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ABSTRACT. We consider the following nonlinear Schrédinger equation of derivative
type:
(1) i0pu 4 Oou + i|ul*dpu 4+ blul*u = 0, (t,z) ER xR, b€ R.

If b = 0, this equation is a gauge equivalent form of well-known derivative nonlinear
Schrédinger (DNLS) equation. The equation (1) can be considered as a generalized
equation of (DNLS) while preserving both L?-criticality and Hamiltonian structure. If
b > —3/16, the equation (1) has algebraically decaying solitons, which we call algebraic
solitons, as well as exponentially decaying solitons. In this paper we study stability
properties of solitons for (1) by variational approach and prove that if b < 0, all solitons
including algebraic solitons are stable in the energy space. The stability of algebraic
solitons gives the counterpart of the previous instability result for the case b > 0.
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1. Introduction

1.1. Setting of the problem. In this paper we consider the following nonlinear Schrédinger
equation of derivative type:

(1.1) i0pu + O*u + i|u?0pu + blu/*u =0, (t,z) ER xR, beR.

This equation has the following conserved quantities:

1 1. b
(Encrgy) B() = L.l — & (a0 ) — L ulll,
(Mass) M (u) = JJulZe,
(Momentum) P(u) = (i0zu,u),

where (-, ) is an inner product defined by
(v,w) = Re/ v(x)w(x)dr for v,w € L*(R).
R

We note that (1.1) can be rewritten as
(1.2) i0u = E'(u).

The equation (1.1) is L?-critical in the sense that the equation and L2-norm are invariant
under the scaling transformation

(1.3) un(t, z) = A2u(\2, \x), A > 0.

It is well known (see [16, 30]) that (1.1) is locally well-posed in the energy space H'(R)
and that the energy, mass and momentum of the H'(R)-solution are conserved by the
flow.

When b = 0, the equation is a gauge equivalent form' of well-known derivative non-
linear Schrodinger (DNLS) equation:

(DNLS) i) + 03¢ + 0. ([Y[*¢) =0, (t,1) e R xR,

which originally appeared in plasma physics as a model for the propagation of Alfvén
waves in magnetized plasma (see [25, 26]). Kaup and Newell [18] showed that (DNLS)
is completely integrable.

There is a large literature on the Cauchy problem for (DNLS). Here we briefly review
the results which are closely related to this paper (see [14, 17] and references therein for
further information). In [33] it was proved that if the initial data ug € H'(R) satisfies
M (ug) < 4, then the corresponding H!(R)-solution is global and bounded. We note
that the value 47 corresponds to the mass of algebraic solitons which correspond to
the threshold case in the existence of solitons. Later, Fukaya, the author and Inui [8]
recovered Wu's result by variational approach and moreover established the global results
for M (up) = 47 and P(ug) < 0 and for the oscillating data containing arbitrarily large
mass. On the other hand, in [31, 17] it was proved by using completely integrability that
(DNLS) is globally well-posed in weighted Sobolev spaces without the size restriction of
the mass (but the spaces are strictly narrower than H'(R)). These results imply at first
glance that 47-mass condition is not necessary for yielding global results.

1(1.1) for b =0 and (DNLS) are equivalent under the following transformation:

vita) = utt oy (—5 [ lutelay).
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However, in the recent paper [14] the author showed that algebraic solitons and 47-
mass threshold give a certain turning point in variational properties of (DNLS). This
result suggests that PDE dynamics of (DNLS) will change at the mass of 47. We note
that the algebraic solitons do not belong to weighted spaces in [31, 17], but they belong
to H'(R), so this difference of function spaces give a delicate issue for (DNLS).

One of the important remaining problems on (DNLS) is to discover the dynamics
around algebraic solitons. We note that stability /instability for algebraic solitons of
(DNLS) in the energy space H'(R) remains an open problem. The equation (1.1) can
be considered as a generalized equation of (DNLS) while preserving both L2-criticality
and Hamiltonian structure (1.2), so the study of this equation is important to investigate
further insight on mathematical structure, especially L2-critical structure of (DNLS).?
The aim of this paper is to study stability properties of solitons for (1.1) by variational
approach. In this paper we prove that if b < 0, all solitons including algebraic solitons
are stable in H!(R).

1.2. Solitons. It is known (see [29, 14]) that the equation (1.1) has a two-parameter
family of solitons. Consider solutions of (1.1) of the form

(1.4) Uy o(t, ) = e, o(x — ct),
where (w,c) € R2. It is clear that ¢, must satisfy the following equation:
(1.5) —¢" +wo +icg’ —ilp|*¢’ —blg|'p =0, wzeR.
Applying the following gauge transformation to ¢, .
i i [* 9
(1.6) Pue(®) = P e(z) exp | Sew — — |Puc(y)|" dy |,
2 4 )
then ®,, . satisfies the following equation
" 62 c 2 3 4

where v := 1+ 10b. The positive radial (even) solution of (1.7) is explicitly obtained as
follows; if v > 0 or equivalently b > —3/16,

24w — &) if —2vVw<c<2Vw
Ve + (4w — ¢2) cosh(VAw — 2x) — ¢ ’
(1.8) @ (z) =
(cx)4;+'y if c = 2y/w,
if v <0 or equivalently b < —3/16,
2(4w — c2)

(1.9) @2 .(x) if —2yw << —2s.:/w,

- V2 +v(4w — ¢2) cosh(Vdw — 2x) — ¢

where s, = s,(y) = v/—7/(1 — 7). Through the explicit formula of ®,, ., the soliton of
(1.1) is represented as

. i _ _ i fxz—ct 2
uw’c(tjx) e eZWt+QC($ Ct) 4 f—oo |<I>w’c(y)| dy(bw7c(x _ Ct)

2The Hamiltonian form (1.2) is useful when one studies dynamics around the soliton.
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We note that the condition of two parameters (w, ¢):
ify>0&b>-3/16, —2yw <c<2Vw,
ifvy<0&b<-3/16, —2w <c< —2s/w

is a necessary and sufficient condition for the existence of non-trivial solutions of (1.7)
vanishing at infinity. For (w,c) satisfying (1.10), one can rewrite (w,c) = (w,2sy/w),
where the parameter s satisfies

ifb>-3/16, —1<s<1,
if b < —-3/16, —1<s< —S84.

We note that the following curve

(1.10)

(1.11)

(1.12) RT 5w (w,2s5vw) € R
gives the scaling of the soliton, i.e., we have
(1.13) b 25w (T) = w'4py 95(Vwz) for z € R.

We note that the value b = —3/16 gives the turning point where the structure of the
solitons of (1.1) changes. In particular algebraic solitons exist only for the case b >
—3/16, which is the main interest in this paper.

We now give the precise definition of stability of solitons in the energy space.

Definition 1.1. We say that the soliton u,, . of (1.1) is (orbitally) stable in H'(R) if for
any € > 0 there exists § > 0 such that if uy € H'(R) satisfies ||ug — ¢u.cllg < J, then
the maximal solution u(t) of (1.1) with u(0) = ug exists globally in time and satisfies

sup inf |ju(t) — % .= < e.
up inf[Ju(t) = 00 =)

Otherwise, we say that the soliton is (orbitally) unstable in H'(R).

When b = 0, Colin and Ohta [5] proved that if w > ¢?/4, the soliton u,, . is stable.
Their proof depends on variational methods related to the argument in [32] (see Section
1.4 for more details). Liu, Simpson and Sulem [24] calculated linearized operators of a
generalized derivative nonlinear Schrédinger (gDNLS) equation:

(gDNLS) i0pu + O2u +i|u*0,u =0, (t,x) ER xR, ¢ >0,

and studied stability of solitons by applying the abstract theory of Grillakis, Shatah
and Strauss [9, 10]. In particular they gave an alternative proof of the stability result in
[5] (see also [11] for partial results in this direction). We note that the abstract theory
[9, 10] is not applicable for the case ¢ = 2y/w due to the lack of coercivity property of
the linearized operator. The case ¢ = 2,/w was discussed in [19, 20],> while the stability
or instability for this case is still an open problem.

When b > 0, the situation becomes different due to the focusing effect from the quintic
term. Ohta [29] extended the work of [5] and proved that for each b > 0 there exists
a unique s* = s*(b) € (0,1) such that the soliton wu, . is stable if —2y/w < ¢ < 25*\/w,
and unstable if 2s*/w < ¢ < 2y/w (see Figure 1). In [27] it was proved that algebraic
soliton w,, 5 /; 1s unstable for small b > 0, where the assumption of smallness is used
for construction of the unstable direction. If we observe momentum of solitons, the
momentum is positive in the stable region, and negative in the unstable region. This
implies that momentum of solitons has an essential effect on stability properties. In the

3We note that the key proposition in [20] is false (see [14, Appendix A]).



stable P(¢u,c) >0

c=-2/w
FIGURE 1. The stable/unstable region of solitons in the case b > 0.

borderline case ¢ = 2s*y/w, momentum of the soliton is zero, which corresponds to the
degenerate case. Recently, in [28] instability for this case was proved for small b > 0.

Stability properties of solitons for the case b < 0 seem to have been less studied.
In this case momentum of all solitons is positive, which suggests that they are stable.
Indeed, this is true as we show in this paper.

1.3. Statement of the results. Our first theorem gives the connection between two
types of solitons, which would be of independent interest. To state the result, we intro-
duce the set 2 defined by

Q= {(w,c) eR*: —2y/w < c<2Vw}.

Then we have the following result.

Theorem 1.2. Let b > —3/16. Suppose that (wo,co) satisfies co = 2/wg. Then, we
have
H¢w,c - ¢w0,co||Hm(R) =0

(w,¢)—(wo,c0)
(w,c)eQ

for any m € Z>g.
Remark 1.3. By Theorem 1.2 and Sobolev’s embedding theorem, we obtain that

hm w.c — Puwo.c m,00 - 0
(w,6) = (wo,c0) H(b ) ¢ 0, OHW (R)

(w,c)EN

for any m € Z>og.

Theorem 1.2 shows that algebraic solitons and exponentially decaying solitons are
connected in strong topology. This relation may be useful for further study on algebraic
solitons. Here we adapt the approach in [13] and give a simple proof by using explicit
formulae of solitons. Recently in [7] a similar statement of Theorem 1.2 was proved
in the context of a double power nonlinear Schrodinger equation. The argument in
[7] depends on variational characterization of ground states, where explicit formulae of
solitons are not necessary.

Now we state our main result. The main result in this paper is the following stability
result on two types of solitons.
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Theorem 1.4. Let —3/16 < b < 0 and let (w,c) satisfy —2/w < ¢ < 2y/w. Then the
soliton uy. . of (1.1) is stable. In particular the algebraic soliton is stable.

1.4. Comments on the main result. The stability result of algebraic solitons gives
the counterpart of the previous instability result for the case b > 0. As pointed out
before, the case ¢ = 2y/w cannot be treated by the abstract theory [9, 10]. It is difficult
to study stability properties for this case, based on the study of the linearized operator
Sy e(dw.c) (see below for the definition of S, ), because of the lack of coercivity property
of bl"ac(qﬁw,c).4 For the proof of Theorem 1.4 we use variational approach inspired from
the work in [32, 5, 29], which enables us to treat the case ¢ = 2y/w.

First we review the stability theory in the papers [5, 29]. We define the action func-
tional S, . by

(1.14) Swe(6) = B(9) + 5 M(9) + 3 P(9),

and we set d(w,c) = Sy c(Pu,c). We note that (1.5) can be rewritten as S/, .(¢) = 0 and
®uw,c 1s a critical point of S,, .. When b > 0 the following stability result is known.

Proposition 1.5 ([5, 29]). Let b > 0 and let (w,c) satisfy w > c2/4. If there eists
¢ € R? such that

(1.15) (d'(w,c),€) #0, (d"(w, )&, &) >0,

then the soliton u, . of (1.1) is stable.

Proposition 1.5 is proved in the following variational argument.® First we prove that
the profile of the soliton ¢, . is a minimizer on the Nehari manifold:

{v € H'(R)\ {0} : Kue(p) =0},
where K, .(p) 1= %SM,C(A¢)|/\:1. Next we consider the following potential wells:

A =A{ue HY(R)\ {0} : Suye(u) < d(w, ¢), Ko o(u) > 0},
Ko ={ve H(R)\ {0} : Sy e(u) < d(w,c), Ky e(u) <0}

w,c
By using the variational characterization on the Nehari manifold, we see that %"’C
and . are invariant under the flow of (1.1). Then, under the condition (1.15), one
can control the flow around the soliton, based on the calculation of the function 7
d((w,c) + 7€) and properties of potential wells.
By computing d”(w, ¢) we have the following identity (see Lemma 1 in [29]):

—2P(dw.c)
Viw — 2 {c + y(dw — )}
Here we note that P(¢, ) is positive if (w, c) satisfies that

ifb>0, —2vw<ec<25 Vw,
ifb=0 —2vw <c<2yw.

Therefore, we deduce that d”’(w,c) < 0 under the condition (1.17). This yields the
existence of ¢ € R? satisfying (1.15) because d”(w, ¢) has one positive eigenvalue. Hence,

(1.16) det[d" (w,c)] =

(1.17)

4The essential spectrum of S, .(Pw,c) is given by oess (Sﬁf,c((m,c)) = [w —c2/4, oo), which gives the
lack of coercivity property for the case ¢ = 24/w (see [24] for more details).

5This can be regarded as certain extension of the argument in [32] to a two-parameter family of
solitons.
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it follows from Proposition 1.5 that if (1.17) holds, the soliton u, . is stable. This is a
summary of the stability results in [5, 29].

There are a few difficulties to study stability properties of solitons in the case b < 0.
When b < 0 the defocusing effect from the quintic term b|u|*u gives an obstacle and then
the variational characterization above does not hold. To overcome that, we consider the
following gauge equivalent form of (1.1):

. . 3
(1.1) 0w + 02 + %|v|28mv - %1128;ﬁ+ E’ylvﬁv =0, (t,x)eRxR.

Considering this form, one can characterize solitons on the Nehari manifold if b > —3/16.
However, the equation (1.1") does not have the good Hamiltonian structure as in (1.2), so
it becomes more delicate to control the flow around the soliton. Another problem arises
when we treat algebraic solitons (the case ¢ = 2,/w). We note that d”(w,c) does not
make sense when ¢ = 24/w (see (1.16)) because this case corresponds to the boundary of
existence region of solitons. Therefore the stability criteria (1.15) does not make sense
for the case ¢ = 2\/w.

In the present paper, we use the scaling curve (1.12) effectively for the control of the
flow, based on variational characterization of solitons of (1.1’). This approach enables us
to prove the stability for two types of the solitons in a unified way. Also, our variational
argument along the scaling curve offers new perspectives to the stability theory of a
two-parameter family of solitons (see the end of Section 4.2 for more details).

As a relevant work of this paper, Guo [12] studied stability of algebraic solitons of
(gDNLS) for the case 0 < o < 1 by variational approach. Compared with our setting,
stability problems become rather easier because the case 0 < o < 1 corresponds to
L%-subcritical structure. We note that the well-posedness of (gDNLS) in H(R) (which
remains an open problem in the case 0 < o < 1) is assumed in [12]. For well-posedness
theory for (gDNLS) we refer to [15, 8, 22] and references therein.

Algebraic solitons also appear in the following double power nonlinear Schrédinger
equation:

(1.18) 10+ Au — [ulP" u+ [u|f e =0, (t,x) € R x RY,

where 1 < p < ¢ <1+4/(N —2);. If we consider the standing wave solution e™!¢,(z),
then ¢, satisfies the following elliptic equation:

(1.19) ~Ap+wh [P~ (979 =0, zeRV.

We note that the equation (1.7) for 0 < ¢ < 2y/w and v > 0 corresponds to (1.19) for
p=3,q=>5and N = 1. Due to the defocusing effect from the lower power order
nonlinearity, (1.19) has algebraically decaying ground states with w = 0 as well as usual
ground states decaying exponentially with w > 0. Instability and strong instability of
two types of ground states were studied in [7], where variational characterization of
ground states plays a key role in the proof.

Stability of solitions are closely related to the mass condition yielding global solutions
of (1.1) in the energy space. We define the mass threshold value as

) arm={ e 1
. R if —3/16<b<0(&0<y<1).

In [14] the author obtained the new mass condition for (1.1) such that if the initial data
up € HY(R) of (1.1) satisfies M (ug) < M*(b), then the corresponding H!(RR)-solution is
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global and bounded.® Moreover, it was also shown that M*(b) gives a turning point in
the structure of potential wells generated by solitons. In this sense M*(b)-mass condition
of (1.1) corresponds to 4m-mass condition of (DNLS). We note that when b > 0, M*(b)
is the mass of the solitons corresponding to the borderline in the stable/unstable region.
On the other hand, when —3/16 < b < 0(< 0 < v < 1) we have the following relation:

4 4
M(¢12) = \/Zy < ,YTT/; = M(¢12) + P(¢1,2),

which indicates that positive momentum of algebraic solitons boosts the threshold value.
This fact and the global result above are compatible with the stability of algebraic
solitons because the stability implies that the flow around algebraic solitons is global
and bounded.

1.5. Stability results for the case b < —3/16. The proof of Theorem 1.4 is not
applicable to the case b < —3/16 because the argument depends on variational char-
acterization on the Nehari manifold, which does not hold for this case.” However, by
using another variational approach inspired from Cazenave and Lions [4], we obtain the
following result.

Theorem 1.6. Let b < —3/16 and let (w,c) satisfy —2/w < ¢ < —28,/w. Then the
soliton uy, . of (1.1) is stable.

It may be somewhat new to apply the approach of [4] to a two-parameter family of
solitons. The key point in the proof is to solve certain variational problem with mass
constraint. To this end we consider the gauge equivalent form (1.1") again. If velocity
of the soliton of (1.1’) is negative, one can prove that the soliton is a solution of certain
minimization problem with mass constraint. Since velocity of all solitons for the case
b < —3/16 is negative, we can apply this variational argument to prove stability of these
solitons. We note that the proof of Theorem 1.6 still works for the case b > —3/16 and
—2y/w < e<O.

One can also apply the abstract theory of [9, 10] to exponentially decaying solitons,
based on spectral analysis of linearized operators. However, as can be seen in [24], the
calculation of linearized operators for (1.1) is complex because the nonlinearity contains
derivative. We note that our variational proofs of Theorem 1.4 and Theorem 1.6 do not
need any calculation of linearized operators.

1.6. Organization of the paper. The rest of this paper is organized as follows. In
Section 2 we recall the fundamental properties of a two-parameter family of solitons
of (1.1) which are used throughout the paper. In Section 3 we study the connection
between algebraic solitons and exponentially decaying solitons and prove Theorem 1.2.
In Section 4 we study stability of two types of solitons for the case —3/16 < b < 0 and
prove Theorem 1.4. The key claim in the proof is Proposition 4.5, where we control
the flow around the solitons by using the scaling curve (1.12) effectively. Finally, in
Section 5 we study stability of solitons with negative velocity and prove Theorem 1.6.

6If b < —3/16, for any initial data uo € H'(R) of (1.1) the corresponding H'(R)-solution is global
and bounded.
"For the case b= —3/16 the proof of Theorem 1.4 works in the same way (see Remark 4.8).



2. Preliminaries

In this section we organize the fundamental properties of solitons of (1.1). We refer
to [14] for the proofs of the results in this section.

In next sections, we mainly use the equation (1.1’) which is a gauge equivalent form
of (1.1). Therefore we state the properties of solitons of (1.1"), which also yield the
properties of solitons of (1.1) through the gauge transformation. We first note that
(1.1') is transformed from (1.1) through the following gauge transformation

o(t,z) = G(u)(t, ) == ult, z) exp (i / ut, y)|2dy> .

—0o0
The equation (1.1") has the following conserved quantities:

xT

1 v
(Energy) £() = LjowlE - Lol
(Mass) M(v) = [[v][72,
1
(Momentum) P(v) = (idv,v) + Z||UH4L4

We note that the well-posedness in H!(R) for each of (1.1) and (1.1') is equivalent
because u + G(u) is locally Lipschitz continuous on H*(R).
Let (w,c) satisfy (1.10). A two-parameter family of solitons of (1.1) is given by

(2.1) Vo.e(t, ) = Guw ) (t, ) = e“lip, o(x — ct),
where ¢, . is represented as
(2.2) Qo) = 2D, (1)

We note that ¢, . satisfies the equation
(23) ~' g ticd + SlplPo - Salelle =0, zeR
We define the action functional with respect to (1.1") by

Suclp) = E(9) + 5 M) + 5P ().

We note that (2.3) can be rewritten as S/, .(¢) = 0 and @, is a critical point of S, c.
Concerning the conserved quantities we have the following relation:

£(G(u)) = E(u), M(G(u)) = M(u), P(G(u)) = P(u),
which yields that
(2.4) Swe(Puwe) = Sw,c(G(Pu,e)) = Sue(Pue) = d(w, c).
In the same way as (1.13), for the parameter s satisfying (1.11) we have
9%,25\/5(35) = w1/4<,01725(\/5x) for x € R,
which implies that
E(Pupsym) = WE(P125); M(Py25ym) = M(#125), PPy 25ym) = VWP (#1,25)-

In particular we have
(2.5) d(w,2sv/w) = wd(1,2s).

Concerning mass of the solitons we have the following result.
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Lemma 2.1. Let (w,c) satisfy (1.10). Then we have

(
8 4 1+« .
—t 0
¥ an T if v >0,
_ 2
M (pye) =4 Vo —c* if v =0,

log(—a+\/a2—1> if v <0,

4
v
—1/2

where o := ¢ (02 + (4w — 02)) . Furthermore, each of the functions

(—=1,1] 3 5+ M (p125) € (0, il/;]

ifvy>0

and
(—1,=54) 2 5> M (p125) € (0,00) ify<0
s continuous, strictly increasing and surjective.

By Lemma 2.1 and elementary calculations we have the following claim which is useful
to study stability of the soliton with ¢ < 0.

Lemma 2.2. Let (w,c) satisfy (1.10) and w > c?/4. Then we have
_ —8c
Viaw — 2 {c? + y(dw — )}

The momentum of the solitons is represented as follows.

6wM(90w,C)

Lemma 2.3. Let (w,c) satisfy (1.10). Then we have
c 1 2
9 <_1 + ,7) M(Pusc) + ; dw—c* ify 20,
2w + 2
3c

Positivity of momentum of the solitons plays an essential role in the stability theory.
Concerning the sign of the momentum we have the following result.

(2‘6) ,P(Spw,c) =

M(Spw,c) if7 =0.

Proposition 2.4. Let s satisfy (1.11). Then the following properties hold:

(i) If b > 0, there exists a unique s*=s*(b)€(0,1) such that P(p12s+)=0. Moreover,
we have P(p1,25) > 0 for s € (=1, s*) and P(p1,25) <0 for s € (s*,1].
(i) If b= 0, P(p1.25) > 0 for s € (=1,1) and P(p12) = 0.
(iii) If b <0, P(p1,25) > 0 for any s.

Finally we state the energy of the solitons. The following claim is an immediate
consequence of the Pohozaev identity.

Lemma 2.5. Let s satisfy (1.11). Then we have

S
5(901,25) = —§P(801,25)~
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3. Connection between two types of the solitons

In this section we study connection between two types of the solitons and prove
Theorem 1.2. From the scaling relation (1.13), it is enough to discuss the convergence
of ¢125 as s — 1. First we prove the pointwise convergence.

Proposition 3.1. Let b > —3/16. For any z € R we have

SE{QO $1,25(7) = ¢P1.2(2).

Proof. Fix any x € R. From the relation (1.6), it is enough to prove that
(3.1) 1im0<1>1,25($) = ®15(z).

s—1—

From the explicit formula (1.8), we have
4(1 — s%)
(3.2) 1 54(2) =

V52 + (1 — 52) cosh (gmx) s

for s € (—1,1). By the Taylor expansion of x — cosh z around zero, the denominator is
rewritten as

(3.3) s2+9(1—s2) (1+2(1-35H)2>+0((1-5H)?)) —s.
By the Taylor expansion of the function h — v/s2 4+ h around zero, we have
A=) s = L(1-)+0((1-)?),

which is valid for s € (0,1). Thus we have

(3.3) = --(1— 52) +2(1 — 82) /5% + 7(1 — $2)a® + O (1 — 52)?)

2s
=(1-5% <2ls +2v/82+79(1—52)2” + O (1 - 52)) .

We note that the numerator and denominator share a common factor 1 — s2. Therefore
we deduce that

4
(I)% 25(37) =
’ =42/ +y(1—-52)22+0(1—s?)
8 2
S0y g - el
which proves (3.1). O

To complete the proof of Theorem 1.2, we effectively use the Brézis—Lieb lemma:

Lemma 3.2 ([1]). Let 1 < p < oo. Let {fn}nen be a bounded sequence in LP(R) and
fn— f ae. inR asn — oco. Then we have

1fallZe = Ilfn = fle = 11 =0

as n — o0.

Proof of Theorem 1.2. From Lemma 2.1 and Proposition 3.1, we have

SEEO ¢1’25($) = ¢172<$) for all z € R,

. 2 2
SE{IiO H¢172SHL2 = H¢1’2HL2 '
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Applying Lemma 3.2, we have
(3.4) Jm {5 — $12(72 = 0.

In the same way we also have

(35) limo ”(I)LQS — (I)LQH%Q =0.

s—1—

Here we recall that @1 o4 is the solution of the equation

3
(3.6) —3" + (1 — %) + 5|D|*D — Ewm‘*@ =0, v€R.
We note that

[@1,25]| 700 = D3 2(0)
4(1 — s?)
s2+~(1—s2)—s

4
——( 32+’y(1—52)+3>

Y

This formula yields that the function (—1,1) 3 s+ ||®1 25|/ 1 is strictly increasing and
8
Jm @z = = = [P12]2
In particular we have
(3.7) max || @y 95| ee = [|®1,2[| L~
se(—1,1]

)

By (3.5) and (3.7) we obtain that
HS‘I):%,QS - (I):%,QHLQ < (1- S)HCI) 25”L2 + Hq)l ,2s CI)?,QHLQ

<(1-39)] = P12
— 0.
s—1-0
Similarly, we have
||<I>1 2s T (I)?,Q — Q12|12 S—T—)O 0.

Therefore, by using the equation (3.6), we deduce that
197 2 = @75l L2 < (1= ") (1@ 25|72 + (59T 55 — @1 5]l 12
+ 1767“@1,28 - ‘1’1,2”1:2 S 0.

Combined with (3.5) we have

hm ||(I)1723 — (I)LQHH2 =0.
s—1—-0

By using the formula (1.6), we deduce that
=0.

li —
g lion2s

The rest of the proof is done by using the equation (1.5) and a standard bootstrap
argument. O



13

4. Stability of two types of solitary waves

In this section we study stability of two types of solitary waves for the case —3/16 <
b < 0 and prove Theorem 1.4.

4.1. Variational characterization. In this subsection we recall variational properties
of the solitons of (1.1). Here we assume that b and (w, ¢) satisfy

(4.1) b>-3/16 (&~ >0), —2yw < ¢ < 2y/w.

First we define the function space by

¢ € H'(R) if w > c?/4,
e 1 e HYR)NILAR) if ¢ = 2v/w,
where the norm of X2/ . is defined by

pE Xy {

ol = 2l o
We note that H'(R) C X274, We define the functional Ky . by
Kel$) = 35 8ucl00)
w,e\P) = A\ w,c\ AP N

c 3
= [0x¢ll72 + wlielzz + ¢ (Brp, ) + S llpl7a - EVIWH%G-
Now we consider the following minimization problem:

pww,c) =inf {Su.c(p) 1 p € Xwe \ {0}, Ko e(p) = 0},
///w,c ={pec Xw,e \ {0} : Sw,t:(%p) = p(w, c), KW,C(SO) =0}.

We note that ., . is the set of minimizers of S, . on the Nehari manifold. The following
result gives a variational characterization of the solitons on the Nehari manifold.

Proposition 4.1 ([14]). Assume (4.1). Then we have
My e = {ewocpw,c(- —xg) : 6y €10,2m),x0 € ]R} ,
and d(w, ¢) = p(w, ¢), where d(w,c) = Sy c(Pu,c) (see (2.4)).
Here we introduce the following potential wells in the energy space:

A, ={ve H'(R)\ {0} : Sye(v) < d(w,c), Kue(v) >0},
,%’;r,c = {v € Hl(R) \ {0} : Sue(v) < d(w, ¢), Te(v) < d(w, c)} ,
A, . ={ve HY (R)\ {0} : Suc(v) < d(w, €), Kue(v) <0},
By = {v € Hl(R) \ {0} : Sy e(v) < d(w, ¢), Te(v) > d(w, c)} ,

where the functional 7. is defined by

Telw) = =gllollga + S llvllgs.

We note that the functional S, . is rewritten as

%Kw,c(v) + jc(v)-

From Proposition 4.1 we obtain the following result.

(4.2) Suc(v) =
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Proposition 4.2. Assume (4.1). Then <, and <. are invariant under the flow of
(1.1"). Moreover, we have @i, = 5.
Proof. The proof is done in the similar way as [5, Lemma 11]. d

Remark 4.3. One can also prove that if the initial data of (1.1") belongs to <., then

w,c?

the corresponding H'(R)-solution is global and bounded.

Finally we prepare the compactness result on minimizers on the Nehari manifold
which is important for the proof of stability.

Proposition 4.4 ([14]). Assume (4.1). If a sequence {¢n} C X, . satisfies
Su.elpn) = plw, c) and Ky o(on) = 0 as n — oo,

then there exist a sequence {y,} C R and v € A, . such that {¢,(- — yn)} has a
subsequence that converges to v strongly in X, ..

4.2. Stability theory with potential wells. Here we assume that b and (w, ¢) satisfy
(4.3) —3/16<b<0(0<y<1), —2vw < c<2v/w.

We note that P(¢,,c) > 0 by Proposition 2.4. To prove stability of the soliton, we need
to control the flow around the soliton. By taking advantage of potential wells, we obtain
the following claim which plays a key role for the proof of stability.

Proposition 4.5. Assume (4.3). Then, for any € € (0,e¢) there exists 6 > 0 such that
if vo € HY(R) satisfies ||vo — uw.cl| g1 < 8, then the solution v(t) of (1.1") with v(0) = vg
exists globally in time and satisfies that

() if e =250 for s € (0,1) (= Vi),
A((n = )%, 25(n — ) = Z oI

(4.4) se
< Zu(o(0)) < d((+ €)%, 25(n+)) + Fo(0) 1L
(ii) if c=0,
(45) dlw,~) — S < To((n) < diw,2) + 5oL
(iii) if ¢ < 0,
(4.6) dw—e¢,¢) < Je(v(t)) < d(w +¢,¢),

for all t € R in (i)-(iii).

Remark 4.6. Compared with the corresponding result [5, Lemma 12], the L*-norm ap-
pears in (4.4) and (4.5), which comes from the lack of the “good” Hamiltonian structure
in (1.1).
Proof. We mainly prove the most difficult case 0 < ¢ < 2y/w.
(i) Let €9 > 0 be sufficiently small. For ¢ € (0,g9) we define the function g by
g(r) =d((u+7)%28(u+7)) for e (—¢,e).
From the relation (2.5) we have
6(r) = (u+7)%d(1,25) for 7 € (~e,),
which yields that
(4.7) 9(0) = p?d(1,2s), ¢'(0) = 2pd(1,25), ¢"(0) = 2d(1,2s).
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From Lemma 2.5 we have
(4.8) 2d(1,2s) = M(p1.25) + sP(p1,25)-

Assume that vg € H*(R) satisfies [[vg — ¢,,2 25,/ 1 < &, where § > 0 is determined later.
First we prove that

(4.9) V9 € %(
From (4.8) and (4.7) we have

NA,

pte)?,2s(pte) (n—e)?2s(n—e)’

S(,u:l:e)2,25(u:t5) ('UO) = S(u:l:a)z,Qs(u:l:a)((Pu2725u) + 0(5)

uEe)?
= g(SD,uQ,Zs,u) + ( 2 ) M((p;ﬁﬂs,u)

+ S(N + 5)7?(50#2,28#) + 0(5)

= ;ﬂd(l, 2s) £ep (M(p1,25) + P (¢125))
2
+ %M(SOLQS) +0(6)

22
=g(0) £4'(0) + EM(SOL%) + O(9).

8

By using the Taylor expansion,® we have

62
g(%e) = 9(0) ££4'(0) + 5 ¢"(0).

We note that

g"(0) = 2d(1,2s) = M(p1,25) + sP(p1,25)
and sP(p1,2s) > 0. Therefore, by taking small § > 0 we obtain that

(4'10) 8(ui6)2,28(,u:|:6) (’UO) < g(:i:{;‘).
On the other hand, by (4.2) and K, ¢(¢w,c) = 0 we have
c + 2se
\704—235(90(4),0) = - H(Pw CHL4 + 16H(Pw C||L6

< jc(%pw,c) = 9(0) g( )

By taking smaller § > 0 again, we obtain that J.i2s:(vo) < g(€). Similarly, we have
g(—¢€) < Je—2s:(vg). Combined with (4.10), we deduce that (4.9) holds.
We now prove (4.4). By Proposition 4.2 we have

(4.11) v(t) € B NA,

(nte)?, 25(u+e) || (n—e)?,2s(n—e)
for all ¢ € R. Therefore, we deduce that
c + 2se ol
9(€) > Tetase(v(t)) = lo(®)ll74 + EHv(t)H%G
= Je( ( ) — *H ()l 7a-

Similarly, we have
s€
g(—2) < Te(w(®) + Fllo(®) L.

80ne can also show this formula without using the Taylor expansion since the function g is the
quadratic function.
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This completes the proof of (4.4).
(ii) When ¢ = 0, by Lemma 2.3 we have

1

1
= — <—1 + fy) M(@wp) > O,

8CP(SDW,C) =0 2

which yields that 92d(w, c)‘ . > 0. From this fact and the calculation based on the
c=
function (—¢,¢) > 7 — d(w, T7), one can prove that

(4.12) vo € B NAB,

w,—¢e"
In the same way as (i), we see that (4.12) implies (4.5).
(iii) When ¢ < 0, by Lemma 2.2 we have
1
%d(w,c) = 580,./\/[(%0,6) > 0.

From this fact and the calculation based on the function (—&,¢) 3 7 — d(w + 7, ¢), one
can prove that

vy € '@J—i—a,c N f%g—a,cv
which yields (4.6). O
Combined with Proposition 4.4, one can prove the following stability result.

Theorem 4.7. Assume (4.3). Then the soliton v, . of (1.1') is stable.

Proof. The claim is proved by contradiction. Assume that there exist £ > 0, a sequence
of the maximal solutions {v,} to (1.1’) and a sequence {t,,} C R such that

(4.13) 0n(0) — Yuellmn — 0,
n—oo

4.14 - N B >

( ) (97;/1)16W lon(tn) — e Do e D > e

Since S, ¢(+) is a conserved quantity, by (4.13) we have
(4.15) Sw,e(Un(tn)) = Swc(vn(0)) v Swe(Puw,e) = d(w, c).

By (4.13), (4.14) and the continuity ¢ — v(t) € H*(R), one can pick up #, (still denoted
by the same letter) such that

416 inf ntn*w w.c\® — = .
o (0,)cR? [on(tn) = €“puwe( = y)lm =1
This equality yields the boundedness of {v,(t,)} in H*(R), i.e.,
(4.17) sup ||vn (ta) || g2 < C,

neN

where C' only depends on ||y c|/z1 and €;. From Proposition 4.5 and (4.17) we obtain
that

jc(vn(tn)) — d(w’ C)'

n—00

Combined with (4.2), we have
(4.18) Koc(vn(tn)) — 0.

n—oo
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Therefore, by (4.15), (4.18) and Proposition 4.4, there exist a sequence {y,} and 6y, yo €
R such that {v,(ty, + yn)} has a subsequence (still denoted by the same letter) that
converges to e’eoapwvc(- —yo) in Xyco If w> 02/4, this yields that

(4.19) an(tn) - eieoww,C(' — 90 — Yn)llmr — 0,
n—oo

which contradicts (4.16).
When ¢ = 2y/w, we need to modify the argument slightly. From the definition of
X240, We have

(4.20) e_%c"un(tn, ctyn) — e_%c'eieocpw,c(- —yo) in HY(R).

By using this convergence one can easily prove that

(4.21) e_%c'vn(tn, A yn) — e_%c'eieogow,c(- — yo) weakly in L3(R).

From (4.13) and mass conservation we obtain that

(4.22) M(vp(tn)) = M(vn(0)) = M(pu.c)-

Therefore, it follows from (4.21) and (4.22) that

(4.23) e_%c'vn(tn,- +yn) — e_%c'ewogow,c(- — o) in L*(R).

Hence (4.19) follows from (4.20) and (4.23), which contradicts (4.16). This completes
the proof. n

Proof of Theorem 1.4. We note that v, . = G(uw,c) and
G(eu(- — y))(x) = e“G(u)(z — y)

for u € HY(R) and x,y,0 € R. We also note that the gauge transformation u — G(u)
is Lipschitz continuous on bounded subsets of H!(R). Hence the result follows from
Theorem 4.7 and these properties of the gauge transformation. O

Remark 4.8. The stability of the solitons for the case b = —3/16 is proved in the same
way. Indeed, the results in Section 4.1 still hold in this case, and Proposition 4.5 (iii)
holds since velocity of the solitons is negative. Hence the claim follows.

We note that the formula (1.16) still holds including the case b < 0, i.e., we have

(4.24) det[d"(w,c)] = —2P(Guc) for w > ¢?/4.

C Viw — {2+ y(dw — 2)}
By Proposition 2.4, the momentum P(¢,, ) is always positive when b < 0, which yields
that d”(w, ¢) has one positive eigenvalue. Therefore there exists £ € R such that

<d’(w,c),§> #0, <d’/(w,c)§,§> > 0.

As in the proof of Proposition 4.5, the calculation of the function 7 — d((w, ¢)+7¢) and
variational characterization yields the control of the flow around the soliton. This is an
adaptation of the argument in [5] to our setting, but one cannot treat algebraic solitons
in this approach.

Our variational approach offers a new perspective to the stability theory of a two-
parameter family of solitons. We note that Proposition 4.5 is obtained without calculat-
ing the Hessian matrix d”(w, c). The calculation along the scaling curve gives a simpler
argument on the stability theory, and also enables us to treat two types of solitons in a
unified way. This indicates that the curve (1.12) gives not only the scaling of the soliton
but also “good” measure of the stability.
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5. Stability of solitons with negative velocity

In this section we study stability of the solitons for the case b < —3/16 and prove
Theorem 1.6. For the proof we apply variational arguments introduced by Cazenave
and Lions [4]. Here we assume that b and (w, ¢) satisfy

(5.1) b<-3/16(&7<0), 2w < c< —2s5:/w.

We remark that our proof in this section still works for the case b > —3/16 and —2/w <
¢ < 0 (see the end of this section).
First we note that

iex 1 2 1 c? 2 c 4 2 6

Suwc(e2Y) = 0ul72 + 5 | w — — ) IWllz2 + <MWl — 3519l 7e
2 2 4 8 32

(5.2) .

02 2
—6.0)+ 5 (w5 ) I

where & is defined by

1 c v
Ee() = 2 10272 + < ¥l 7a — == [19]|%s-
2 8 32

We note that SO’J7C(e%C$11)) is equivalent that

"+ (0= S ) wr Lo - Sapite =0, weRr
1 2 167" = ’
which is nothing but (1.7).
Now we consider a variational problem with mass constraint:
A ={p € H'(R) : ¢ 72 = m},
—v(c,m) =inf {&(¢Y) : ¥ € T},
Men ={) € D 1 Ec(Y) = —v(e,m)}
for m > 0. We begin with the following lemma.
Lemma 5.1. Assume v <0, ¢ <0 and m > 0. Then —oco < —v(¢,m) < 0.

Proof. From the assumption, & is rewritten as
lc|

1
Eo() = 2 10:012 — D pgpt + D e,
2 8 32

For 1 € o, we set 1y = \/2p(A\x). Then, ¢y € o, and

]

1 lal
eufwn) = ¥ (Glowul + 1wl ) - St

= (e -3 ).

One can see E.(1)) < 0 for sufficiently small A > 0, which yields that —v(c,m) < 0.
By using the following Gagliardo—Nirenberg’s inequality
1/4, 13/4
1£llss < ColloII 1 £1175'
we obtain that
1

1 c
63) &) 2 5 10— O j0vliall AL = § 1013 — Coc? ol
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for some constant Cy > 0. Therefore we deduce that

—v(e,m) = ¢i€r’19£m E() > —Coc*m® > —cc.
This completes the proof. U

The following claim on sequence compactness plays a key role for the proof of stability
in this section.

Proposition 5.2. Assume v <0, ¢ <0 and m > 0. If a sequence {1} C HY(R) \ {0}
satisfies ||Ynl|32 — m and E.(n) — —v, then there exist ¢ € My and a sequence

{yn} C R, such that {¢n(- — yn)} has a subsequence that converges to ¢ strongly in
H'(R).

For the proof of Theorem 5.2 we use the following Lieb’s compactness lemma and
Brezis-Lieb’s lemma (Lemma 3.2). We note that the original argument in [4] (see also
[3, Chapter 8]) relies on the concentration compactness method by Lions [23].

Lemma 5.3 ([21]). Let {f,} be a bounded sequence in H'(R). Assume that there
exists ¢ € (2,00) such that limsup,_, || fnll¢ > 0. Then, there exist {yn} C R and
f € HY(R)\ {0} such that {fn(- —yn)} has a subsequence that converges to f weakly in
H(R).

Proof of Proposition 5.2. We proceed in three steps.
Step 1: Boundedness of {¢,,}. From (5.3) we obtain that

v 1
2> Euln) 2 L1002 — Cocmi
for large n. Since ||ty |72 — m, this yields that {¢,} is bounded in H'(R). From the
definition of &. and £ > 0, we have

] ]

5 > Eoltbn) = E(n) = G linllEe =~ bullfs,
which implies that
0< ?CV’ < |[¢n||7a  for large n.
To summarize we have obtained that
(5.4) sup [[Yull < oo, inf éullzs > 0.

Step 2: Limits. From (5.4) one can apply Lemma 5.3 to the sequence {t,}. Then
there exist {y,} C R and ¢ € H'(R)\ {0} such that a subsequence of {1/,,(- — yn)} (we
denote it by {¢,}) converges to ¢ weakly in H!(R). By the weak lower semicontinuity
of the L? norm we have

2 . . 2 . 2
(5.5) lpllze < liminf [[@n[l72 = lim {72 = m.

Taking a subsequence (still denoted by the same letter), we have ¢, — ¢ a.e. in R.
Applying Lemma 3.2 we obtain that

(5.6) gc(‘;pn) - gc(@n - SD) - 60(80) — 0,
(5.7) lenlZ2 — llon — @llz2 = llellz2 — 0.
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Step 3: Strong convergence. We prove by contradiction. Assume that [|¢[|7. < m.
Then, combined with (5.7) and ¢ # 0, we have
: 2
0< lim {lpn — @llz2 < m.

We set &, = ¢, — . Following an idea from [6, 2], we modify {&,} and ¢ by using the
scaling transformation as

gn($> - gn(A;l*x): (5(1') - 90(/\_137)7

where
m m

R

We note that A\, A\, > 1 and En, © € Yy, By a direct calculation we have

An

1— A2 9 e~
Eelp) = —5—M0spllz2 + A7 Ec(),
(5.8) - )
50(5n> - 2 S Hasc{n“%? + /\r_ngc<fn)-

Then it follows from (5.6), (5.8) and (5.7) that
V= nh—{go Ec(ion) = nlggo Ec(&n) + Ec(p)

. -7 o 1277 2 —l¢ (7 —lg (~
= nlglgo B HaxﬁnHLz + 2 Haw”m + AL Ee(n) + ATE(P)
11—\ 2 . -1 -1
> ———ll0upllze — v lim (A" + A7)
1—272
L

which gives a contradiction. Therefore we deduce that m = ||¢||2,.
Since we have the following relation

Tim [lpall2: = m = lol3,

we deduce that
¢on — ¢ in L3(R).

From boundedness of {p,,} in H!(R) and elementary interpolation estimates, we have
(5.9) on — ¢ in L"(R) forall r € [2,00].
Combined with the lower semicontinuity of the H'-norm, we deduce that

Ec(p) < liminf & () = —1.

n—oo

On the other hand, it follows from ¢ € 7, that —v(c,m) < E.(¢), which yields that
—v = &:(p). Hence p € M. By (5.6) we have E(p, — ¢) — 0. Combined with (5.9)
we obtain that

1000 = BuplZ = Eulon — 9) = Sllon — pllfs + S llon — ¢l =0,
which yields that
©n — ¢ strongly in H'(R).
This completes the proof. O
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The set .., is characterized as follows.

Lemma 5.4. Assume (5.1). Suppose further that

(5.10) m = H‘Pw,CH%? = H(I)uw’ %2-
Then we have
(5.11) Mem = {eiaéw(- —y): 0,y € R} and —v(e,m) = E(Py.c).

Proof. By Proposition 5.2 we note that M., # 0. Let ) € 4. . Then there exists a
Lagrange multiplier A € R such that

EL) + M) =0 =~y + i+ Syl = Salulty =0,

Since 1 # 0, one can easily prove that A > 0. If we set @ = X\ + % > 0, then 1 satisfies
the equation
2

3
(5.12) o' (8-S ) ot gl - Salvite =0, sk

By uniqueness of the solution of (5.12), there exist 6,y € R such that ¢ = e?®g .(- —y).
From the assumption we have

”(I)L?J,0H2L2 = H@M; =m= Hq)w,c

Since ¢ < 0, it follows from Lemma 2.2 that the function

2
L2-

C2
(500) 2 0 Il € (0.0

is strictly increasing, especially which implies that & = w. Hence we have ¢ = ei9¢w7c(- —
y). We also obtain that

(5.13) —v(e,m) = E(¢) = Ec(Puyc)-
Conversely, if ¢ = e?®,, .(- — y) for some 6,y € R, then it follows from (5.10) and
(5.13) that ¢ € A, . This completes the proof. O

Next we prove the following claim on sequence compactness.

Proposition 5.5. Assume (5.1). Suppose further that m is defined by (5.10). If a
sequence {¢n} C HY(R) satisfies

E(pn) = E(Puwe)y Plon) = Plpwe), M(pon) = M(pw.c),

then there exist a subsequence of {¢y} (still denoted by the same letter) and {6y}, {yn} C
R such that

e on (- — Yn) = Que  strongly in H'(R).
Proof. We first note that
i 1 c?
B1) e = Suew) — 5 (0= T) W forve MR,
which follows from (5.2). If we set ¢ = ¢, ., we have

Cier 1 c?
(5.15) e ) = dlw.0) — 5 (0= ) Douel
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From the assumption we have
Sue(n) = Suwe(Pwe) = dw,c).
Combined with (5.14) and (5.15), we have
86(6_%cx80n) - 56(6_%%900&,0) = Ec(Pu,c) = —v(c,m),

where we used (2.2) and (5.11). Therefore, by Proposition 5.2 and Lemma 5.4, there
exist a subsequence of {¢,} (still denoted by the same letter), {z,} C R and 0,y € R
such that

e_%c('_z")wn(- —2,) = €9, (- —y) strongly in H'(R),
which yields that
e*%C(yfz”)fiacpn(' +y—zp) — e%CQ%C = o strongly in H'(R).
Therefore if we set
On = %(zn—y)—& Yn = 2n =Y,
then the conclusion follows. O
We are now in a position to prove the following stability result.
Theorem 5.6. Assume (5.1). Then the soliton v, . of (1.1') is stable.

Proof. For completeness we give a proof. Assume by contradiction that there exist € > 0,
a sequence of the maximal solutions {v,} to (1.1') and a sequence {t,,} C R such that

(516) H'Un(o) - @w,cHHl njgo 0,
o7 inf n(tn) — 0 wels — > €.
17 (G,g)leﬂ@ [on(tn) — € Que(- —y)llm =€

From conservation laws and (5.16), we have
E(vn(tn)) = E(vn(0)) = E(Puye);
M(vn(tn)) = M(vn(0)) = M(pw.c),
P(vn(tn)) = P(vn(0)) = P(pw,c)-

Therefore, by Proposition 5.5, there exist a subsequence of {v,(t,)} (still denoted by
the same letter) and {0, }, {y,} C R such that

Up(tn) — ew"cpwc(- —yn) — 0 strongly in HI(R),
which contradicts (5.17). O

Proof of Theorem 1.6. Similarly as in the proof of Theorem 1.4, the result follows from
Theorem 5.6 and the properties of the gauge transformation u — G(u). O

Our proof in this section still works for the case b > —3/16 and —2y/w < ¢ < 0. For
this case we note that
2m

ﬁa

which follows from Lemma 2.1. By the following sharp Gagliardo—Nirenberg inequality

2
gl 1 el
L7 < gl0r - (20712 )

0 < [lpwellze < llewollZ: =
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work without any changes. We note that the condition m € (0, 2—’;) is essential to prove

one can prove that —oo < —v(e,m) < 0 for m € (0,=%). Other parts in the proof

—o00 < —v(c,m), so that we need to restrict our approach to the case of negative velocity.
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