φ) is a Drinfeld A-module over an A-scheme S, we shall omit L and simply
say φ is a Drinfeld A-module over S if no confusion occurs.

The following proposition ensures that every Drinfeld module is isomorphic to a
standard Drinfeld module of the same rank.

Proposition 2.28 (Drinfeld [7, §5, B), Remark]). Let S be an A-scheme. Then
every Drinfeld A-module over S is isomorphic to a standard Drinfeld A-module
of the same rank over S. Moreover, all isomorphisms between standard Drinfeld
A-modules are S-linear.

Example 2.29. Let A = Fq[T ] and S the spectrum of the ring of dual numbers
over K, i.e. S = SpecK[ε]/(ε2). Let φ be a Drinfeld A-module over S defined by
φT = T + τ + ετ2 ∈ K[ε]/(ε2){τ}. Note that this Drinfeld module has rank 1, not

2. If we define another Drinfeld A-module over S by ψT = (1 − ετ)φ̇T (̇1 − ετ)−1,
an easy computation shows that ψ = T + (1 + ε(T − T q))τ . So ψ is standard.

Definition 2.30. Let S be an A-scheme and φ a Drinfeld A-module over S. Let
I be an ideal of A. The I-torsion subgroup φ[I] of φ is defined to be the A-module
scheme over S defined by φ[I] = ∩a∈Iker(φa : L → L). Here, ∩ denotes the
scheme-theoretic intersection.

Proposition 2.31 (Drinfeld [7, §5, A), Remark]). Let S be an A-scheme and φ
a Drinfeld A-module of rank d over S. Let I be a nonzero ideal of A. Further we
assume that the characteristic of S does not intersect V (I) ⊂ Spec(A). Then φ[I]
is finite étale over S. Moreover, φ[I] is étale locally isomorphic to (I−1/A)d as an
A-module scheme. Here, (I−1/A)d denote the constant A-module scheme over S
with value (I−1/A)d.

Next we discuss the moduli spaces of Drinfeld modules with level structures.

Definition 2.32. Let S be an A-scheme and (L, φ) a Drinfeld A-module of rank d
over S. Let I be a nonzero ideal of A. We assume that the characteristic of S does
not intersect V (I) ⊂ Spec(A).

(1) A Γ(I)-structure on (L, φ) is an isomorphism of A-module schemes ι :

(I−1/A)d
∼−→ φ[I].

(2) A Drinfeld A-module with Γ(I)-structure over S is a triple (L, φ, ι) such that
(L, φ) is a Drinfeld A-module over S and ι is a Γ(I)-structure on (L, φ).
Let (L, φ, ι) and (L′, φ′, ι′) be Drinfeld A-modules with Γ(I)-structure over
S. A homomorphism between (L, φ, ι) and (L′, φ′, ι′) is a homomorphism
of Drinfeld A-modules between (L, φ) and (L′, φ′) which is compatible with
their Γ(I)-structures.

Remark 2.33.

(1) By Proposition 2.31, every Drinfeld A-module over S étale locally has a
Γ(I)-structure.

(2) More generally, Drinfeld defined the notion of Γ(I)-structure even if the
characteristic of S intersects V (I). We omit this because we mainly con-
centrate on the case when S has the generic characteristic.

Proposition 2.34 (Laumon [10, THEOREM 1.4.1, THEOREM 1.5.1]). Let (0) ⊊
I ⊊ A be an ideal of A. We define the contravariant functorMd

I : (Sch/(Spec(A) \
V (I)))→ (Set) as follows:

Md
I(S) = {(L, φ, ι) | (L, φ, ι) is a Drinfeld A-module with Γ(I)-structure over S}/ ∼=
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Here, ∼= is the equivalence relation defined by the isomorphisms of Drinfeld A-
modules with Γ(I)-structure over S. ThenMd

I is represented by an affine (Spec(A)\
V (I))-scheme Md

I which is of finite type and smooth of relative dimension d − 1
over Spec(A) \ V (I).

For our proof of the p-primary Uniform Boundedness Conjecture of rank 2, we
also consider the following level structure.

Definition 2.35. Let S be an A-scheme and (L, φ) a Drinfeld A-module of rank d
over S. Let I be a nonzero ideal of A. Further we assume that the characteristic
of S does not intersect V (I) ⊂ Spec(A).

(1) A Γ1(I)-structure on (L, φ) is a closed immersion of A-module schemes
ι : I−1/A ↪→ φ[I].

(2) A Drinfeld A-module with Γ1(I)-structure over S is a triple (L, φ, ι) such
that (L, φ) is a Drinfeld A-module over S and ι is a Γ1(I)-structure on
(L, φ). Let (L, φ, ι) and (L′, φ′, ι′) be Drinfeld A-modules with Γ1(I)-structure
over S. A homomorphism between (L, φ, ι) and (L′, φ′, ι′) is a homomor-
phism of Drinfeld A-modules between (L, φ) and (L′, φ′) which is compatible
with their Γ1(I)-structures.

Proposition 2.36. Let (0) ⊊ I ⊊ A be an ideal of A. We define the contravariant

functorMd,1
I : (Sch/(Spec(A) \ V (I)))→ (Set) as follows:

Md,1
I (S) = {(L, φ, ι) | (L, φ, ι) is a Drinfeld A-module with Γ1(I)-structure over S}/ ∼=

Here, ∼= is the equivalence relation defined by the isomorphisms of Drinfeld A-

modules with Γ1(I)-structure over S. ThenMd,1
I is represented by an affine (Spec(A)\

V (I))-scheme Md,1
I which is of finite type and smooth of relative dimension d − 1

over Spec(A) \ V (I).

Proof. First, we fix a (Spec(A)\V (I))-scheme S and an isomorphism I−1/A ∼= A/I.

Take an arbitary element [(L, φ, ι)] ∈Md,1
I (S). Here, [(L, φ, ι)] denotes an element

ofMd,1
I (S) which is represented by (L, φ, ι). Then, ι(1) is an everywhere nonzero

section of L→ S, so it defines an isomorphism L ∼= OS .
We claim that there exists a unique representative of [(L, φ, ι)] such that (L, φ)

is standard, L = OS , and ι(1) = 1. The existence of such a representative is clear,
so we prove the uniqueness. For this, it suffices to prove that an automorphism of
a standard Drinfeld A-module with Γ1(I)-structure over S is trivial. This follows
from the fact that such an automorphism is automatically S-linear by Proposition
2.28. In the following, we may assume that (L, φ, ι) is standard, L = OS and
ι(1) = 1.

Next we pick a set of generators a1, . . . , an(ai 6= 0) of A as an Fq-algebra so that
I = (a1, . . . , as) holds for some s ≤ n. Fix a set of generators f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)
of the kernel of the surjective homomorphism Fq[x1, . . . , xn]→ A defined by xi 7→
ai.

Under this set-up, a standard Drinfeld A-module of rank d with Γ1(I)-structure
(OS , φ, ι) which satisfies ι(1) = 1 is equivalent to the following data:

(1) For all i = 1, . . . , n, φi =
∑−dd∞v∞(ai)
i=0 ai,jτ

j ∈ End(Ga,S/S). Here, ai,j ∈
Γ(S,OS).

(2) For all i = 1, . . . , n, ai,0 = ai and ai,−dd∞v∞(ai) ∈ Γ(S,O∗
S).

(3) For all i, j = 1, . . . , n, φiφj = φjφi.

(4) From (1) and (2), we obtain a homomorphism φ̃ : Fq[x1, . . . , xn]→ EndFq
(Ga,S/S)

defined by xi 7→ φi for every i = 1, . . . , n. Then φ̃ factors through A, i.e.
φ̃(fi(x1, . . . , xn)) = 0 for every i = 1, . . . ,m.
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(5) 1 ∈ Γ(S,OS) has the exact order I. In other words, φi(1) = 0 for every
i = 1, . . . , s and, if we fix a complete representative T ⊂ A of (A/I) \ {0},
then φt(1) ∈ Γ(S,O∗

S) for every t ∈ T .
Now we construct a finitely generated A-algebra RI whose spectrum represents

Md,1
I . First, we define a set of indeterminates as follows:

(a) ai,j for every i = 1, . . . , n and j = 0, . . . ,−dd∞v∞(ai).
(b) bi for every i = 1, . . . , n.
(c) ct for every t ∈ T .

Then, we define a finitely generatedA-algebraRI as the quotient ofA[{ai,j}, {bi}, {ct}]
divided by the following relations:

(d) ai,0 = ai and ai,−dd∞v∞(ai)bi = 1 for every i = 1, . . . , n.
(e) The relations obtained by comparing the coefficients of both sides of (3) for

every pair i, j = 1, . . . , n.
(f) The relations obtained by comparing the coefficients of both sides of (4) for

every i = 1, . . . ,m.

(g)
∑−dd∞v∞(ai)
i=0 ai,j = 0 for every i = 1, . . . , s and φt(1)ct = 1 for every t ∈ T .

Here, φt denotes the image of t under a homomorphism A→ End(Ga,S/S)
obtained from (e) and (f).

Then the above argument shows that there is a natural bijection between Spec(RI)(S)→
Md,1

I (S). Therefore,Md,1
I is represented by Spec(RI). Next we prove that Spec(RI)

is smooth of relative dimension d− 1 over Spec(A) \ V (I). It suffices to prove that

a morphism Md
I → Md,1

I defined by I−1/A ↪→ (I−1/A)d is a finite étale cover-
ing. The surjectivity is clear, and the finiteness follows from the finiteness part
of Proposition 2.31. As for the étaleness, we need to prove that a natural map
HomMd,1

I
(Spec(R),Md

I )→ HomMd,1
I

(Spec(R/J),Md
I ) is bijective for all pairs which

consist of affine RI -scheme R and an ideal J of R satisfying J2 = 0. Using the mod-

ular interpretation of Md
I and Md,1

I , it suffices to prove that φ[I](R) → φ[I](R/I)
is bijective for all standard Drinfeld A-modules over R and this follows from the
étaleness part of Proposition 2.31. □

Example 2.37.

(1) Let A = Fq[T ] and I = (T ). Then a Drinfeld A-module φ over an A-field F
is given by a degree d polynomial φT = T+a1τ+· · ·+adτd (ai ∈ K, ad 6= 0).
If φ has a nonzero I-torsion point over F , then by replacing φ if necessary,

we may assume that φT (1) = 0 which is equivalent to T +
∑d
i=1 ai = 0.

Therefore, we conclude that Md,1
I ×K ∼= Ad−2

K ×Gm,K .

(2) Let (0) ⊊ I ⊊ A be an ideal of A. Then M2,1
I ×Spec(A)\V (I) K is a smooth

1-dimensinal scheme over K. We denote it by Y1(I).

We close this section by discussing the results of Breuer-Pink [3] concerning
images of monodromy representations associated to Drinfeld modules. Our goal is
to prove a variant of Takahashi’s result (Theorem 2.43).

First, we define the isotriviality of Drinfeld modules.

Definition 2.38. Let K = Frac(A) ⊂ M ⊂ L be a tower of fields, M and L
algebraic closures of M and L respectively, and φ a Drinfeld A-module over L. We
say that φ is M -isotrivial if there exists a Drinfeld A-module ψ over M such that
φ×L L and ψ ×M L are isomorphic.

We fix some notations. Let Â :=
∏

p∈Spec(A)\{(0)}Ap be the profinite completion

of A, and AfK := Â ⊗A K the ring of finite adeles of A. Then we have natural
13



inclusions Â ⊂ AfK , GLd(Â) ⊂ GLd(AfK) and SLd(Â) ⊂ SLd(AfK), in each of which
the former is open in the latter.

Breuer and Pink [3] studied monodromy representations associated to (universal)
Drinfeld modules over subvarieties of Drinfeld modular varieties, and proved the
following result.

Proposition 2.39 (Breuer-Pink [3, Theorem 3]). Let F be a finitely generated
extension of K and F sep a separable closure of F . Let φ be a Drinfeld A-module
of rank d over F which is not K-isotrivial and satisfies A = EndF sep(φ). Then the

image of the Galois representation associated to the adelic Tate module T̂ (φ) :=∏
p∈Spec(A)\{(0)} Tp(φ) of φ

GF → GLd(Â) ⊂ GLd(AfK)

is open.

More generally, Breuer and Pink proved the following result:

Proposition 2.40 (Breuer-Pink [3, Theorem 8]). Let F be a finitely generated
extension of K and F sep a separable closure of F . Let φ be a Drinfeld A-module
of rank d over F which is not K-isotrivial. Let E := EndF sep(φ) and define d′ :=

d
rankA(E) . Then the image of the Galois representation associated to the adelic Tate

module of φ

GF → GLd(Â) ⊂ GLd(AfK)

is commensurable with GLd′(E ⊗A AfK). In other words, their intersection is open

in the images of GF and GLd′(E ⊗A AfK).

First, using Breuer-Pink’s result, we prove the following proposition:

Proposition 2.41. Let F be a finitely generated extension of K and L a finitely
generated extension of F . Let φ be a Drinfeld A-module of rank d over L which
is not F -isotrivial and satisfies A = EndLsep(φ). Then the image of the Galois
representation associated to the adelic Tate module of φ

GF sepL → GLd(Â) ⊂ GLd(AfK)

is commensurable with SLd(AfK).

Proof. The proof is essentially the same as Breuer-Pink’s result [3, Theorem 3].
First, by replacing L with a finite separable extension if necessary, we may

assume that φ has a sufficiently high level structure Γ. Therefore, if we denote
the moduli space over F of Drinfeld modules with Γ-level structure by MF , φ
defines a morphism Spec(L) → MF . Let L̃ be the residue field of the image of

this morphism. Then the F -nonisotriviality of φ ensures that trdegF L̃ ≥ 1. Since

GF sepL → GLd(AfK) factors through GF sepL → GF sepL̃, which is an open map as

F sepL is finitely generated over F sepL̃, we may replace L by L̃.
Let k be the algebraic closure of F in L. The morphism Spec(L)→MF naturally

extends to Spec(L) → Mk. Let η be the image of this morphism. Then η is the
generic point of a subvariety X ofMk. By shrinking X if necessary, we may assume

that X is smooth. Then since the Galois representation GL → GLd(AfK) factors

through GL ↠ π1(X, η), the homomorphism GF sepL → GLd(AfK) factors through
GF sepL ↠ π1(X ×k F sep, η). Now, by a result of Breuer-Pink [3, Theorem 2.(1)],

the image of π1(X ×k F sep, η)→ GLd(AfK) is an open subgroup of SLd(AfK). □

More generally, we can prove the following:
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Proposition 2.42. Let F be a finitely generated extension of K and L a finitely
generated extension of F . Let φ be a Drinfeld A-module of rank d over L which is
not F -isotrivial. Let E := EndLsep(φ) and define d′ := d

rankA(E) . Then the image

of the Galois representation associated to the adelic Tate module of φ

GF sepL → GLd(AfK)

is commensurable with SLd′(E ⊗A AfK).

Proof. We may replace L by a finite separable extension and φ by a Drinfeld A-
module which is isogenous to φ. Therefore, by Proposition 2.23, we may assume
that EndLsep(φ) = EndL(φ) = Ẽ. Here, Ẽ denotes the integral closure of E in its

fraction field. Let φẼ be the Drinfeld Ẽ-module of rank d′ over L defined by the

tautological homomorphism Ẽ → EndL(φ).

Let ˆ̃E :=
∏

P∈Spec(Ẽ)\{(0)} ẼP be the profinite completion of Ẽ and Af
Frac(Ẽ)

:=

Ẽ⊗AAfK(= E⊗AAfK). Then discussions at the end of section 2.3 imply that there

exists an ˆ̃E[GL]-isomorphism T̂ (φ) and T̂ (φẼ) (the adelic Tate module of φẼ).
Then the following commutative diagram exists:

GL GLÂ(T̂ (φ))

GL ˆ̃E
(T̂ (φẼ))

Then by Proposition 2.41 the image of GF sepL → GL ˆ̃E
(T̂ (φẼ)) is commensurable

with SLd′(AfFrac(Ẽ)
). This concludes the proof. □

Now we prove the following variant of Theorem 2.13.

Theorem 2.43. Let K = Frac(A) ⊂ M ⊂ L be a tower of finitely generated
extensions of fields, M sep and Lsep separable closures of M and L respectively, and
φ a Drinfeld A-module over L. Let v be a discrete valuation on L which is trivial
on M , v an extension of v to Lsep, and I the inertia subgroup of GL at v.

Then, if there exists a nonzero Ap[GMsepL]-submodule T ⊂ Tp(φ) on which I
acts trivially, φ has good reduction at v.

Proof. By Theorem 2.13, it suffices to prove that I acts trivially on Tp(φ).
Let E := EndLsep(φ). By Proposition 2.23, there exists a Drinfeld A-module ψ

over Lsep such that Ẽ = EndLsep(ψ) and ψ is isogenous to φ ×L Lsep. Here, Ẽ
denotes the integral closure of E in its fraction field. First, we prove that φ has
potentially good reduction at v. By taking a suitable finite separable extension L̃
of L, we may assume that ψ descends to a Drinfeld A-module over L̃ (which we

also denote by ψ), Ẽ = EndL̃(ψ) and ψ is isogenous to φ ×L L̃. Then it suffices
to prove that ψ has potentially good reduction at v. If ψ is M -isotrivial, then by
Theorem 2.13 we conclude that ψ has potentially good reduction. Therefore, in the
following, we may assume that ψ is not M -isotrivial.

Let ψẼ be the Drinfeld Ẽ-module over L̃ defined by the tautological homomor-

phism Ẽ → EndL̃(ψ).Then, by the discussions at the end of section 2.3, we have
the following decomposition of the rational p-adic Tate module

Vp(ψ) ∼=
⊕
P|p

VP(ψẼ)

which is compatible with E-action and GL̃-action. Each direct summand VP(ψẼ)
of the right hand side is a Frac(E)P[GL̃]-module. Since ψẼ is not L-isotrivial, by
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Proposition 2.42 we see that VP(ψ) is simple as a Frac(E)P[GL̃]-module. Therefore,
by taking a prime ideal P above p such that the composite of T ↪→

⊕
P|p VP(ψẼ) ↠

VP(ψẼ) is nonzero, we see that VP(ψẼ) = (VP(ψẼ))
Ĩ where Ĩ := I ∩ GL̃ is the

inertia subgroup of L̃ corresponding to ṽ := v̄|L̃. By Theorem 2.13 we conclude

that ψ ×L L̃ has good reduction at ṽ, hence also φ×L L̃ does.
Pick an element u ∈ L̃ \ {0} such that all coefficients of uφau

−1 (a ∈ A) are in
Oṽ and highest coefficients of uφau

−1 (a ∈ A\{0}) are units of Oṽ. By considering
Newton polygons, we see that the valuations of all nonzero roots of uφau

−1 (a ∈
A\{0}) equal zero. On the other hand, if we take a nonzero element t ∈ φ[p∞](M sep)
in the image of a suitable projection from T to φ[p∞](Lsep), the valuation of t is
an integer. By combining v(u−1t) = 0 and v(t) ∈ Z, we conclude that v(u) ∈ Z.
Hence u can be chosen in L \ {0}, and this concludes that φ has good reduction at
v. □

3. Asymptotic behaviors of reductions of analytic manifolds

Our goal in this section is to prove Proposition 3.1. The method used in this
section is almost verbatim as Cadoret-Tamagawa’s one used in [5], except that we
have to work with Lie groups over equal-characteristic local fields.

We fix some notations. Let M be a free Ap-module of rank m ≥ 1 and set
W := M ⊗Ap

Kp. For each positive integer n, we define Mn := M/pnM . For
v ∈M , we denote the image of v under the natural map M ↠Mn by vn.

Let GL(M) := AutAp
(M) and GL(Mn) := AutA/pn(Mn). Let G be a closed

analytic subgroup of GL(M). For each positive integer n, Gn denotes the image of
G under the modulo pn map GL(M) ↠ GL(Mn), and for v ∈M (resp. vn ∈Mn),
Gv (resp. Gnvn) denotes the orbit of v (resp. vn) under the action of G (resp. Gn).

In the following, we assume that G and a fixed element v ∈ M satisfy the
following conditions:

(∗) (1) The map G→M, g 7→ gv is a subimmersion.
(2) For every open subgroup H ⊂ G, W = Kp[H]v holds.

The first condition of (∗) ensures that Gv has an analytic manifold structure
which makes it be a closed analytic manifold of M ∼= Amp , and the natural bijection

G/stabG(v)
∼−→ Gv becomes an isomorphism of analytic manifolds [20, Part II,

section IV, §5, Theorem 4].

Proposition 3.1. Let I be a closed subgroup of G. Then lim
n→∞

|I\Gnvn|
|Gnvn|

=
1

|I|
holds.

Proof. First, we prove the statement when I is infinite, assuming that the statement
holds when I is finite.

We consider the case when I is infinite and quasi-unipotent. By replacing I
with an open subgroup if necessary, we may assume that I is unipotent. Then all
elements of I are torsion. We claim that I has finite subgroups of arbitary large
order. Indeed, if the commutator subgroup [I, I] is finite, the abelianization Iab of
I is infinite abelian torsion pro-p group, hence it has finite subgroups of arbitary
large order. By taking inverse images in I of such subgroups, we obtain the desired
result. So we may assume that [I, I] is infinite and then we can replace I with [I, I].
Since I is unipotent, by repeating this argument we complete the proof of the claim.
Hence we settle this case by using the statement for various finite subgroups of I.

Next we consider the case when I is infinite and not quasi-unipotent. Then I
have a closed subgroup which is isomorphic to Zp. Indeed, by replacing I with
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an open subgroup, we may assume I is pro-p. Then the subgroup 〈u〉 of I which
is topologically generated by a non-unipotent element u ∈ I is isomorphic to Zp.
Hence we may assume that I is isomorphic to Zp. Fix an integer N ≥ 0 and

we set J := Ip
N

. For an element xn ∈ Gnvn, Ixn denotes the stabilizer of xn
under the action of I. Then xn 6∈ (Gnvn)

J if and only if J 6⊂ Ixn
, and the latter

is equivalent to Ixn ⊊ J = Ip
N

, or Ixn ⊂ Ip
N+1

. Hence xn 6∈ (Gnvn)
J implies

|Ixn| = [I : Ixn
] ≥ [I : Ip

N+1] ≥ pN+1. Therefore,

0 ≤ |I\Gnvn|
|Gnvn|

≤ |I\(Gnvn \ (Gnvn)
J)|

|Gnvn|
+
|(Gnvn)J |
|Gnvn|

≤ 1

pN+1
+
|(Gnvn)J |
|Gnvn|

holds. By Proposition 3.2 below, we conclude that

0 ≤ lim
n→∞

|I\Gnvn|
|Gnvn|

≤ 1

pN+1

holds. Since N is arbitary, this concludes the proof.

Second, we prove the statement assuming that I is finite. Note that the proof
similarly as in [5, Theorem 3.1 (1)] also works under our assumption. More specifi-
cally, by using Oesterlé’s result [13, Théorème 6], we can prove the following propo-
sition (which is an analogue of [5, Theorem 3.2 (1)]).

Proposition 3.2. For any closed subgroup J ⊂ G, lim
n→∞

|(Gnvn)J |
|Gnvn|

= 0 holds

unless J is trivial.

Then the proof in [5, Theorem 3.1 (1)] works as it is. □

We give an example of G which satisfies the first condition of (∗). This example
is used to prove Theorem 1.2.

Lemma 3.3. Let r be a positive integer, and B1/Ap, . . . , Br/Ap finite extensions
of discrete valuation rings with fraction fields L1, . . . , Lr, respectively. For each
i = 1, . . . , r, let Mi be a free Bi-module of finite rank. Let M ⊂

⊕r
i=1Mi be an

open Ap-submodule. Set W :=M ⊗Ap
Kp =

⊕r
i=1Mi ⊗Ap

Kp. Let G ⊂ GLKp
(W )

be a closed subgroup which satisfies the following condition:

G is commensurable with
∏r
i=1 SLLi(Mi⊗Ap

Kp) ⊂ GLKp
(W ). Moreover, M is

closed under the natural G-action.

Then the map G→M, g 7→ gv is a subimmersion for every v ∈M .

Proof. We note that such a G has a structure of closed analytic Lie subgroups of
GLKp

(W ) since
∏r
i=1 SLLi

(Mi ⊗Ap
Kp) does.

It suffices to prove that the map SLLi
(Mi ⊗Ap

Kp) → Mi ⊗Ap
Kp, g 7→ gvi is a

subimmersion for every vi ∈Mi ⊗Ap
Kp. If vi = 0 it is obvious, so we may assume

that vi 6= 0. Then the map is a submersion if dimLi
(Mi) = 1 and is an immersion

otherwise. Indeed, by taking a suitable basis, we may assume Mi ⊗Ap
Kp
∼= Kn

p

for some n ≥ 1 and vi = (1, 0, . . . , 0). Then we can explicitly compute the induced
map between tangent spaces. Therefore, SLLi(Mi ⊗Ap

Kp)→Mi ⊗Ap
Kp, g 7→ gvi

is a subimmersion. □

4. The proof of Theorem 1.2

4.1. The reduction step. Now assume L is an algebraically closed field which
contains K. Let S be a curve over L, and η : Spec(L(S))→ S the generic point of
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S. We fix an algebraic closure L(S) of L(S), and let η : Spec(L(S)) → S be the
corresponding geometric generic point.

Let φ be a Drinfeld A-module over S. For every integer n ≥ 0, φ[pn] is a finite
étale A-module scheme over S (Proposition 2.31). Therefore, the action of the

absolute Galois group GL(S) of L(S) on φη[p
n](L(S)) factors through the surjection

GL(S) ↠ Π := π1(S, η).

For every v ∈ φη[pn](L(S)), let Πv ⊂ Π be the stabilizer of v with regard to the

above Π-action on φη[p
n](L(S)), and Sv a connected finite étale cover of S which

corresponds to Πv. We denote the genus of the compactification of Sv by gv.
First, we prove that the following theorem implies theorem 1.2:

Theorem 4.1. With the notations and assumptions as in Theorem 1.2, let v ∈
Tp(φη)

∗ and vn := v mod pnTp(φη) ∈ φη[p
n](L(S)) for n ≥ 0. Then gvn →

∞ (n→∞) holds.

Proof of Theorem 4.1 ⇒ Theorem 1.2. Assume that Theorem 4.1 holds but Theo-
rem 1.2 does not hold. Then there exists c ≥ 0 such that for every n ≥ 0, there
exists vn ∈ φη[p

∞](L(S)) so that gvn ≤ c and pnvn 6= 0. Take such vn and let
m > n be the least integer such that pmvn = 0 holds. If π ∈ A is a generator of
pAp, then we see that wn := πm−nvn ∈ φη[pn]∗(L(S)). By definition of wn, it holds
that Πvn ⊂ Πwn ⊂ Π and hence gwn ≤ gvn ≤ c.

Therefore, for any n ≥ 0,

φη[p
n]∗c(L(S)) := {v ∈ φη[pn]∗(L(S)) | gv ≤ c} 6= ∅

holds. By observing Ππv ⊂ Πv, we see that {φη[pn]∗c(L(S))}n≥0 is a projec-

tive subsystem of φη[p
n](L(S)) which consists of nonempty finite sets. Hence

lim←−φη[p
n]∗c(L(S)) is not empty, which contradicts Theorem 4.1. □

Next, we prove that, to prove Theorem 4.1, we may assume that W := Kp[Π]v
satisfies the second condition of (∗) in section 3. In other words, we prove that, by
replacing S with SvN for sufficiently large N , the following holds.

(∗) (2) For every open subgroup H ⊂ G, W = Kp[H]v hold.

Let W∞(v) :=
∩
H⊂Π

Kp[H]v. Here, the index runs through all open subgroups H

of Π. As v ∈W∞(v), W∞(v) is a nonzero Kp-vector subspace of W . If we take an
open subgroup H0 ⊂ Π such that dimKp

Kp[H0]v = min
H⊂Π

(dimKp
Kp[H]v), it holds

that W∞(v) = Kp[H0]. In particular, as the subgroup

Π∞(v) := {γ ∈ Π | γ ·W∞(v) =W∞(v)} ⊂ Π

contains H0, it is open.

Let Πv ⊂ Π be the stabilizer of v. By definition,
∩
n≥0

Πvn = Πv holds. We claim

that Πvn ⊂ Π∞(v) holds for sufficiently large n. First, we observe that∩
n≥0

Πvn = Πv ⊂ Π∞(v)

holds. Therefore,

Π = Π∞(v) ∪
∪
n≥0

(Π \Πvn)
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holds. By compactness of Π, there exists N ≥ 0 such that

Π = Π∞(v) ∪
∪
n≤N

(Π \Πvn)

holds. In particular, ΠvN =
∩
n≤N Πvn ⊂ Π∞(v) holds.

The statement of Theorem 4.1 only concerns the asymptotic behavior of genus
gvn with n → ∞, so it is harmless to replace Π with ΠvN . In the following, we
assume that the second condition of (∗) in section 3 holds for Π and v ∈W .

4.2. Proof of Theorem 4.1.
Let M := W ∩ Tp(φη), ρM : Π → GL(M) the representation associated to M ,

and G the image of ρM . For every n ≥ 0, let Mn :=M ⊗Ap
(A/pn).

First, we verify that G and v satisfies the first condition of (∗) in section 3, i.e.
G→M, g 7→ gv is a subimmersion. For this, we recall what we proved at the end of
section 2.3. Let Ẽ be the integral closure of E := EndL(S)sep(φη) in its fration field,
ψ a Drinfeld A-module over L(S)sep which is isogenous to φη×L(S)L(S)sep and such

that Ẽ = EndL(S)sep(ψ). By taking a suitable finite separable extension ˜L(S) of

L(S), we may assume that ψ descends to a Drinfeld A-module over ˜L(S) (which we

also denote by ψ), Ẽ = End ˜L(S)
sep(ψ) and ψ is isogenous to φη×L(S) ˜L(S). We define

ψẼ to be a Drinfeld Ẽ-module over ˜L(S) which is induced by Ẽ = End ˜L(S)
(ψ).

Finally, let Vp(φη×L(S) ˜L(S)) =
⊕

P|p VP(ψẼ) be the direct decomposition obtained

at the end of section 2.3. We claim the following assertion:

Claim W ⊂ Vp(φη ×L(S) ˜L(S)) is a direct sum of some VP(ψẼ)’s.

Indeed, since we assume that φη is not L-isotrivial, ψẼ is also not L-isotrivial.
In particular, the rank of ψẼ is greater than 1 (cf. Corollary 2.24). By applying
proposition 2.42 to ψẼ , we see that each VP(ψẼ) is simple as a Kp[G ˜L(S)

]-module

and that for any P 6= P′, VP(ψẼ) is not isomorphic to VP′(ψẼ) as a Kp[G ˜L(S)
]-

module. Thus the claim follows.
From this claim, Proposition 2.42 and Lemma 3.3, we conclude that M and G

satisfy the first condition of (∗).
Now, let us add some more notations. Let g be the genus of the smooth com-

pactification of S. For each n ≥ 0, let Gn be the image of the composite of

Π
ρ−→ GL(M) → GL(Mn). Moreover, for each n ≥ 0 and v ∈ φη[pn](L(S)), Sv de-

notes a connected finite étale cover of S which corresponds to the stabilizer Πv ⊂ Π
of v. We define gv to be the genus of the smooth compactification of Sv. Set

λvn :=
2gvn−2

deg(Svn→S) (=
2gvn−2
|Gnvn| ). From the Riemann-Hurwitz formula we see that

λvn+1
≥ λvn holds for every n ≥ 0. From Proposition 2.42 and the non-isotriviality

of φη, we see that |Gnvn| → ∞ (n → ∞). Thus, to prove gvn → ∞, it suffices to
show that λvn > 0 for sufficiently large n.

Let P1, . . . , Pr be the cusps of S. For each i = 1, . . . , r and each n ≥ 0, write
Ii,n ⊂ Gn for the image of the inertia subgroup Ii ⊂ G at Pi (which is determined
up to conjugacy). Let dn(P ) (resp. en(P )) be the exponent of different (resp.
ramification index) at a given cusp P of Svn in Svn → S.

Using the Riemann-Hurwitz formula, we can rewrite λvn as follows:

λvn = 2g − 2 +
1

|Gnvn|
∑

1≤i≤r

∑
P∈Svn ,P |Pi

dn(P )
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Then by using dn(P ) ≥ en(P ) − 1,
∑

P∈Svn ,P |Pi

en(P ) = |Gnvn| and |{P ∈ Scpt
vn |

P |Pi}| = |Ii,n\Gnvn| (i = 1, . . . , r) we obtain:

λvn ≥ −2 + 1

|Gnvn|
∑

1≤i≤r

∑
P∈Svn ,P |Pi

(en(P )− 1)

= −2 +
∑

1≤i≤r

(
1− |Ii,n\Gnvn|

|Gnvn|

)

By Proposition 3.1, we see that 1− |Ii,n\Gnvn|
|Gnvn|

tends to 1− 1

|Ii|
if n goes to infinity.

We claim that at least one of |Ii| is infinite. Indeed, assume that all of |Ii| are finite.
Then we can replace S with a finite connected étale cover T so that φ×S T has an
appropriate level structure and has good reduction at every point of T cpt. Then
the corresponding classifying map T → ML where ML denotes the moduli space
over L of Drinfeld A-modules with an appropriate level structure, is extended to a
morphism T cpt →ML by Theorem 2.13 and by the separatedness ofML. However,
since ML is affine by Proposition 2.34, the map T cpt → ML is constant. In other
words, we see that φη is L-isotrivial, which contradicts our assumption.

Moreover, we claim that, if we replace S with Svn for n � 0, we may assume
that |Ii| is infinite for at least three i’s. To prove this claim, note that the number
of cusps of Svn above Pi is equal to |Ii,n\Gnvn|. Hence it suffices to prove that
|Ii\Gv| =∞. Indeed, Ii acts quasi-unipotently on every VP(ψẼ) by Corollary 2.15
whereas the image of Gv in some VP(ψẼ) under the natural projection is open by
Proposition 2.42 and the non-isotriviality of φη. Take such a P and choose a basis
(w1, . . . , wd) of VP(ψẼ) so that an open subgroup of Ii becomes upper triangular
with respect to this basis. Then the image of Iigv under the projection to the
w1-component VP(ψẼ) → Frac(ẼP) is finite for every g ∈ G, whereas the image

of Gv is open in Frac(ẼP). So it is impossible to cover Gv by using only a finite
number of Iigv’s (g ∈ G). Hence the claim follows.

Therefore, we conclude that λvn > 0 for n� 0, as desired.

5. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. If φη is not L-isotrivial, then, based on
the results obtained so far, almost the same proof of Cadoret-Tamagawa works. If
φη is L-isotrivial, we prove a stronger result (Theorem 5.4).

First, we reduce to the case where we can apply Theorem 1.2. Note that, by an
analogue of the Mordell-Weil theorem for Drinfeld modules proved by Poonen [17,
THEOREM 1], we are free to replace S with a dense open subset. By replacing
S with Sred, we may assume that S is reduced. By shrinking S if necessary, we
may assume that S is separated and regular. By decomposing S into connected
components, we may assume S is connected. If S(L) = ∅ there is nothing to prove,
so we may assume that S(L) 6= ∅. Then since S is a 1-dimensional regular scheme,
S is smooth at every point of S(L). Hence the smooth locus of S is non-empty, so
by shrinking S we may assume that S is smooth and geometrically connected since
S(L) 6= ∅. To sum it up, we reduce to the case when S is separated, geometrically
integral and smooth.

5.1. The non-isotrivial case.
Assume that φη is not L-isotrivial. Let s ∈ S(L). First, we observe that

φη[p
n](L(S)) is defined over the integral closure of S in the maximal extension

of L(S) unramified over S. Therefore there exists a specialization isomorphism
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sps : φη[p
n](L(S))

∼−→ φs[p
n](L). Here, the decomposition group at s ∈ S(L) acts

on the left-hand side, and hence on the right-hand side through sps. This action is
compatible with the natural surjection from the decomposition group to GL.

Lemma 5.1 (cf. Cadoret-Tamagawa [4, Claim 4.2(ii)]). For each vn ∈ φη[pn](L(S)),
sps(vn) ∈ φs[pn](L) if and only if s lifts to an L-rational point of Svn .

Proof. s ∈ S(L) induces a homomorphism (which is defined up to conjugacy)
between fundamental groups s : GL → π1(S). Then, s lifts to an L-rational
point of Svn if and only if s(GL) ⊂ π1(Svn). The latter condition holds if and
only if s(σ)vn = vn for every σ ∈ GL. By using the Galois-equivariance of sps,
the last condition is equivalent to σsps(vn) = sps(vn) for every σ ∈ GL. Since
φs[p

n](L) = φs[p
n](Lsep) this is equivalent to sps(vn) ∈ φs[pn](L). □

Using this lemma, we can rephase Theorem 1.1 as follows.
For each integer n ≥ 0, We define

Sn :=
⨿

vn∈ϕη [pn]∗(L(S))

Svn .

Note that {Svn}n constitutes a projective system whose transition maps are mul-
tiplication by a fixed uniformizer of pAp in A.

Lemma 5.2 (cf. Cadoret-Tamagawa [4, Claim 4.3]). we have:

(1) lim←−Sn(L) = ∅.
(2) Theorem 1.1 is equivalent to saying that Sn(L) = ∅ for n� 0.
(3) Suppose that Sn(L) 6= ∅ for any n ≥ 0. Then there exists (vn) ∈ Tp(φη)∗

such that Svn(L) 6= ∅ for any n ≥ 0.

Proof. (1) Assume lim←−Sn(L) 6= ∅ and take (sn) ∈ lim←−Sn(L). Then by definition

there exists (vn) ∈ lim←−φη[p
n]∗(L(S)) such that (sn) ∈ lim←−Svn(L). If we define

s := s0 ∈ S0 = S, then by Lemma 5.1 it holds that sps(vn) ∈ φs[pn]∗(L) for any
n ≥ 0. This contradicts the finiteness of (φs)tors(L) (Poonen [17, THEOREM 1]).

(2) By using Lemma 5.1 again, we see that the assertion of Theorem 1.1 is equiva-

lent to saying that there exists an integer N such that, for every vn ∈ φη[pn]∗(L(S)),
Svn(L) 6= ∅ implies n ≤ N .

(3) This follows from the fact that {vn ∈ φη[pn]∗(L(S)) | Svn(L) 6= ∅} forms a
projective system of finite sets. □
Lemma 5.3 (cf. Cadoret-Tamagawa [4, Proposition 3.7]). Let F be the prime
field of arbitary characteristic, and k a field finitely generated over F. Let C be
a proper curve over k, and assume that the normalization of C ×k k is of genus
≥ 2. Let S be a nonempry open subscheme of C (which is a curve over k). When
S(k) is infinite, put the extra assumption that S is F-isotrivial. (Note that C is
automatically F-isotrivial by [19, Théorème].) Then there exists an F-morphism
f : S → T between separated, normal, integral schemes of finite type over F, such
that the following hold: (a) the function field F(T ) of T is F-isomorphic to k; (b)
under the identification F(T ) = k, S is isomorphic to the generic fiber Sk of S;
and (c) under the identification S = Sk, we have S(k) = S(T ), i.e., each element
of S(k) = Sk(k) uniquely extends to an element of S(T ).

Now we are ready to prove Theorem 1.1 assuming that φη is not L-isotrivial.

Proof of Theorem 1.1 assuming that φη is not L-isotrivial. Assume that the asser-
tion of Theorem 1.1 does not hold. Then by Lemma 5.2 (2) and (3), there exists

v = (vn) ∈ lim←−φη[p
n]∗(L(S)) such that Svn(L) 6= ∅ holds for any n ≥ 0. Since Svn

is connected by definition, Svn(L) 6= ∅ implies Svn is geometrically connected.
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First, let C be the normal compactification of S, and φ̃ the minimal model of
φ over C (Remark 2.21). If we write S̃ := {s ∈ C | φη has good reduction at s},
S̃ is a non-empty open subset of C because S ⊂ S̃. Then φ̃ |S̃ defines a Drinfeld

A-module over S̃. Moreover, Svn ⊂ S̃vn holds for any n ≥ 0. We may replace S

with S̃ and φ with φ̃. If Svn(L) 6= ∅ is finite for any n ≥ 0, lim←−Svn(L) is non-empty

which contradicts Lemma 5.2 (1). Therefore, in the following, we may assume that
Svn(L) 6= ∅ is infinite for any n ≥ 0.

We claim that S is Fp-isotrivial. Let Cn be the normal compactification of
Svn . Then {Cn}n naturally forms a projective system. By Samuel [19, Théorème]
each Cn is Fp-isotrivial, so there exists a curve Cn,Fp

over Fp and an isomorphism

Cn ×L L ∼= Cn,Fp
×Fp

L. Under this identification, by [23, Lemma 1.32], the L-

morphism Cn+1×LL→ Cn×LL (uniquely) descends to an Fp-morphism Cn+1,Fp
→

Cn,Fp
. Hence {Cn,Fp

}n also forms a projective system.

Now we define Sn,Fp
to be the image of Svn ×L L in Cn,Fp

for each n ≥ 0. In

particular, SFp
denotes the image of S ×L L in CFp

. Then the same proof as in [4,

Claim 4.5] shows that each Sn,Fp
is open in Cn,Fp

and {Sn,Fp
}n forms a projective

system of open subschemes of {Cn,Fp
}n whose transition maps are finite étale.

This observation can be rephrased as follows: Write ω0 for the natural morphism
S ×L L → SFp

and let π1(ω0) : π1(S ×L L) ↠ π1(SFp
) be the homomorphism

induced by ω0. Then for each n ≥ 0, there exists an open subgroup Hn ⊂ π1(SFp
)

such that π1(ω0)
−1(Hn) equals to the stabilizer π1(S ×L L)vn of vn in π1(S ×L L).

Now for each g ∈ π1(S ×L L), observe the following equality:

π1(S ×L L)gvn = gπ1(S ×L L)vng−1 = gπ1(ω0)
−1(Hn)g

−1 = π1(ω0)
−1(gHng

−1)

Here, we define g := π1(ω0)(g). From this, we see that the π1(S×LL)-action on the
set π1(S ×L L)vn factors through π1(ω0) : π1(S ×L L) ↠ π1(SFp

). Therefore the

π1(S×LL)-action on the Ap-module < π1(S×LL)vn > also factors through π1(ω0) :

π1(S ×L L) ↠ π1(SFp
). In particular, it follows that, for every x ∈ SFp

×Fp
L, the

corresponding inertia subgroup Ix acts trivially on a non-zero Ap[π1(S ×L L)]-
submodule of the p-adic Tate module of φη. By applying Proposition 2.43, we

conclude that φη has good reduction at every point x of SFp
×Fp

L. However,

since S consists of the points in C at which φη has good reduction, it follows that

S ×L L ∼= SFp
×Fp

L. Hence the claim is proved.

Now we apply Lemma 5.3 to S → Spec(L) and obtain an Fp-morphism f : S →
T . Note that the assertions (a), (b) and (c) in Lemma 5.3 are still valid if we replace
T with a non-empty open subscheme and S with its inverse image. Since SL is a
projective limit of f−1(U) where U runs through non-empty open subschemes of
T , it follows that there exists a non-empty open subscheme U of T and an Fp-
morphism U → Spec(A) which is compatible with Spec(L) → Spec(K) such that
φ extends to a Drinfeld A-module over U := f−1(U). By replacing S and T with
U and U respectively, we may assume that φ extends to a Drinfeld A-module φS
over S. Moreover, note that we may assume that the image of T → Spec(A) does
not contain p. It follows that φS [p

n](n ≥ 0) is finite étale over S. In particular,
the π1(S)-action on the p-adic Tate module of φη factors through π1(S) → π1(S).
Let π1(S)vn be the stabilizer of vn and Svn the corresponding finite étale connected
cover of S.

We claim that the natural map Svn(T )→ Svn(L) is bijective for any n ≥ 0. The
injectivity is clear. For a given element of Svn(L), it follows from the definition of
S that the composite of Spec(L)→ Svn → S extends to a morphism T → S. Hence
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there exists a morphism Spec(L) → Svn ×S T which makes the following diagram
commutative.

Spec(L)

Svn ×S T T

Svn S

If we denote the scheme-theoretic image of Spec(L) → Svn ×S T by Z, then the
induced map Z → T is a finite birational morphism. Since T is normal, we conclude
that Z → T is an isomorphism by Zariski’s main theorem. The claim is now proved.

Fix a closed point t ∈ T . Since Svn(T ) 6= ∅, it follows that Svn(k(t)) is non-
empty and finite. Therefore lim←−Svn(k(t)) 6= ∅. Take (xn) ∈ lim←−Svn(k(t)) and set

x := x0 ∈ S(k(t)). We also denote the geometric generic point of S induced by

η by η. Denote a universal étale covering of (S, η) by S̃, and let η̃ be a lift of

η to S̃. Take an algebraic closure k(x) of k(x), which induces a geometric point

x : Spec(k(x))→ S. Let x̃ be a lift of x to S̃. Note that η̃ and x̃ induce geometric
points of Svn which we denote by ηn and xn, respectively. Finally, take an étale
path between η̃ and x̃. Under this situation, we have the following commutative
diagram:

φη[p
n](L(S)sep) (φS)x[p

n](k(t)sep)

π1(Spec(L(S)), η) = GL(S) φS [p
n](S̃) π1(Spec(k(t)), x) = Gk(t)

π1(S, η) ∼= π1(S, x)

π1(Svn , ηn) ∼= π1(Svn , xn)

∼
spη,x

η

∼ ∼

x

xn

Here, φS [p
n](S̃) ∼−→ φη[p

n](L(S)sep) and φS [p
n](S̃) ∼−→ (φS)x[p

n](k(t)sep) denotes
isomorphisms induced by η̃ and x̃, respectively. Now the above commutative dia-
gram shows that spη,x(vn) ∈ (φS)x[p

n]∗(k(t)). In particular, this shows that (φS)x
(which is a Drinfeld A-module over a finite field) has infinitely many torsion points
over k(t). This is absurd. Hence we conclude the proof of Theorem 1.1. □

5.2. The isotrivial case.
In this section, we do not assume that S is a curve. Instead, we assume that S

is a normal integral scheme which is of finite type over L. We denote the generic
point of S by η.

Our goal is to prove the following theorem which asserts the existence of a
uniform bound of the order of torsion submodules for a given Drinfeld module over
S which is L-isorivial over the generic point of S.

Theorem 5.4. Let φ be a Drinfeld A-module over S. Assume that φη is L-
isotrivial. Then for every n ≥ 1 there exists C > 0 which satisfies the follow-
ing condition: For every finite extension L′ of L with [L′ : L] ≤ n and for every
s ∈ S(L′), |(φs)tors(L′)| < C holds.
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First, we begin with the following lemma.

Lemma 5.5. Let ψ be a Drinfeld A-module over L. Then for every n ≥ 1 there
exists C > 0 which satisfies the following condition: For every finite extension L′

of L with [L′ : L] ≤ n, |ψtors(L
′)| < C holds.

Remark 5.6. In fact, a result stronger and more explicit than Lemma 5.5 is known.
Breuer [2, Theorem 1.1] proved that, the notations as in Lemma 5.5, there exists
C > 0 which depends only on ψ such that |ψtors(L

′)| ≤ C([L′ : L] log log([L′ : L]))γ

holds for every finite extension L′ of L. Here, we define γ := rankAEndL̄(ψ×LL̄)
d

where d is the rank of ψ. His proof uses a result proved by Pink and Rütsche [16]
concerning adelic representations associated to Tate modules of Drinfeld modules,
which we do not use in the proof of Lemma 5.5.

Proof of Lemma 5.5. If trdegK(L) = 0, then the results are proved in [17, THEO-
REM 1]. So we may assume that trdegK(L) > 0.

Take a normal, integral and affine model T of L over K. By shrinking T if
necessary, we may assume that ψ is extended to a Drinfeld A-module Ψ over T .
Let T ′ be the normalization of T in L′, fix a closed point t ∈ T and t′ ∈ T ′ which
lies above t, and define ψ′ := ψ ×Spec(L) Spec(L

′) and Ψ′ := Ψ×T T ′.
We claim that the natural map Ψ′[a](T ′)→ ψ′[a](L′) is bijective. The injectivity

is clear because Spec(L′) → T ′ is the generic point of T ′. For the surjectivity, for
a given element of ψ′[a](L′), we denote its scheme-theoretic image in Ψ′[a] by Z.
Then we have the following commutative diagram:

Spec(L′) Z Ψ′[a]

T ′

Here, the morphism Z → T ′ is finite and birational by the definition of Z. Since T ′ is
normal, by using the Zariski main theorem we conclude Z → T ′ is an isomorphism.
Hence we obtain the desired morphism T ′ → Z → Ψ′[a].

From this claim, we conclude that there exists a natural isomorphism ψ[a](L′) ∼=
ψ′[a](L′) ∼= Ψ′[a](T ′). Moreover, since Ψ′[a] is finite étale over T ′, the reduction
map Ψ′[a](T ′)→ Ψ′

t′ [a](k(t
′)) is injective. So we obtain an injective homomorphism

ψ′[a](L′) → Ψ′
t′ [a](k(t

′)). Since [k(t′) : k(t)] ≤ n, we reduced to the case when
trdegK(L) = 0. □

Proof of Theorem 5.4. Since φ is L-isotrivial, there exists a finite extension M of
L, a finite extension N of L(S) which contains M , and a Drinfeld A-module φ0
over M such that φη ×L(S) N ∼= φ0 ×M N . If we denote the normalization of S in
N by SN , then by [15, Proposition 3.7] the isomorphism φη ×L(S) N ∼= φ0 ×M N
extends to an isomorphism between φ×S SN and φ0 ×M SN .

Fix a finte extension L′ of L with [L′ : L] ≤ n and let s ∈ S(L′). Take a closed
point sN ∈ SN above s, and let M ′ be the residue field of SN at sN . Then M ′

is a finite extension of L′ and [M ′ : M ] ≤ [M ′ : L] = [M ′ : L′][L′ : L] ≤ [N :
L(S)][L′ : L] ≤ n[N : L(S)] holds. Since φ ×S SN is isomorphic to φ0 ×M SN ,
we obtain an injection (φs)tors(L

′) ↪→ ((φ ×S M ′)sN )tors(M
′) ∼= (φ0)tors(M

′). As
[M ′ :M ] ≤ n[N : L(S)], we conclude the proof by applying Lemma 5.5 to φ0. □

6. Applications of Theorem 1.1

In this section, we briefly explain some applications of Theorem 1.1.
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Corollary 6.1 (=Theorem 1.3). Let L be a finitely generated extension of K. Then
there exists an integer N := N(L, p) ≥ 0 such that φ[p∞](L) ⊂ φ[pN ](L) holds for
every Drinfeld A-module φ of rank 2 over L.

Proof. Apply Theorem 1.1 to Y1(p) (cf. Example 2.37 (2)). □

Moreover, we prove the following result concerning the set of rational points of
the moduli spaces of Drinfeld modules with Γ1-structure.

Corollary 6.2. Let L be a finitely generated extension of K. For each n, let M3,1
K,pn

be the moduli space over K of Drinfeld modules of rank 3 with Γ1(p
n)-structure (cf.

Proposition 2.36). Then one of the following occurs.

(1) The image of M3,1
K,pn(L) is dense in M3,1

K,pn for each n > 0.

(2) M3,1
K,pn(L) = ∅ for each n� 0.

Proof. It is known that the moduli space of Drinfeld modules with Γ(pn)-structure

over K is irreducible (see Pink [15, 1]). So we conclude that M3,1
K,pn is also irre-

ducible. Assume that (1) does not hold. In other words, assume that there exists

n > 0 such that the Zariski closure S of the image of M3,1
K,pn(L) in M3,1

K,pn is a
proper closed subset. Then we obtain the desired results by applying Theorem 1.1
to S. □
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[4] Anna Cadoret and Akio Tamagawa. Torsion of abelian schemes and rational points on moduli

spaces. In Algebraic number theory and related topics 2007, RIMS Kôkyûroku Bessatsu, B12,
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