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Abstract

Let p be a prime number. In the present paper, we consider a cer-
tain pro-p analogue of the semi-absoluteness of isomorphisms between the
étale fundamental groups of smooth varieties over p-adic local fields [i.e.,
finite extensions of the field of p-adic numbers Qp] obtained by Mochizuki.
This research was motivated by Higashiyama’s recent work on the pro-p
analogue of the semi-absolute version of the Grothendieck Conjecture for
configuration spaces [of dimension ≥ 2] associated to hyperbolic curves
over generalized sub-p-adic fields [i.e., subfields of finitely generated ex-
tensions of the completion of the maximal unramified extension of Qp].
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Introduction

Let p be a prime number. For a connected Noetherian scheme S, we shall
write ΠS for the étale fundamental group of S, relative to a suitable choice of
basepoint. For any field F of characteristic 0 and any algebraic variety [i.e.,
a separated, of finite type, and geometrically integral scheme] X over F , we
shall write F for the algebraic closure [determined up to isomorphisms] of F ;

GF
def
= Gal(F/F ); ∆X

def
= ΠX×FF

.
In anabelian geometry, the relative version of the Grothendieck Conjecture

proved by Mochizuki is a central result:

Theorem 0.1 ([17], Theorem A; [20], Theorem 4.12). Let K be a generalized
sub-p-adic field [i.e., a subfield of a finitely generated extension of the completion
of the maximal unramified extension of the field of p-adic numbers Qp — cf.
[20], Definition 4.11]; X, X ′ hyperbolic curves over K. Write IsomK(X,X ′)
for the set of K-isomorphisms between X and X ′; IsomGK

(ΠX ,ΠX′)/Inn(∆X′)
for the set of isomorphisms ΠX

∼→ ΠX′ of profinite groups that lie over GK ,
considered up to composition with an inner automorphism arising from ∆X′ .
Then the natural map

IsomK(X,X ′) −→ IsomGK
(ΠX ,ΠX′)/Inn(∆X′)

is bijective.

On the other hand, concerning the above theorem, we recall the following
open questions:

Question 1 (Absolute version of the Grothendieck Conjecture): Let
X, X ′ be hyperbolic curves over p-adic local fields [i.e., finite exten-
sions of Qp]K, K ′, respectively. Write Isom(X,X ′) for the set of iso-
morphisms of schemes betweenX andX ′; Isom(ΠX ,ΠX′)/Inn(∆X′)
for the set of isomorphisms ΠX

∼→ ΠX′ of profinite groups, consid-
ered up to composition with an inner automorphism arising from
∆X′ . Is the natural map

Isom(X,X ′) −→ Isom(ΠX ,ΠX′)/Inn(ΠX′)

bijective?

Question 2 (Semi-absolute version of the Grothendieck Conjecture):
Let X, X ′ be hyperbolic curves over p-adic local fields K, K ′, re-
spectively. Write

Isom(ΠX/GK , ΠX′/GK′)/Inn(ΠX′)
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for the set of isomorphisms ΠX
∼→ ΠX′ of profinite groups that

induce isomorphisms GK
∼→ GK′ via the natural surjections ΠX ↠

GK and ΠX′ ↠ GK′ , considered up to composition with an inner
automorphism arising from ΠX′ . Is the natural map

Isom(X,X ′) −→ Isom(ΠX/GK , ΠX′/GK′)/Inn(ΠX′)

bijective?

[Here, we note that the analogous assertions of Questions 1, 2, for hyperbolic
curves over subfields of p-adic local fields do not hold — cf. [10], Remark 5.6.1.]
With regard to Questions 1, 2, Mochizuki proved the following result, which
asserts that the absolute version of the Grothendieck Conjecture and the semi-
absolute version of the Grothendieck Conjecture are equivalent [cf. [21], Corol-
lary 2.8; [6]; [30], Lemma 4.2]:

Theorem 0.2. Let K, K ′ be p-adic local fields; X, X ′ smooth varieties [i.e.,
smooth, separated, of finite type, and geometrically integral schemes] over K,
K ′, respectively;

α : ΠX
∼→ ΠX′

an isomorphism of profinite groups. Then α induces an isomorphism GK
∼→

GK′ that fits into a commutative diagram

ΠX
∼−−−−→
α

ΠX′y y
GK

∼−−−−→ GK′ ,

where the vertical arrows denote the natural surjections [determined up to com-
position with an inner automorphism] induced by the structure morphisms of
the smooth varieties X, X ′.

[Note that there exists a certain generalization of this result — cf. [15],
Corollary D].

Moreover, Mochizuki also proved that, if an isomorphism α : ΠX
∼→ ΠX′

preserves the decomposition subgroups associated to the closed points, then α
is induced by a unique isomorphism X

∼→ X ′ of schemes [cf. [22], Corollary
2.9]. One of the ways∗ to reconstruct the decomposition subgroups associated
to closed points is Mochizuki’s Belyi cuspidalization technique for strictly Be-
lyi type curves [cf. [22], §3]. However, due to the difficulty of verifying the
preservation of the decomposition subgroups, we do not know whether or not
the absolute version of the Grothendieck Conjecture has an affirmative answer
in general.

∗Recently, it appears that E. Lepage discovered a different way to reconstruct the decom-
position subgroups associated to the closed points of hyperbolic Mumford curves based on his
[highly nontrivial] result on resolution of nonsingularities.
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On the other hand, one may pose analogous questions of Questions 1, 2, in
the pro-p setting. In this pro-p setting, it appears that no analogous result of
Mochizuki’s results [cf. Theorem 0.2; [22], Corollary 2.9] has been obtained. In
this context, Higashiyama studied a certain pro-p analogue of the semi-absolute
version of the Grothendieck Conjecture for configuration spaces [of dimension
≥ 2] associated to hyperbolic curves over generalized sub-p-adic fields [i.e., sub-
fields of finitely generated extensions of the completion of the maximal unram-
ified extension of Qp] and obtained a partial result [cf. [5], Theorem 0.1].

In the present paper, inspired by Higashiyama’s research, we consider a cer-
tain pro-p analogue of Theorem 0.2 for the configuration spaces associated to
hyperbolic curves over p-adic local fields. Note that the proof of Theorem 0.2
depends heavily on the l-independence of a certain numerical invariant associ-
ated to ΠX and GK , where l ranges over the prime numbers [cf. [21], Theorem
2.6, (ii), (v)]. Thus, we need to apply a different argument to obtain a pro-p
analogue of Theorem 0.2.

Let F be a field of characteristic 0; X an algebraic variety over F . Then we
have an exact sequence of profinite groups

1 −→ ∆X −→ ΠX −→ GF −→ 1

[cf. [4], Exposé IX, Théorème 6.1]. We shall say that X satisfies the p-exactness
if the above exact sequence induces an exact sequence of pro-p groups

1 −→ ∆p
X −→ ΠpX −→ GpF −→ 1

[where we note that the natural sequence of pro-p groups

∆p
X −→ ΠpX −→ GpF −→ 1

is exact without imposing any assumption on X].
Then our main result is the following:

Theorem A. Let (n, n′) be a pair of positive integers; K, K ′ fields of charac-
teristic 0; X, X ′ smooth varieties over K, K ′, respectively. Then the following
hold:

(i) Let
α : ΠpX

∼→ ΠpX′

be an isomorphism of profinite groups. Suppose that

• K is either a Henselian discrete valuation field with infinite residues
of characteristic p or a Hilbertian field [i.e., a field for which Hilbert’s
irreducibility theorem holds — cf. [3], Chapter 12];

• K ′ is either a Henselian discrete valuation field with residues of char-
acteristic p or a Hilbertian field;

• K and K ′ contain a primitive p-th root of unity.
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Then α induces an isomorphism GpK
∼→ GpK′ that fits into a commutative

diagram
ΠpX

∼−−−−→
α

ΠpX′y y
GpK

∼−−−−→ GpK′ ,

where the vertical arrows denote the natural surjections [determined up to
composition with an inner automorphism] induced by the structure mor-
phisms of the smooth varieties X, X ′.

(ii) Suppose that X, X ′ are hyperbolic curves over K, K ′, respectively. Write
Xn (respectively, X ′

n′) for the n-th (respectively, the n′-th) configuration
space associated to X (respectively, X ′) [cf. Definition 4.1]. Let

α : ΠpXn

∼→ ΠpX′
n′

be an isomorphism of profinite groups. Suppose, moreover, that

• K and K ′ are either Henselian discrete valuation fields of residue
characteristic p or Hilbertian fields;

• Xn and X ′
n′ satisfy the p-exactness.

Then it holds that

• n = n′;

• α induces an isomorphism GpK
∼→ GpK′ that fits into a commutative

diagram
ΠpXn

∼−−−−→
α

ΠpX′
ny y

GpK
∼−−−−→ GpK′ ,

where the vertical arrows denote the natural surjections [determined
up to composition with an inner automorphism] induced by the struc-
ture morphisms of the configuration spaces Xn, X

′
n′ .

Recall that every finitely generated extension of the field of rational numbers
Q or Qp is a Hilbertian field or a Henselian discrete valuation field of residue
characteristic p [cf. [3], Theorem 13.4.2]. In particular, by combining Theorem
A, (ii), with Higashiyama’s result [cf. [5], Theorem 0.1], we obtain the “absolute
version” of Higashiyama’s result in the case where the base fields are such fields.

Furthermore, it would be interesting to investigate to which extent the as-
sumptions of Theorem A may be weaken. Thus, it is natural to pose the follow-
ing question, which may be regarded as a generalization of the above theorem
[cf. [15], Corollary D]:
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Question 3: Let X, X ′ be smooth varieties over fields K, K ′ of
characteristic 0, respectively;

α : ΠpX
∼→ ΠpX′

an isomorphism of profinite groups. Suppose that K and K ′ are
either

• subfields of Henselian discrete valuation fields of residue char-
acteristic p or

• Hilbertian fields.

Then does α induce an isomorphism GpK
∼→ GpK′ via the natural

surjections ΠpX ↠ GpK and ΠpX′ ↠ GpK′?

However, at the time of writing of the present paper, the author does not know
whether the answer is affirmative or not. Moreover, we note that Theorem A,
(ii), is not proved in a “mono-anabelian” fashion [cf. [21], Introduction; [23],
Introduction], and, at the time of writing of the present paper, the author does
not know whether or not such a proof exists. Since Theorem 0.2 is proved in
a “mono-anabelian” fashion, it would be also interesting to investigate a mono-
anabelian reconstruction of the closed subgroup Ker(ΠpX → GpK) ⊆ ΠpX from
[the underlying topological group structure of] ΠpX .

Finally, we remark that there exist other researches on the semi-absoluteness
of isomorphisms between the étale fundamental groups of algebraic varieties [cf.
[12], Theorem; [15], Corollary D].

The present paper is organized as follows. In §1, we review some group-
theoretic properties of the maximal pro-p quotients of the absolute Galois groups
of p-adic local fields. In §2, we review some group-theoretic properties of the
maximal pro-p quotients of the étale fundamental groups of hyperbolic curves
over p-adic local fields. In §3, by applying the results reviewed in §1, §2, we
give a proof of Theorem A, (ii), for hyperbolic curves. In §4, by combining the
results obtained in §3 with some considerations on the geometry of configuration
spaces associated to hyperbolic curves, we complete the proof of Theorem A.

Notations and Conventions

Numbers: The notation N will be used to denote the set of nonnegative inte-
gers. The notation Q will be used to denote the field of rational numbers. If p is
a prime number, then the notation Qp will be used to denote the field of p-adic
numbers; the notation Zp will be used to denote the additive group or ring of
p-adic integers. We shall refer to a finite extension field of Qp as a p-adic local
field.

Fields: Let F be a field of characteristic 0. Then the notation F will be used to
denote an algebraic closure [determined up to isomorphisms] of F . The notation
GF will be used to denote the absolute Galois group Gal(F/F ) of F . If p is
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a prime number, then we shall fix a primitive p-th root of unity ζp ∈ F . Let
E (⊆ F ) be a finite extension field of F . Then we shall denote by [E : F ] the
extension degree of the finite extension F ⊆ E.

Topological groups: Let G be a profinite group and H ⊆ G a closed subgroup
of G. Then we shall denote by ZG(H) the centralizer of H ⊆ G, i.e.,

ZG(H)
def
= {g ∈ G | ghg−1 = h for any h ∈ H}.

Let p be a prime number. Then we shall write Gp for the maximal pro-
p quotient of G; Gab for the abelianization of G, i.e., the quotient of G by
the closure of the commutator subgroup of G; cdp(G) for the cohomological
p-dimension of G [cf. [27], §7.1]. If G is abelian, then we shall write Gtor ⊆ G
for the maximal torsion subgroup. If G is a topologically finitely generated free
pro-p group, then the notation rank G will be used to denote the rank of G.

Schemes: LetK be a field; K ⊆ L a field extension; X an algebraic variety [i.e.,
a separated, of finite type, and geometrically integral scheme] over K. Then we

shall write XL
def
= X ×K L; X(L) for the set of L-rational points of X.

Fundamental groups: For a connected Noetherian scheme S, we shall write
ΠS for the étale fundamental group of S, relative to a suitable choice of base-
point. Let K be a field of characteristic 0; X an algebraic variety over K. Then

we shall write ∆X
def
= ΠXK

.

1 The maximal pro-p quotients of the absolute
Galois groups of p-adic local fields

Let p be a prime number; K a p-adic local field. In the present section, we
review some group-theoretic properties of GpK [cf. Notations and Conventions],
which will be of use in the later sections.

Definition 1.1 ([26], Definition 3.9.9). Let G be a topologically finitely gener-
ated pro-p group. Then we shall say that G is a Demushkin group if

dimZ/pZ H
2(G,Z/pZ) = 1,

and the cup-product

H1(G,Z/pZ)×H1(G,Z/pZ) → H2(G,Z/pZ)

is non-degenerate.
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Remark 1.1.1. Let G be a Demushkin group. Then it follows immediately from
[27], Theorem 7.7.4, that G is not a free pro-p group.

Definition 1.2 ([21], Definition 1.1, (ii)). Let G be a profinite group.

(i) We shall say thatG is slim if ZG(H) = {1} [cf. Notations and Conventions]
for any open subgroup H of G.

(ii) We shall say that G is elastic if every nontrivial topologically finitely
generated normal closed subgroup of an open subgroup of G is open in G.

Proposition 1.3. Write pa for the cardinality of the group of p-power roots of

unity ∈ K; d
def
= [K : Qp]. Then (GpK)ab is isomorphic to Z/paZ ⊕ Z⊕d+1

p [cf.

Notations and Conventions]. In particular, (GpK)ab has a torsion element in the
case where ζp ∈ K.

Proof. Proposition 1.3 follows immediately from local class field theory, together
with the well-known structure of the multiplicative group of a p-adic local field
[cf. [25], Chapter II, Proposition 5.7, (i); [25], Chapter V, Theorems 1.3, 1.4].

Theorem 1.4 ([26], Theorem 7.5.11). Write d
def
= [K : Qp]. Then the following

hold:

(i) Suppose that ζp /∈ K. Then GpK is a free pro-p group of rank d+ 1.

(ii) Suppose that ζp ∈ K. Then GpK is a Demushkin group of rank d+ 2.

Theorem 1.5 ([21], Proposition 1.6; [21], Theorem 1.7; [26], Theorem 7.1.8).
The following hold:

(i) GpK is slim.

(ii) GpK is elastic.

(iii) Suppose that ζp ∈ K. Then cdp(G
p
K) = 2, and every closed subgroup

H ⊆ GpK of infinite index is a free pro-p group.

Proof. First, since the maximal pro-p quotient GpK is an almost maximal pro-p
quotient of GK , assertions (i), (ii) follows immediately from [21], Theorem 1.7,
(ii). Assertion (iii) follows immediately from [21], Proposition 1.6, (ii), (iii); [26],
Theorem 7.1.8, (i). This completes the proof of Theorem 1.5.
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Lemma 1.6. GpK is a nonabelian infinite torsion-free group.

Proof. First, we suppose that ζp /∈ K. Then GpK is a free pro-p group of rank
≥ 2 [cf. Theorem 1.4, (i)]. Thus, we have nothing to prove. Next, we suppose
that ζp ∈ K. Here, we consider a natural exact sequence

1 −→ Gal(Kp/K(ζp∞)) −→ GpK −→ Gal(K(ζp∞)/K)(
∼→ Zp) −→ 1,

where Kp (⊆ K) denotes the maximal pro-p extension field of K; K(ζp∞)
denotes the field obtained by adjoining all p-power roots of unity to K. Then
since Gal(Kp/K(ζp∞)) is a free pro-p group [cf. Theorem 1.5, (iii)], it holds
that GpK is torsion-free. Thus, we conclude from Proposition 1.3 that GpK is
a nonabelian infinite torsion-free group. This completes the proof of Lemma
1.6.

2 The maximal pro-p quotients of the étale fun-
damental groups of hyperbolic curves

Let p be a prime number; K a p-adic local field; X a proper hyperbolic curve
over K. Write OK for the ring of integers of K; k for the residue field of OK .
Suppose that

X has stable reduction over OK .

Write X for the stable model of X over OK .
In the present section, following [8], we review some group-theoretic proper-

ties of ∆p

X
[cf. Notations and Conventions] and its quotients.

Definition 2.1 ([8], Definition 2.3).

(i) We shall write Irr(X) for the set of irreducible components of X ×OK
k;

(ii) We shall write ∆p,ét

X
for the maximal pro-p quotient of ΠX×OK

k;

(iii) Let v be an irreducible component of X ×OK
k. Then we shall write

Dv (respectively, Dp
v) for the decomposition subgroup [determined up to

composition with an inner automorphism] of ΠX×OK
k (respectively, ∆

p,ét

X
)

associated to v;

(iv) We shall write ∆cmb
X

(respectively, ∆p,cmb

X
) for the quotient of ΠX×OK

k

(respectively, ∆p,ét

X
) by the normal closed subgroup topologically normally

generated by the closed subgroups {Dw}w∈Irr(X) (respectively, {Dp
w}w∈Irr(X)).
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Remark 2.1.1. The natural open immersion from XK to the stable model of

XK over the ring of integers of K induces a natural surjection ∆p

X
↠ ∆p,ét

X
.

On the other hand, it follows immediately from the various definitions involved
that there exists a natural surjection ∆p,ét

X
↠ ∆p,cmb

X
.

Next, we review some well-known group-theoretic properties of ∆p

X
and

∆p,cmb

X
.

Proposition 2.2 ([24], Proposition 1.4; [24], Theorem 1.5; [8], Proposition 2.5;
[9], Lemma 2.1).

(i) ∆p

X
is slim.

(ii) ∆p

X
is elastic.

(iii) ∆p,cmb

X
is a free pro-p group.

(iv) cdp(∆
p

X
) = 2, and every closed subgroup M ⊆ ∆p

X
of infinite index is a

free pro-p group.

Remark 2.2.1. In [9], Lemma 2.1, Hoshi imposed the condition [on M ] that the
closed subgroupM ⊆ ∆p

X
is normal in order to assert thatM is not topologically

finitely generated. However, we do not need this assertion, and the proof of [9],
Lemma 2.1, implies that every closed subgroup M ⊆ ∆p

X
of infinite index is a

free pro-p group.

Remark 2.2.2. In the remainder of the present paper, we do not apply Proposi-
tion 2.2, (ii), (iv). We reviewed these properties to observe the group-theoretic
similarities between GpK and ∆p

X
[cf. Theorem 1.5].

Next, we recall the following well-known [but nontrivial] fact [cf. [8], Lemma
3.2; [19], Lemma 1.1.5].

Lemma 2.3. Let M be a free Zp-module equipped with the trivial GK-action;
X ↪→ X an open immersion over K [so X is a hyperbolic curve over K]. Recall
that GK acts naturally on (∆p

X)ab. Then every GK-equivariant homomorphism

(∆p
X)ab →M

factors through the composite of natural surjections

(∆p
X)ab ↠ (∆p

X
)ab ↠ (∆p,cmb

X
)ab

[cf. Remark 2.1.1].
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Proof. First, we note that the image of the p-adic cyclotomic character GK →
Z×
p is open. On the other hand, if we replace K by a finite extension field of K,

then the kernel of the natural surjection (∆p
X)ab ↠ (∆p

X
)ab is isomorphic to a

direct sum of Zp(1) as GK-modules, where “(1)” denotes the Tate twist. Thus,
we may assume without loss of generality that

X = X.

Next, since M is a free Zp-module equipped with the trivial GK-action,
it suffices to prove that every GK-equivariant homomorphism Ker((∆p

X)ab ↠
(∆p,cmb

X
)ab) → Zp is trivial. Recall our assumption that X has stable reduction

over OK . Then it follows from the theory of Raynaud extension [cf. [2], Chapter
III, Corollary 7.3; [14], Corollary 6.4.9] that, if we replaceK by a finite extension
field of K, then there exist an abelian variety A over K with good reduction and
an exact sequence of GK-modules

0 −→
⊕

Zp(1) −→ Ker((∆p
X)ab ↠ (∆p,cmb

X
)ab) −→ Tp(A) −→ 0,

where Tp(A) denotes the p-adic Tate module of A.
Next, we verify the following assertion:

Claim 2.3.A: Every GK-equivariant homomorphism Tp(A) → Zp is
trivial.

Indeed, in light of the duality theory of abelian varieties, it suffices to prove that
every GK-equivariant homomorphism

Zp(1) → Tp(A
∨)

is trivial, where A∨ denotes the dual abelian variety of A; Tp(A
∨) denotes the

p-adic Tate module of A∨. However, since A∨ has good reduction over K [cf.
[29], §1, Corollary 2], this follows formally from [13], Theorem. This completes
the proof of Claim 2.3.A.

Finally, since the image of the p-adic cyclotomic character GK → Z×
p is

open, we conclude from Claim 2.3.A that every GK-equivariant homomorphism
Ker((∆p

X)ab ↠ (∆p,cmb

X
)ab) → Zp is trivial. This completes the proof of Lemma

2.3.

Definition 2.4. Let Y be a hyperbolic curve over K.

(i) Suppose that Y is proper overK. Recall from [1], Corollary 2.7, that there
exists a finite extension K ⊆ L (⊆ K) such that YL has stable reduction
over the ring of integers of L. Fix such a finite extension K ⊆ L (⊆ K).
Then we shall write

∆p,cmb
Y

def
= ∆p,cmb

YL
.

Here, we note that it follows immediately from the various definitions
involved that ∆p,cmb

YL
is independent of the choice of L.
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(ii) Write Y for the smooth compactification of Y over K. Suppose that Y
has genus ≥ 2 [so Y is a proper hyperbolic curve over K]. Then we shall
write

∆p,w
Y

for the kernel of the natural composite

∆p
Y ↠ ∆p

Y
↠ ∆p,cmb

Y
,

where the first arrow denotes the surjection induced by the natural open
immersion Y ↪→ Y ; the second arrow denotes the natural surjection [cf.
Definitions 2.1, (ii), (iv); 2.4, (i); Remark 2.1.1].

3 Semi-absoluteness of isomorphisms between
the maximal pro-p quotients of the étale fun-
damental groups of hyperbolic curves

Let p be a prime number. In the present section, we apply the group-
theoretic properties of various pro-p groups reviewed in the previous sections to
prove the semi-absoluteness of isomorphisms between the maximal pro-p quo-
tients of the étale fundamental groups of hyperbolic curves [cf. Theorem 3.6
below; [21], Definition 2.4, (ii)].

Definition 3.1. Let K be a field of characteristic 0; X an algebraic variety
over K. Then we have an exact sequence of profinite groups

1 −→ ∆X −→ ΠX −→ GK −→ 1

[cf. [4], Exposé IX, Théorème 6.1]. We shall say that X satisfies the p-exactness
if the above exact sequence induces an exact sequence of pro-p groups

1 −→ ∆p
X −→ ΠpX −→ GpK −→ 1.

Remark 3.1.1. In the notation of Definition 3.1, it follows immediately from the
various definitions involved that the natural sequence of pro-p groups

∆p
X −→ ΠpX −→ GpK −→ 1

is exact without imposing any assumption on X. In particular, X satisfies the
p-exactness if and only if the natural homomorphism ∆p

X → ΠpX is injective.

12



Remark 3.1.2. Let K be a field of characteristic 0; K ⊆ L a field extension; X
an algebraic variety over K that satisfies the p-exactness. Then XL also satisfies
the p-exactness. Indeed, this follows immediately from the facts that

• the natural homomorphism ∆XL
→ ∆X is an isomorphism [cf. [4], Exposé

X, Corollaire 1.8], which thus induces an isomorphism ∆p
XL

∼→ ∆p
X ;

• the composite ∆p
XL

∼→ ∆p
X → ΠpX factors as the composite of the natural

homomorphisms ∆p
XL

→ ΠpXL
and ΠpXL

→ ΠpX .

Lemma 3.2. Let K be a field of characteristic 0; X a hyperbolic curve over K.
Suppose that X satisfies the p-exactness [cf. Definition 3.1]. Then it holds that
ζp ∈ K.

Proof. First, we note that [K(ζp) : K] is coprime to p. Then since X satisfies
the p-exactness, by replacing ΠpX by a suitable open subgroup of ΠpX , we may
assume without loss of generality thatX has genus ≥ 2. Next, we note that since
X satisfies the p-exactness, the natural outer representation GK → Out(∆p

X)
[induced by the natural exact sequence of profinite groups 1 → ∆X → ΠX →
GK → 1] factors through the maximal pro-p quotient GK ↠ GpK . Write X for
the smooth compactification of X over K. Then it follows immediately that
the natural outer representation GK → Out(∆p

X
) [induced by the natural exact

sequence of profinite groups 1 → ∆X → ΠX → GK → 1] also factors through
the maximal pro-p quotient GK ↠ GpK . In particular, the natural action of GK
on

Hom(H2(∆p

X
, Zp), Zp)

induced by the natural outer action GK → Out(∆p

X
) factors through the max-

imal pro-p quotient GK ↠ GpK . Observe that since X is a proper hyperbolic
curve, it holds that Hom(H2(∆p

X
, Zp), Zp) is isomorphic to Zp(1) as GK-

modules, where “(1)” denotes the Tate twist. Thus, we conclude that ζp ∈ K.
This completes the proof of Lemma 3.2.

Proposition 3.3. Let K be a p-adic local field; X a hyperbolic curve over K
that has genus ≥ 2; G a free pro-p group of finite rank, or a Demushkin group
isomorphic to the maximal pro-p quotient of the absolute Galois group of some
p-adic local field;

ϕ : ΠpX → G

an open homomorphism. Write i : ∆p
X → ΠpX for the natural homomorphism

induced by the natural injection ∆X ↪→ ΠX . Then

ϕ ◦ i(∆p,w
X ) = {1}

[cf. Definition 2.4, (ii)].
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Proof. Note that, for each finite extension K ⊆ L (⊆ K), the natural homo-
morphism i : ∆p

X → ΠpX factors as the composite of the natural homomorphism
∆p
X → ΠpXL

with the natural open homomorphism ΠpXL
→ ΠpX [induced by the

natural open injection ΠXL
↪→ ΠX ]. Thus, by applying the well-known sta-

ble reduction theorem [cf. [1], Corollary 2.7], we may assume without loss of
generality that X has stable reduction over the ring of integers of K.

Next, we observe that every open subgroup of G is also a free pro-p group of
finite rank or a Demushkin group isomorphic to the maximal pro-p quotient of
the absolute Galois group of some p-adic local field. Thus, we may also assume
without loss of generality that ϕ is surjective.

Then since G is a pro-solvable group, to verify Proposition 3.3, it suffices to
verify the following assertion:

Claim 3.3.A: LetN ⊆ G be an open subgroup such that ϕ◦i(∆p,w
X ) ⊆

N . Then the image of ϕ◦i(∆p,w
X ) via the natural surjectionN ↠ Nab

is trivial.

Indeed, by replacing ΠpX by ϕ−1(N), we may assume without loss of generality
that N = G. Then we obtain a GK-equivariant homomorphism

(∆p
X)ab → Gab,

whereGab is endowed with the trivial action ofGK . Thus, it follows immediately
from Lemma 2.3 that the image of ϕ ◦ i(∆p,w

X ) via the composite of the natural
surjections

f : G↠ Gab ↠ Gab/(Gab)tor

is trivial. In particular, since the abelianization of any free pro-p group is
torsion-free, we complete the proof of Claim 3.3.A in the case where G is a free
pro-p group of finite rank. Thus, we may assume without loss of generality that
G is a Demushkin group that equals to GpK′ for some p-adic local field K ′. Write

• pa for the cardinality of (Gab)tor, i.e., the cardinality of the set of p-
power roots of unity ∈ K ′, where we note that a ≥ 1 [cf. Remark 1.1.1;
Proposition 1.3; Theorem 1.4, (i)];

• K ′ ⊆ L′ (⊆ K
′
) for the unramified extension of degree pa.

In the remainder of the proof, we regard GpL′ as an open subgroup of G via
the natural open injection GpL′ ↪→ G. Then it follows immediately from the
definition of L′ that the normal open subgroup GpL′ ⊆ G coincides with the
pull-back of a normal open subgroup of Gab/(Gab)tor via f . In particular, it
holds that

f−1(f(GpL′)) = GpL′ .

Let ζpa ∈ K ′ be a primitive pa-th root of unity. Then it follows immediately
from the functoriality of the reciprocity map [cf. [25], Chapter IV, Proposition
5.8] that

14



• the image of ((GpL′)ab)tor via the natural homomorphism

(GpL′)
ab → (GpK′)

ab = Gab

[induced by the inclusion GpL′ ⊆ GpK′ = G] is trivial.

Here, we note that since K ′ ⊆ L′ (⊆ K
′
) is an unramified extension, the natural

quotient GpK′ ↠ GpK′/G
p
L′ factors through the torsion-free abelian quotient of

GpK′ by the inertia subgroup of GpK′ . Then since f ◦ ϕ ◦ i(∆p,w
X ) = {1}, it holds

that
∆p,w
X ⊆ (ϕ ◦ i)−1(GpL′) ⊆ ∆p

X .

Thus, by applying Lemma 2.3 to the open homomorphism ϕ−1(GpL′)↠ GpL′ , we
observe that the image of ϕ ◦ i(∆p,w

X ) (⊆ GpL′) via the composite of the natural
surjections

GpL′ ↠ (GpL′)
ab ↠ (GpL′)

ab/((GpL′)
ab)tor

is trivial. Finally, since the natural composite

((GpL′)
ab)tor ⊆ (GpL′)

ab → (GpK′)
ab = Gab

is trivial, we conclude that the image of ϕ ◦ i(∆p,w
X ) via the natural surjection

G↠ Gab is trivial. This completes the proof of Claim 3.3.A, hence of Proposi-
tion 3.3.

Corollary 3.4. Let K be a p-adic local field; X a hyperbolic curve over K;
I a cuspidal inertia subgroup of ∆p

X ; G a free pro-p group of finite rank, or
a Demushkin group isomorphic to the maximal pro-p quotient of the absolute
Galois group of some p-adic local field;

ϕ : ΠpX → G

an open homomorphism. Write i : ∆p
X → ΠpX for the natural homomorphism

induced by the natural injection ∆X ↪→ ΠX . Then

ϕ ◦ i(I) = {1}.

Proof. Let Y → XL be a finite étale Galois covering over some finite extension
K ⊆ L (⊆ K) such that the hyperbolic curve Y has genus ≥ 2. [Note that the
existence of such a covering follows immediately from Hurwitz’s formula.] Write

g : ΠpY −→ ΠpXL
−→ ΠpX

ϕ−→ G

for the composite of the open homomorphisms, where the first and second arrow
denote the open homomorphisms induced by the finite étale covering Y → XL

and the projection morphism XL → X;

iY : ∆p
Y → ΠpY

15



for the natural homomorphism induced by the natural injection ∆Y ↪→ ΠY .
Then, by applying Proposition 3.3 to the open homomorphism g, we conclude
that, for each cuspidal inertia subgroup IY of ∆p

Y , it holds that g◦iY (IY ) = {1}.
On the other hand, it follows immediately from the various definitions involved
that there exists a cuspidal inertia subgroup IY of ∆p

Y whose image in ∆p
X via

the natural homomorphism ∆p
Y → ∆p

X is an open subgroup of I. Thus, we
conclude that ϕ ◦ i(I) ⊆ G is a finite subgroup. However, since G is torsion-free
[cf. Lemma 1.6], it holds that ϕ ◦ i(I) = {1}. This completes the proof of
Corollary 3.4.

Lemma 3.5. Let
1 −→ ∆ −→ Π −→ G −→ 1

be an exact sequence of profinite groups. Write

ρ : G→ Out(∆)

for the outer representation determined by the above exact sequence. Suppose
that Im(ρ) = {1}, and ∆ is center-free. Then there exists a unique section
s : G ↪→ Π of the surjection Π ↠ G such that s(G) (⊆ Π) commutes with
∆ (⊆ Π). In particular, the inclusion ∆ ⊆ Π and the section s determine a
direct product decomposition

∆×G
∼→ Π,

which thus induces a splitting Π↠ ∆ of the inclusion ∆ ⊆ Π.

Proof. It suffices to prove that, for each g ∈ G, there exists a unique lifting
g̃ ∈ Π of g that commutes with ∆ (⊆ Π). However, the existence (respectively,
the uniqueness) follows immediately from our assumption that Im(ρ) = {1}
(respectively, ∆ is center-free). This completes the proof of Lemma 3.5.

Next, we prove our first main result [cf. Theorem A, (ii), for hyperbolic
curves].

Theorem 3.6. Let K, K ′ be p-adic local fields; X, X ′ hyperbolic curves over
K, K ′, respectively;

α : ΠpX
∼→ ΠpX′

an isomorphism of profinite groups.

(i) Write Γ for the dual semi-graph associated to the special fiber of stable
model of XK [over the ring of integers of K]. Suppose that the first Betti

number of Γ ≤ 1. Then α induces an isomorphism GpK
∼→ GpK′ that fits

into a commutative diagram

ΠpX
∼−−−−→
α

ΠpX′y y
GpK

∼−−−−→ GpK′ ,
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where the vertical arrows denote the natural surjections [determined up to
composition with an inner automorphism] induced by the structure mor-
phisms of the hyperbolic curves X, X ′.

(ii) Suppose that

X and X ′ satisfy the p-exactness [cf. Definition 3.1].

Then α induces an isomorphism GpK
∼→ GpK′ that fits into a commutative

diagram
ΠpX

∼−−−−→
α

ΠpX′y y
GpK

∼−−−−→ GpK′ ,

where the vertical arrows denote the natural surjections [determined up to
composition with an inner automorphism] induced by the structure mor-
phisms of the hyperbolic curves X, X ′.

Proof. First, we verify assertion (i). Note that, in light of the well-known sta-
ble reduction theorem [cf. [1], Corollary 2.7], it follows immediately from our
assumption, together with some consideration on admissible coverings [cf. [16],
§2], that there exist a finite extension K ⊆ L (⊆ K) and a connected finite étale
covering YL → XL over L such that

• YL is a hyperbolic curve over L of genus ≥ 2 whose smooth compactifica-
tion Y L has stable reduction over the ring of integers of L;

• rank ∆p,cmb
YL

≤ 1. [In particular, ∆p,cmb
YL

is abelian.]

Then we obtain a commutative diagram of profinite groups

∆p
Y −−−−→ ΠpYL

−−−−→ GpL −−−−→ 1y y y
∆p
X −−−−→ ΠpX −−−−→ GpK −−−−→ 1

α

y≀

∆p
X′ −−−−→ ΠpX′ −−−−→ GpK′ −−−−→ 1,

where the horizontal sequences are the natural exact sequences as in Remark
3.1.1; the vertical arrows ∆p

Y → ∆p
X , ΠpYL

→ ΠpX , and GpL → GpK denote the
natural open homomorphisms. Write

g : ΠpYL
→ ΠpX

∼→
α

ΠpX′ → GpK′

for the composite of the open homomorphisms that appear in the above com-
mutative diagram;

g|∆p
Y
: ∆p

Y → GpK′
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for the composite of the natural homomorphism ∆p
Y → ΠpYL

with the homo-
morphism g. Then it follows immediately from the various definitions involved
that

• Im(g) ⊆ GpK′ is an open subgroup;

• Im(g|∆p
Y
) ⊆ Im(g) is a topologically finitely generated normal closed sub-

group.

Then since GpK′ is elastic [cf. Theorem 1.5, (ii)], it holds that Im(g|∆p
Y
) is triv-

ial or an open subgroup of GpK′ . Recall that every open subgroup of GpK′ is

nonabelian [cf. Lemma 1.6]. Thus, since ∆p,cmb
YL

is abelian, it follows immedi-
ately from Proposition 3.3 that Im(g|∆p

Y
) is trivial. Therefore, the image of the

composite
∆p
X → ΠpX

∼→
α

ΠpX′ → GpK′

of the homomorphisms that appear in the above commutative diagram is a fi-
nite group. Then since GpK′ is torsion-free [cf. Lemma 1.6], we observe that
this image is also trivial. In particular, the above commutative diagram induces
a surjection GpK ↠ GpK′ whose kernel is topologically finitely generated. How-
ever, since GpK is elastic, and GpK′ is infinite, it holds that this surjection is an
isomorphism. This completes the proof of assertion (i).

Next, we verify assertion (ii). Note that GpK and GpK′ are torsion-free [cf.
Lemma 1.6]. Then since X and X ′ satisfy the p-exactness, by replacing ΠpX
and ΠpX′ by suitable normal open subgroups, we may assume without loss of
generality that X and X ′ have genus ≥ 2. Moreover, by applying assertion (i),
we may assume without loss of generality that

rank ∆p,cmb

X
≥ 2, rank ∆p,cmb

X
′ ≥ 2

[cf. Proposition 2.2, (iii); Definition 2.4, (i), (ii)]. In particular, ∆p,cmb

X
and

∆p,cmb

X
′ are center-free.

Next, it follows from the well-known stable reduction theorem [cf. [1], Corol-
lary 2.7] that there exists a finite Galois extension K ⊆ L (⊆ K) (respectively,

K ′ ⊆ L′ (⊆ K
′
)) such that

• the smooth compactification ofXL (respectively, X ′
L′) has stable reduction

over the ring of integers of L (respectively, L′);

• the natural outer action of GL on ∆cmb
X

(respectively, GL′ on ∆cmb
X

′ ) is
trivial;

• XL(L) ̸= ∅ (respectively, X ′
L′(L′) ̸= ∅).

Fix such finite Galois extensions K ⊆ L (⊆ K) and K ′ ⊆ L′ (⊆ K
′
). Thus,

by applying Lemma 3.5, we obtain a natural surjection ΠX′
L′
↠ ∆cmb

X
′ whose

restriction to ∆X′ coincides with the natural quotient ∆X′ ↠ ∆cmb
X

′ . Write
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• ΠwX′
L′

def
= Ker(ΠX′

L′
↠ ∆cmb

X
′ ), where we note that the normal closed sub-

group ΠwX′
L′

⊆ ΠX′
L′

(⊆ ΠX′) is a normal closed subgroup of ΠX′ topo-

logically normally generated by the normal closed subgroup Ker(∆X′ ↠
∆cmb
X

′ ) ⊆ ΠX′ and the image of a section of the surjection ΠX′
L′
↠ GL′

determined by an L′-valued point of X ′
L′ ;

• Πp,wX′
def
= Im(ΠwX′

L′
⊆ ΠX′

L′
⊆ ΠX′ ↠ ΠpX′). [In particular, Πp,wX′ ⊆ ΠpX′ is a

normal closed subgroup.]

Next, we verify the following assertion:

Claim 3.6.A: The homomorphism ∆p,cmb

X
′ → ΠpX′/Π

p,w
X′ induced by

the natural homomorphism ∆p
X′ → ΠpX′ is injective. In particular,

there exists a commutative diagram of profinite groups

1 −−−−→ ∆p
X′ −−−−→ ΠpX′ −−−−→ GpK′ −−−−→ 1y ψ

y y
1 −−−−→ ∆p,cmb

X
′ −−−−→ ΠpX′/Π

p,w
X′ −−−−→ Gal(L′/K ′)p −−−−→ 1,

where the vertical arrows denote the natural surjections.

Note that there exists a natural exact sequence of profinite groups

1 −→ ∆cmb
X

′ −→ ΠX′/ΠwX′
L′

−→ Gal(L′/K ′) −→ 1.

Write
ρ : Gal(L′/K ′) → Out(∆p,cmb

X
′ )

for the outer representation determined by the above exact sequence. Recall that
∆p,cmb

X
′ is center-free. Thus, it suffices to prove that the outer representation ρ

factors through the maximal pro-p quotient Gal(L′/K ′) ↠ Gal(L′/K ′)p. Ob-

serve that sinceX ′ satisfies the p-exactness, the compositeGK′ ↠ Gal(L′/K ′)
ρ→

Out(∆p,cmb

X
′ ) of the natural surjections factors through the maximal pro-p quo-

tient GK′ ↠ GpK′ . Thus, we obtain the desired conclusion. This completes the
proof of Claim 3.6.A.

Next, we verify the following assertion:

Claim 3.6.B: α(∆p,w
X ) = ∆p,w

X′ [cf. Definition 2.4, (ii)].

Indeed, by applying Proposition 3.3 to the composite ΠpX ↠ GpK′ of α with the
natural surjection ΠpX′ ↠ GpK′ , we observe that

α(∆p,w
X ) ⊆ ∆p

X′ .

Then it holds that

• (ψ ◦ α)−1(∆p,cmb

X
′ ) ⊆ ΠpX is a normal open subgroup [cf. Claim 3.6.A];
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• ψ ◦ α(∆p,w
X ) ⊆ ∆p,cmb

X
′ [cf. the fact that α(∆p,w

X ) ⊆ ∆p
X′ , together with

Claim 3.6.A].

Therefore, by applying Proposition 3.3 to the natural surjection

(ψ ◦ α)−1(∆p,cmb

X
′ )↠ ∆p,cmb

X
′

induced by ψ ◦ α, we observe that

ψ ◦ α(∆p,w
X ) = {1}.

Then since α(∆p,w
X ) ⊆ ∆p

X′ , it follows from Claim 3.6.A that

α(∆p,w
X ) ⊆ ∆p,w

X′ .

On the other hand, by applying a similar argument [to the argument applied
above] to α−1, we also have α−1(∆p,w

X′ ) ⊆ ∆p,w
X . Thus, we conclude that

α(∆p,w
X ) = ∆p,w

X′ . This completes the proof of Claim 3.6.B.
Next, by applying Claim 3.6.B, we obtain a diagram of profinite groups

1 −−−−→ ∆p,cmb

X
−−−−→ ΠpX/∆

p,w
X −−−−→ GpK −−−−→ 1

β

y≀

1 −−−−→ ∆p,cmb

X
′ −−−−→ ΠpX′/∆

p,w
X′

q′−−−−→ GpK′ −−−−→ 1,

where β denotes the isomorphism induced by α; q′ denotes the surjection in-
duced by the natural surjection ΠpX′ ↠ GpK′ . Suppose that

q′ ◦ β(∆p,cmb

X
) ̸= {1}.

Then since GpK′ is elastic, it holds that q′ ◦ β(∆p,cmb

X
) ⊆ GpK′ is a normal open

subgroup. On the other hand, since ∆p,cmb

X
is center-free, and the natural outer

action of GpL on ∆p,cmb

X
is trivial, it follows from Lemma 3.5 that we obtain a

commutative diagram of profinite groups

1 −−−−→ ∆p
X −−−−→ ΠpXL

−−−−→ GpL −−−−→ 1y y ∥∥∥
1 −−−−→ ∆p,cmb

X
−−−−→ ∆p,cmb

X
×GpL −−−−→ GpL −−−−→ 1∥∥∥ yh y

1 −−−−→ ∆p,cmb

X
−−−−→ ΠpX/∆

p,w
X −−−−→ GpK −−−−→ 1,

where ∆p,cmb

X
×GpL → GpL denotes the second projection; GpL → GpK denotes the

natural open homomorphism [induced by the natural open injection GL ⊆ GK ];
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h denotes the open homomorphism determined by the natural open homomor-
phism ΠpXL

→ ΠpX [induced by the natural open injection ΠXL
⊆ ΠX ]. Write

s : GpL ↪→ ∆p,cmb

X
×GpL

for the section of the second projection ∆p,cmb

X
×GpL ↠ GpL that maps x ∈ GpL

to (1, x) ∈ ∆p,cmb

X
×GpL. Then since

• Im(h ◦ s) ⊆ ZΠp
X/∆

p,w
X

(∆p,cmb

X
),

• ∆p,cmb

X
is center-free, and

• the homomorphism GpL → GpK is open,

it holds that the centralizer ZΠp
X/∆

p,w
X

(∆p,cmb

X
) is isomorphic to an open sub-

group of GpK . Recall from Theorem 1.4, (ii), together with Lemma 3.2, that GpK
and GpK′ are Demushkin groups. In particular, the centralizer ZΠp

X/∆
p,w
X

(∆p,cmb

X
)

is a Demushkin group. On the other hand, it follows from the slimness of GpK′ ,

together with the fact that q′◦β(∆p,cmb

X
) is an open subgroup of GpK′ , that there

exists an inclusion

β(ZΠp
X/∆

p,w
X

(∆p,cmb

X
)) = ZΠp

X′/∆
p,w

X′
(β(∆p,cmb

X
)) ⊆ ∆p,cmb

X
′ .

Then since ∆p,cmb

X
′ is a free pro-p group [cf. Proposition 2.2, (iii)], it holds that

the centralizer ZΠp
X/∆

p,w
X

(∆p,cmb

X
) is also a free pro-p group [cf. [27], Corollary

7.7.5]. However, this contradicts Remark 1.1.1. Thus, we conclude that

q′ ◦ β(∆p,cmb

X
) = {1},

hence that
β(∆p,cmb

X
) ⊆ ∆p,cmb

X
′ .

Moreover, by applying a similar argument [to the argument applied above] to
β−1, we also have

β−1(∆p,cmb

X
′ ) ⊆ ∆p,cmb

X
.

In particular, it holds that β(∆p,cmb

X
) = ∆p,cmb

X
′ , which thus induces an isomor-

phism GpK
∼→ GpK′ . This completes the proof of assertion (ii), hence of Theorem

3.6.

4 Semi-absoluteness of isomorphisms between
the maximal pro-p quotients of the étale fun-
damental groups of configuration spaces asso-
ciated to hyperbolic curves
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In the present section, we apply the results obtained in the previous sections
[especially, the semi-absoluteness of isomorphisms between the maximal pro-p
quotients of the étale fundamental groups of hyperbolic curves — cf. Theo-
rem 3.6; [21], Definition 2.4, (ii)] and some facts that appear in combinatorial
anabelian geometry [especially, the “mono-anabelian” reconstruction of the di-
mensions of configuration spaces associated to hyperbolic curves obtained by
Hoshi-Minamide-Mochizuki — cf. [11], Theorem 1.6] to prove the analogous as-
sertion [i.e., the semi-absoluteness] for higher dimensional configuration spaces
associated to hyperbolic curves.

Let p be a prime number. First, we begin by recalling the definition of
configuration spaces associated to hyperbolic curves.

Definition 4.1. Let n be a positive integer; K a field; X a hyperbolic curve
over K. Write

Xn
def
= X×n \ (

∪
1≤i<j≤n

∆i,j),

where X×n denotes the fiber product of n copies of X over K; ∆i,j denotes the
diagonal divisor of X×n associated to the i-th and j-th components. We shall
refer to Xn as the n-th configuration space of X.

Remark 4.1.1. In the notation of Definition 4.1, suppose that K is of charac-
teristic 0. Then it follows immediately from [24], Proposition 2.2, (i), that Xn

satisfies the p-exactness if and only if X satisfies the p-exactness.

Proposition 4.2. Let n be a positive integer; K a p-adic local field; X a hy-
perbolic curve over K. Write Xn for the n-th configuration space associated to
X;

t
def
= max{s ∈ N | ∃a closed subgroup of ΠpXn

isomorphic to Z⊕s
p }.

Suppose that
Xn satisfies the p-exactness.

Then the following hold:

(i) Suppose, moreover, that X is a proper hyperbolic curve over K. Then

• cdp(Π
p
Xn

) = n+ 3;

• t ≤ n+ 1.

(ii) Suppose, moreover, that X is an affine hyperbolic curve over K. Then

• cdp(Π
p
Xn

) = n+ 2;

• t = n+ 1.

In particular, the following hold:
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• X is proper if and only if cdp(Π
p
Xn

)− t ≥ 2.

• Let Π be a topological group isomorphic to ΠpXn
. Then there exists a

functorial group-theoretic algorithm

Π ⇝ n

for constructing the dimension n from Π.

Proof. Let ∆ be a pro-p surface group [cf. [24], Definition 1.2 — where we take
“C” to be the family of all finite p-groups]. Recall that, if ∆ is a free pro-p group
(respectively, not a free pro-p group), then cdp(∆) = 1 (respectively, cdp(∆) =
2). On the other hand, since Xn satisfies the p-exactness, it follows immediately
from Theorem 1.5, (iii); Lemma 3.2; Remark 4.1.1, that cdp(G

p
K) = 2. Thus,

the assertions concerning cdp(Π
p
Xn

) follow immediately from [24], Proposition
2.2, (i); [27], Proposition 7.4.2, (ii).

Next, we verify the following assertion

Claim 4.2.A: t ≤ n+ 1.

Indeed, suppose that t ≥ n+2. Then since GpK is torsion free [cf. Lemma 1.6], it
follows immediately from [11], Theorem 1.6, that there exists a closed subgroup
H ⊆ GpK such that

H ∼= Z⊕2
p .

In particular, H ⊆ GpK is an abelian closed subgroup of infinite index. Moreover,
since every open subgroup of GpK is nonabelian [cf. Lemma 1.6], it follows from
Theorem 1.5, (iii), that H is a free pro-p group. This contradicts the fact that
H ∼= Z⊕2

p . Thus, we conclude that t ≤ n+1. This completes the proof of Claim
4.2.A, hence of assertion (i).

Finally, in light of Claim 4.2.A, to complete the proof of assertion (ii), it
suffices to prove that there exists a closed subgroup of ΠpXn

isomorphic to Z⊕n+1
p .

Write X log
n for the n-th log configuration space associated to the hyperbolic

curve X [cf. [11], §0, Curves — where we note that, in our notation, the interior
ofX log

n may be identified withXn]; (ΠXn

∼→) ΠXlog
n

for the log étale fundamental

group of X log
n , relative to a suitable choice of basepoint [cf. [18], Theorem B].

Let D ⊆ ΠXn
be a decomposition subgroup associated to a log-full point of

X log
n [cf. [11], Definition 1.1], where we note that the existence of a log-full

point follows from [11], Proposition 1.2, (i); [11], Proposition 1.3, (i), together
with our assumption that X is affine. Then it follows immediately from a [log]
scheme-theoretic consideration that there exist a finite extension K ⊆ L (⊆ K)
and a natural exact sequence of profinite groups

1 −→
⊕

Ẑ(1) −→ D −→ GL −→ 1

[where “(1)” denotes the Tate twist], which induces [cf. our assumption that
Xn satisfies the p-exactness] an exact sequence of pro-p groups

1 −→
⊕

Zp(1) −→ Dp r−→ GpL −→ 1.

Let I ⊆ GpL be a closed subgroup such that
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• I ∼= Zp;
• the image of I via the natural open homomorphism GpL → GpK [induced

by the inclusion GL ⊆ GK ] is also isomorphic to Zp;
• the image of I via the p-adic cyclotomic character GpL → Z×

p is trivial
[where we note that ζp ∈ K ⊆ L — cf. Lemma 3.2; Remark 4.1.1].

Write H ⊆ ΠpXn
for the image of r−1(I) via the natural homomorphism Dp →

ΠpXn
[induced by the inclusion D ⊆ ΠXn ]. Then it follows immediately from

the various definitions involved that H ∼= Z⊕n+1
p . This completes the proof of

Proposition 4.2.

Remark 4.2.1. The fact that the dimension of Xn may be reconstructed, in a
purely group-theoretically way, from ΠpXn

was pointed out to the author of the
present paper by K. Sawada. More precisely, he explained to the author that
such a result may be obtained by applying a similar argument to the argument
applied in the proof of [28], Theorem 2.15. However, since the above proof [of
Proposition 4.2] is a direct and easy application of the results obtained in [11], §1
[which is also a direct and easy application of log geometry], the author decided
to include this proof in the present paper.

Proposition 4.3. Let K be a field of characteristic 0 that contains ζp (∈ K).
Suppose that K is either

• a Henselian discrete valuation field with infinite residues of characteristic
p or

• a Hilbertian field [i.e., a field for which Hilbert’s irreducibility theorem
holds — cf. [3], Chapter 12].

Then GpK is elastic and not topologically finitely generated.

Proof. First, it follows from [15], Theorem C, that we may assume without loss
of generality that K is a Hilbertian field. Then since K contains ζp, it follows
from [3], Corollary 16.2.7, (b), that GpK is not topologically finitely generated.

Next, we verify the elasticity of GpK . Let F ⊆ GpK be a topologically finitely
generated normal closed subgroup. Write K ⊆ Kp (⊆ K) for the maximal pro-p
extension [so GpK = Gal(Kp/K)]; KF ⊆ Kp for the subfield fixed by F . Here,
we note that Kp ⊊ K [cf. [3], Corollary 16.2.7, (a)].

Suppose that KF ⊊ Kp. Then since K ⊆ KF is a Galois extension, it follows
from [3], Theorem 13.9.1, (b), together with [3], Corollary 16.2.7, (b), that the
extension KF ⊊ Kp is not finite. Let KF ⊊ L be a finite extension such that
L ⊊ Kp. Again, by applying [3], Theorem 13.9.1, (b), we observe that L is
a Hilbertian field, hence [cf. [3], Corollary 16.2.7, (b)] that Gal(Kp/L) = GpL
is not topologically finitely generated. In particular, since KF ⊊ L is a finite
extension, it holds that F = Gal(Kp/KF ) is not topologically finitely generated.
This is a contradiction. Thus, we conclude that KF = Kp, hence that F = {1}.
This completes the proof of Proposition 4.3.
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Next, we prove the following [cf. Theorem A, (i)]:

Theorem 4.4. Let K, K ′ be fields of characteristic 0; X, X ′ smooth varieties
over K, K ′, respectively;

α : ΠpX
∼→ ΠpX′

an isomorphism of profinite groups. Suppose that

• K is either a Henselian discrete valuation field with infinite residues of
characteristic p or a Hilbertian field;

• K ′ is either a Henselian discrete valuation field with residues of charac-
teristic p or a Hilbertian field;

• ζp ∈ K, ζp ∈ K ′.

Then α induces an isomorphism GpK
∼→ GpK′ that fits into a commutative dia-

gram
ΠpX

∼−−−−→
α

ΠpX′y y
GpK

∼−−−−→ GpK′ ,

where the vertical arrows denote the natural surjections [determined up to com-
position with an inner automorphism] induced by the structure morphisms of
the smooth varieties X, X ′.

Proof. First, it follows from Proposition 4.3, together with our assumptions on
K, that GpK is elastic and not topologically finitely generated. Next, we consider
a diagram of profinite groups

∆p
X −−−−→ ΠpX −−−−→ GpK −−−−→ 1

α

y≀

∆p
X′ −−−−→ ΠpX′ −−−−→ GpK′ −−−−→ 1,

where the horizontal sequences are the natural exact sequences as in Remark
3.1.1. Then since ∆p

X′ is topologically finitely generated [cf. [15], Lemma 4.2],
it follows immediately from Theorem 1.4, (ii); Proposition 4.3; [15], Lemma 3.1,
together with our assumptions on K ′, that GpK′ is also elastic and not topologi-
cally finitely generated. Therefore, every topologically finitely generated normal
closed subgroup of GpK and GpK′ is trivial. Write ϕ : ∆p

X → GpK′ (respectively,
ψ : ∆p

X′ → GpK) for the composite

∆p
X −→ ΠpX

∼→
α

ΠpX′ −→ GpK′

(respectively,
∆p
X′ −→ ΠpX′

∼→
α−1

ΠpX −→ GpK),

of the homomorphisms that appear in the above diagram. Note that since ∆p
X

and ∆p
X′ are topologically finitely generated [cf. [15], Lemma 4.2], it holds that
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Im(ϕ) ⊆ GpK′ and Im(ψ) ⊆ GpK are topologically finitely generated normal closed
subgroups. Thus, we conclude that Im(ϕ) = {1}, and Im(ψ) = {1}, hence, in
particular, that α induces an isomorphism GpK

∼→ GpK′ . This completes the
proof Theorem 4.4.

Proposition 4.5. Let n be a positive integer; K a p-adic local field; X a hy-
perbolic curve over K. Write Xn for the n-th configuration space associated to
X; (ΠpX)×n for the fiber product of n copies of ΠpX over GpK ;

f : ΠpXn
↠ (ΠpX)×n

for the natural surjection induced by the natural open immersion Xn ↪→ X×n

over K. Let G be a free pro-p group of finite rank, or a Demushkin group
isomorphic to the maximal pro-p quotient of the absolute Galois group of some
p-adic local field;

ϕ : ΠpXn
→ G

an open homomorphism. Then ϕ factors as the composite of f with an open
homomorphism (ΠpX)×n → G.

Proof. Write
h : ∆p

Xn
→ ΠpXn

for the natural homomorphism induced by the natural injection ∆Xn ↪→ ΠXn .
For each positive integer j (≤ n), write

pj : Π
p
Xn
↠ ΠpXn−1

for the surjection that lies over GpK [determined up to composition with an
inner automorphism] induced by the natural projection morphism Xn → Xn−1

obtained by forgetting the j-th factor. For each pair of positive integers i, j such
that 1 ≤ i ̸= j ≤ n, let

Ii,j ⊆ ∆p
Xn

be an inertia subgroup associated to the diagonal divisor ∆i,j [cf. Definition
4.1].

To verify Proposition 4.5, it suffices to prove that ϕ ◦ h(Ii,j) = {1} for each
pair of positive integers i, j such that 1 ≤ i ̸= j ≤ n. LetK ⊆ L (⊆ K) be a finite
field extension such that the cardinality of X(L) ≥ n− 1; x1, · · · , xn−1 ∈ X(L)
distinct L-rational points of X. Write Z ⊆ XL for the open subscheme obtained
by forming the complement of the closed subset {x1, · · · , xn−1} ⊆ XL. [In
particular, Z is a hyperbolic curve over L.] Then there exists a commutative
diagram of profinite groups

∆p
Z −−−−→ ΠpZ −−−−→ GpL −−−−→ 1∥∥∥ y y

∆p
Z −−−−→ ΠpXn

pj−−−−→ ΠpXn−1
−−−−→ 1,
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where the upper horizontal sequence denotes the exact sequence induced by
the structure morphism Z → Spec L; the right-hand vertical arrow denotes
the homomorphism that lies over GpK [determined up to composition with an
inner automorphism] induced by the distinct L-rational points x1, · · · , xn−1 ∈
X(L); the middle vertical arrow denotes the homomorphism that lies over GpK
[determined up to composition with an inner automorphism] induced by the
natural morphism Z → Xn overK. Note that h(Ii,j) (⊆ ΠpXn

) coincides with the
image of a cuspidal inertia subgroup of ∆p

Z via the homomorphism ∆p
Z → ΠpXn

that appears in the above commutative diagram.
Write ϕZ : ΠpZ → G (respectively, hZ : ∆p

Z → G) for the composite of the
homomorphism ΠpZ → ΠpXn

(respectively, ∆p
Z → ΠpXn

) [that appears in the
above commutative diagram] with ϕ. If Im(hZ) = {1}, then we have nothing
to prove. If Im(hZ) ̸= {1}, then since G is elastic, and Im(hZ) (⊆ G) is a
topologically finitely generated normal closed subgroup of an open subgroup
of G, it holds that Im(hZ) ⊆ G is an open subgroup. In particular, ϕZ is an
open homomorphism. Thus, by applying Corollary 3.4 to ϕZ , we conclude that
h(Ii,j) = {1}. This completes the proof of Proposition 4.5.

Before proceeding, we recall the definition of fiber subgroups, which will be
of use in the proof of Theorem 4.7.

Definition 4.6 ([24], Definition 2.3, (iii)). Let n be a positive integer ≥ 2; i
a positive integer ≤ n; K an algebraically closed field of characteristic 0; X a
hyperbolic curve over K. Write

• Xm for the m-th configuration space associated to X for each positive
integer m;

• pi : ΠpXn
↠ ΠpXn−1

for the outer surjection induced by the projection
morphism Xn → Xn−1 obtained by forgetting the i-th factor;

• qi : Π
p
Xn
↠ ΠpX for the outer surjection induced by the projection mor-

phism Xn → X associated to the i-th factor.

Then we shall refer to Ker(pi) (respectively, Ker(qi)) as a fiber subgroup of ΠpXn

of length 1 (respectively, co-length 1) associated to i.

Finally, we prove the following [cf. Theorem A, (ii)]:

Theorem 4.7. Let (n, n′) be a pair of positive integers; K, K ′ fields of charac-
teristic 0; X, X ′ hyperbolic curves over K, K ′, respectively. Write Xn (respec-
tively, X ′

n′) for the n-th (respectively, the n′-th) configuration space associated
to X (respectively, X ′). Let

α : ΠpXn

∼→ ΠpX′
n′

be an isomorphism of profinite groups. Suppose that
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• K and K ′ are either Henselian discrete valuation fields of residue charac-
teristic p or Hilbertian fields;

• Xn and X ′
n′ satisfy the p-exactness.

Then it holds that

• n = n′;

• α induces an isomorphism GpK
∼→ GpK′ that fits into a commutative dia-

gram
ΠpXn

∼−−−−→
α

ΠpX′
ny y

GpK
∼−−−−→ GpK′ ,

where the vertical arrows denote the natural surjections [determined up to
composition with an inner automorphism] induced by the structure mor-
phisms of the configuration spaces Xn, X

′
n.

Proof. First, it follows immediately from Theorem 4.4, together with Lemma
3.2; Remark 4.1.1, that we may assume without loss of generality that

K and K ′ are p-adic local fields that contain ζp

[cf. [15], Lemma 3.1]. Thus, since Xn and X ′
n′ satisfy the p-exactness, by

applying Proposition 4.2, we conclude that

n = n′.

Next, it follows from Theorem 3.6 that we may assume without loss of gen-
erality that n ≥ 2. Write ϕ : ∆p

Xn
→ GpK′ (respectively, ψ : ∆p

X′
n
→ GpK) for the

composite
∆p
Xn

−→ ΠpXn

∼→
α

ΠpX′
n
−→ GpK′

(respectively,
∆p
X′

n
−→ ΠpX′

n

∼→
α−1

ΠpXn
−→ GpK),

where the first arrow denotes the injection [determined up to composition with
an inner automorphism] induced by the projection morphism (Xn)K → Xn (re-
spectively, (X ′

n)K′ → X ′
n); the final arrow denotes the surjection [determined up

to composition with an inner automorphism] induced by the structure morphism
X ′
n → Spec K ′ (respectively, Xn → Spec K).
Next, we verify the following assertion:

Claim 4.7.A: Let (i, j) be a pair of integers such that 1 ≤ i, j ≤ n.
Write Fi, Fj for the fiber subgroups of ∆p

Xn
(respectively, ∆p

X′
n
) of

length 1 associated to i, j, respectively. Suppose that ϕ(Fi) ̸= {1},
and ϕ(Fj) ̸= {1} (respectively, ψ(Fi) ̸= {1}, and ψ(Fj) ̸= {1}).
Then Fi = Fj .
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Since the proof of the non-resp’d case is similar to the proof of the resp’d case,
we verify the non-resp’d case only. Note that ϕ(Fi) and ϕ(Fj) are nontrivial
topologically finitely generated normal closed subgroup of GpK′ . Then since GpK′

is elastic [cf. Theorem 1.5, (ii)], ϕ(Fi) and ϕ(Fj) are open subgroups of GpK′ .
Suppose that

Fi ̸= Fj .

Write (∆p
X)×n for the direct product of n copies of ∆p

X . Then it follows im-
mediately from Proposition 4.5 that ϕ factors as the composite of the natural
surjection ∆p

Xn
↠ (∆p

X)×n [induced by the natural open immersion (Xn)K ↪→
(XK)×n over K] with a homomorphism (∆p

X)×n → GpK′ . In particular, it holds
that ϕ(Fi) commutes with ϕ(Fj). Then since ϕ(Fi) and ϕ(Fj) are open sub-
groups of GpK′ , there exists an abelian open subgroup of GpK′ . This contradicts
Lemma 1.6. Thus, we conclude that Fi = Fj . This completes the proof of Claim
4.7.A.

Next, it follows immediately from Claim 4.7.A that there exists a fiber sub-
group F ⊆ ∆p

Xn
of co-length 1 associated to some positive integer ≤ n such

that ϕ(F ) = {1}. Fix such a fiber subgroup F ⊆ ∆p
Xn

. In the remainder of the
proof, for each pair of positive integers i, j such that 1 ≤ i ̸= j ≤ n, we shall
write

• pri : ∆
p
X′

n
→ ∆p

X′ for the surjection [determined up to composition with

an inner automorphism] induced by the projection morphism X ′
n → X ′

associated to the i-th factor;

• Gi
def
= Ker(pri);

• pri,j : ∆
p
X′

n
→ ∆p

X′
2
for the surjection [determined up to composition with

an inner automorphism] induced by the projection morphism X ′
n → X ′

2

associated to the i-th and j-th factors.

Next, we verify the following assertion:

Claim 4.7.B: Let i (≤ n) be a positive integer such that α(F ) ⊆ Gi.
Then, for each positive integer j such that i ̸= j ≤ n, it holds that
α(F ) ̸⊆ Gj .

Indeed, suppose that α(F ) ⊆ Gi ∩ Gj . Note that it follows immediately from
[24], Proposition 2.2, (i), together with the various definitions involved, that

• pri,j(α(F )) ⊆ pri,j(Gi) is a topologically finitely generated normal closed
subgroup;

• pri,j(α(F )) ⊆ pri,j(Gi ∩Gj) ⊆ pri,j(Gi);

• the closed subgroup pri,j(Gi ∩ Gj) ⊆ pri,j(Gi) is of infinite index [so the
closed subgroup pri,j(α(F )) ⊆ pri,j(Gi) is of infinite index];

• pri,j(Gi) is elastic [cf. [24], Theorem 1.5].

Then these facts imply that pri,j(α(F )) = {1}. In particular, α(F ) is contained
in the maximal pro-p quotient of the étale fundamental group of an n−2 dimen-
sional configuration space associated to a hyperbolic curve over an algebraically
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closed field of characteristic 0. This contradicts [11], Theorem 1.6. Thus, we
conclude that α(F ) ̸⊆ Gj . This completes the proof of Claim 4.7.B.

Next, we verify the following assertion:

Claim 4.7.C: Let i (≤ n) be a positive integer such that α(F ) ⊆ Gi.
Then α(F ) = Gi.

Indeed, for each positive integer j such that i ̸= j ≤ n, it follows from Claim
4.7.B that prj(α(F )) is a nontrivial topologically finitely generated normal
closed subgroup of ∆p

X′ , hence an open subgroup of ∆p
X′ [cf. [24], Theorem

1.5]. Thus, Gj and α(F ) generate topologically an open subgroup Mj ⊆ ∆p
X′

n
.

On the other hand, by applying [the resp’d case of] Claim 4.7.A, we obtain a
positive integer l (≤ n) such that ψ(Gl) = {1}.

If l = i, then it holds that

F ⊆ α−1(Gi) ⊆ ∆p
Xn
.

If l ̸= i, then it holds that

• Ml ⊆ ∆p
X′

n
is an open subgroup;

• ψ(Ml) = {1};
• ψ(∆p

X′
n
) ⊆ GpK is a topologically finitely generated normal closed sub-

group.

Thus, since GpK is an infinite elastic group [cf. Theorem 1.5, (ii); Lemma 1.6],
we conclude that ψ(∆p

X′
n
) = {1}, hence that ∆p

X′
n
⊆ α(∆p

Xn
). In particular,

F ⊆ α−1(Gi) ⊆ ∆p
Xn
.

Note that α−1(Gi) ⊆ ∆p
Xn

is a topologically finitely generated normal closed

subgroup of infinite index [cf. [11], Theorem 1.6], and ∆p
Xn
/F

∼→ ∆p
X . Thus,

by applying [24], Theorem 1.5, we conclude that F = α−1(Gi). This completes
the proof of Claim 4.7.C.

Next, we verify the following assertion:

Claim 4.7.D: Suppose that, for each positive integer i (≤ n), α(F ) ̸⊆
Gi. Then ∆p

X′
n
= α(∆p

Xn
).

Indeed, we note that α(∆p
Xn

) ⊆ ΠpX′
n
is a topologically finitely generated normal

closed subgroup of infinite index [cf. Lemma 1.6]. Thus, since GpK′ is elastic [cf.
Theorem 1.5, (ii)], it suffices to prove that ∆p

X′
n
⊆ α(∆p

Xn
).

Let l (≤ n) be a positive integer such that ψ(Gl) = {1}. [Note that the
existence follows immediately from [the resp’d case of] Claim 4.7.A.] On the
other hand, since ∆p

X′ is elastic [cf. [24], Theorem 1.5], it follows from our
assumption that α(F ) ̸⊆ Gi that pri(α(F )) is an open subgroup of ∆p

X′ for each
positive integer i (≤ n). Thus, the closed subgroups Gl ⊆ ∆p

X′
n
and α(F ) ⊆ ∆p

X′
n

generate topologically an open subgroup Nl ⊆ ∆p
X′

n
such that ψ(Nl) = {1}.
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Note that ψ(∆p
X′

n
) ⊆ GpK is a topologically finitely generated normal closed

subgroup. Thus, since GpK is an infinite elastic group [cf. Theorem 1.5, (ii);
Lemma 1.6], we conclude that ψ(∆p

X′
n
) = {1}, hence that ∆p

X′
n
⊆ α(∆p

Xn
). This

completes the proof of Claim 4.7.D.
Finally, it follows from Claims 4.7.C, 4.7.D, together with Theorem 3.6, (ii);

Remark 4.1.1, that ∆p
X′

n
= α(∆p

Xn
), hence, in particular, that α induces an

isomorphism GpK
∼→ GpK′ . This completes the proof of Theorem 4.7.

Remark 4.7.1. In light of Theorems 4.4, 4.7; [5], Theorem 0.1, it is natural to
pose the following question:

Question: Let K, K ′ be fields of characteristic 0; X, X ′ smooth
varieties over K, K ′, respectively;

α : ΠpX
∼→ ΠpX′

an isomorphism of profinite groups. Suppose that K and K ′ are
either

• subfields of Henselian discrete valuation fields of residue char-
acteristic p or

• Hilbertian fields.

Then does α induce an isomorphism GpK
∼→ GpK′ via the natural

surjections ΠpX ↠ GpK and ΠpX′ ↠ GpK′?

However, at the time of writing of the present paper, the author does not even
know

whether or not the analogous assertions of Theorem 4.7 for hyper-
bolic polycurves hold

[cf. [7], Definition 2.1, (ii)].
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