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Abstract. In the present paper, we study the outer automorphism groups of the abso-
lute Galois groups of mixed-characteristic local fields from the point of view of anabelian
geometry. Let us recall that it is well-known that the natural homomorphism from the
automorphism group of a mixed-characteristic local field to the outer automorphism group
of the absolute Galois group of the given mixed-characteristic local field is injective. One
main result of the present paper is that if the mixed-characteristic local field satisfies certain
conditions, then the set of conjugates of the image of this injective homomorphism in the
outer automorphism group is infinite, which thus implies that the image of this injective
homomorphism is not normal in the outer automorphism group. In particular, one may
conclude that it is impossible to establish a functorial group-theoretic reconstruction, from
the absolute Galois group, of the “field-theoretic” subgroup, i.e., the image of this injective
homomorphism, of the outer automorphism group.

Introduction

Let p be a prime number, k a finite extension of Qp, and k an algebraic closure of k. Write

Gk
def
= Gal(k/k) for the absolute Galois group of k determined by the algebraic closure k and

Out(Gk) for the group of outer automorphisms of the group Gk [or, alternatively, the group
of outer continuous automorphisms of the profinite group Gk — cf., e.g., [3], Proposition 1.2,
(i), (ii)]. In the present paper, we study the outer automorphism group Out(Gk) from the
point of view of anabelian geometry.

Write Aut(k) for the group of automorphisms of the field k. Thus, we have a natural
homomorphism Aut(k) → Out(Gk) of groups. Let us first recall that it is well-known [cf.,
e.g., [4], Proposition 2.1] that this homomorphism is injective. In the present paper, let
us regard Aut(k) as a [necessarily finite] subgroup of Out(Gk) by means of this injective
homomorphism:

Aut(k) ⊆ Out(Gk).

Here, we note that it is well-known [cf., e.g., the discussion given at the final portion of [6],
Chapter VII, §5] that [although a similar equality always holds for a finite extension of Q
by the Neukirch-Uchida theorem — cf., e.g., [6], Corollary 12.2.2], in general, the equality
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Aut(k) = Out(Gk) does not hold. In particular, one may conclude that, roughly speaking,
in general, a finite extension of Qp should be considered to be “not anabelian” [cf. also [6],
Chapter XII, §2, Closing remark]. Therefore, one main interest from the point of view of
anabelian geometry is in the investigate of the “difference” between Aut(k) and Out(Gk).
Some results concerning the “characterization” of the subgroup Aut(k) of Out(Gk) may be
found in [5], §3, and [1], §3. Moreover, some results concerning this “difference” may be
found in [2], §7, and [2], §8.

Write (Qp)+ ⊆ k+ for the underlying additive modules of the fields Qp ⊆ k, respectively.
Next, let us recall that, by applying a functorial group-theoretic reconstruction algorithm
established in the study of the mono-anabelian geometry of mixed-characteristic local fields
[cf., e.g., [4], Definition 3.10, (vi), and [4], Proposition 3.11, (iv)], one obtains an action of the
group Out(Gk) on the module k+ whose restriction to the above subgroup Aut(k) ⊆ Out(Gk)
coincides with the natural action of Aut(k) on k+.

One main technical result of the present paper is as follows [cf. Theorem 2.7]:

Theorem A. Suppose that the following three conditions are satisfied:

(1) The prime number p is odd.
(2) The finite extension k/Qp is of even degree.
(3) The finite extension k/Qp is Galois, and, moreover, the Galois group Gal(k/Qp) is

abelian.

Then there exists an outer automorphism α of Gk such that, for each nonzero integer n, if
one writes αn

+ for the action of αn on k+, then αn
+((Qp)+) ̸= (Qp)+.

Next, let us recall that the first author of the present paper proved that if p is odd, and k
coincides with the [necessarily finite Galois] extension of Qp obtained by adjoining a primitive
p-th root of unity and a p-th root of p ∈ Qp, then the above subgroup Aut(k) ⊆ Out(Gk) is
not normal [cf. [2], Theorem G, (iii)]. In the present paper, we give a proof of an assertion
in this direction by applying Theorem A. More precisely, in the present paper, we prove the
following result [cf. Theorem 3.4]:

Theorem B. Suppose that the three conditions in the statement of Theorem A are satisfied.
Then the set of Out(Gk)-conjugates of the subgroup Aut(k) ⊆ Out(Gk) is infinite.

A formal consequence of Theorem B is as follows [cf. Corollary 3.5]:

Theorem C. Suppose that the three conditions in the statement of Theorem A are satisfied.
Then the following hold:

(i) The subgroup Aut(k) ⊆ Out(Gk) is not normal.
(ii) There exist infinitely many distinct [necessarily finite] subgroups of Out(Gk) isomor-

phic to Aut(k).

The issue of whether or not a functorial group-theoretic reconstruction, from the group
Gk, of the “field-theoretic” subgroup Aut(k) ⊆ Out(Gk) of the outer automorphism group
Out(Gk) can be established is interesting from the point of view of the anabelian geometry of
mixed-characteristic local fields. Now let us recall that if the condition (3) in the statement
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of Theorem A is satisfied, then, roughly speaking, one may reconstruct group-theoretically,
from the group Gk, the set of Out(Gk)-conjugates of the subgroup Aut(k) ⊆ Out(Gk) [cf. [2],
Theorem F, (i), and [2], Theorem 6.12, (ii)]. On the other hand, Theorem C, (i), implies that if
the three conditions in the statement of Theorem A are satisfied, then, roughly speaking, it is
impossible to establish a functorial group-theoretic reconstruction of the subgroup Aut(k) ⊆
Out(Gk) itself [i.e., as opposed to the set of Out(Gk)-conjugates of the subgroup Aut(k) ⊆
Out(Gk)].

0. Notational conventions

Sets. If G is a group, and T is a set equipped with an action of G, then we shall write
TG ⊆ T for the subset of G-invariants of T .

Topological groups. If G is a topological group, then we shall write Gab for the abelian-
ization of G [i.e., the quotient of G by the closure of the commutator subgroup of G] and
Gab/tor for the quotient of Gab by the closure of the subgroup of Gab of torsion elements.

Rings. If R is a ring, then we shall write R+ for the underlying additive module of R and
R× for the multiplicative module of units of R.

Fields. We shall refer to a field isomorphic to a finite extension of Qp, for some prime
number p, as an MLF . Here, “MLF” is to be understood as an abbreviation for “mixed-
characteristic local field”.

1. Existence of an automorphism with a certain unipotency condition of a
group of MLF-type

In the present §1, we prove that a certain group of MLF-type admits an automorphism
that satisfies a certain unipotency condition [cf. Theorem 1.5 below]. In the present §1, let
G be a [profinite — cf. [3], Proposition 1.2, (i), (ii)] group of MLF-type [cf. [3], Definition
1.1]. Thus, by applying the various functorial group-theoretic reconstruction algorithms of
[4], §3 [cf. [4], Definition 3.5, (i), (ii), (iii); [4], Definition 3.10, (ii), (iv), (vi)], to the group G
of MLF-type, we obtain

• a prime number p(G),
• positive integers d(G) and f(G),
• a normal closed subgroup P (G) ⊆ G of G, and
• topological modules O≺(G) ⊆ k×(G) and k+(G)

[cf. also [4], Summary 3.15]. In the present §1, suppose, moreover, that p(G) is odd, and that
d(G) > 1.

Proposition 1.1 (Jannsen-Wingberg). The profinite group G is topologically generated by
d(G) + 3 elements σ, τ , x0, . . . , xd(G) subject to the following conditions and relations.

(1) The normal closed subgroup P (G) of G is topologically normally generated by x0, . . . , xd(G).

(2) The elements σ, τ satisfy the relation στσ−1 = τ p(G)f(G)
.
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(3) The topological generators under consideration satisfy the relation

σx0σ
−1 = (xhp(G)−1

0 τxhp(G)−2

0 τ · · ·xh
0τ)

πg
p(G)−1x

p(G)s

1 δ,

where s, g, h are some positive integers such that

g(hp(G)−1 + hp(G)−2 + · · ·+ h) ̸= p(G)− 1,

π is the unique element of Ẑ =
∏

p Zp whose image in Zp is given by 1 if p = p(G)

(resp. by 0 if p ̸= p(G)), and δ is an element of the commutator subgroup of G.

Proof. This assertion follows from [6], Theorem 7.5.14, together with [4], Proposition 3.6.
[Note that it follows from the discussion preceding [6], Theorem 7.5.14, that one may take
the “g” and “h” of [6], Theorem 7.5.14, to be positive integers greater than p(G).] □

In the remainder of the present §1, let us fix topological generators σ, τ , x0, . . . , xd(G) of

G as in Proposition 1.1. Write S
def
= {0, 1, . . . , d(G)}. Moreover, for each i ∈ S, write

• yi ∈ k+(G) for the image of xi in k+(G) and
• zi ∈ O≺(G)ab/tor for the image of xi in O≺(G)ab/tor

[cf. the condition (1) of Proposition 1.1; [4], Lemma 1.5, (ii); [4], Proposition 3.6; [4], Defini-
tion 3.10, (i), (ii), (vi)].

Lemma 1.2. The topological module k+(G) has a natural structure of Qp(G)-vector space of
dimension d(G).

Proof. It follows immediately from the definition of k+(G) [cf. [4], Definition 3.10, (vi)] that
k+(G) has a natural structure ofQp(G)-vector space. Moreover, it follows from [4], Proposition
3.6, and [4], Proposition 3.11, (iv), that this Qp(G)-vector space k+(G) is of dimension d(G).

□

Lemma 1.3. The d(G) elements y1, . . . , yd(G) form a basis of the Qp(G)-vector space k+(G)
[cf. Lemma 1.2].

Proof. Since {xi}i∈S topologically normally generates P (G) [cf. the condition (1) of Proposi-

tion 1.1], {zi}i∈S topologically generates O≺(G)ab/tor (⊆ Gab/tor) [cf. [4], Definition 3.10, (i),

(ii)]. Moreover, since O≺(G)ab/tor ⊗Zp(G)
(Zp(G)/p(G)nZp(G)) is a finite p(G)-group for every

positive integer n [cf. [4], Proposition 3.11, (i)], {zi}i∈S is also a generator of O≺(G)ab/tor

even if we regard O≺(G)ab/tor as a Zp(G)-module. Next, let us observe that it follows from

the relation (2) of Proposition 1.1 that the image of τ in Gab/tor is trivial. Thus, it follows
from the relation (3) of Proposition 1.1 that the relation 1 = z0

Hz1
p(G)s in O≺(G)ab/tor holds

for some nonzero [cf. the second display of Proposition 1.1, (3)] integer H. Therefore, if we

write T
def
= S\{0}, then {zi ⊗ 1}i∈T is a generator of Qp(G)-vector space O≺(G)ab/tor ⊗Zp(G)

Qp(G). Here, let us observe that we have a natural topological isomorphism k+(G)
∼→

O≺(G)ab/tor ⊗Zp(G)
Qp(G), by definition, that maps yi ∈ k+(G) to zi ⊗ 1 ∈ O≺(G)ab/tor ⊗Zp(G)



ON THE OUTER AUTOMORPHISM GROUPS 5

Qp(G) for each i ∈ S. This isomorphism is also an isomorphism of Qp(G)-vector spaces by con-

struction. Moreover, since k+(G) ≃ O≺(G)ab/tor⊗Zp(G)
Qp(G) is a Qp(G)-vector space of dimen-

sion d(G) [cf. Lemma 1.2], {zi ⊗ 1}i∈T is a basis of the Qp(G)-vector space O≺(G)ab/tor ⊗Zp(G)

Qp(G). Therefore, it follows from the condition imposed on the isomorphism k+(G)
∼→

O≺(G)ab/tor ⊗Zp(G)
Qp(G) that {yi}i∈T is a basis of the Qp(G)-vector space k+(G). □

Lemma 1.4. The element yd(G)−1 is a nonzero element of k+(G).

Proof. This assertion follows from Lemma 1.3 [cf. also our assumption that d(G) > 1]. □

Theorem 1.5. Let G be a group of MLF-type. Suppose that p(G) is odd, and that d(G) > 1.
Then there exists an automorphism α of G such that, for each nonzero integer n, if one writes
αn
+ for the automorphism of the Qp(G)-vector space k+(G) induced by αn, then αn

+ ̸= id, and,
moreover, the equality (αn

+ − id)2 = 0 in the ring of endomorphisms of k+(G) holds.

Proof. Let α be an automorphism of G as in the discussion preceding [6], Theorem 7.5.15,
i.e., defined by the equalities α(σ) = σ, α(τ) = τ , α(xd(G)) = xd(G)xd(G)−1, and α(xi) = xi

for i ∈ S\{d(G)}. First, we prove that αn
+ ̸= id for each nonzero integer n. If αn

+ = id, then
yd(G) = αn

+(yd(G)) = yd(G)+nyd(G)−1, which thus implies that yd(G)−1 = 0 in k+(G). However,
this contradicts Lemma 1.4. Thus, we conclude that αn

+ ̸= id. Next, let us observe that, for
each nonzero integer n, it follows from the easily verified equality (αn

+− id)2(yi) = 0 for every
i ∈ S and Lemma 1.3 that the equality (αn

+− id)2 = 0 in End(k+(G)) holds, as desired. This
completes the proof of Theorem 1.5. □

Corollary 1.6. Let G be a group of MLF-type. Suppose that p(G) is odd, and that d(G) > 1.
Then the following hold:

(i) The image of the natural homomorphism from the outer automorphism group of G to
the automorphism group of k+(G) is infinite.

(ii) The image of the natural homomorphism from the outer automorphism group of G to
the automorphism group of Gab is infinite.

(iii) The image of the natural homomorphism from the outer automorphism group of G to
the automorphism group of k×(G) is infinite.

(iv) The outer automorphism group of G is infinite.

Proof. Assertion (i) follows from Theorem 1.5. Assertion (ii) follows from assertion (i), to-
gether with the definition of k+(G) [cf. [4], Definition 3.10, (vi)]. Assertion (iii) follows from
assertion (ii) and the [easily verified] density of k×(G) in Gab [cf. [4], Definition 3.10, (iv)].
Assertion (iv) follows from assertion (i). □

Remark 1.7. Let us recall that it follows immediately from [2], Corollary 5.5, that each of
the three images discussed in Corollary 1.6, (i), (ii), (iii), in the case where d(G) is equal to
1 is trivial.
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2. Existence of a special automorphism of the absolute Galois group of an
absolutely abelian MLF of even degree

In the present §2, we prove that the absolute Galois group of a certain MLF admits an
automorphism that has an interesting property [cf. Theorem 2.7 below]. In the present §2,
let k be an MLF and k an algebraic closure of k. We shall write

• Gk
def
= Gal(k/k) for the absolute Galois group of k determined by the algebraic closure

k,
• Ok for the ring of integers of k,
• pk for the residue characteristic of k,
• k(d=1) ⊆ k for the [uniquely determined] minimal MLF contained in k,

• dk
def
= [k : k(d=1)] for the degree of the finite extension k/k(d=1),

• Nmk/k(d=1) : k× → k(d=1)× for the norm map with respect to the finite extension

k/k(d=1),

• Trk/k(d=1) : k+ → k
(d=1)
+ for the trace map with respect to the finite extension k/k(d=1),

• logk : O×
k → k+ for the pk-adic logarithm, and

• Ik for the log-shell of k.

Write, moreover, Aut(Gk), Aut(k+), and Aut(k×) for the groups of automorphisms of the
group Gk, the module k+, and the module k×, respectively. Thus, it follows from [4], Propo-
sition 3.11, (i), (iv), that we have homomorphisms

Aut(Gk) −→ Aut(k+), Aut(Gk) −→ Aut(k×).

Definition 2.1.

(i) We shall say that α ∈ Aut(k+) is (Qpk)+-characteristic if α(k
(d=1)
+ ) = k

(d=1)
+ .

(ii) We shall say that α ∈ Aut(k+) is (Qpk)+-preserving if α is (Qpk)+-characteristic, and

α|
k
(d=1)
+

is the identity automorphism of k
(d=1)
+ .

(iii) We shall say that α ∈ Aut(k+) is group-theoretic if α is contained in the image of the
first homomorphism Aut(Gk) → Aut(k+) of the above display.

(iv) We shall say that α ∈ Aut(k×) is group-theoretic if α is contained in the image of the
second homomorphism Aut(Gk) → Aut(k×) of the above display.

(v) We shall say that α ∈ Aut(Gk) is (Qpk)+-characteristic if the group-theoretic auto-
morphism of k+ induced by α is (Qpk)+-characteristic.

(vi) We shall say that α ∈ Aut(Gk) is (Qpk)+-preserving if the group-theoretic automor-
phism of k+ induced by α is (Qpk)+-preserving.

Lemma 2.2. The diagram of modules

O×
k k+

O×
k(d=1) k

(d=1)
+

logk

Nm
k/k(d=1)

Tr
k/k(d=1)

log
k(d=1)
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commutes.

Proof. Since k
(d=1)
+ is torsion-free, by replacing k by the Galois closure of k over k(d=1), we may

assume without loss of generality that k is absolutely Galois, i.e., that k is Galois over k(d=1)

[cf. [2], Definition 4.2, (i)]. Then Lemma 2.2 follows immediately from the well-known fact
that the pk-adic logarithm is compatible with the respective natural actions of Gal(k/k(d=1))
on O×

k and on k+. □
Lemma 2.3. Let α be an automorphism of Gk. Write α+ ∈ Aut(k+) and α× ∈ Aut(k×) for
the respective group-theoretic automorphisms induced by α. Then the following hold:

(i) The automorphism α× fits into a commutative diagram of modules

k× k(d=1)×

k× k(d=1)×.

Nm
k/k(d=1)

α×

Nm
k/k(d=1)

(ii) The automorphism α+ fits into a commutative diagram of modules

k+ k
(d=1)
+

k+ k
(d=1)
+ .

Tr
k/k(d=1)

α+

Tr
k/k(d=1)

In particular, the automorphism α+ restricts to an automorphism of Ker(Trk/k(d=1)),
i.e., the equality α+(Ker(Trk/k(d=1))) = Ker(Trk/k(d=1)) holds.

Proof. Assertion (i) follows immediately from [2], Proposition 4.9, (i). Next, we verify asser-
tion (ii). Let us first recall that it follows from the construction of α+ [cf. [4], Definition 3.10,
(vi)] and the definition of log-shell that the diagram

O×
k Ik

O×
k Ik

logk

α× α+

logk

commutes. Therefore, by Lemma 2.2 and assertion (i), we get the equality

Trk/k(d=1)(α+(logk(x))) = Trk/k(d=1)(logk(x)) (x ∈ O×
k ).

Now let us observe that this equality implies that α+ is compatible with the trace map with
respect to the finite extension k/k(d=1) on pkIk. Since, for an arbitrary x ∈ k+, there exists an
integer n such that pnkx ∈ pkIk [cf. [4], Lemma 1.2, (vi)], we conclude that α+ is compatible
with the trace map on k+. □
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Lemma 2.4. Suppose that pk is odd, and that dk = 2. Then there exists an automorphism
α ∈ Aut(Gk) such that, for every nonzero integer n, αn is not (Qpk)+-characteristic.

Proof. It follows from Theorem 1.5 and [4], Proposition 3.6, that there exists a group-theoretic
automorphism α+ ∈ Aut(k+) such that, for every nonzero integer n, αn

+ is not the identity
automorphism but satisfies the equality (αn

+− id)2 = 0 in End(k+). Here, let us observe that

we can write k = k(d=1)(
√
a) for some a ∈ k(d=1). Assume that αn

+ is (Qpk)+-characteristic

for some nonzero integer n. Thus, αn
+(1) = b for some b ∈ k(d=1). Moreover, it follows from

the final portion of Lemma 2.3, (ii), that αn
+(
√
a) = c

√
a for some c ∈ k(d=1). Thus, since

α+ is an automorphism of Qpk-vector space, it follows that, for arbitrary x, y ∈ k(d=1), the
equalities

0 = (αn
+ − id)2(x+ y

√
a) = x(b− 1)2 + y(c− 1)2

√
a

hold. Thus, we have (b, c) = (1, 1). In particular, αn
+ is the identity automorphism. However,

this is a contradiction. □

Remark 2.5. One may conclude from Lemma 2.4 that it is impossible to establish a func-
torial group-theoretic reconstruction algorithm for constructing, from an arbitrary group G
of MLF-type, a submodule of the module k+(G) which “corresponds” to the submodule

k
(d=1)
+ ⊆ k+ of k+. Put another way, one may conclude from Lemma 2.4 that the submodule

k
(d=1)
+ ⊆ k+ of k+ should be considered to be “not group-theoretic”.

Lemma 2.6. Suppose that dk is even, and that k is absolutely abelian, i.e., that k is Galois
over k(d=1), and, moreover, the Galois group Gal(k/k(d=1)) is abelian [cf. [2], Definition 4.2,
(ii)]. Then the following hold:

(i) There exists a quadratic extension k′ of k(d=1) contained in k such that Gk is a charac-

teristic subgroup of Gk′
def
= Gal(k/k′). In particular, we have a natural homomorphism

φ : Aut(Gk′) → Aut(Gk).
(ii) Let k′ be a quadratic exension of k(d=1) as in assertion (i) and α′ an automorphism

of Gk′ which is not (Qpk)+-characteristic. Then φ(α′) ∈ Aut(Gk) [cf. (i)] is not
(Qpk)+-characteristic.

Proof. First, we verify assertion (i). Since the MLF k is absolutely abelian, and dk is even,
Gal(k/k(d=1)) is a finite abelian group of even order. Thus, it follows immediately from
elementary group theory and Galois theory that there exists a quadratic extension k′ of
k(d=1) contained in k. Next, we verify that Gk is a characteristic subgroup of Gk′ . Let β
be an automorphism of Gk′ . Since k is absolutely abelian, k is Galois-specifiable [cf. [2],
Definition 6.1, and [2], Theorem F, (i)]. Thus, it follows from Galois theory that there exists
τ ∈ Gal(k/k(d=1)) such that β(Gk) = τGkτ

−1. Moreover, since k is absolutely abelian, Gk

is a normal subgroup of Gal(k/k(d=1)). In particular, we get β(Gk) = τGkτ
−1 = Gk. This

completes the proof of assertion (i).
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Next, we verify assertion (ii). Let us first observe that it follows immediately from the
various definitions involved that the diagram

k
(d=1)
+ k′

+ k+

α′
+(k

(d=1)
+ ) k′

+ k+

ϕ(α′)+|
k
(d=1)
+

α′
+ ϕ(α′)+

commutes, where the horizontal arrows are the natural inclusions, and we write α′
+ (resp.

φ(α′)+) for the group-theoretic automorphism induced by α′ ∈ Aut(Gk′) (resp. φ(α′) ∈
Aut(Gk)). Since α′

+ is not (Qpk)+-characteristic, α
′
+(k

(d=1)
+ ) ̸= k

(d=1)
+ . Thus, we conclude

from the above diagram that φ(α′)+, hence also φ(α′), is not (Qpk)+-characteristic. This
completes the proof of assertion (ii). □

Theorem 2.7. Let k be an absolutely abelian MLF such that pk is odd, and dk is even. Then
there exists an automorphism α ∈ Aut(Gk) such that, for each nonzero integer n, αn is not
(Qpk)+-characteristic.

Proof. This assertion follows from Lemma 2.4 and Lemma 2.6, (i), (ii). □

3. The outer automorphism group of the absolute Galois group of an
absolutely abelian MLF of even degree

In the present §3, we discuss the outer automorphism group of the absolute Galois group
of a certain MLF. In the present §3, we maintain the notational conventions introduced at
the beginning of the preceding §2. Write, moreover, Aut(k) for the group of automorphisms
of the field k and Out(Gk) for the group of outer automorphisms of the group Gk. Thus,
we have a natural injective [cf. [4], Proposition 2.1] homomorphism Aut(k) ↪→ Out(Gk) of
groups. In the present §3, let us regard Aut(k) as a subgroup of Out(Gk):

Aut(k) ⊆ Out(Gk).

Lemma 3.1. Let K be a field and L a finite Galois extension of K of extension degree
invertible in L. Let α be an automorphism of the module L+ which is compatible, relative to
some automorphism of Gal(L/K) [which is not necessarily the identity automorphism], with
the natural action of Gal(L/K) on L+ and fits into the commutative diagram of modules

L+ K+

L+ K+,

TrL/K

α

TrL/K

where we write TrL/K for the trace map with respect to the finite extension L/K. Then α
restricts to the identity automorphism of the submodule K+ ⊆ L+.
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Proof. Write β
def
= α− id ∈ End(L+). Then it is immediate that the sequence

0 Ker(β) L+ Im(β) 0,

hence also [cf. our assumption that α is compatible, relative to some automorphism of
Gal(L/K), with the natural action of Gal(L/K)] the sequence

0 Ker(β)Gal(L/K) K+ Im(β)Gal(L/K),

is exact. Now observe that it follows from the commutative diagram in the statement of
Lemma 3.1 and the definition of β that the image of Im(β) by TrL/K is zero. Thus, since

Im(β)Gal(L/K) is contained in K+, and the degree of the finite extension L/K is invertible

in L, we conclude that Im(β)Gal(L/K) = {0}. In particular, it follows from the above exact
sequence that Ker(β)Gal(L/K) = K+, which implies that α(x) = x for each x ∈ K+. This
completes the proof of Lemma 3.1. □

Theorem 3.2. Let k be an MLF and α an automorphism of Gk. Suppose that dk = 2. Write
α+ ∈ Aut(k+) for the group-theoretic automorphism induced by α. Then the following are
equivalent:

(1) The automorphism α is (Qpk)+-preserving.
(2) The automorphism α is (Qpk)+-characteristic.
(3) The automorphism α+ is compatible with the natural action of Gal(k/k(d=1)) on k+.

Proof. First, (1)=⇒(2) is immediate. Next, we verify (2)=⇒(3). Suppose that (2) is satisfied.
Let us first observe that one may write k = k(d=1)(

√
a) for some a ∈ k(d=1). Since (2) is

satisfied, α+(1) = b for some b ∈ k(d=1). Moreover, it follows from the final portion of Lemma
2.3, (ii), that α+(

√
a) = c

√
a for some c ∈ k(d=1). Thus, since α+ is an automorphism of

Qpk-vector space, it follows that, for arbitrary x, y ∈ k(d=1), the equalities

σ(α+(x+ y
√
a)) = σ(bx+ cy

√
a) = α+(σ(x+ y

√
a)) (σ ∈ Gal(k/k(d=1)))

hold. This completes the proof of (2)=⇒(3). Finally, (3)=⇒(1) follows immediately from
Lemma 2.3, (ii), and Lemma 3.1. □

Lemma 3.3. Let α be an automorphism of Gk. Suppose that k is absolutely Galois. If the
image of α in Out(Gk) is contained in NOut(Gk)(Aut(k)), then α is (Qpk)+-preserving.

Proof. Suppose that the image of α in Out(Gk) is contained in NOut(Gk)(Aut(k)). Thus,

α+ is compatible, relative to some automorphism of Gal(k/k(d=1)) [which is not necessarily
the identity automorphism], with the natural action of Gal(k/k(d=1)) = Aut(k) on k+. In
particular, it follows from Lemma 2.3, (ii), and Lemma 3.1 that α is (Qpk)+-preserving. □

Theorem 3.4. Let k be an absolutely abelian MLF such that pk is odd, and dk is even. Then
the set of Out(Gk)-conjugates of the subgroup Aut(k) ⊆ Out(Gk) is infinite.

Proof. This assertion follows from Theorem 2.7 and Lemma 3.3. □
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Corollary 3.5. Let k be an absolutely abelian MLF such that pk is odd, and dk is even. Then
the following hold:

(i) The subgroup Aut(k) of Out(Gk) is not normal.
(ii) There exist infinitely many distinct [necesarily finite] subgroups of Out(Gk) isomor-

phic to Aut(k).

Proof. These assertions follow immediately from Theorem 3.4. □
Remark 3.6. Let us recall from [2], Theorem G, (iii), that if pk is odd, and k is obtained by
adjoining, to k(d=1), a primitive pk-th root of unity and a pk-th root of pk, then the subgroup
Aut(k) ⊆ Out(Gk) is not normal.

Remark 3.7. The issue of whether or not a functorial group-theoretic reconstruction, from
the group Gk, of the “field-theoretic” subgroup Aut(k) ⊆ Out(Gk) of the outer automorphism
group Out(Gk) can be established is interesting from the point of view of the anabelian
geometry of mixed-characteristic local fields. Now let us recall that if the MLF k is absolutely
abelian, then, roughly speaking, one may reconstruct group-theoretically, from the group Gk,
the set of Out(Gk)-conjugates of the subgroup Aut(k) ⊆ Out(Gk) [cf. [2], Theorem F, (i),
and [2], Theorem 6.12, (ii)]. On the other hand, Corollary 3.5, (i), implies that if pk is odd,
dk is even, and k is absolutely abelian, then, roughly speaking, it is impossible to establish
a functorial group-theoretic reconstruction of the subgroup Aut(k) ⊆ Out(Gk) itself [i.e., as
opposed to the set of Out(Gk)-conjugates of the subgroup Aut(k) ⊆ Out(Gk)].

Corollary 3.8. Let k be an MLF such that pk is odd, and dk = 2. Then the group-theoretic
automorphism of k+ induced by an automorphism of Gk which lifts an element of the center
of Out(Gk) is the identity automorphism of k+.

Proof. Let γ be an element of the center of Out(Gk). Write γ+ ∈ Aut(k+) for the group-
theoretic automorphism of k+ induced by an automorphism of Gk which lifts γ. [Note that
one verifies easily that γ+ does not depend on the choice of such a lifting.] Then it follows
from Lemma 3.3 that γ+ is (Qpk)+-preserving.

Next, let α+ ∈ Aut(k+) be a group-theoretic automorphism of k+ which is not (Qpk)+-
characteristic [cf. Theorem 2.7]. Then since γ is an element of the center of Out(Gk), one
verifies immediately that γ+ commutes with α+. In particular, since γ+ is (Qpk)+-preserving,

γ+ restricts to the identity automorphism of α+(k
(d=1)
+ ) ⊆ k+. Thus, since dk = 2, and

k
(d=1)
+ ̸= α+(k

(d=1)
+ ), we conclude that γ+ is the identity automorphism of k+, as desired.

This completes the proof of Corollary 3.8. □
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