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Abstract

In this paper, we give a purely combinatorial/group-theoretic construc-
tion of the conjugacy class of subgroups of the Grothendieck-Teichmiiller

group GT determined by the absolute Galois group Gg def Gal(Q/Q)
[where Q denotes the field of algebraic numbers] of the field of rational
numbers Q. In fact, this construction also yields, as a by-product, a purely
combinatorial /group-theoretic characterization of the GT-conjugates of
closed subgroups of Gg that are “sufficiently large” in a certain sense.
We then introduce the notions of TKND-fields [i.e., “torally Kummer-
nondegenerate fields”] and AVKF-fields [i.e., “abelian variety Kummer-
faithful fields”], which generalize, respectively, the notions of “torally
Kummer-faithful fields” and “Kummer-faithful fields” [notions that ap-
pear in previous work of Mochizuki]. For instance, if we write Q*CQ
for the maximal abelian extension field of QQ, then every finite extension
of Q** is a TKND-AVKF-field [i.e., both TKND and AVKF]. We then
apply the purely combinatorial/group-theoretic characterization referred
to above to prove that, if a subfield K C Q is TKND-AVKF, then the
commensurator in GT of the subgroup Gk C Gg determined by K is
contained in Gg. Finally, we combine this computation of the commensu-
rator with a result of Hoshi-Minamide-Mochizuki concerning GT to prove
a semi-absolute version of the Grothendieck Conjecture for higher dimen-
sional [i.e., of dimension > 2] configuration spaces associated to hyperbolic
curves of genus zero over TKND-AVKF-fields.
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Introduction

The present paper builds on the theory of combinatorial Belyi cuspidaliza-
tion developed in [Tsjm], §1. The theory of combinatorial Belyi cuspidalization
may be understood as a certain combinatorial version of the theory of Belyi
cuspidalization developed in [AbsTopll], §3.

In the present paper, we apply the theory of combinatorial Belyi cuspi-
dalization to give a purely combinatorial/group-theoretic definition of a certain
class of closed subgroups “BGT” [cf. Definition 3.3, (v)] of the Grothendieck-
Teichmaller group

GT (C Out(IrY)),

where, for n > 1, II**? denotes the étale fundamental group of the n-th con-
figuration space associated to the projective line, minus the three points “07,
“17, “00”, over the field of algebraic numbers Q [cf. [CmbCsp], Definition 1.11,

(i); [CmbCsp], Remark 1.11.1; the first display of [HMM], Corollary C]. In the

following, we shall also write IT*P4 def ngd. This class of closed subgroups

“BGT” is defined to be the class of closed subgroups of GT that satisfy certain
properties, which may be summarized roughly as follows:

e the COF-property, i.e., “cofiltered property” [cf. Definition 3.3, (ii)]:
for any pair of arithmetic Belyi diagrams [cf. [Tsjm], Definition 1.4], there
exists an arithmetic Belyi diagram that dominates [cf. Definition 3.3, (i)]
both of the given arithmetic Belyi diagrams;

e the RGC-property, i.e.,“Relative Grothendieck Conjecture property”
[cf. Definition 3.3, (iii)]: if there exists a geometric domination between
two arithmetic Belyi diagrams, then it is the unique geometric domination
between the two arithmetic Belyi diagrams.

Our first main result is the following [cf. Theorem 4.4]:



Theorem A (Combinatorial construction of an algebraic closure of the
field of rational numbers). Let BGT C GT be a closed subgroup that satisfies
the COF- and RGC-properties [cf. Definition 3.5, (ii), (iii), (v)]. Then one
may construct from BGT a field

QBGT

isomorphic to the field of algebraic numbers Q and a natural homomorphism

CGT(BGT) — GQBGT déf Aut(@BGT)

Jrom the commensurator of BGT in GT to the group of automorphisms of the
field Qpar. In particular, one may construct a natural outer homomorphism

CGT(BGT) — GQ déf Gal(@/Q)

from the commensurator of BGT in GT to the absolute Galois group Gg of Q.

At the time of writing, the authors do not know whether or not the outer
homomorphism Cq1(BGT) — Gy is injective in general. On the other hand,
by imposing further purely combinatorial /group-theoretic conditions — i.e., the
QAA- and AA-properties [cf. Definition 5.12; the brief description following
Theorem C below] — on BGT, one may conclude that the following hold [cf.
Theorems 5.15, (ii); 5.17, (i), (ii)]:

Theorem B (Injectivity of the natural homomorphism Cqr(BGT) — Gg).
Let BGT C GT be a closed subgroup that satisfies the COF- and RGC-properties
[cf.  Definition 3.3, (ii), (iii), (v)]. Suppose that BGT satisfies the QAA-
property [cf. Definition 5.12]. Then the above natural outer homomorphism

Cger (BGT) — GQ
is injective.
Theorem C (Combinatorial construction of Gg).

(i) Write Out/®/(I1*P4) C Out(I1*P4) for the closed subgroup of outer auto-
morphisms that induce the identity automorphisms on the set of conjugacy
classes of cuspidal inertia subgroups of II'*4. Then the conjugacy class
of subgroups of Out‘cl(l_[tpd) determined by the absolute Galois group
of Q may be constructed from the abstract topological group H;pd [cf.
Corollary 4.5, Remark 4.5.1], in a purely combinatorial/group-theoretic
way, as the set of maximal elements [relative to the relation of inclusion]
in the set of closed subgroups of Out/“!(TI™) that arise as Out/C!(ITP)-
conjugates of closed subgroups of GT that satisfy the QA A-property /cf.
Definitions 3.3, (v); 5.12].



(ii) The conjugacy class of subgroups of GT determined by the absolute
Galois group of Q may be constructed from the abstract topological group
ngd [ef. Corollary 4.5, Remark 4.5.1], in a purely combinatorial/group-
theoretic way, as the set of maximal elements [relative to the relation
of inclusion] in the set of closed subgroups of GT that arise as closed
subgroups of GT that satisfy the AA-property [cf. Definitions 3.8, (v);
5.12].

The class of closed subgroups “BGT” satisfying the QA A-property [i.e.,
“quasi-algebraically ample property”] (respectively, the A A-property [i.e., “al-
gebraically ample property”]) is defined to be the class of closed subgroups of
GT that satisfy the COF- and RGC-properties, together with certain properties
(i), (i), (iii) (respectively, (i), (ii), (iii), (iv)), which may be summarized roughly
as follows:

(i) The Kummer theory associated to BGT is sufficiently nondegenerate.

(ii) The Kummer theory associated to the various arithmetic Belyi diagrams
arising from BGT is sufficiently nondegenerate.

(iii) There exists a family of Qpgr-valued set-theoretic functions on a certain
set of cuspidal inertia subgroups associated to the various arithmetic Be-
lyi diagrams arising from BGT that satisfies properties satisfied by the
function fields arising from these arithmetic Belyi diagrams.

(iv) The family of set-theoretic functions in (iii) determines a Galois group
that satisfies a certain compatibility property involving H;pd.

Of course, it is by no means the case that the approach of Theorem C to
constructing the conjugacy class of subgroups of GT determined by Gg is, in any
sense, unique. On the other hand, the approach of Theorem C is an attractive
application of the technique of combinatorial Belyi cuspidalization developed in
[Tsjm], §1. Moreover, the approach of Theorem C has interesting applications,
i.e., Theorems F and G, given below.

The approach of Theorem C to constructing the conjugacy class of subgroups
of GT determined by Gg may be thought of as a sort of

conditional [cf. the condition of mazimality within a certain collec-
tion of closed subgroups| surjectivity counterpart of the well-known
injectivity result of Belyi, i.e., to the effect that the natural outer
homomorphism Gg — GT is injective.

The idea that there should exist such a [conditional] surjectivity counterpart of
Belyi injectivity that could be proven by applying Belyi maps in some suitable
fashion [i.e., just as in the case of Belyi injectivity!] was motivated in part by
the proofs given in [CmbCsp], §2, §3, of the injectivity/bijectivity of the natural
homomorphism

Out™e(11,,) — Out¥™(11,_;)



of [CmbCsp|, Theorem A, (i). That is to say, these proofs given in [CmbCsp],
§2, 83, are in some sense remarkable in the sense that

the conditional surjectivity proven in [CmbCsp], §3, is proven by
applying an argument that is entirely similar to the argument ap-
plied in the proof of the corresponding injectivity result in [CmbCsp],

§2.

In this context, it is of interest to note that this fascinating general phenomenon
— i.e., of obtaining [conditional] surjectivity results by means of essentially sim-
ilar arguments to the arguments used to verify corresponding injectivity results
— may also be observed in numerous well-known aspects of algebraic topol-
ogy, such as the theory of long exact sequences of (co)homology groups and the
homotopy theory of CW-complezes.

The proofs of Theorems B and C depend on the following elementary field-
theoretic results proven in §1 [cf. Theorem 1.2, Corollary 1.3]:

Theorem D (Non-algebricity of field automorphisms of algebraically
closed fields). Let K be an algebraically closed field. Write Aut(K) for the
group of the field automorphisms of K. Let o € Aut(K). Write

ar: K — K x K = A*(K)

for the graph of «, i.e., the map K > = — (x,2%) € K x K. If K is of
characteristic O (respectively, p > 0), then we shall write Fr € Aut(K) for the
identity automorphism (respectively, the Frobenius automorphism [i.e., given by
raising to the p-th power]) of K; Fr? C Aut(K) for the subgroup generated by
Fr. Ti%en the image Im(ar) C A%(K) of ar is Zariski-dense if and only if
a ¢ Fro.

Corollary E (A criterion for the algebricity of certain set-theoretic

automorphisms). In the notation of Theorem D, write X def PL fi.e., the pro-
jective line over K|. Let Y — X be a finite ramified Galois covering of smooth,
proper, connected curves over K. Write X (K) (respectively, Y (K)) for the set
of K-valued points of X (respectively, Y ); Autx (Y (K)) for the group of bi-
jections Y (K) = Y (K) which preserve the fibers of the natural map Y (K) —
X(K); K(Y) for the rational function field of Y. For 7 € Autxx)(Y(K)),
f e Fn(Y(K),K U{c}) [where “Fn(—,—)" denotes the set of maps from the
first argument to the second argument], write

Y for e Fn(Y(K), K U {oo}).

We shall regard K(Y') as a subset of Fu(Y (K), K U{oo}) by evaluating rational
Junctions at closed points of Y and Gal(Y/X) as a subgroup of Autx x)(Y (K))
by means of the natural action of Gal(Y/X) on Y(K). Let k C K be a subfield
such that the covering Y — X descends to a Galois covering Y, — X defined

over k, and
(Aut(K) D) Aut(K/k) € Fr” (C Aut(K)),



where we write Aut(K/k) C Aut(K) for the subgroup of automorphisms that
restrict to the identity automorphism of k. Let o € Autx gy (Y (K)) that satisfies
the following property: for each f € K(Y)*, there exist

o5 € Fn(Y(K), k™) (S Fn(Y(K), K U{oc})), gr € K(Y)*
such that f7 = ¢y - gf. Then o € Gal(Y/X).

Next, let K C Q be a subfield. Write Gx % Gal(Q/K). If K is stably x ji-
indivisible [cf. [Tsjm], Definition 3.3, (v)], then we recall from [Tsjm], Corollary
E, that one may construct a natural homomorphism

CGT(GK) — GQ

whose restriction to Cg,(Gx) € Car(Gk) is the natural inclusion.

In the present paper, we shall say that the subfield K C Q is an AVKF-field
[i.e., “abelian variety Kummer-faithful field”] if the following property holds [cf.
Definition 6.1, (iii)]:

Let A be an abelian variety over a finite extension L of K. Write
A(L)* for the group of divisible elements € A(L). Then A(L)>® =

{1}.
Here, we recall in passing that any finite extension of the maximal abelian
extension field Q*" C Q of Q is a stably x p-indivisible AVKF-field [cf. [Tsjm],
Theorem 3.1, and its proof; [Tsjm|, Remark 3.4.1]. On the other hand, it is not
clear to the authors at the time of writing

e whether or not there exist AVKF-fields that are not stably x u-indivisible;
e whether or not there exist stably xu-indivisible fields that are not AVKF.

If K is an AVKF-field, then one may also construct a natural homomorphism
CGT (GK) — GQ

whose restriction to Cgq, (Gi) € Car(Gk) is the natural inclusion [cf. Corollary
6.5, (iii)].

At the time of writing, the authors do not know whether or not these natural
homomorphisms [i.e., of Corollary 6.5, (iii), and [Tsjm], Corollary E| are injec-
tive in general. On the other hand, by imposing a further condition on K, one
may conclude that the natural homomorphism Cqr(Gg) — Gg arising from
Corollary 6.5, (iii), is injective [cf. Theorem F below]. We shall say that the
subfield K C Q is a TKND-field [i.e., “torally Kummer-nondegenerate field”] if
the following property holds [cf. Definition 6.6, (iii)]:

Write . -
Kdiv dé U L><oo g Q7
L/K



where L C Q ranges over the finite extensions of K, and we write

L LN{0), L ()" Leoe © QL) C L.

m>1

Then Q is an infinite field extension of Kyj, .

We shall say that the subfield K C Q is a TKND-AVKF-field if K is both TKND
and AVKF. Our main result concerning TKND-AVKF-fields is the following [cf.
Theorem 6.8]:

Theorem F (Injectivity of the natural homomorphism Car(Gk) — Go)-
Suppose that K C Q is a TKND-AVKF-field. Then the natural homomor-
phism Car(Gk) — Gg is injective.

Theorem F is proved by applying the theory developed in §3, §4, §5 of the
present paper, i.e., the theory that underlies the proof of Theorem C [cf. the
discussion surrounding Theorem C].

Finally, by combining Theorem F with certain combinatorial anabelian re-
sults proven in §2 of the present paper and applying a result of Hoshi-Minamide-
Mochizuki [cf. the first display of [HMM], Corollary C], we obtain a semi-
absolute version of the Grothendieck Conjecture for the higher dimensional (of
dimension > 2) configuration spaces [cf. [MT], Definition 2.1, (i)] associated to
hyperbolic curves of genus 0 over K [cf. Theorem 6.10, (ii)]:

Theorem G (Semi-absolute Grothendieck Conjecture-type result over
TKND-AVKF-fields). Let (m,n) be a pair of positive integers; K, L C Q
TKND-AVKF-fields; Xy (respectively, Y1) a hyperbolic curve over K (respec-
tively, L). Write gx (respectively, gy ) for the genus of Xk (respectively,
YL); (XK)m (respectively, (Y1)n) for the m-th (respectively, m-th) configura-

tion space associated to Xk (respectively, Y1, ); Gk def Gal(Q/K) (respectively,

G = Gal(Q/L));
OUt(H(XK)m /GK7 H(YL),,/GL)

for the set of outer isomorphisms I x,.), — I(y,), that induce outer isomor-
phisms between G and Gr. Then the following hold:

(i) Suppose that

e m>4orn>4if X orY is proper;
em>3orn>3if X orY is affine.

Then the outer isomorphism
Gk = G

induced by any outer isomorphism € Out(Il x,,. /G, Hy,),/Gr) arises
from a field isomorphism K = L.



(i) Suppose that
em>2o0rn>2;
e gx =0 orgy =0.
Then the natural map
ISOI’Il((XK)m, (YL)n) — Out(H(XK)m/GK, H(YL)H/GL)
1s bijective.
In this context, we observe that any finite extension K of Q" is a TKND-
AVKF-field [cf. Proposition 6.3, (i); Remark 6.6.3]. Other interesting examples

of TKND-AVKF-fields are given in Proposition 6.3, (ii) [cf. also Remarks 6.3.3,
6.3.4, 6.3.5, 6.6.3, 6.6.4]. In particular, we observe [cf. Remark 6.3.5] that

Theorem G constitutes an interesting example of [semi-absolute]
anabelian geometry over fields that cannot be treated by means of
well-known techniques of anabelian geometry that require the use of
p-adic Hodge theory or Frobenius elements of absolute Galois
groups of finite fields [cf. [Tama], Theorem 0.4; [LocAn], Theorem
A; [AnabTop], Theorem 4.12].

Next, suppose that K is a sub-p-adic subfield [cf. [LocAn], Definition 15.4,
(i)] of Q, i.e., [as is easily verified] a subfield of Q that is isomorphic to a subfield
of a finite extension of the field of p-adic numbers Q,, for some prime number p.
Then K is a Kummer-faithful field [cf. [AbsToplIIl], Definition 1.5; [AbsTopIII],
Remark 1.5.4, (i)], hence, in particular, a TKND-AVKF-field. Thus, Theorem
G may be regarded as a sort of partial generalization of [AbsTopIII], Theorem
1.9. On the other hand, let us recall that the proof of [AbsTopIIl], Theorem
1.9, depends, in an essential way, on [LocAn], Theorem A, hence, in particular,
on Faltings’ p-adic Hodge theory. By contrast, we observe [cf. Remark 3.3.2]
that

the proof of Theorem G [say, in the case where K and L are as-
sumed to be sub-p-adic subfields of Q] is based solely on results and
techniques from combinatorial anabelian geometry and hence
is, in particular, entirely independent of results concerning the
Grothendieck Conjecture for hyperbolic curves over sub-p-
adic fields [i.e., [LocAn], Theorem A; [Tama], Theorem 0.4].

Moreover, unlike, for instance, [LocAn], Theorem A; [Tama|, Theorem 0.4;
[AbsCsp], Theorem 3.2,

the proof of Theorem G [say, in the case where K and L are assumed
to be sub-p-adic local subfields of Q] does not involve the use of any
arguments involving theories of “weights”, i.e., theories such as
Faltings’ p-adic Hodge theory or the Weil Conjectures.



Here, we recall that a somewhat weaker version of Theorem G in the case
where m =n =1 and K and L are assumed to be stably p-Xxu/X u-indivisible
fields of characteristic O [cf. [Tsjm], Definition 3.3, (v)], i.e., but not necessarily
to be TKND-AVKF, is given in [Tsjm], Theorem F. Also, we recall that a version
of Theorem G in the case where m = n = 1 and K and L are assumed to be
generalized sub-p-adic may be found in [Hsh2], Corollary 5.6, (ii), (iii).

This paper is organized as follows. In §1, we prove Theorem D and Corollary
E, which will be of use in §5. In §2, we give some preliminaries on combinatorial
anabelian geometry which will be of use in the later sections. In §3, we give a
purely combinatorial /group-theoretic definition of a certain class of closed sub-
groups BGT of GT [cf. the discussion preceding Theorem A]. In §4, for each such
closed subgroup BGT C GT, we give a purely combinatorial/group-theoretic
construction of a field Qg that is isomorphic to the field of algebraic numbers
Q and, moreover, equipped with a natural action by Cor(BGT). In particu-
lar, we obtain a natural outer homomorphism Cq1(BGT) — Gg [cf. Theorem
A]. In §5, by imposing on BGT certain further combinatorial/group-theoretic
conditions, we obtain a certain class of closed subgroups BGT [cf. the discus-
sion following Theorem C] — whose definition is purely combinatorial/group-
theoretic — for which the natural outer homomorphism Cqr(BGT) — Gg is
injective [cf. Theorem B]. Moreover, we obtain Theorem C as a consequence of
this injectivity. Finally, in §6, we study various types of fields and apply the
theory of §1, §2, §3, 84, §5, to prove Theorems F and G.
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Notations and Conventions

Sets: Let A, B be sets. Then we shall write Fn(A, B) for the set of maps from
Ato B. f Fu(A,B) 3 f : A — B is held fized in a discussion, then we shall
write Autp(A) for the group of bijections A = A which preserve the fibers of f
over B.

Numbers: The notation Primes will be used to denote the set of prime num-
bers. The notation N will be used to denote the set or, by a slight abuse of
notation, additive monoid of non-negative integers.

Fields: The notation Q will be used to denote the field of rational numbers.
The notation Z will be used to denote the ring of integers of Q; by a slight abuse



of notation, the notation Z will also be used to denote the underlying additive
group of this ring. The notation C will be used to denote the field of complex
numbers. The notation Q C C will be used to denote the set or field of algebraic
numbers € C. We shall refer to a finite extension field of Q as a number field.
If ¢ is a power of a prime number, then we shall write F, for the finite field
consisting of ¢ elements.

Let F be a field, p a prime number, n a positive integer. Then we shall write
Aut(F) for the group of the field automorphisms of F;

F*¥p\{oy Y RN{0,1) pn(F)  {z e X | 2" =1}

p(F) o U o (F); e = m (FX)mQ

m>1 m>1

def oo def m

e (F) | (F); F70™ % () (o™
m>1 m>1

If K is an extension field of F, then we shall write Aut(K/F) C Aut(K) for the
subgroup of automorphisms that restrict to the identity automorphism of F.

Topological groups: Let G be a topological group and H C G a closed
subgroup of G. Then we shall denote by Zg(H) (respectively, Ng(H); Ca(H))
the centralizer (respectively, normalizer; commensurator) of H C G, i.e.,

Za(H) %< {g € G| ghg™ = h for any h € H}

(respectively, Ng(H) Lef {9eG|g-H-g'=H};
Cq(H) e {9€G|HNg-H-g !is of finite index in H and g- H - g~ '}).

We shall say that the closed subgroup H is mormally terminal in G if H =
N¢g(H). We shall say that the closed subgroup H is commensurably terminal
in G it H=Cg(H). We shall say that G is slim if Zg(U) = {1} for any open
subgroup U of G.

Let G be a topological group. Then we shall write G* for the quotient
of G by the closure of the commutator subgroup [G,G] C G; Aut(G) for the

group of [continuous] automorphisms of G; Inn(G) C Aut(G) for the group of

inner automorphisms of G; Out(G) ef Aut(G)/Inn(G). Now suppose that G is

center-free [i.e., Zg(G) = {1}]. Then we have an exact sequence of groups

1 — G (5 Inn(Q)) — Aut(G) — Out(G) — 1.

If J is a group, and p : J — Out(G) is a homomorphism, then we shall denote
by

out
G xJ
the group obtained by pulling back the above exact sequence of groups via p.
Thus, we have a natural exact sequence of groups

10



1—>G—>GO>TJ—>J—>1

Suppose further that G is profinite and topologically finitely generated. Then
one verifies immediately that the topology of G admits a basis of characteristic
open subgroups, which thus induces a profinite topology on the groups Aut(G)
and Out(G) with respect to which the above exact sequence relating Aut(G)
and Out(G) determines an exact sequence of profinite groups. In particular, one
verifies easily that if, moreover, J is profinite, and p : J — Out(G) is continuous,

out
then the above exact sequence relating G x J to G and J determines an exact
sequence of profinite groups.

Fundamental groups: For a connected Noetherian scheme S, we shall write
IIg for the étale fundamental group of S, relative to a suitable choice of base-
point.

Schemes: For a morphism of scheme S — T, we shall write Autyp(S) for the
group of automorphisms of the T-scheme S. If T = Spec Z, then we shall write
Aut(S) for Autr(S).

Log schemes: We shall, by a slight abuse of notation, regard schemes as log
schemes equipped with the trivial log structure. If S'°8 is a log scheme, then we
shall write S for the underlying scheme of S'°¢ and Ugs C S for the interior of
S8 i.e., the largest open subscheme of S over which the log structure of S8
is trivial.

Curves: We shall use the terms “hyperbolic curve”, “cusp”, “stable log curve’,
“smooth log curve”, and “tripod’ as they are defined in [CmbGC], §0; [CmbCsp],
80. We shall use the terms “n-th configuration space” and “n-th log configuration
space” as they are defined in [MT], Definition 2.1, (i).

1 The non-algebricity of field automorphisms

In this section, we discuss an interesting elementary property of field au-
tomorphisms of algebraically closed fields, namely, that, with the exception of
integral powers of the Frobenius automorphism, such field automorphisms can-
not be expressed algebraically [cf. Theorem 1.2]. We then apply this property to
give a criterion for the algebricity of certain set-theoretic automorphisms of sets
of rational points of curves valued in algebraically closed fields [cf. Corollary
1.3]. This criterion will play an important role in the theory to be developed in
the present paper.

Lemma 1.1 (The inversion map on the multiplicative group of a field).
Let k be a field. Write
o k*uU{0} >k uU{o}

for the bijection such that

11



e o(x) =21 for each x € k%,
e 0(0)=0.
Then the following hold:
(i) The bijection o is a field automorphism if and only if k = Fo, F3, or Fy.

(ii) If k = Fy or F3 (respectively, k = Fy), then o is the identity (respectively,
the unique non-trivial) automorphism of k.

Proof. First, we verify assertion (i). Sufficiency is immediate. Next, to verify
necessity, we observe that if o is a field automorphism, then, for z € k\ {0, —1},

1+1 =o(l)+o() = c(l+2) = 3 (<=2 +2+1=0).

Since the equation z? +x +1 = 0 has at most 2 solutions in %k, we thus conclude
that the cardinality of k is < 4. Assertion (ii) follows immediately from the
definitions. This completes the proof of Lemma 1.1. O

Theorem 1.2 (Non-algebricity of field automorphisms of algebraically
closed fields). Let K be an algebraically closed field; o € Aut(K). Write

ar: K — K x K = A*(K)

for the graph of «, i.e., the map K 3 z — (z,2%) € K x K. If K is of
characteristic O (respectively, p > 0), then we shall write Fr € Aut(K) for the
identity automorphism (respectively, the Frobenius automorphism [i.e., given by
raising to the p-th power]) of K ; Fr” C Aut(K) for the subgroup generated by Fr.
Then the image Im(ar) C A%(K) of ar is Zariski-dense if and only if a ¢ Fr”.

Proof. Necessity is immediate. Thus, it remains to verify sufficiency. If ar is
not Zariski-dense, then there exists a nonzero polynomial

0# f=f(X,Y)=> a;; X'V € K[X,Y]
such that
Im(ar) C V(f) € A*(K),

where V(f) denotes the zero set of f. In particular, for x € K, we have
Y aigat(al)* =0.

For z € K*, write p; () f 2i(29)® € K*. Then pij i KX — KX is a
character. Thus, it follows immediately from Artin’s well-known result on the
linear independence of characters that there exist pairs of integers (i1,j1) #
(12,72) € N x N such that p;, j, = pi,,j,. In particular, there exists a pair of
integers

(i,5) € Z x Z\ {(0,0)}
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such that . 4
b= (a?)?

for x € K*. Since K is algebraically closed, it follows that ¢ # 0, j # 0.
Moreover, since K * is divisible, we may assume without loss of generality that
¢ and j are co-prime.

Now suppose that the characteristic of K is p > 0. Write ¢; : K* —
K* (respectively, ¢; : K* — K*) for the surjection determined by z ~ z°
(respectively, x +— 27). Since 2 = (27)® for z € K*, it follows that Ker(¢;) =
Ker(¢;). Since i and j are co-prime, we thus conclude that i,j € {£p”}.
Moreover, we may assume without loss of generality that j = 1. Thus, by
applying Lemma 1.1, (i), we conclude that a € Fr”.

Next, we consider the case where the characteristic of K is 0. In this case,
we have, for example, 2° = 2/. This implies that s = j. Thus, since ¢ and j
are co-prime, we conclude that o € FrZ. This completes the proof of Theorem
1.2. O

Remark 1.2.1.

(i) Theorem 1.2 was in some sense motivated by the following complex analytic
analogue of Theorem 1.2, i.e., the non-holomorphicity of the automorphism
of C given by complexr conjugation. Let n be a positive integer; U C
C a nonempty relatively compact open subset; {f;(2)}1<j<n a family of
holomorphic functions on U. Write p for the Lebesgue measure on C;
z € C for the complex conjugate of z € C. Then

Jz € U such that z ¢ {f;(2)}1<j<n-

Indeed, suppose that Z € {f;(2)}1<j<n for every z € U. By enlarging
the family of holomorphic functions {f;(z)}1<;j<n if necessary, we may
assume without loss of generality that it is stabilized by multiplication by
—1. Write

def def _
gi(2) = fi(2)+z E; ={2€U]| £z=fj(2)}
Then it follows immediately from the definitions that £; C U is a closed
[hence, in particular, Lebesgue measurable] subset, and U = J, j<n Ej-
Thus, we conclude that o

0<puU)< Y nE;) < oo

1<j<n

In particular, there exists an element j € {1,...,n} such that u(E;) >
0. Fix such an element j. Since the family of holomorphic functions
{f;(2)}1<j<n is stabilized by multiplication by —1, by possibly replacing
Jj by i/ € {1,...,n} such that f;(z) = —f;(2) for z € U [which implies
that E; = Ej/], we may assume without loss of generality that g;(z) is
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a non-constant holomorphic function. But then g;(F;) € RU+v—1-R,
which implies that

0 < u(g;(E;) < p(RUV-1-R) =0
— a contradiction!

(ii) Finally, we observe that Theorem 1.2 in the case where K = C, and « is
the automorphism given by complex conjugation follows immediately from
the fact verified in Remark 1.2.1, (i). Indeed, if ar is not Zariski-dense,
then there exists a nonzero polynomial

0# f=f(X,Y)=> a;; X'V € C[X,Y]

such that
Im(ar) C V(f) € A*(C),

where V(f) denotes the zero set of f. Since the map V(f) — C induced
by the first projection C x C — C is a nonconstant algebraic map [i.e.,
corresponds to a dominant morphism between one-dimensional schemes
of finite type over C], there exists a nonempty relatively compact open
subset U C C such that the induced map
Vil EVAHNUXC) = U

determines a split finite étale morphism of complex analytic spaces. The
finite collection of sections of this induced map thus determines a family
of holomorphic functions as in Remark 1.2.1, (i). This yields the desired
contradiction.

Corollary 1.3 (A criterion for the algebricity of certain set-theoretic
automorphisms). In the notation of Theorem 1.2, write X ef PL f[i.e., the
projective line over KJ. Let Y — X be a finite ramified Galois covering of
smooth, proper, connected curves over K. Write X(K) (respectively, Y (K))
for the set of K-valued points of X (respectively, Y ); Autx (Y (K)) for the
group of bijections Y(K) = Y(K) which preserve the fibers of the natural
map Y(K) — X(K); K(Y) for the rational function field of Y. For 7 €
Autx () (Y(K)), f € Fn(Y(K), K U{o0}), write

FT Y for e Fn(Y(K), K U{oo}).

We shall regard K(Y') as a subset of Fu(Y (K), K U{oo}) by evaluating rational
Junctions at closed points of Y and Gal(Y/X) as a subgroup of Autx g )(Y (K))
by means of the natural action of Gal(Y/X) on Y(K). Let k C K be a subfield
such that the covering Y — X descends to a Galois covering Y, — X defined
over k, and

(Aut(K) D) Aut(K/k) € Fr? (C Aut(K)).
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Let 0 € Autxk)(Y(K)) that satisfies the following property: for each f €
K(Y)*, there exist

¢ € Fu(Y(K), k™) (S Fu(Y(K), K U{oc})), g5 € K(Y)”
such that f7 = ¢y -gr. Then o € Gal(Y/X).

Proof. Write n for the degree of the covering ¥ — X; o1,...,0, for the n
distinct elements of Gal(Y/X). Let a € Aut(K/k) \ Fr”. Write

arx : X(K) = X(K) x X(K),

ary Y (K) = Y(K)xY(K)
for the respective graphs of «, i.e., the maps X(K) 3 ¢ — (z,2%) € X(K) X
X(K)and Y(K) >y~ (y,y*) € Y(K) x Y(K). Then it follows immediately

from Theorem 1.2 that the subset Im(ap x) C X (K) x X(K) is Zariski-dense
in X(K) x X(K). Next, we observe that

e the covering Y — X, hence also the morphism ¥ x Y — X x X [i.e., the
product over K of two copies of the covering Y — X] is finite;

e the map Im(ar y) — Im(ar x) induced by the finite morphism ¥ x ¥ —
X x X is surjective.

Thus, since the Zariski closure of Im(ar y) is an algebraic set in Y (K) x Y (K), it
follows immediately from the above observations that Im(ar y) is Zariski-dense
in Y(K) x Y(K).

Next, we observe that the existence of the Galois covering Y, — X [i.e.,
whose base-change over k to K is the covering Y — X| implies that the natural
action of Aut(K/k) on K induces a natural action of Aut(K/k) on Y (K) that
commutes with the natural action of Gal(Y/X) on Y (K). If, moreover, 5 €
Aut(K/k), h € Fn(Y(K), K U{oo}), then we shall write

b B o ho B e Fn(Y(K), K U{oo}).

For each pair of integers (i,7) such that 1 < i,j < n, write

def oo __ Uaflgi A e ey
Yig E Ay, ) € Y(E) x Y(E) [ y7” =y, 93° =y 7}

Since 0 € Autx (x)(Y (K)), it follows immediately that

Y(K)xY(K)= |J Vi,

1<i,j<n
Write
Zl,j

for the Zariski closure of Im(ar;y) NY;; in Y(K) x Y(K). Since the subset
Im(ar,y) CY(K) x Y(K) is Zariski-dense, there exists a pair of integers (4, j)

such that
Y(K) X Y(K) = Zi,j-
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Fix such a pair of integers (i, j).
Next, we observe that, for each f € K(Y)*

o; at o; oo; — oya b o; — o;
(67, (8F ™) = (F77 - (g7 )7 (P ¥ - {lgrH™ 1)
— a o, —1\a " o;
:(f'(gfl) L) '7'{(9f1) } )
on some subset Y;*; C YZ j li-e., so that all of the values of functions that appear
are finite] such that Y; ; \ Y] Y/, is a finite set — which implies that the Zariski

closure Z7; of Im(any) N Y;*J is equal to Y(K) x Y(K). Now consider the
morphism

¢ E (MR Y xx Y = Pk x P

def 1

determined by the rational functions hT I (gf )i and h:E def (f )i

{(gf )>~ "} Write A for the diagonal d1v1sor of Pl x g PL. Then it follows
immediately from the above observation [i.e., the observation discussed at the
beginning of the present paragraph], together with the fact that the natural
actions of o and o; on Y (K) commute, that

Y(Im(ar,y) NY75) € A(k) € A(K) (S Pk (K) x Pi(K)).

Since Y'(K) x Y(K) = Z};, we conclude that Im(¢)) C A(K), hence, in partic-
ular, that the morphism v is not dominant. On the other hand, if both h} and
hﬁ are nonconstant rational functions, then the morphism 1 is easily verified to
be dominant. Thus, we conclude that either h} or h; is constant, and hence,
since Im(¢)) C A(K), that both h]; and hfc are constant. Write cy € K for the

unique constant value of h} Thus,

-1

fU:Qbfgf:C;lQSffgl
for every f € K(Y)*. In particular, if we write 7 def oo;, qST def ¢%', then

fr=cit o1,

for every f € K(Y)*. Foreachy € Y(K), let f, € K(Y)* be arational function
on Y such that f, has a pole at y and no pole on Y(K)\ {y}. [The existence of
such rational functions follows immediately from the Riemann-Roch theorem.]

Thus, since f; = Cfu qbf fy, we conclude that y™ = y for each y € Y (K),

hence that 7 is the identity automorphism, i.e., 0 = o; ' € Gal(Y/X). This
completes the proof of Corollary 1.3. O
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Remark 1.3.1.

(i) Corollary 1.3 was in some sense motivated by the following complex ana-

Iytic analogue of Corollary 1.3. Write S! %' {ze€C||z| =1} CC*. Inthe
notation of Corollary 1.3 in the case where K C C, let ¢ € Autxx) (Y (K))
that satisfies the following property: for each f € K(Y)*, there exist

ws € Fn(Y(K),S"), qf € K(Y)*
such that f¢ = w; - gs. Then
¢ € Gal(Y/X).

Indeed, write u for the Lebesgue measure on C; py for the measure on
Y (C) induced by a [nowhere-vanishing] volume form on the Riemann sur-
face associated to Y x g C; n for the degree of the covering ¥ — X;
C1y- ., Cp for the n distinct elements of Gal(Y/X). For each j = 1,...,n,

write ot
e .
E; S {yeY(K) |y =y} CY(C)

F; CY(C)
for the closure of E; C Y(C) in the complex topology [i.e., the topology
induced by the topology of the topological field C]. Thus, E; C Y (C)

is measurable [i.e., with respect to the measure py]. Note that, since
¢ € Autx () (Y (K)),
U E =v(K).
1<j<n

Since the subset Y (K) C Y (C) is easily verified to be dense in the complex
topology, it follows immediately that

U F=Y(©).

1<j<n

Thus, we conclude that

0<puy(Y(C) < Y py(Fy) <o

1<j<n

In particular, there exists an element j € {1,...,n} such that uy (F;) > 0.
Fix such an element j. Next, for each f € K(Y)*, it follows immediately
that
W = 9 g = f gy

on some subset £ C Ej [i.e., so that all of the values of functions that
appear are finite] such that E; \ E} is a finite set — which implies that
py (FF) > 0, where F denotes the closure of E7 C Y/(C) in the complex
topology. Thus, we conclude that, for y € F; (C Y(C)),

(F- @) W) =1 (= (f- (a¥) ) €SH.
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In particular, since p(S') = 0 and py (F}) > 0, the meromorphicity of
[the function Y(C) — C U {oo} determined by] f - (qfﬁ)’l implies that

f- (qfcj )~1is in fact a constant function. Thus, we conclude as in the final
portion of the proof of Corollary 1.3 that ¢ € Gal(Y/X).

(ii) Finally, we observe that Corollary 1.3 in the case where

¢ K=0 k=0 QuQ) (CQcC)
o for each f € K(Y)*,

5 € Fu(Y (@), u(Q™)) (€ Fu(Y(Q), (Q*)%)),

follows immediately [since (Q?*") C S'] from the fact verified in Remark
1.3.1, (i).

2 Preliminaries on combinatorial anabelian ge-
ometry

In this section, we give some preliminaries on combinatorial anabelian ge-
ometry which will be of use in the theory developed in the present paper.

Theorem 2.1 (Outer automorphisms of configuration space groups
induced by open immersions). Let n be an integer such that n > 2; k an
algebraically closed field of characteristic 0; X a hyperbolic curve over k of type
(9,7x); U an open subscheme of X which is a hyperbolic curve over k of type
(9,7v), where ry > rx [which implies that (g,7v) ¢ {(0,3),(1,1)}; ru > 0].
Write &,, for the symmetric group on n letters; X,, (respectively, Uy,) for the
n-th configuration space associated to X (respectively, U). Let

a € Out (HU,I ) .

Recall that there exists a unique permutation o € &, C Out(Illy,) of the factors
of U, [¢f. [CbTpII], Theorem B] such that

e aoo e Out'(Ily,) [¢f. [CbTpII], Theorem B, (i)];

o the outer automorphism oy € Out(Ily) induced by acoo [which does not de-
pend on the choice of projection morphisms of co-length 1 — cf. [CbTpl],
Theorem A, (i)] preserves the set of cuspidal inertia subgroups of ly [cf.
[CbTpI], Theorem A, (ii)].

Suppose that

(a) if n = 2, then either rx > 0 or a oo € Out"“(Ily,) [ef. [CmbCsp],
Definition 1.1, (ii)];
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(b) aq stabilizes the set of conjugacy classes of cuspidal inertia subgroups of
Iy associated to the cusps of U that arise from the cusps of X;

Then o determines an outer automorphism of Ilx, wvia the natural outer sur-
jection Iy, — Ilx, induced by the natural open immersion U, — X, .

Proof. First, since &,, acts compatibly on U,, and X,,, by replacing a0 o by «a,
we may assume without loss of generality that

o € Out™ (Iy).

Next, observe that it follows immediately from condition (b) that, by replacing
a by the composite of a with a suitable element € Out™ (I, ) that

e arises, via various specialization and generization isomorphisms, from [log]
scheme theory, and, moreover,

e determines an outer automorphism of IIx, via the natural outer surjection
My, — Ilx,

[cf. the proof of [CmbCsp|, Lemma 2.4], we may also assume without loss of
generality that

(¢) aq induces the identity automorphism on the set of conjugacy classes of
cuspidal inertia subgroups of ITy;.

Let V' C U be an open subscheme which is a hyperbolic curve over k of type
(9,70 +1); & € Aut¥(Ily, ) a lifting of & € Out™ (I, ). Write

def

Yo\, X, ¥x\{z}CX

Then, for suitable choices of basepoints, we obtain a commutative diagram of
homomorphisms of profinite groups

1 —— an_l HUn HU — 1

! “| !

1 —— H(Xm) HX HX —_— 1,

n—1 n

where V,,_1 (respectively, (Xz)n,—1) denotes the (n — 1)-th configuration space

of V (respectively, X,); the horizontal sequences denote the homotopy exact

sequences induced by the first projections U,, — U and X,, — X the vertical

arrows denote the homomorphisms induced by the natural open immersions

Vo1 = (Xg)n-1, Up — X, and U — X [cf. [MT], Proposition 2.2, (i)].
Next, we verify the following assertion:

Claim 2.1.A: Suppose that n = 2. Then the automorphism &|r, €
Aut(ITy) [induced by & € Aut® (I, ) via the injection ITy < Iy, in
the above commutative diagram| preserves and fixes the conjugacy
classes of cuspidal inertia subgroups of Il that are not associated
to x.
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In the case where a € Out"(ITy;, ), it follows immediately from condition (c)
that &|rr,, preserves and fixes the conjugacy classes of cuspidal inertia subgroups
of ITy [cf. [CmbCsp], Proposition 1.2, (iii); [CbTpll], Lemma 3.2, (iv)]. Thus,
by condition (a), we may assume without loss of generality that rx > 0. Then
it follows from our assumption that ry > rx that ry > 2. Write

e Cusp(U) for the set of cusps of U;

o py : Iy — Out(Ily) for the outer representation determined by the exact
sequence in the above commutative diagram

1 — Iy — Iy, — Iy — 1;

e Y98 for the [uniquely determined, up to unique isomorphism| smooth log
curve over Spec k such that Uy = U;

. Y2log for the second log configuration space associated to Y'°8;

e for each y € Cusp(U), y'*® def y Xy Y8 [where the fiber product is

determined by the natural morphism Y'°¢ — Y obtained by forgetting
the log structure];

o Y8 def Y% Xyrox 498 [where the fiber product is determined by the first

projection Y;°% — Y18 and the natural projection y'°& — Yloz];

e G, for the semi-graph of anabelioids of pro-Brimes PSC-type determined
by the stable log curve Y,°¢ over 3'°8 [cf. [CmbGC], Definition 1.1, (i)];

e vy (respectively, v,) for the vertex of G, associated to the irreducible

component that contains (respectively, does not contain) the cusp that
arises from the diagonal divisor of Y;°%;

e Ilg, for the pro-Primes fundamental group of G, [cf. [CmbGC], Definition
1.1, (ii)].

Thus, for each y € Cusp(U), we have a natural Im(py) (C Out(Ily))-torsor
of outer isomorphisms
Iy, = Iig,

that induces a bijection between the respective sets of cuspidal inertia subgroups.
For each y € Cusp(U), let us fiz an outer isomorphism

Iy 5 Tlg,

that belongs to this collection. Then, by conjugating by this fixed outer iso-
morphism, we conclude that &|r, determines an outer automorphism «, €
Out(Ilg, ) for each y € Cusp(U).

Let y, z € Cusp(U) such that y # z. [Recall that ry > 2.] Then observe [by
varying y, z € Cusp(U)] that it suffices to prove that «, preserves and fizes the
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conjugacy class of cuspidal inertia subgroups of llg, associated to z [where we
identify naturally the set of cusps of V' with the set of cusps of G,].

Next, we recall that «; € Out(Ily) preserves and fixes the conjugacy class
of cuspidal inertia subgroups of II; associated to y [cf. condition (c¢)]. Thus,
it follows from [CbTplII], Theorem 1.9, (ii), that, by replacing & by the com-
posite of & with an inner automorphism of Ily,, we may assume without loss
of generality that a, preserves the set of verticial subgroups of Ilg . Since
(g,7v) ¢ {(0,3),(1,1)}, it follows [cf. [MT], Remark 1.2.2] that «, preserves
and fizes the conjugacy classes of verticial subgroups of llg,. Let I, CIlg, be
a verticial subgroup associated to v,; &, € Aut(llg,) a lifting of a, such that
éy(Il,,) = II,,. On the other hand, observe that the composite

Hvy - Hgy <:HV ‘—)HU2 — Iy

— where the final arrow denotes the natural outer surjection induced by the
second projection Uy — U — determines an outer isomorphism 1I,, 5 11y that
induces a bijection between the respective sets of cuspidal inertia subgroups
and is compatible with the respective outer automorphisms o, and a;. Here,
we recall that the cusp z abuts to the vertex v,. Thus, by condition (c), we
conclude that a, preserves and fixes the conjugacy class of cuspidal inertia
subgroups of Ilg, associated to z. This completes the proof of Claim 2.1.A.

In the remainder of the proof of Theorem 2.1, we proceed by induction on
n > 2. Next, we verify the following assertion:

Claim 2.1.B: Suppose that n = 2. Then Theorem 2.1 holds.

Indeed, let us note that, by condition (c), a preserves the kernel of the natural
surjection II;; — IIx. On the other hand, it follows immediately from Claim
2.1.A that &|m, € Aut(Ily) preserves the kernel of the surjection ITy, — IIx, .

Thus, since IIx, is center-free, we conclude that & induces an automorphism of
out

Iy, =IIx, x IIx. This completes the proof of Claim 2.1.B.
Next, we verify the following assertion [by a similar argument to the argu-
ment used to prove Claim 2.1.B]:

Claim 2.1.C: Let m be an integer such that m > 2. Suppose that
Theorem 2.1 holds in the case where n = m. Then Theorem 2.1
holds in the case where n = m + 1.

Indeed, let us note that, by condition (c), c; preserves the kernel of the natural
surjection IIy; — IIx. Moreover, since m > 2, it follows from [CbTpl], Theorem
A, (ii) [cf. also condition (c); [CbTpl], Theorem A, (i); [CbTpII], Lemma 3.2,
(iv)], that the automorphism |, € Aut(Ily,,) [induced by & € Aut" (Ily;,, ,,)
via the injection Ily,, < IIy, ., in the above commutative diagram| induces
an automorphism of Iy that induces the identity automorphism on the set of
conjugacy classes of cuspidal inertia subgroups of IIy,. On the other hand, since
X, is an affine hyperbolic curve, it follows from the induction hypothesis that

the automorphism &|r,, € Aut(Ily, ) preserves the kernel of the surjection
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Iy, — I(x,),.- Thus, since II(x ) is center-free [cf. [MT], Proposition 2.2,

out
(ii)], we conclude that & induces an automorphism of Ily, ., = II(x,),, w Ilx.

This completes the proof of Claim 2.1.C, hence of Theorem 2.1.

m*

Corollary 2.2 (Group-theoreticity of cuspidal inertia subgroups in
configuration space groups of genus 0). In the notation of Theorem 2.1,
suppose that g =0 [so ry > 4]. Then

Out™(Ily, ) = Out" (Ily,)
[ef. [CmbCsp], Definition 1.1, (i)]. In particular,

Out(lly,) = Outt"(Ily,) x &,
OutF(HUn) X Gn
Oout™“(Iy, ) x &,

[ef. [HMM], Corollary BJ.

Proof. Write
P1,....n—1" HUn - HUn—l

for the surjection induced by the projection U,, — U, _1 obtained by forgetting
the n-th factor. Let Z be a hyperbolic curve over k of genus 0 that arises as a
fiber of the projection U,,—1 — U, _2 obtained by forgetting the (n—1)-th factor.
Write Zy for the second configuration space associated to Z; pz : 1z, — Ilz
for the surjection induced by the first projection Zo — Z. Then, for suitable
choices of basepoints, we obtain a commutative diagram of homomorphisms of
profinite groups

1 —— Ker(pz) H22 I — 1
| | |
1 —— Ker(p1,..n—1) Iy, Promt Iy, , —— 1.

Thus, by replacing U by Z and applying [CbTpl], Theorem A, (ii), we may
assume without loss of generality that n = 2.

Let 3 € Out™(Ily,). Write 8; € Out(Ily;) for the outer automorphism
induced by S [cf. [CbTpl], Theorem A, (i)]. Observe that, by replacing S
by the composite of 3 with a suitable element € Out"“(IIy,) [cf. [CmbCspl,
Lemma 2.4], we may also assume without loss of generality that 8; induces
the identity automorphism on the set of conjugacy classes of cuspidal inertia
subgroups of Il .

In the remainder of the proof, we use the notation in the proof of Claim

2.1.A in the proof of Theorem 2.1 in the case where (g,rx) = (0,3) and « L g,
Observe that it follows from Claim 2.1.A that o € Out™®(ITy,) [cf. [CbTpII],
Definition 2.1, (ii)].

22



Suppose that y, z € Cusp(U), where y # z, arise from cusps of X. Then our
goal is to prove that the outer automorphism a,, € Out(Ilg,) [which preserves
and fixes the conjugacy classes of verticial subgroups of Ilg, | preserves and fixes
the conjugacy class of cuspidal inertia subgroups of Ilg, associated to z, i.e.,

the cusp associated to the diagonal divisor of Y,°%. Let [Iypew C Tlg, be a
verticial subgroup associated to vy®"; ay°" € Aut(Ilg, ) a lifting of o, such that
&ZeW(H’U;eW) == Hv}ynew. Wl"ite

ax € Aut™C(Ily,)

for the automorphism induced by & € Aut™°(ITy,) and the natural surjection
@2 : Iy, — Ilx, [cf. Theorem 2.1]. Write T O X, for the tripod over k obtained
by eliminating the cusp z of X,. Then it follows immediately from the various
definitions involved that the composite

vaew - Hgy (1 HV - HXI - HT

— where ITy — IIx, (respectively, Iy, — IIy) denotes the natural outer
surjection induced by the natural open immersion V' — X, (respectively, X, <
T) — determines an outer isomorphism H,U;ew 5 IIr that induces a bijection
between the respective sets of cuspidal inertia subgroups and is compatible
with the outer automorphisms [of H,UECW, Iy, respectively] induced by Y
and the restriction dx|m,, of dx to Ilx, [cf. Claim 2.1.A]. On the other
hand, since ax € Aut™C(Ix,) = Aut™(Ilx,) [cf. [CbTpII], Theorem A,
(ii)], it follows that é&x preserves and fixes the conjugacy classes of the cuspidal
inertia subgroups of IIx, [cf. condition (c); [CmbCsp], Proposition 1.2, (iii);
[CbTpll], Lemma 3.2, (iv)], hence of II7. Thus, we conclude that &;°" preserves
and fixes the conjugacy classes of cuspidal inertia subgroups of Hv?x;ew7 hence
that o, € Out(Ilg,) preserves and fixes the conjugacy class of cuspidal inertia
subgroups of Ilg, associated to x. This completes the proof of Corollary 2.2. [

Remark 2.2.1. One verifies immediately that Theorem 2.1 and Corollary 2.2,
as well as their proofs, go through without change when the various “II’s” are
replaced by their respective maximal pro-l quotients, for some prime number /.
We leave the routine details to the reader. On the other hand, in the present
paper, we shall not need these pro-l versions of Theorem 2.1 and Corollary 2.2.

3 Various properties of closed subgroups of the
Grothendieck-Teichmiiller group

In this section, we apply the technique developed in [Tsjm], §1, i.e., com-
binatorial Belyi cuspidalization, to give a purely combinatorial /group-theoretic
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definition of certain classes of closed subgroups of GT [cf. Definition 3.3]. More-
over, we prove a certain relationship between these classes [cf. Corollary 3.7] by
applying Theorem 2.1.

Write X % IP}@\{O, 1,00}; X, for the n-th configuration space associated to

X, where n > 2 denotes a positive integer; GT C Out(Ilx) for the Grothendieck-
Teichmiiller group [cf. [CmbCsp], Definition 1.11, (i); [CmbCsp], Remark 1.11.1].
Then recall from the first display of [HMM], Corollary C, that we have a natural
inclusion GT < Out(Ilx, ). We shall write GT,, C Out(Ilx, ) for the image of
this inclusion.

Corollary 3.1 (Purely combinatorial/group-theoretic reconstruction
of the symmetric group). For each positive integer m, write &, for the
symmetric group on m letters; W, (C S,,) for the alternating group on m
letters. Let us regard i3 C Spis as subgroups of Out(llx, ) via the natural
injection S,43 — Out(Ilx, ) induced by the natural action of S,13 on X, [cf.
[HMM], Remark 2.1.1]. Let

wn : Out(HXn) - 6n+3

be a representative of the outer surjection &, induced by the natural action of
Out(Ilx,) on the set of generalized fiber subgroups of length 1 [cf. [HMM],
Theorem A, (ii)]. Then the following hold:

(i) Write
FClly,
for the generalized fiber subgroup of co-length 1 associated to the subset

{5,...,n+3} C{1,...,n+ 3} of labels of cardinality n — 1 [c¢f. [HMM],
Theorem A, (ii); [HMM], Definition 2.1, (i)]. Let

(NS Out(HX")

be an outer automorphism of Ix, such that ¥,(a) =
a induces the identity outer automorphism of Ilx, /F (
natural surjection lx, — Ix, /F. Then

2)(3 4), and

(1
5 1lx) via the

o= (1 2)(3 4) € an+3 - 6n+3 - Out(Hxn)

[ef. [CmbCsp], Corollary 4.2, (ii); the first display of [HMM], Corollary
C; [HMM], Definition 2.7], and the subgroup 2,3 C Out(Ilx, ) may be
reconstructed, in a purely combinatorial/group-theoretic way, from Ilx,
as the subgroup of Out(Ilx, ) generated by the Out(Ilx, )-conjugacy class
of a [which depends only on the outer surjection &, /.

(i) Suppose that n > 3. Write
F CIlx,
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for the generalized fiber subgroup of length 2 associated to the subset {1,2} C
{1,...,n + 3} of labels of cardinality 2 [cf. [HMM], Theorem A, (ii);
[HMM], Definition 2.1, (ii)]. Let

(NS Out(HX")

be an outer automorphism of Il x, such that ¥, («) = (1 2), and « induces
the identity outer automorphism of llx /F (= llx,_,) via the natural
surjection Ilx, — Ilx, /F. Then

o= (1 2) S 6n+3 - Out(HXn)

[cf. [CmbCsp], Corollary 4.2, (ii); the first display of [HMM], Corollary
C; [HMM], Definition 2.7], and the subgroup &,+35 C Out(Ily,) may be
reconstructed, in a purely combinatorial/group-theoretic way, from Ilx,
as the subgroup of Out(Ilx, ) generated by the Out(Ilx, )-conjugacy class
of a [which depends only on the outer surjection &,].

Proof. Write 2 C Out(Ilx,) (respectively, & C Out(Ilx, )) for the subgroup
constructed by the algorithm of assertion (i) (respectively, assertion (ii)). Then
it follows immediately from the well-known structure of &,,13 [where we recall
that n + 3 > 5] that 2,43 C A (respectively, S,,+3 C &). [Here, we recall
that the kernel of the unique outer surjection G4 — G5 is normally generated
by (12)(34).] On the other hand, by applying the first display of [HMM],
Corollary C, we conclude that 2,5 = 2 (respectively, &,,13 = &). This
completes the proof of Corollary 3.1. O

Remark 3.1.1. In [HMM], Corollary C, the subgroup &,43 C Out(Ilx, ) is
reconstructed by forming the local center Z'°¢(Out(Ily,)) of Out(Ilx,). This
local center is calculated by applying the Grothendieck Conjecture for hyperbolic
curves over number fields [cf. [LocAn], Theorem A; [Tama|, Theorem 0.4]. On
the other hand, if n > 3, then, by applying the algorithm given in Corollary
3.1, (ii), the subgroup 6,43 C Out(Ily,) may be reconstructed, in a purely
combinatorial /group-theoretic way, from ITx, without applying the Grothendieck
Conjecture for hyperbolic curves over number fields.

Definition 3.2. Let n be an integer such that n > 2; k an algebraically closed
field of characteristic 0; U a hyperbolic curve over k. Write U,, for the n-th
configuration space associated to U. Recall the subgroup

OutgF(HUn) - Out(HUn)
[cf. [HMM], Definition 2.1, (iv)]. Then we shall write
Out¥ (T, )P C Outs* (I, )

for the subgroup of elements that induce outer automorphisms of Il that pre-
serve and fix the conjugacy classes of cuspidal inertia subgroups of Il .
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Definition 3.3. Let J C GT be a closed subgroup of GT; N (respectively, NT)
a normal open subgroup of J;

out out

IIy x N —— IIx x N

|

out

Hx>4N

(respectively,
out out

Oyt x NI ——— TIx x NT

!

out

HX X NT)

an arithmetic Belyi diagram [cf. [Tsjm], Definition 1.4, where we take “M”
to be N (respectively, NT), and we note that the “N” of loc. cit. does not
necessarily coincide with the N of the present discussion; Remark 3.3.2 below],

which we denote by B* (respectively, TB*).
(i) Write Uy (respectively, U2T ) for the second configuration space associated
to U (respectively, UT); p: Iy, — Iy (respectively, p' : I+ — ) for

2

the outer surjection induced by the first projection. Note that it follows
from Remark 3.3.4 below that there exists a(n) [unique — cf. [CmbCsp],

Theorem A, (i)] outer action of N (respectively, NT) on Ily;, (respectively,
IT,;+) which induces the given outer action of N (respectively, NT) on Iy
2

(respectively, IT;;+) via the outer surjection p (respectively, p’). Then we
shall say that "B dominates B* if there exist a normal open subgroup

M C Nn Nt

of J and a IIy-outer surjection

out

¢ Ty % M =TIy % M
such that the following (a), (b) hold:

(a) There exists a [necessarily unique — cf. [CmbCsp]|, Theorem A, (i);
[CmbCsp], Proposition 1.2, (iii)] IIy,-outer surjection

out

out
¢o Iy ) M — Iy, x M
2

such that
e the diagram of II(_)-outer homomorphisms

out Do out
M @ M —2— Iy, x M
2
out out
pl Xidy p X idym

out 1) out
HUT XM —— Iy x M
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commutes;

e ¢, maps the fiber subgroups of HU,; to the fiber subgroups of Iy, ;

e the kernel of ¢ is topologically generated by [certain of the]
cuspidal inertia subgroups of fiber subgroups of HU; of length 1
[which implies, in particular, that the kernel of ¢ is topologically
generated by [certain of the] cuspidal inertia subgroups of Iy +];

e the image via ¢ of any cuspidal inertia subgroup of a fiber sub-
group of HUJ of length 1 is either trivial or a cuspidal inertia
subgroup of a fiber subgroup of II;, of length 1 [which implies, in
particular, that the image via ¢ of any cuspidal inertia subgroup
of I+ is either trivial or a cuspidal inertia subgroup of II].

t
(b) The composite of ¢ with the restriction to ITy % M of the ILx-outer

surjection
out out

HU X N —» HX x N
[i.e., the horizontal arrow in B*] coincides with the restriction to

out
II7+ x M of the IIx-outer surjection

out out

Oyt x NT—TIx x NT

[i.e., the horizontal arrow in TB*].
ut out
In this situation, we shall refer to ¢ : I+ x M — Ily x M as an
arithmetic domination [of B* by TB*] and to the Ily-outer surjection
¢n : Uy — Iy obtained by restricting ¢ to I+ [a restriction whose
image lies in IIy, by condition (b)] as a geometric domination [of B* by
TB*]. [Here, we observe in passing that it follows immediately from the

t
definition of “ 7 that ¢ is uniquely determined by ¢r, TB*, and B* ]

(ii) We shall say that the pair (B>, TB*) satisfies the COF-property [i.e., “cofil-
tered property”] if the pair (B, B*) satisfies the following condition:

e there exist a normal open subgroup N*¥ of J and an arithmetic Belyi
diagram B>
out out

Oys @ N¥ ——— TIx x Nt

!

out

Iy x Nt
such that fB* dominates B* and TB*.

(iii) We shall say that the pair (B>, TB*) satisfies the RG C-property [i.e., “Relative
Grothendieck Conjecture property”] if the pair (B*, TB*) satisfies the fol-
lowing condition:
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e the cardinality of the set of geometric dominations [cf. (i)] of B by
B is < 1.

(iv) Write Cusp(Ily) (respectively, Cusp(Ilx)) for the set of cusps of Iy (re-
spectively, IIx) [cf. [Tsjm], Theorem 1.3, (i)]. Note that the horizon-
tal arrow in B” induces a natural injection Cusp(Ilx) = {0,1,00} —
Cusp(Ily); we shall regard Cusp(Ilx) as a subset of Cusp(Ilyy) via this
injection. Let T' C Cusp(Ily) \ Cusp(Ilx). Write I(Ily) for the set of
cuspidal inertia subgroups of IIy; [cf. [Tsjm|, Theorem 1.3, (i)]. Thus,
Cusp(Ilyy) may be identified with I(IIyy)/IIy. Write IIyy — Il for the
quotient by the normal closed subgroup topologically generated by the

t
cuspidal inertia subgroups of Iy associated to the cusps € T'; Iy WN =

t
Iy 4 N for the natural quotient induced by the quotient Il — IIp. For

I. € I(Ily), write D, def NH o.,tN(IC); Dr . for the image of D, via the
U X

t t
quotient Il YN = IIr % N. Then we shall say that the arithmetic
Belyi diagram B> satisfies the CS-property [i.e.,“cuspidal separatedness
property”] if B satisfies the following condition:

o for I.,I, € I(Ily), Dr,. is commensurable to Dy . if and only if

there exists o € Ker(Ily — IIr) such that (1.)” def ol.o~l=1,.

out
One verifies immediately that this condition implies that Dy . C IIp x N
is commensurably terminal, hence normally terminal.

(v) We shall say that J satisfies the COF-property (respectively, the RGC-
property) if every pair of arithmetic Belyi diagrams satisfies the COF-
property (respectively, the RGC-property). We shall say that J satisfies
the CS-propertyif every arithmetic Belyi diagram satisfies the CS-property.
We shall say that J satisfies the BC-property [i.e., “Belyi compatibility
property”] if J satisfies the COF- and the RGC-properties. By a slight
abuse of notation, we shall use the notation BGT to denote a closed sub-
group of GT that satisfies the BC-property.

Remark 3.3.1. Note that it follows immediately from the various definitions
involved that:

(a) each notion defined in Definition 3.3, (i), (ii), (iii) (respectively, Definition
3.3, (iv)), concerning B>, TB* (respectively, concerning B*) is equivalent
to the corresponding notion concerning the restrictions of B, TB* (re-
spectively, the restriction of B*) to arbitrary open subgroups of N, NT
(respectively, V) that are normal in J;

(b) each notion defined in Definition 3.3, (v), concerning J is equivalent to
the corresponding notion concerning an arbitrary open subgroup of J.
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Remark 3.3.2. Let us recall that there are precisely two situations in [Tsjm] in
which the Grothendieck Conjecture for hyperbolic curves over number fields [cf.
[LocAn], Theorem Aj; [Tama], Theorem 0.4] is applied, namely:

(a) Claim 1.3.A in the proof of [Tsjm], Theorem 1.3, (ii) [which is applied in
[Tsjm], Definition 1.4, to define the notion of an arithmetic Belyi diagram];

(b) the proof of [Tsjm], Theorem 1.3, (iii) [which must be applied in order
to give a purely combinatorial/group-theoretic construction of the outer
isomorphism that is used to identify the two copies of Ilx that appear in
a Belyi diagram].

On the other hand, in Remark 3.3.3 below,

we shall give a purely combinatorial/group-theoretic algorithm for
constructing, via the algorithm of Corollary 3.1, (ii), the identifying
outer isomorphism between the two copies of Ilx that appear in a
Belyi diagram.

In particular, in the context of the theory of the present paper, instead of apply-
ing [Tsjm|, Theorem 1.3, (iii), one may apply the purely combinatorial/group-
theoretic algorithm of Remark 3.3.3, which does not require any use of the
Grothendieck Conjecture for hyperbolic curves over number fields [cf. Remark
3.1.1]. In addition, [Tsjm], Theorem 1.3, (ii) [i.e., the compatibility of the iden-
tifying outer isomorphism between the two copies of Ilx with the respective
outer actions on the two copies| follows immediately from the functoriality of
the purely combinatorial/group-theoretic algorithm given in Remark 3.3.3 below.
Thus, in summary, in the argument of the present paper,

one may in fact avoid any use of the Grothendieck Conjecture for hy-
perbolic curves over number fields when applying the theory/results
of [Tsjm] in the present paper.

Remark 3.3.3. In the following discussion, we use the notation that appears in
the statement and proof of [Tsjm]|, Theorem 1.3.

(i) In the remainder of the present Remark 3.3.3, we shall reconstruct the
identifying outer isomorphism between the copies of llx that appear in
a giwven Belyi diagram B [cf. Remark 3.3.2] — by means of a purely
combinatorial/group-theoretic algorithm — from [the underlying purely
combinatorial /group-theoretic structure of] the collection of data

(a) the profinite group Ilx,;

(b) the outer surjections pr, ; : lIx, — Ilx,, where (4,5) € {(1,2), (1, 3),
(2,3)}, determined by the natural projection X3 — X3 to the i-
th and j-th factors, i.e., to be precise, the normal closed subgroups
Ker(pr, ;) C Ilx,, together with the composite outer isomorphisms

Iy, /Ker(pr; ;) < x, = Ix, /Ker(pry ),

where (i, ), (', 5') € {(1,2),(1,3),(2,3)};
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(c) the outer surjections p; : IIx, — IIx (i € {1,2}) determined by the
natural projection Xo — X to the i-th factor, i.e., to be precise, the
normal closed subgroups Ker(py), Ker(p2) C Ilx,, together with the
composite outer isomorphism x, /Ker(py) < x = Ix, /Ker(ps);

(d) the profinite groups ITyx, and IIx, i.e., to be precise, the quotients of
IIx, discussed in (b) and (c);

(e) surjections
pry :1lx, — HUx, pryp:llx, - Ix, prs:lx, — Iy,

that represent the respective outer surjections p; o pry3, P1©Pryg,
P2 0PIy 3.
(f) the open subgroup Iy C Ix;

(g) the subset of labeled elements {0, 1,00} C Cusp(Ily) [cf, [Tsjm], The-
orem 1.3, ()];

(h) the subset of labeled elements {0,1, 00} C Cusp(Ilx) [cf, [Tsjm], The-
orem 1.3, (i)]

— i.e., without applying the Grothendieck Conjecture for hyperbolic curves
over number fields. Here, the data (f), (g), (h) correspond to the given
Belyi diagram B [cf. the data “C(Ilx)” of [Tsjm], Theorem 1.3, (iii)].
Also, we note that any two collections of choices of surjections as in (e) are
related to one another by composition with a single inner automorphism
of IIx,. Moreover, by applying Corollary 3.1, (ii); [HMM], Theorem A,
(ii), one may regard the data of (b), (c), (d), (e) as data reconstructed
[i.e., by using the action of the symmetric group &g C Out(Ilx,)], up to
unique isomorphism, from the data of (a).

Next, observe that the identifying outer isomorphism between the copies
of Ilx in B coincides with the composite

My & 1etd 5 reted 5 psied X gy

where the first and the final arrows denote the outer isomorphisms aris-
ing from the [scheme-theoretic!] isomorphisms of tripods determined by
the data of (i), (e), (h) [which may be used to rigidify the correspon-
dences between cusps]; the second and the third arrows denote the natural
isomorphisms induced by the natural outer surjections IIy, — Iy, and
Iy, — Ix,. Recall that the open subgroup Iy, C Ilx, is defined to be
the inverse image of the open subgroup HES - H)X(3 [determined by the
open subgroup Il C IIx] via the surjection IIx, — H)X{D’ determined by
the surjection pr; : IIx, — Ilx, where ¢ = 1,2, 3. Thus, to reconstruct the
above composite in a purely combinatorial /group-theoretic way, it suffices
to reconstruct the following data:

(a) the 3-central tripods C I, [i.e., such as IT¢Pd];
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(iii)

(iv)

(b) the kernel of the natural outer surjection Iy, — Ily, [which allows us
to characterize 11?4 [cf. Claim 1.3.C in the proof of [Tsjm], Theorem

1.3, (ii)] and reconstruct TI5>]

(c) the outer isomorphism Ilx < II1°Pd;

(d) the kernel of the natural outer surjection Iy, — Ilx, [which allows
us to reconstruct IT5P4];

(e) the outer isomorphism Hg;pd 5 IIy, where we regard both “Hgﬁpd”

and “IIx” as subquotients of

def ~
I3 = HUS/KGI'(HU3 — HXg) (—> HX3)-

The data of (ii), (a), may be reconstructed by applying the algorithm
implicit in the proof of [CbTpII], Theorem 3.16, (v) [cf. also [HMM],
Corollary B]. Once the data of (ii), (b) (respectively, (d)), has been re-
constructed, the data of (ii), (c) (respectively, (e)), may be reconstructed
by using the action of the symmetric group &g C Out(Ilx,) (respectively,
G C Out(II3)) [ef. Corollary 3.1, (ii); the construction of the geometric
outer isomorphism “Inew =5 I1,” in the proof of [CbTpll], Lemma 3.13,
(iii)]. Thus, it suffices to reconstruct the data of (ii), (b), (d) [cf. (v), (vi),
below].

Recall the set Ix, of inertia subgroups C Ilx, of the discussion imme-
diately following Claim 1.3.B in the proof of [Tsjm], Theorem 1.3, (ii).
Write

I§3 C Ix,

for the subset consisting of inertia subgroups C Ker(pr; ;) for some (3, j) €
{(1,2),(1,3),(2,3)}. Let (4,5) € {(1,2),(1,3),(2,3)}. Recall from [HMM],
Theorem A, (ii); the first display of [HMM], Corollary C, that

(a) the image GT3 C Out(Ilx,)

of the natural inclusion GT < Out(Ilx,) may be reconstructed from the
data of (i), (a). Next, observe that the natural outer action of GT3 =
Outt¥(Ilx,) on Ilx, stabilizes Ker(pr; ;) C Ilx,, hence determines

t
(b) an outer representation Iy, " GT3 — Out(Ker(pr, ;)),

which is I-cyclotomically full [cf. [CmbGC], Definition 2.3, (ii)] for any
prime number /. In particular, by applying the algorithm implicit in the
proof of [CmbGC], Corollary 2.7, (i), we conclude that the cuspidal inertia
subgroups of Ker(pr; ;) may be reconstructed group-theoretically from the
data of (b). Thus, by varying (¢,7) € {(1,2),(1,3),(2,3)}, we conclude
that

(c) the inertia subgroups € I,
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may be reconstructed group-theoretically from the data of (i), (a), (b),
(©), (d).

(v) Next, we reconstruct the data of (i), (b). Let I € I%, be such that, for
each h = 1,2,3, prj,(I) = {1}. Then there exists a unique pair (4,7) €
{(1,2),(1,3),(2,3)} such that pr; ;(I) # {1}. Write

e Il C IIx for the maximal normal open subgroup such that Iy, C
y;

L] H23 déf HX3 XM x xx xIx HW X HW X HW - HX37 i.e.7 the inverse
image via the surjection Ilx, — IIx x IIx x ILx induced by p1, p2,
and ps of the open subgroup Iy x Iy x Iy C IIx x IIx x Iy
[determined by the inclusion Iy, C IIx];

Note that I C IIy, C IIx,. Then it follows from a similar argument to the
argument applied in the proof of [CmbCsp], Proposition 1.2, (iii), that pr;
and pr; induce natural isomorphisms

9iI: NH23 (I)/I (Ker(privj) ﬂNHZ3 (I)) = 1w,

95,1+ Niig, (DH/I - (Ker(priﬁj) N N, (I)) Sy,

and that the outer automorphism of Ily determined by g, yo 91_11 coincides
with the outer automorphism determined by a(n) [unique] element g €
IIx /Iy . Next, for each (3, ) € {(1,2),(1,3),(2,3)} and g € IIx /Iy, we
shall write

lijig © I)F(a.

for the subset consisting of the elements I € I such that

e for each h =1,2,3, pr,(I) = {1};

e pr; (1) # {1}

® gjro g;} coincides with the outer automorphism of Iy, determined
by g < Hx/HW

Then we may reconstruct the kernel of the natural surjection Ily, — Iy,

as the normal closed subgroup of Ily, topologically normally generated by

the elements of the subset

U Lijig C Ig(g-
4.4; 9¢1u /Mw
(vi) Finally, we reconstruct the data of (ii), (d). Write

def
o I\Ijg = {I N HVB (g HXS) I Ie I;{g};

o] 53 for the set of images of elements of 153 via the natural surjection

HV3 - HU3 [Cf (V)}
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On the other hand, for each ¢ = 1,2, 3, pr; naturally induces an outer sur-
jection g; : Iy, — IIy;. Thus, we may reconstruct the kernel of the natural
outer surjection Iy, — Ilx, as the normal closed subgroup topologically
generated by the elements I € [, 53 satisfying the following condition:

there exists ¢ € {1,2,3} such that ¢;(I) C Iy is a cuspidal
inertia subgroup that is not associated to 0, 1, co.

Remark 3.3.4. We maintain the notation of Remark 3.3.3. Let J C GT be a
closed subgroup; N a normal open subgroup of J;

out out

Iy x N —— 1lx x N

!

out
HX x N

an arithmetic Belyi diagram, which we denote by B*. Write U, (respectively,
X5) for the second configuration space associated to U (respectively, X); py :
Iy, — Iy (respectively, px : IIx, — IIx) for the outer surjection induced by
the first projection. Let us recall from [Tsjm], Lemma 1.2, (b) [cf. also [Tsjm],
Theorem 1.3, (ii); [Tsjm], Definition 1.4], that the outer action of N on Iy
extends uniquely [cf. the slimness of IIx] to a Iy -outer action on Ilx that is
compatible with the outer action of J (2 N) on IIx. Then observe that this
Iy -outer action of N on Ilx allows one to construct

e a natural outer action of NV on IIx, that determines an injection N —
Out"® (HX3)a

together with
e a compatible natural IIy,-outer action of N on IIx, that stabilizes IIy,

[cf. the discussion preceding Claim 1.3.B in the proof of [Tsjm], Theorem 1.3,
(ii)]. Next, recall from Remark 3.3.3, (ii), (b), (d) [cf. also Remark 3.3.3, (v),
(vi)], that the resulting outer action of N on IIy, determines injections

N < Out™(IIy,), N < Out"“(Ily,)
compatible with the outer surjections Ily, — Ily, — Ilx,. The F-admissibility
of these outer actions implies that these natural outer actions of N on IIy;, and
ITx, determine injections

N < OutsF (I, )*"sP € Out™ (11, ),

N < OutsF (IIx,)"P C Out"™(Ilx,)
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[cf. Corollary 2.2; [CbTpll], Theorem A, (ii)] and a commutative diagram

out out
HU2 X N —— HX2 X N
out out
pu Xidy px X idy

out out
Iy x N —— IIx x N,

where the lower horizontal arrow is the horizontal arrow of B™. Note that the
outer action of N on Ily, (respectively, IIx,) just constructed is uniquely de-
termined by the following two conditions [cf. Corollary 2.2; [CbTplI], Theorem
A, (ii); [CmbCsp], Theorem A, (i)]:

e the outer action of N on Iy, (respectively, IIx,) determines an injection

N < Outg¥ (IIy,)"P  (respectively, N < Outs" (ITx, )°"P);

e the outer action of N on IIy;, (respectively, IIx,) induces the given outer
action of N on Iy (respectively, Ilx) via the outer surjection py (respec-
tively, px).

Proposition 3.4 (Functoriality of cuspidal inertia subgroups via geo-
metric dominations). In the situation of Definition 3.3, (i), every conjugacy
class of cuspidal inertia subgroups of Iy arises as the image via ¢ of a unique
conjugacy class of cuspidal inertia subgroups of g+ .

Proof. We regard U, U' as open subschemes of X via the respective natural open
immersions U < X, UT < X. Write Cusp(UT) for the set of cusps of UT; S C
Cusp(UT) for the subset of cusps s € Cusp(U*) such that some [or equivalently,
every] cuspidal inertia subgroup of II;;+ associated to s is contained in Ker(¢);
Ut c Us (C X) for the partial compactification of U such that U = UJr \ S.
Thus, the natural outer surjection I+ — HU* induces a bijection between the

set of conjugacy classes of cuspidal inertia subgroups of I+ associated to cusps

€ Cusp(UT) \ S and the set of conjugacy classes of cuspidal inertia subgroups

of IT;;+. Next, observe that it follows immediately from Definition 3.3, (i), (a),
S

(b), that ¢ induces an outer isomorphism
(]55' : HUT :> HU
S
such that

(i) ¢s maps every cuspidal inertia subgroup of II,;+ to a cuspidal inertia
S
subgroup of Il;

(ii) ¢s maps every cuspidal inertia subgroup of HU; associated to 0, 1, oo to
a cuspidal inertia subgroup of Il associated to 0, 1, co, respectively.
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Thus, to complete the proof of Proposition 3.4, it suffices to verify that ¢g
induces [cf. (1)] a bijection between the set of conjugacy classes of cuspidal inertia
subgroups of I ;i and the set of conjugacy classes of cuspidal inertia subgroups
of IIy. To this end, let us first observe that injectivity follows immediately
from the fact that ¢g is an outer isomorphism. On the other hand, surjectivity
follows immediately, in light of (ii), from the fact that [since the hyperbolic
curves UT and U are of genus 0] HUg and Il are topologically generated by
their respective collections of cuspidal inertia subgroups associated to cusps
= oo. This completes the proof of Proposition 3.4. O

Proposition 3.5 (Natural action of GT on the set of geometric dom-
inations). In the notation of Definition 3.3, (i), one may construct a natural
action of Car(J) (C Out(Ilx)) on the set of geometric dominations between
arbitrary arithmetic Belyi diagrams.

Proof. Let us consider the data of Remark 3.3.3, (i), (a), (b), (c), (d), (e), (f),
(g), (h), associated to B* and TB*. Then the data of

out out .
o “Ily, x M7, “II;; x M?”, together with
2

e the respective fiber subgroups of length 1 and cuspidal inertia subgroups
of such fiber subgroups

[cf. Definition 3.3, (i)] may be reconstructed from the data of Remark 3.3.3, (i),
(a), (b); Remark 3.3.3, (ii), (b); Remark 3.3.3, (iv), (¢). Thus, Proposition 3.5
follows immediately from the various definitions involved. O

Theorem 3.6 (Faithfulness via the CS-property for certain outer ac-
tions on configuration space groups induced by open immersions). Let
J C GT be a closed subgroup; N a normal open subgroup of J;

out out

IIy x N —— Ilx x N

|

out
HX x N
an arithmetic Belyi diagram, which we denote by B*. Write Uy (respec-
tively, X3) for the second configuration space associated to U (respectively, X );
pu : Oy, — y (respectively, px : llx, — Ilx ) for the outer surjection induced
by the first projection. Thus, we have a commutative diagram

out out
HU2 XN —— HX2 x N
out out
puﬂidNJ/ PX Nile

out out

IIy x N —— IIx X N
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as in Remark 3.8.4. We regard U as an open subscheme of X wvia the natural
open immersion U — X . For each sequence

UCVCWCX

of open subschemes of X, write Vo, Wy for the second configuration spaces
associated to the hyperbolic curves V., W, respectively;

hy,w : Outs” (ITy, )P — OutgF(HW2)CUSp

for the homomorphism induced by the upper horizontal arrow of the above com-
mutative diagram [cf. Theorem 2.1; [HMM], Corollary B; the well-known ele-
mentary structure of SsJ; Ny, € Outg® (IIy, )P for the image via the composite

N < Oute® (I, )™ "4 Ot (Iy, )P

[cf. Remark 3.3.4]. Suppose that B* satisfies the CS-property [cf. Definition
3.3, (iv)]. Then, for any V,W as above, the composite

h
Zowse 1y, e (N1z) € Oute® (I, ) "5 Outs® (I, )0
18 1njective.

Proof. Write h et hyw; Cusp(V), Cusp(W) for the set of cusps of V, W, re-
spectively. First, let us note that we may assume without loss of generality [i.e.,
by forming the composite of the hy s for suitable V', W] that the cardinality
of the set Cusp(V') \ Cusp(W) is 1. Let

B € Zoysr (1, yeuse (Nv3) (S Outs™ (I, ) )
be such that h(8) = 1. Then it suffices to verify that
g=1.
Note that the natural composites
N 5 Ny, C Outs™(ITy, )P, N 5 Ny, € Outs" (IIyy, )P

determine natural outer actions of N on Ily,, IIy,, hence also on Iy, Iy [by
applying the natural outer surjections Iy, — IIy, Iy, — Iy determined by
the respective first projections].

Next, let us write

e y for the unique element € Cusp(V') \ Cusp(W);

e 7, : Outs* (Ily, ) — Out®F (ITy,) for the natural homomorphism induced by
the j-th projection, where j € {1,2} [where we note that in fact, n; = 19
— cf. Corollary 2.2; [CmbCsp], Proposition 1.2, (iii)];
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e Y'°8 for the [uni@ely determined, up to unique isomorphism| smooth log
curve over Spec QQ such that Uy =V

° Y21°g for the second log configuration space associated to Y'°8;

o ylo8 def y Xy Y18 [where the fiber product is determined by the natural
map Y'°¢ — Y obtained by forgetting the log structure];

. Yylog def Y,% Xyrox 498 [where the fiber product is determined by the first
projection Y21°g — Y'°% and the natural map 3'°8 — Y'°8];

e G, for the semi-graph of anabelioids of pro-Brimes PSC-type determined
by the stable log curve Y,°% [cf. [CmbGC], Definition 1.1, (i)];

® c,, ca for the cusps of G, that arise from y, the diagonal divisor of Y;Og,
respectively;

e v, for the vertex of G, associated to the irreducible component that does
not contain ca;

e Ilg, for the pro-Primes fundamental group of G, [cf. [CmbGC], Definition
1.1, (ii)].
Then we have a commutative diagram of profinite groups

out out

1 g, My, * N — Iy x N — 1

"] | |

out

out
1 11y HV[/Z><1]\/v—>1_[[/1/><1.Z\/v—>17

where the middle and right-hand vertical arrows denote surjections that rep-
resent the outer surjection induced by the natural open immersion V — W;

out out out out
My, x N = 1IIy x N, Iy, x N — Iy x N denote surjections that repre-
sent the outer surjections induced by the respective first projections; g, denotes
the induced surjection. [Note that Ker(g,) coincides with the normal closed
subgroup topologically generated by the cuspidal inertia subgroups of Ilg, as-
sociated to ¢;.]

Since B € Zouwr (my,) (M) (S Outg¥(Ily,)), and Ily, is center-free [cf.
[MT], Proposition 2.2, (ii)], 8 determines a Ily,-outer automorphism ~y of

6

Ty, ¢ N that lies over N. Let I, be a cuspidal inertia subgroup of IIy, associated
t

to y; v € Aut(Ily, % N) a lifting of yy. Write (v )1 for the automorphism of

t t t
Iy % N induced by 7y via the surjection IIy, %N Iy % N in the above
commutative diagram. Then since § € OutgF(HVZ)C“Sp, by replacing 7y by a

t
suitable composite with an inner automorphism of Iy, %N [determined by an
element of ITy,], we may assume without loss of generality that

(?V)l(ly) =1
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Let II,, C Ilg, be a verticial subgroup associated to v,. Note that since V¢ W,
vy is not of type (0,3). Thus, it follows immediately from [CbTplII], Theorem 1.9,
(ii), that the restriction ﬁv\ngy of v to Ilg, preserves and fixes the conjugacy
class of II,,. Moreover, by replacing 7y by a suitable composite with an inner

t
automorphism of IIy;, % N [determined by an element of Ilg, | if necessary, we
may assume without loss of generality that

Wlng, (Hy,) = I,

ut
Write w € Aut(Ilw, %N ) for the automorphism [that lies over N] induced

t t
by v [cf. Theorem 2.1] via the surjection Iy, M N - My, % N in the above
commutative diagram.

Next, we verify the following assertion:

Claim 3.6.A: The outer automorphism v € Out(Ily ) determined by

out
the restriction Jw |, of Yw to Iy (< Ily, x N) coincides with
7’]2(6) S Out(Hv)

Recall that Wv\ngy preserves the cuspidal inertia subgroups of Ilg, [cf. Corol-
lary 2.2]. Write ga : Ilg, — IIy for the natural outer surjection induced by the
second projection Vo — V. Note that Ker(ga) coincides with the normal closed
subgroup topologically generated by the cuspidal inertia subgroups of Ilg, as-
sociated to ca. On the other hand, it follows immediately from the various
definitions involved that

e v (respectively, 72(8)) coincides with the outer automorphism induced by
§V|Hgy via the surjection g, (respectively, ga);

e ¢, and ga determine the same outer isomorphism (Ilg, 2) IT, = IIy.

Thus, since Jv|ng, (Il,,) = I, we obtain the desired conclusion. This com-
pletes the proof of Claim 3.6.A.
Next, since k() = 1, we have

. out out
YW € IHH(HW2 X N) - Aut(HW2 X N),
where the inner automorphism y is determined by an element € Ilyy,. Write

t
e (3w )1 for the inner automorphism of ITy, W N [determined by an element
t t
€ IIy] induced by A via the surjection Iy, NN = Iy % N in the
above commutative diagram;
~ t
e D, (= N) for the image of NH out_(Iy) via the surjection IIy % N -
v X

out
[Ty x N in the above commutative diagram.
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Then it follows from our assumption that (3v)1(ly) = I, that (3w )1(Dy) =
D,. Recall that since B* satisfies the CS-property, D, is normally terminal in

Iy %N [cf. the final sentence of Definition 3.3, (iv)]. Thus, we conclude that

the inner automorphism ()1 € Inn(Ily NN ) is determined by a(n) [unique]
element € D, NIy = {1}, hence, in particular, that the inner automorphism
Yw is determined by an element € 1Ty, C Ilyy,, i.e., that v = 1. Finally, it follows
immediately from the injectivity of 1 [cf. Corollary 2.2; [CmbCsp|, Theorem
A, (i)], together with Claim 3.6.A, that § = 1. This completes the proof of
Theorem 3.6. O

Corollary 3.7 (The CS-property implies the RGC-property). Let J C
GT be a closed subgroup satisfying the CS-property [cf. Definition 3.3, (iv)].
Then J satisfies the RGC-property [cf. Definition 3.3, (iii)].

Proof. In the notation of Definition 3.3, (i), let ¢, ¢’ be arithmetic dominations
of B* by 'B*, defined over a normal open subgroup M C J. Then it suffices
to prove that ¢ = ¢'. Since Ker(¢) and Ker(¢') are topologically generated by
[certain of the] cuspidal inertia subgroups of II;;+ [cf. Definition 3.3, (i), (a)], it
follows immediately from the CS-property [where we take the “T” of Definition
3.3, (iv), to be “Cusp(Ilyy) \ Cusp(Ilx)”], together with Definition 3.3, (i), (b),
that
Ker(¢) = Ker(¢').

Fix IIy,-outer surjections

out out out

out
(bQIHU;rXIM—»HUzNM, d)/QZHU;XIM—»HUzXIM

[that lie over ¢, ¢'] as in Definition 3.3, (i), (a), respectively.
Next, we observe the following assertion:

Claim 3.7.A: ¢3 and ¢, map the inertia subgroups of II+ associ-
2
ated to the diagonal divisor of UQJf to the inertia subgroups of Iy,

associated to the diagonal divisor of Us.

Indeed, Claim 3.7.A follows immediately from Definition 3.3, (i), (a).
Next, we verify the following assertion:

Claim 3.7.B: Ker(¢2) = Ker(¢}).
Write

out out out out
s Myt X M -1y x M, ¢, Iyt x M -1y x M
for the Iy-outer surjections determined by ¢a, ¢5, respectively, via the outer
surjections 1y, — Iy, HU; —» II+ induced by the respective second projec-
tions. Then it follows immediately from Claim 3.7.A, together with a similar
argument to the argument applied in the proof of [CmbCsp], Proposition 1.2,
(iii), that the following assertion holds:
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Claim 3.7.C: ¢ = ¢y, ¢' = ¢.. In particular, Ker(¢,) = Ker(¢) =
Ker(¢') = Ker(¢L,).

Thus, since Ker(¢y) and Ker(¢}) are topologically generated by [certain of the]
cuspidal inertia subgroups of fiber subgroups of HUJ of length 1 [cf. Definition
3.3, (i), (a)], we conclude, again from Claim 3.7.A [cf. also [CbTplII], Lemma
3.6, (i), (ii)], that Ker(¢s) = Ker(¢h). This completes the proof of Claim 3.7.B.

It follows immediately from Claim 3.7.B that there exists a unique I, -outer

automorphism « : Iy, WM Iy, °% M such that ¢2 = a o ¢4 On the other
hand, it follows from the CS-property, together with Definition 3.3, (i), (b),
that we may apply Theorem 3.6 to conclude that « is the identity, hence that
@2 = &b, ¢ = ¢'. This completes the proof of Corollary 3.7. O

4 Combinatorial construction of the field Qpgr

In §3, we defined a certain class of closed subgroups BGT of GT [cf. Def-
inition 3.3, (v)]. In this section, for each such closed subgroup BGT, we give
a purely combinatorial /group-theoretic construction of a field Qg associated
to BGT equipped with a natural action by Cer(BGT). Finally, by observing

that this associated field is isomorphic to the field Q, we construct a natural

outer homomorphism Cqr(BGT) — Gg et Gal(Q/Q) [cf. Theorem 4.4].

Write X %' PL\{0, 1, 00}.

Definition 4.1. Let BGT C GT be a closed subgroup satisfying the BC-
property [cf. Definition 3.3, (v)]. For any arithmetic Belyi diagram B>

out out

HUNN—>H)(>4N

|

out

HX x N
[where N is a normal open subgroup of BGT], write IIgx Lt IIy;
Cusp(B™)

for the set of conjugacy classes of cuspidal inertia subgroups [cf. [Tsjm], Theo-
rem 1.3, (i)] of Ilgx. Write

IgcT
for the set of the arithmetic Belyi diagrams over normal open subgroups of
BGT. We shall regard Iggrt as a preordered set [i.e., a set equipped with a
reflexive and transitive binary relation] by means of the relation determined
by domination, i.e., the existence of an arithmetic domination [cf. Definition
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3.3, (i); Proposition 3.4; Claim 3.7.C in the proof of Corollary 3.7]. It follows
immediately from Remarks 3.3.2, 3.3.3; Proposition 3.5; [Tsjm], Definition 1.4,
that there is a natural action of Cqr(BGT) on the preordered set IggT. Since
BGT satisfies the COF-property [cf. Definition 3.3, (ii)], it follows formally that
the preordered set IggT is directed, i.e., any pair of elements of the set admits
a(n) [not necessarily minimall!] upper bound. Since BGT also satisfies the RGC-
property [cf. Definition 3.3, (iii)], if *B* € Igqr dominates TB* € Iggr, then
the unique geometric domination

Hin — HT]EP“
of TB* by ‘B> determines [cf. Proposition 3.4] a natural injection
#t 3 : Cusp(TB*) < Cusp(*B*)

[which we shall often use to regard Cusp("B*) as a subset of Cusp(*B*)]. Thus,
we obtain a direct system (Cusp(*B*), x4 +). We shall write
= def .
Qpgr = lim Cusp(B™) \ {0},
B* elpar

def = def =

=X —h
Qpar = Qpar \ {0},  Qpar = Qper \ {0,1},
where 0,1,00 € Cusp(B”) denote the elements determined by the IIx-outer

b t
surjection Iy M N — IIx % N [i.e., the horizontal arrow in B*] and the
conjugacy classes of cuspidal inertia subgroups of Iy associated to 0,1, 00,
respectively. We shall refer to Qpgr as the BGT-realization of Q.

Remark 4.1.1. In the notation of Definition 4.1, it follows immediately from the
various definitions involved that the kernel of the unique geometric domination

Hin —» HTBx

of TB* by B> is the normal closed subgroup of Ilipx topologically generated
by the cuspidal inertia subgroups associated to Cusp(*B*) \ Cusp("B*).

Proposition 4.2 (Countability of Ipgt). In the notation of Definition 4.1,
IgaT is countable.

Proof. Let us observe that since Ilx is topologically finitely generated,
e the set of open subgroups of Iy is countable;
e there exists a countable open basis of BGT C Out(Ilx).

Thus, since Cusp(B™) is finite, it follows from the various definitions involved
that IggT is countable. This completes the proof of Proposition 4.2. O

41



Proposition 4.3 (Natural action of Cqr(BGT) on the set Qpgr). There
is a natural continuous action of Cqr(BGT) on the discrete set Qpgr [¢f. Def-
inition 4.1].

Proof. In the notation of Definition 4.1, let 0 € Cqr(BGT); z € Qpgr; B* €
IggT an arithmetic Belyi diagram

out out

IIy x N —— 1Ix x N

|

out

HXxN

[where N is a normal open subgroup of BGT] such that N e N1 C BGT
and x € Cusp(B™). Recall that « is the conjugacy class of some cuspidal inertia
subgroup I, of Iy .

Next, let us recall the right-hand square in the diagram of the final display
of the proof of [Tsjm], Corollary 1.6, (i), in the case where we take “J” to
be GT [cf. also Remark 3.3.2]. In the notation of the present discussion, this
right-hand square determines a commutative diagram of profinite groups

out out

IIy x N — 1IIx x N

| ar

out out

yo x N9 —— IIx x N7,

where the horizontal arrows are the Il x-outer surjections induced by the natural
open immersions U < X, U < X of hyperbolic curves; the left- (respectively,
the right-) hand vertical arrow is a IIy--outer (respectively, ITx-outer) isomor-
phism of profinite groups. Write 2° € Qg for the element determined by
o(I,). Thus, to obtain a well-defined action of Cqr(BGT) on Qpgr, it suffices
to show that x? does not depend on the choice of B*. But this follows for-
mally from the COF-property of BGT, together with Proposition 3.5 and the
construction of 7. To verify that the resulting action is continuous, it suffices
to observe that there exists an open subgroup H C Cgr(BGT) [which may be
obtained, for instance, by forming the intersection of Cqr(BGT) with the open
subgroup “N C GT” of [Tsjm], Definition 1.4] such that z° = z for 0 € H.
This completes the proof of Proposition 4.3. O

Theorem 4.4 (Natural field structure on Qpgr). There exists a nat-
ural field structure on the set Qpgr that is preserved by the natural action
of Car(BGT) [cf. Proposition 4.3]. Moreover, there exists a field isomor-

phism Q = Qpgr. In particular, there evists a natural outer homomorphism
Car (BGT) — GQ,
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Proof. First, we construct a natural field structure on the set Qpgr. Write
0,1 € Qg for the elements determined, respectively, by the conjugacy classes
of cuspidal inertia subgroups of Il x associated to the cusps “0”, “1” of X. Let

—X
y € Qpar
(respectively, B
y € Qpars

—h —
z € Qpgr, ¥ € Qpar);
B* an arithmetic Belyi diagram

out f out
IIy x N —— IIx x N

|

out

HXNN

[where N is a normal open subgroup of BGT] such that x,y € Cusp(B*). Write
t : U — X for the open immersion that gives rise to the horizontal arrow of

B* [cf. [Tsjm], Definition 1.1, (i); [Tsjm], Definition 1.4]; ¢ for the standard

coordinate on X }P’}@\{O, 1,00};

U X
(respectively,

1N U = X

MU X))

for the open immersion obtained from ¢ : U — X by composing with the
automorphism ¢ — ¢! of X [i.e., the automorphism of X that switches the cusps
“0” and “o0”] (respectively, composing with the automorphism ¢ +— 1 —¢ of X
[i.e., the automorphism of X that switches the cusps “0” and “1”]; compactifying
at the cusp “1” but not at the cusp “x”). Then it follows immediately from
[Tsjm], Theorem 1.3, (i) [cf. Remark 3.3.2], that the open immersion i/

U — X (respectively, .'=t : U < X; (//* : U < X) determines a IIx-outer

surjection
out out

FU Iy N =Ty ) N

(respectively,
out out

fI7 Iy x N - Ty x N;

out out

f7 Iy x N —=1IIx x N).

Thus, by considering y via ! (respectively, f1=t; f%/*) [cf. Definition 4.1], we
obtain a new element y' € Qpqr (respectively, y'~* € Qpar; ¥/* € Qpar)-
In particular, by the COF-property of BGT, we obtain natural bijections

43



o {t7'} :@gGT = @Ecﬂ
o {1—t}:Qpar — Qpars
o {t/z}: Qpar = Qpar

such that {t~=1}(y) =y ", {1 — t}(y) = y* ¢, and {t/z}(y) = y*/*. Here, we
observe that {t~!} and {1 —t} are involutions, while {t/x} and {t/z~1}, where
we write 2~ & {t/z}(1) € Qpar, are inverse to one another.

For each (z,y) € Qpar X Qpar, write

Rpar(e,y) < {t/{t}(@)}y),

— def def
Mpat(0,Qpgr) = 0, Mper(Ly) = .

Thus, we obtain a multiplication map

Mpar : Qear X Qsar — QpaT:

Write
B*,
for the arithmetic Belyi diagram [over a suitable normal open subgroup of BGT
— cf. the subgroup “M” of [Tsjm], Definition 1.4] determined by the unique

[up to isomorphism] connected finite étale covering of X of degree 2 ramified
over 0 and oo;

—1lpagt € Qpar

for the element of Qpgy determined by the unique element of Cusp(B*;) \
{0,1,00}. Then we obtain an addition map

Bear : Qeer X Qear — QG

by taking

Boer(2,y) € Bpar(z, {1 -t} (®ser(—1ser, Bear ({1 Hz),9))),

BHBGT(O7 y) déf Y,

— _
Where ($7y) S QBGT X QBGT'
Next, we verify the following assertion:

Claim 4.4.A: Xpgt and Hpgr determine aﬁﬁeldfstmcture on Qpar
such that there exists a field isomorphism Q = Qpar-

In the following discussion, we shall identify X(Q) with @m. We begin by
observing that, for any pair consisting of
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e an arithmetic Belyi diagram B>

out

out
IIy x N —— 1Ilx x N

|

out

Hx><]N

[where N is a normal open subgroup of BGT] and

. —M
e a finite subset F CQ
there exist

e an open immersion UT < U (= X) over Q such that

— — —
FCX@\U'Q<SXx@=0Q

[where we regard UT(Q) as a subset of X(Q) by means of the composite
of the open immersion U' < U with the open immersion U < X that
gives rise to the horizontal arrow of the given arithmetic Belyi diagram],

e a normal open subgroup MT C N of BGT, and

e an arithmetic Belyi diagram TB*

out out

HUTNMT—>Hx>4MT

!

out
HX X ]\4Jf
[where the restriction II;+ — IIx of the horizontal arrow to Il is the
Il x-outer surjection that arises from the above open immersion Ut —

U (= X) over Q]
such that the outer action of MT on Il is compatible, relative to the outer
surjection I+ — Iy [induced by the open immersion Ut < U], with the
restriction to Mt C N of the outer action of N on II;;. Indeed, write g : U — X
for the connected finite étale covering that gives rise to the vertical arrow of the
given arithmetic Belyi diagram. Let *B* be an arithmetic Belyi diagram

out out

My x M* —— Ty x M*

|

out

My x M*
[where M* is a normal open subgroup of BGT] such that

— —

U@ cXx@\gU@nF)cX(@Q=0Q
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[where we regard U*(Q) as a subset of X (Q) by means of the open immersion
U* < X that gives rise to the horizontal arrow of *B*]. Write U def g HU™).
Thus, we conclude that there exist a normal open subgroup MT C M* C N of
BGT and a diagram

out out

t
My 3 MP ——— Ty % Nyt —— Oy X N

| |

out out

HU* X ]\4*|]\/ﬁL _— HX X N|M"f

!

out

Iy % M*|

— where the upper right-hand portion of the diagram is the diagram determined
by B*; the lower left-hand portion of the diagram is the diagram determined
by *B*; the upper left-hand square of the diagram is cartesian— such that the
composite of the upper horizontal arrows and the composite of the left-hand
vertical arrows determine an arithmetic Belyi diagram B>

out out

Oy x M ——— TIx x Mt

l

out
HX X MT
satisfying the desired property. This completes the proof of the above observa-
tion.

Next, let us fix an element B* € Iggr. Then by applying the above obser-
vation in a recursive fashion [i.e., by applying the observation to B* and some
finite subset F to obtain TB*, then applying the observation to TB* and some
other finite subset TF to obtain B, etc.], we conclude [cf. the definition of
Qper) that one may construct a family of injections

X IF 1 Q
{615]}13 F u{0,1} — QBGT}{Fg@m}

[indexed by the finite subsets F C @m] such that the following conditions are
satisfied:
e Cusp(B*) C U Im(dpx p).
FCQ"

—rh
o If F1 Q F2 Q @ s then (Qs]Bx,Fz)‘Fl = (bB)",Fl‘

. C e . . —M
Thus, the various injections ¢p» , indexed by the finite subsets F' C Q , de-
termine an injection

Pmx @ — @BGT
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associated to B* € Iggr such that Cusp(B*) \ {oco} C Im(¢px). In particular,
if we allow B* € IggT to vary, then we obtain an equality of sets as follows:

U Im(¢sx) = Qsar

BXelpgT
In fact, the following stronger property holds:

Claim 4.4.B: For each finite subset Fegr C Qpgr, there exists an
arithmetic Belyi diagram B> such that Fygr C Im(dpx ).

Indeed, Claim 4.4.B follows formally from the COF-property of BGT, together
with the inclusion Cusp(B*) \ {oo} C Im(¢y ), for B* € Ipgr.
Next, we verify the following assertion:

Claim 4.4.C: Fix an arithmetic Belyi diagram B*. Then Mg pre-
serves Im(¢p» ) and induces the usual operation of multiplication on

Q.

Indeed, recall that {¢t 1} and {t/z} (z € @EGT) are defined by using the scheme-
theoretic morphisms Lt_l, (/% Thus, Claim 4.4.C follows immediately from the
definition of the multiplication map Rgar.

Next, we verify the following assertion:

Claim 4.4.D:

(i) For any B* € Iggr, the maps {t~!} and Kpgr determine an

abelian group structure on @;GT with respect to which ¢px
induces a group homomorphism

@X — @;GT'
(ii) ¢g» (1) = —1par.

(iii) For any B* € Ipgr,
— def -
¢px (—1) € p2(Qpar) = {7 € Qpgr | Mpar (z,2) = 1}.

(iv) p2(Q@pgr) = {1, —1BaT}

Since each axiom for an abelian group may be written as a condition concerning
finitely many elements of the set under consideration, we conclude, by applying
Claim 4.4.C for suitable B* € Iggr [i.e., B* such that the subset Im(¢gx) C
Qg is sufficiently large — cf. Claim 4.4.B], that {¢t !} and KpgT determine
an abelian group structure on @;GT. Thus, Claim 4.4.D, (i), follows from
Claims 4.4.B, 4.4.C. Claim 4.4.D, (ii), follows immediately from the definitions
of B, and —1ggr. Claim 4.4.D, (iii), follows immediately from Claim 4.4.D,
(i), together with the equality (—1)2 = 1 € Q. Next, we verify Claim 4.4.D,
(iv). The inclusion ps(Qggr) 2 {1, —1pgr} follows immediately from Claim

47



4.4.D, (i), (iii). Let 2 € p2(Qpgr) \ {1}. Then Claim 4.4.B implies that there
exists an arithmetic Belyi diagram B> such that —1ggT, = € Im(¢pgx). Thus,
by applying Claim 4.4.D, (i), (iii), we conclude that —1ggT = x. This completes
the proof of Claim 4.4.D.

Next, we verify the following assertion:

Claim 4.4.E: Fix an arithmetic Belyi diagram B*. Then HggT pre-
serves Im(¢px ) and induces the usual operation of addition on Q.

Indeed, recall that {t~!}, {1 — t} are defined by using the scheme-theoretic

. -1 g . .
morphisms ¢, t!~*. Moreover, we observe that Bpgr is completely determined

by {t~1}, {1 —t}, KT, and —1ggr. Thus, Claim 4.4.E follows immediately
from Claims 4.4.C; 4.4.D, (iv).

Since each axiom for a field may be written as a condition concerning finitely
many elements of the set under consideration, we conclude, by applying Claims
4.4.C, 4.4.E, for suitable B* € Iggr [i-e., B* such that the subset Im(¢px) C
Qpgr is sufficiently large — cf. Claim 4.4.B], that Kggt and BpgT determine
a field structure on Qpgr such that ¢px is a field homomorphism for each
B* € Iggr. Moreover, since Ugxep, ., Im(¢px) = Qpgr, every element of

Qper is algebraic over Q. Thus, we also conclude that
Claim 4.4.F: ¢px is, in fact, a field isomorphism for every B* € Iggr.

This completes the proof of Claim 4.4.A.

Next, we prove that the natural action of Cor(BGT) on the set Qpgr
[cf. Proposition 4.3] is compatible with the field structure constructed above.
Let 0 € Cer(BGT). Recall that the maps Kpgr and Hpgr are completely

determined by {t~'}, {1 — t}, {t/z} (z € Qpar), and —lpgr. Thus, since
07 =0 and 17 = 1, it suffices to prove the following assertion:
Claim 4.4.G: Let x € @EGT, RS @;GT. Then
o {t71Hy) ={t""} ),
o {1-1t}y7) = ({1 -t}y)7,
o {t/x7}(y7) = ({t/=}(y))-
In particular, (—1ggT)? = —1pgr [cf. Claim 4.4.D, (iv)].
Let B be an arithmetic Belyi diagram

out out

My X N —F 5 % N

|

out

HXxN

[where N is a normal open subgroup of BGT] such that N e N1 C BGT,
and z,y € Cusp(B”). Then, by recalling the [right-hand square in the final
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display of the] proof of [Tsjm], Corollary 1.6, (i) [cf. also Remark 3.3.2; the
functorial algorithm of Remark 3.3.3], in the case where J = GT, we obtain a
commutative diagram

out out

HUNNT)HXNN

| ar

out out

Iy x N° f—) IIx x N7,

where the horizontal arrows are the Il x-outer surjections induced by the natural
open immersions U < X, U? < X of hyperbolic curves; the left- (respectively,
the right-) hand vertical arrow is a IIy--outer (respectively, Il x-outer) isomor-
phism of profinite groups.

Note that {t71}(y°) (respectively, {1 — t}(y°); {t/z°}(y°)) is completely
determined by y° and the Il x-outer surjection

ot L out o out o
(f) e x N2 =5 1Ix x N

(respectively,

oyl—t | out . out o.

(f7) "' :Ilye x N = 1Ix x N,
o out out

(fO* :Mye x N7 = 1IIx x N7)

which sends (00, 1,0) (respectively, (1,0, 00); (0,27,00)) to (0,1, 00).

On the other hand, ({t~1}(y))? (respectively, ({1 — t}(y))?; ({t/z}(y))?) is
completely determined by y“ and the Il x-outer surjection

=1 1 out - out -
cof' oo " :llye x N7 - 1Ilx x N

(respectively,

1t _1 out o out o
cof tooc " :llye x N —1IIx x N7
t/x _1 out - out -
oo f'% oo™ i Mlye x N7 - 1Ix x N7)

which sends (oo, 1,0) (respectively, (1,0, 00); (0,27,00)) to (0,1, 00).

Let us note that the IIx-outer surjections of the last two displays exhibit
analogous behavior on the cusps [i.e., more precisely, on the conjugacy classes
of cuspidal inertia subgroups|. Thus, we conclude from the above commutative
diagram that

o (fO) =coft oot
° (fo)l—t —go fl—t oo.—l7
° (fa)t/ac“ —go ft/ac o 0.—1.

This completes the proof of Claim 4.4.G, hence of Theorem 4.4. O
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Remark 4.4.1. Let p be a prime number, F' a field which is a finite extension
of the field of rational numbers Q or the field of p-adic numbers Q. Thus, we
have a natural inclusion Q C F. Let F' be an algebraic closure of F. By abuse

of notation, we shall identify Q with the algebraic closure of Q in F. Write

Gp ¥ Gal(F/F). Thus, we obtain natural injections

GF — GQ — GT C Out(Hx)

[cf. the discussion of the beginning of [Tsjm], Introduction], which we use
to identify Gr with its image in GT. Then it follows immediately from the
fact that F' is Kummer-faithful [cf. [AbsToplIll], Definition 1.5; [AbsToplII]],
Remark 1.5.4, (i)], together with a similar argument to the argument applied
in the proof of [Tsjm]|, Corollary 3.2, that G satisfies the CS-property. Thus,
we conclude from Corollary 3.7 that G satisfies the RGC-property. Since,
in this situation, the COF-property is immediate, we thus conclude that Gp
satisfies the BC-property, i.e., that we may take “BGT” to be Gr. Moreover,
the scheme-theoretic interpretation of the various arithmetic Belyi diagrams that
appear determines a natural isomorphism of fields Q - 5 Q that is compatible,
relative to the natural injection G'r < Ggq, with the respective natural actions,
i.e., we obtain a diagram as follows:

GF — GQ
N N
Qe, = Q.

Remark 4.4.2. Tt is not clear to the authors at the time of writing whether or
not GT satisfies the BC-property, i.e., whether or not “GT = BGT”.

Corollary 4.5 (Group-theoretic nature of BGT). Let n be an integer such
that n > 2. Write X,, for the n-th configuration space of X = P}@\{O, 1,00};

GT, % Oute® (IIx,) € Out(Ily, ). Recall that we have a natural isomorphism
GT, = GT [cf. the first display of [HMM], Corollary CJ. Then one may recon-
struct from Il , in a purely combinatorial/group-theoretic way, i.e., in a way

that only involves the structure of Ilx, as a topological group [cf. also Remark
4.5.1 below],

o the subgroups GT,, C Out(Ily, ), GT C Out(Ilx), where we regard Ilx as
the quotient of Ilx, by a generalized fiber subgroup;

o the natural isomorphism GT,, = GT;

e the collection of closed subgroups J C GT,, such that J satisfies [i.e., the
image of J, via the natural isomorphism, in GT satisfies] the BC-property
[¢f. Definition 3.3, (v)].
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If, moreover, a closed subgroup J = BGT C GT C Out(Ilx) satisfies the BC-
property, then the construction from Ix, [cf. also Remark 4.5.1 below] of

the preordered set of arithmetic Belyi diagrams Ipgt [cf. Definition 4.1],

the natural action of Cor(BGT) on the preordered set Iggr [cf. Definition
4.]/,

the set Cusp(—) associated to any element of IngT [cf. Definition 4.1],
the direct limit Qgar [cf. Definition 4.1],

the natural continuous action of Cor(BGT) on Qpgr [cf Proposition
4.3], and

the field structure on Qpgr [cf. Theorem 4.4]

may be phrased in purely combinatorial /group-theoretic terms, i.e., in terms that
only involve the structure of Ilx, as a topological group.

Proof. The various assertions of Corollary 4.5 follow immediately from Defini-
tions 3.3, 4.1; Remarks 3.3.2; 3.3.3 [cf. also Remark 4.5.1 below]; Proposition
4.3 [and its proof]; Theorem 4.4 [and its proof]; [HMM], Theorem A, (ii); the
first display of [HMM], Corollary C; [Tsjm], Theorem 1.3, (i); [Tsjm], Definition

1.4.

O

Remark 4.5.1.

(i)

(i)

Here, in the context of Remark 3.3.3, (i), we observe that the natural
isomorphism GT,, = GT [cf. the first display of [HMM], Corollary C],
together with the algorithm of Corollary 3.1, (ii), implies that there is in
fact no substantive difference between

e constructions starting from Ilx, [where we recall that n > 2] and

o constructions starting from Ilx,.

In the situation discussed in (i) [cf. also Remark 3.3.3, (i)], suppose that
we apply the constructions discussed in Corollary 4.5 to Ilx,, regarded as
an abstract topological group. Then the algorithm of Corollary 3.1, (ii),
determines a subgroup

G3 C Out(IIy),

[i.e., where, by a slight abuse of notation, we use the notation “G3” to
denote this subgroup which is isomorphic to the symmetric group on 3
letters| of the group of outer automorphisms Out(Ilx) of the quotient ITx
of the given abstract topological group Ilx, discussed in Remark 3.3.3,

(1), (d).
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(ili) We maintain the notation of (ii). Then observe that since the quotient IIx
of the given abstract topological group Ilx, is not equipped with a natural
bijection between its set of cusps and the set of symbols {0, 1, 0o}, it follows
that this quotient ITx is only related to any of the “Ilx’s” that appear in
the arithmetic Belyi diagrams discussed in the statement of Corollary 4.5
[not by a single outer isomorphism, but rather] by an &3-torsor of outer
isomorphisms.

5 Combinatorial construction of the conjugacy
class of subgroups of GT determined by G

Write X % P}@\{O, 1,00}; X, for the n-th configuration space associated

to X, where n > 2. In this section, we reconstruct from the topological group
Ix, , in a purely combinatorial/group-theoretic way, the conjugacy class of sub-
groups of the Grothendieck-Teichmiiller group GT C Out(Ilx) determined by
the absolute Galois group of Q as the set of maximal closed subgroups BGT of
GT satisfying a certain purely combinatorial/group-theoretic condition that we
refer to as the AA-property [cf. Definition 5.12; Theorem 5.17, (ii)].

Write Il x,_ for the quotient of IIx by the normal closed subgroup topologi-
cally generated by the cuspidal inertia subgroups associated to the cusp “1” [so
IIx,.. is isomorphic to Z as an abstract topological group|. Let J be a closed
subgroup of GT C Out(Ilx). Then we shall write [by a slight abuse of notation]

out

HX NJ*»HXOOOXIJ

for the quotient by the normal closed subgroup topologically generated by the
cuspidal inertia subgroups associated to the cusp “1”.

Definition 5.1. In the notation of Definition 4.1:

(i) Write
def .
= lim Ilgx,

BX€lpagr

where the transition morphisms are the unique geometric dominations
Hi[ﬂgm d HT]BN .

Here, we observe that even though these transition morphisms are, strictly
speaking, outer homomorphisms, it follows immediately from the fact that,
for each B* € IggT, g is a profinite group [cf. also Proposition 4.2], that
one may choose a coherent system of homomorphism representatives of the
given system of outer homomorphisms; in particular, IT is well-defined as
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(iii)

a profinite group, up to inner automorphisms. It follows immediately from
Proposition 3.5, together with the various definitions involved, that the
natural action of Cqr(BGT) on Iggr [cf. Definition 4.1] induces a natural
outer action of Car(BGT) on the group II.

In the context of the inverse limit of Definition 5.1, (i), we shall refer to
an inverse limit of cuspidal inertia subgroups of some cofinal collection
of TIgx’s [where the induced transition morphisms are necessarily isomor-
phisms] as a cuspidal inertia subgroup of II. For each open subgroup IT* of
II, we shall refer to the intersection of II* with a cuspidal inertia subgroup
of II as a cuspidal inertia subgroup of II* and write

Cusp(IT*)

for the set of IT*-conjugacy classes of cuspidal inertia subgroups of II*.
Thus, it follows immediately from the definitions that we obtain a natural
surjection

Cusp(IT*) — Cusp(II)

with finite fibers. For each finite subset E* C Cusp(II*), write
I — II%.

for the topologically finitely generated [cf. Remark 5.1.1 below] quotient
profinite group of IT* obtained by forming the quotient of IT* by the nor-
mal closed subgroup topologically generated by the cuspidal inertia sub-
groups associated to Cusp(IT*)\ E*. Observe that the natural outer action
of Cor(BGT) on II [cf. Definition 5.1, (i)] induces a natural action of
Cer(BGT) on Cusp(Il). Finally, we observe that it follows immediately
from the various definitions involved [cf., especially, Definition 4.1] that
we have a natural Cor(BGT)-equivariant bijection

Cusp(Il) = Qpgr U {0}

Write
Cear

for the set of finite subsets of Cusp(II) that contain {0,1,00}. Observe
that the natural action of Cqp(BGT) on Cusp(II) [cf. Definition 5.1, (ii)]
induces a natural action of Cqp(BGT) on Cgr. We shall write

Cier € Ciar

for the subset of Cqr(BGT)-stable elements, i.e., elements fixed by the
action of Cqr(BGT). Finally, we observe that the assignment Izgt 3
B* — Cusp(B*) € Cpgr induces a natural Cor(BGT)-equivariant map

Isgt — Char-

93



Remark 5.1.1. In the notation of Definition 5.1, it follows immediately from
Remark 4.1.1 that the kernel of the natural outer surjection

H—»HBN

is the normal closed subgroup of Il topologically generated by the cuspidal
inertia subgroups associated to Cusp(IT)\ Cusp(B*). In particular, the quotient
IT — I~ may be naturally identified with the quotient

II — HCusp(]Bx)

of the third display of Definition 5.1, (ii) [i.e., where we take “IT*” to be II and
“E*” to be Cusp(B™)].

Remark 5.1.2. Let E € C§gy [cf. Definition 5.1, (iii)]. Then it follows im-
mediately from the various definitions involved that the natural outer action of
Car(BGT) on II [cf. Definition 5.1, (i)] induces, via the natural outer surjection
IT1 - Ig, a natural continuous outer action of Car(BGT) on the topologically
finitely generated profinite group Ilg [cf. the discussion entitled “Topological
groups” in Notations and Conventions; Definition 5.1, (ii); [Tsjm], Lemma 1.2,
(b); [Tsjm], Theorem 1.3, (ii); [Tsjm], Definition 1.4].

Remark 5.1.3. Observe that it follows immediately from the continuity [cf.
Proposition 4.3] of the natural action of Cqr(BGT) on QparU{oc} (= Cusp(Il))
[cf. Definition 5.1, (ii)], together with the COF-property of BGT, that

for any E € Cpar, there exists an element E5° € Cf, (respectively,
B* € Ipgr) such that £ C E5' (respectively, E C Cusp(B™)).

In particular, we conclude [cf. Remarks 5.1.1, 5.1.2; Proposition 5.2, (ii) below]
that we may write

II = @1 Iy = @ I gst,
EecCpar EsteCiiar

out out
13 BGT = lim g« x BGT

EsteC¥qr

— where, in the inverse limits, we regard Cpgr and Cfj as directed preordered
sets by means of the relation of inclusion of subsets of Cusp(II).

Proposition 5.2 (Basic properties of II). In the notation of Definition 5.1,
the following hold:

(i) There exists an isomorphism of profinite groups between I1 and the absolute
Galois group of the function field of X that induces a bijection between the
respective sets of cuspidal inertia subgroups.
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(i) For each E € Cpgr, llg is slim. In particular, 11 is slim.

b
(#ii) The group I1 % BGT admits a natural structure of profinite group.

(iv) Let II* be a normal open subgroup of II. Then, for any sufficiently small
normal open subgroup M C BGT, there exist an outer action of M on II*

L . out out
and an open injection II* x M — II x BGT such that

(a) the outer action of M on II* preserves the set of cuspidal inertia
subgroups of 11*;

(b) the outer action of M on IT* extends uniquely [cf. the slimness of I1]
to a IT*-outer action on Il that is compatible with the outer action of

out out
BGT (2 M) onI1; the injection II* x M — II x BGT is the injection
determined by the inclusions II* C II and M C BGT, together with
the IT* -outer actions of M on IT* and II.

t
(v) In the notation of (iv), the homomorphism II* %M — Aut(IT*) deter-
mined by conjugation s injective.

(vi) Let TI* be an open subgroup of II. Then any surjective homomorphism
II* — II* of profinite groups that induces a bijection Cusp(I1*) = Cusp(IT*)
is an isomorphism.

Proof. Assertion (i) follows immediately from Claim 4.4.F in the proof of The-
orem 4.4. Assertion (ii) follows immediately from [MT], Proposition 1.4. As-
sertion (iii) follows immediately, in light of the second line of the final display
of Remark 5.1.3, from Remark 5.1.2. Next, since, in the notation of Definition
5.1, (i), IT* arises as the inverse image in II of some normal open subgroup of
some IIgx, assertion (iv) follows immediately from a similar argument to the
argument applied in the proof of [Tsjm|, Lemma 1.2.

Next, we verify assertion (v). First, we note that since II, hence also II*,

is slim [cf. (ii)], the restriction of the homomorphism II* %M Aut(IT*)
to II* is injective. Note also that since the natural surjection II — Ilx is
compatible with the respective outer actions of M, and M C GT C Out(Ilx),
the natural homomorphism M — Out(II) is injective. Since II is slim, it follows

immediately from condition (b) of assertion (iv) that the natural homomorphism
out

M — Out(IT*) is injective. Thus, we conclude that the homomorphism IT*
M — Aut(IT*) is injective. This completes the proof of assertion (v).

Finally, we verify assertion (vi). Let ¢ : II* — II* be a surjective homomor-
phism of profinite groups that induces a bijection ¢ : Cusp(II*) = Cusp(II*).
Then, for each finite subset E* C Cusp(II*), the surjective homomorphism ¢
induces a surjective homomorphism ¢g- : II. — H;C‘,Sp (B*) of profinite groups.
On the other hand, since the cardinality of E* and the cardinality of ¢°"P(E*)
are equal, there exists an isomorphism Hzmp( £ 5 103 of profinite groups.
Then since II%. is topologically finitely generated [hence satisfies the “Hopfian
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property”], the surjective homomorphism ¢ g« is an isomorphism. Thus, by al-
lowing E* C Cusp(II*) to vary, we conclude that ¢ is an isomorphism. This
completes the proof of assertion (vi), hence of Proposition 5.2. O

Definition 5.3. In the following, we consider the analogues of [T'sjm], Definition
1.5, (i), (ii); [Tsjm], Corollary 1.6, (ii), obtained by replacing “IIx” by IIx,__.
Let J be a closed subgroup of GT C Out(Ilx).

(i)

(iii)

Fix an arithmetic Belyi diagram B>

out out

Iy x M — IIx x M

l

out

HX x M
[cf. [Tsjm], Definition 1.4]. Write

Do (B, M, J)

for the set consisting of the images via the natural composite IIx, -outer
t t t
homomorphism Il 0; M — 1lx O; M — IlIx O; J = Ilx,. x J of the

out
normalizers in II;; x M of the cuspidal inertia subgroups of Iy that are
not associated to 0 and oo;

Dooo (B>, J)

for the quotient set (uMgJ Dooo (B*, M, J))/ ~, where M ranges over all
sufficiently small normal open subgroups of J, and we write Do (B™, M, J)
> Guyr ~ Gyt € Dooo(B*, MT,J) if Gy N Gyt is open in both Gy
and Gpsi. Observe that Ilx,  acts naturally on Do (B, M,J) and
Do (B*, J).

Write
Dooo (J)

for the quotient set (|_|[B>< DOOO(IB”,J))/ ~, where B* ranges over all
arithmetic Belyi diagrams, and we write Do ("B, J) 3 Gigx ~ Gigx €
Doso (FB*, J) if G pr+ NGyt is open in both G+ and G ¢ for some repre-
sentative G+ (respectively, Gr:) of Gigx (respectively, Gigx ). Observe
that Ix,_  acts naturally on Dgeo(J).

Write

DOoo(‘])
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for the quotient set Do (J) /T, -

Remark 5.3.1. In the following, we consider certain slightly generalized ana-
logues of [Tsjm], Corollary 1.6, (ii), (iii), obtained by replacing “IIx” by Ix,_ .
Let J be a closed subgroup of GT C Out(Ilx). Then it follows immediately
from a similar argument [cf. also Remarks 3.3.2, 3.3.3] to the proof of [Tsjm],
Corollary 1.6, together with the various definitions involved, that:

e Dyoo(J) admits a natural action by Cgr(J), hence, in particular, by J.

e Let J; and Jo be closed subgroups of GT. If J; C J; C GT, then the
inclusion J; C Js induces, by considering the intersection of subgroups of
IIx,., > Jo with IIx,  » Ji, a natural surjection

DoOo(JQ) - DOoo(Jl)

that is equivariant with respect to the natural actions of J; (C J3) on the
domain and codomain.

Lemma 5.4 (Kummer classes of group-theoretic constant functions).
We maintain the notation of Definitions 4.1, 5.3. Then the following hold:

(i) There exists a natural injection

et : Doso(BGT) = lim  H'(M,Ix,,, ),
MCBGT

where M ranges over the normal open subgroups of BGT.

(i) There exists a natural surjection
—X
Yper : Qper = Doso (BGT).

(#ii) The above maps tpaT and Ypar are compatible with the respective natural
actions of Car(BGT) [c¢f. Theorem 4.4, Remark 5.5.1].

(iv) The composite

war o Uper i Qpar —  lim  H' (M, Ix,,.)
MCBGT

is a group homomorphism [cf. Theorem 4.4).

Proof. First, we verify assertion (i). Let I; be a cuspidal inertia subgroup of
IIx associated to the cusp “1”. Then the image of the normalizer

out
out T(Il) Cllx x BGT

HX x BG
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t
via the natural surjection IIx O; BGT — Ilx, . x BGT determines a section s;
[cf. [CmbGC], Proposition 1.2, (ii)] of the second to last arrow of the natural
exact sequence

1 — x,., — Ix,.. x BGT — BGT — 1.

On the other hand, note that an element z € Dy (B*, M,BGT), where B*
denotes an arithmetic Belyi diagram as in Definition 5.3, (i) [i.e., where we take
“J" to be BGT], determines a section s, [cf. [CmbGC], Proposition 1.2, (ii)]
of the restriction to M of the second to last arrow of the above exact sequence.
Thus, by forming the difference , between s, and the restriction to M of s,
one verifies immediately that the assignment s, +— k, determines, by allowing
B* € Ipgr [hence also “M”] to vary, a natural map

tBaT : Doso(BGT) —  lim  H'(M,Ix,_),
MCBGT

where M ranges over the normal open subgroups of BGT. Finally, the injectivity
of tpar follows immediately from the definitions of Dgoo(—) and H*(—, —). This
completes the proof of assertion (i). Assertion (ii) follows immediately from the
definitions of @]_:GT and Dooo(BGT). Assertion (iii) follows immediately from
the definitions of the natural actions of Com(BGT) [cf., especially, the proof of
Claim 4.4.G in the proof of Theorem 4.4]. Assertion (iv) follows immediately
from the construction of the multiplication operation on the field Qg [i-e., the
construction of Kpgr in the proof of Theorem 4.4] by means of the well-known
natural group structure on IE%\{O, oo}, ie., “(Gm)@”. This completes the proof
of Lemma 5.4. O

In the remainder of the present paper, we shall identify Dyo,(BGT) with

Im(tggr) via the natural injection tpgr.

Proposition 5.5 (Synchronizations of cuspidal inertia subgroups). We
maintain the notation of Definition 5.1. Then the following hold:

(i) For each cuspidal inertia subgroup I, of II associated to x € Cusp(Il), the
natural scheme-theoretic isomorphism

I, 5y,

may be reconstructed, in a purely combinatorial/group-theoretic way, from
the collection of data

(IL; Cusp(II); {0, 00} € Cusp(II))
consisting of

e a profinite group II;

98



e a set Cusp(Il) of the conjugacy classes of subgroups of I1;

o a subset {0,00} C Cusp(Il) of cardinality 2 [equipped with labels 07,
“c0”] of the set Cusp(II).

(i) Let II* C II be an open subgroup; x € Cusp(Il*); I} a cuspidal inertia
subgroup of II* associated to x. Then one may construct a natural iso-
morphism

I 5y,

as follows: Write I, def Nu(I}). Note that I, = Nu(I;) = Cu(ly) =
Cnu(I}) is the unique cuspidal inertia subgroup of I containing I} [cf.
Proposition 5.2, (i); [CmbGC], Proposition 1.2, (ii)], and the subgroup
Iy C I, is of finite index m. Then since cuspidal inertia subgroups are

abstractly isomorphic to Z [cf. [CmbGC], Remark 1.1.8], division by m
determines an isomorphism I* = I,. Thus, by composing with the iso-
morphism of (i), we obtain a natural isomorphism I} = Ilx,__ .

Proof. First, we verify assertion (i). Let Iy be a cuspidal inertia subgroup of II
associated to the cusp “0 € Cusp(II)”. Write

I — H{O,;c}

for the quotient profinite group of II obtained by forming the quotient of II
by the normal closed subgroup topologically generated by the cuspidal inertia
subgroups associated to Cusp(Il) \ {0,7}. Then the surjection Il — Il;q )
induces isomorphisms

Qo - I() :> H{OJ}, (673 Iz :> H{O,w}~

Write « : I, = Iy for the composite of ao_l oo, with the inversion map Iy = Io.
Thus, o and the natural surjection IT — ITx, _ determine an isomorphsm I, —
IIx,... The desired functoriality follows immediately from the construction.
This completes the proof of assertion (i).

Assertion (ii) follows immediately from the various definitions involved. This
completes the proof of Proposition 5.5. O

Definition 5.6. In the notation of Definition 5.1, let II* C II be an open
subgroup. Fix

e a normal open subgroup M C BGT,
e an outer action of M on IT*, and
L . out out
e an open injection fpr : II* x M — II x BGT

such that
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(a)

(b)

the outer action of M on IT* preserves the set of cuspidal inertia subgroups
of IT*;

the outer action of M on IT* extends uniquely [cf. the slimness of I
to a IT*-outer action on II that is compatible with the outer action of

out ut
BGT (2 M) on II; the injection II* x M < II % BGT is the injection
determined by the inclusions II* C II and M C BGT, together with the
IT*-outer actions of M on II* and II

[cf. Proposition 5.2, (iv)]. Write

I(IT*, T0)

for the set of open injections fry« : II* < II satisfying the following properties:

(1)

(2)

For each cuspidal inertia subgroup I* of IT*, the commensurator Crr( fr= (I*))
of fr+(I*) in II is a cuspidal inertia subgroup of II [which implies, by
Proposition 5.5, (ii), that Cr(fu-(I*)) = Nu(fu-(I*))].

For each cuspidal inertia subgroup I of II, the inverse image fﬁ} (I) C1I*
is a cuspidal inertia subgroup of IT*.

Let I* be a cuspidal inertia subgroup of IT*; I a cuspidal inertia subgroup
of II such that I* = f7.' (I). Then the composite

HXOoc &I* ;)I:)HXOQQ

— where the first and final arrows are the isomorphisms of Proposition 5.5,
(i), (ii) — coincides with the homomorphism determined by multiplication
by some positive integer.

For any sufficiently small normal open subgroup N* C M of BGT, there
exists a(n) [necessarily unique — cf. Remark 5.6.1 below] open injection
out out
IT" x N*<—1II x N*

that is compatible with the open injections between respective subgroups
S+ : II* < II and the surjections to N* (C BGT).

t t
Remark 5.6.1. Note that any open injection I1*% N* < TI % N* as in Definition

out out
5.6, (4), is unique. Indeed, let f : II* x N* < II x N* be an open injection as
in Definition 5.6, (4); II** C II an open subgroup such that II** C fi- (II*), and
ut
I C 1% N* is a normal closed subgroup. Write Autp«(IT) C Aut(II) for the

subgroup of automorphisms that preserve the normal open subgroup IT** C II.
Then we have a commutative diagram

out f out
I x N* —— 1II x N*

l !

Allt(H**) — Aut]‘[** (H),
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where the vertical arrows denote the injections determined by the respective

actions by conjugation; the lower horizontal arrow denotes the natural injection
out

[cf. Proposition 5.2, (ii)]. Thus, we conclude that the open injection f : IT* %

out
N* — II x N* is uniquely determined by the open injection fr« and the
respective outer actions of N* on II* and II, hence that any open injection as
in Definition 5.6, (4), is unique.

Remark 5.6.2. In the notation of Definition 5.6, let II** C II be an open sub-
group contained in II*. Then the inclusion II** C IT* determines a natural map
I(IT*, II) — I(I1**,1II) [cf. Propositions 5.2, (iv); 5.5, (ii)].

Proposition 5.7 (Kummer classes of group-theoretic nonconstant func-
tions). In the notation of Definition 5.6, let fri« € I(IT*,II). Then fr- natu-
rally determines an element of

out
lim  HY(IT* % N* Tx,.),

where N* ranges over the normal open subgroups of BGT. In particular, we
obtain a natural map

ut
pre s I(I0,T0) = L HY(I 50N Iy, ).
N*CBGT

t t
Proof. Let IT* % N* <5 T N* be an open injection as in Definition 5.6, (4).
Write
out out
Sppe (I @ N* =11 x N* = IIx, X N*
. . L 3 out out .
for the composite of this open injection II* x N* — II x N* with the natural

t
Iy, -outer surjection II O; N* — IlIx,.. x N*. Let I; be a cuspidal inertia
subgroup of ITx associated to the cusp “1”. Then I; determines a section s1|y+
of the surjection IIx,  »x N* — N* [cf. the proof of Lemma 54, (i)]. In

out
particular, by composing s1|n+ with the natural surjection ITI* x N* — N* we
obtain a homomorphism

out
81 owe  :II* X N* = 1ly, 3 N*.
II* x N*

Thus, by forming the difference between sy . and 51|H out o We obtain an
<5 A

out
element € H(IT* x N*,Ilx,_), hence an element

out
fi-€ 1l HY(IT* x N*Tly,.).
N*£GT ’
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Finally, it follows immediately from the various definitions involved that f{j.
is independent of the choice of I [within its IIx-conjugacy class]. This completes
the proof of Proposition 5.7. O

Definition 5.8. We maintain the notation of Definition 5.6. Let fr« € I(IT*,II);
x € Cusp(IT*); I, a cuspidal inertia subgroup of IT* associated to x. Then we
define the value

fu-(z) € Qpgr U {oo}

of fri- at = to be the image of the element € Cusp(II) determined by the cusp-
idal inertia subgroup Ni(fr+(I;)) C II via the natural Cor(BGT)-equivariant
bijection Cusp(Il) = Qpgr U {oo} [cf. Definition 5.1, (ii)]. It follows immedi-
ately from the various definitions involved that fi-(2) € Qgar U {co} does not
depend on the choice of I, within its II*-conjugacy class.

Definition 5.9. We maintain the notation of Definition 5.8.

(i) Write B
FH* : I(H*v H) — Fn(Cusp(H*), QBGT U {OO})

(respectively,
Br- : Qg — Fn(Cusp(IT*), Qper U {oc}))

for the natural map determined by considering the value (respectively, the
constant value) at each of the elements € Cusp(II*). Then we shall write

Lo ¥ Im Fy. U Im Bp« C Fn(Cusp(IT*), Qgar U {c})).

(ii) For each finite subset S C Cusp(II*), we shall write
IIg

for the quotient of IT* by the normal closed subgroup topologically gener-
ated by the cuspidal inertia subgroups associated to Cusp(IT*)\'S. Suppose
that

N C BGT induces the identity automorphism on S

[cf. Definition 5.1, (ii)]. Then we shall write

def out def

out
Iy S I % N, Hi,n =I5 x N.

Write
Is (117, 1)
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(iii)

for the inverse image of
Fa(Cusp(IT*) \ S, Qpcr) (S Fa(Cusp(I) \ S, Tper U {o0}))
by the composite of Fyj+ with the restriction map
Fn(Cusp(IT*), Qpar U {oo}) — Fn(Cusp(I*) \ S, Qper U {o0});

FH*,S : Is(H*,H) — Fn(Cubp(H*) \Sa @EGT)

for the natural map induced by Fir«;

ke s Ls(IT*,10) — lim  H'(IT% v, Ty, )
N*CN

— where N* ranges over the normal open subgroups of BGT contained
in N — for the restriction of ki« to Is(IT*, II) [cf. Proposition 5.7]. Here,
we note that it follows immediately from the various definitions involved
[cf. the proof of Proposition 5.7] that s~ s factors as the composite of a
natural map

kg + s (IT, ) — Nh_IéqN HY (I N, Tx, )

with the injection given by the inflation map

h_I>n Hl(ngN*7HX0m)‘_> h_r>n HI(H;NMHXOOO)'
N*CN N*CN

In the notation of (ii), let € Cusp(II*) \ S; N, a normal open subgroup
of BGT contained in N that stabilizes z; I, C II* a cuspidal inertia
subgroup associated to #. Then the image of Nii; (/) via the natural
surjection ISy, — II5, .  determines a section N, < IG5,y of the
natural surjection 11§, — N [cf. the proof of Lemma 5.4, (i)]. Thus,
in particular, by allowing “N,” to vary, we obtain a natural map

DHfg: @ HI(HENN*7HXOOO) — Fn(Cusp(H*)\S, Hl(N’HXOx))7
N*CN
where HY(N,TIx,..) = lim H'(N*,Ix,.).
N*CN

Remark 5.9.1. In the remainder of the present paper, we shall use the injection
given by the inflation map in the final display of Definition 5.9, (ii) to regard
the group lim H*(IT§, ., Ilx,..) as a subgroup of lim H*(IT} ., ILx,..)-

N*CN N*CN
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Remark 5.9.2. We maintain the notation of Definition 5.9. Note that, for each
element fr- € I(II*,II), the set of II*-conjugacy classes of cuspidal inertia
subgroups I* of II* such that fi«(I*) is contained in a fized II-conjugacy class
of a cuspidal inertia subgroup of II is finite. Indeed, this follows immediately
from the fact that fi- is an open injection that induces a bijection between the
cuspidal inertia subgroups of II* and II — cf. Definition 5.6, (1), (2). Thus, it
follows immediately from the various definitions involved that

am= |J s,
SCCusp(IT*)

where S ranges over the finite subsets of Cusp(IT*).

Definition 5.10. We maintain the notation of Definition 5.9, (ii). Suppose
that S # (), and that, for each normal open subgroup N* of BGT contained in
N

)

H'(ITj, 11x,,. )" = {0}
Then we shall construct a subgroup

Kﬁ*s - NI%N Hl(HZ'xN*;HXOw)

as follows: First, we observe that the natural exact sequence
1 —IIg — gy — N — 1

determines an exact sequence

*

0— Hl(N*7HXOoc) — HI(HZ'XN*’HXODC) — Hl(HZ’?HX()oo)N

Thus, by allowing the normal open subgroup N* to vary, we obtain an exact
sequence

0— lim H'(N*Ix,.) — lim H' Ty, My, ) — lim AT Ty, )
N*CN N*CN N*CN

Here, we observe that

*

Hl(HZWHXOm)N* = Hl((ng)ab’ HXOoc)N .

Next, for each z € S, let I, be a cuspidal inertia subgroup of II* associated to
. Then we have an exact sequence of N*-modules

P . — [@5)™ — (I5)* — 0,
z€S

which determines an exact sequence of modules

0 — H'((TT5)*, Tx, )N — H'((IT5)*, T, )Y — @ H'(L,Tx,..).
z€eS
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Thus, by applying our assumption that H™*((II;)*", Ix,. )N = {0}, we obtain
a natural injection

i HY(I05)™ Ix, )V = @@ H'(L1lx,.).
z€S

Write
1, € H(I,,x,.) = Hom(I,,x,_)

for the isomorphism I, = Ilx,_ of Proposition 5.5, (ii);
Zy C H' (I, x,..)
for the subgroup generated by 1,;
Qg N* = Iy

for the section of the natural surjection IIj . — N* determined by the image
of N . (I3) via the natural surjection IIg, n. — Il y. [cf. the proof of

Lemma 5.4, (i)]. Next, we fix zg € S. Write
D, € HY(N*, (II})™)
for the element obtained by forming the difference between ¢, and i,;
Ps € P 7. (€ P H'(I.,1x,..))
zes €S

for the subgroup consisting of (n;)zes € @,cg Zo such that

Z ng = 0, Z ng Dy =0 (6 HI(N*v(Ha)ab))

z€eS €S

[where we note that one verifies immediately that these conditions on (n).cs
are independent of the choice of xy € SJ;

Ps

for the image of (ior)~!(Pg) via the natural homomorphism H*(I1%,, v, x,. )

— lim H'(I%, -, Hx,. ), where M* ranges over the normal open subgroups
M*CN

of BGT contained in N. Then we define

def

Kfi. < Ps () Dr: (Fn(Cusp(IT)\S, Dooe(BGT))) € lim  H'(ILg, s+, Mixe.)

M*CN

[cf. Lemma 5.4, (i); Definition 5.9, (iii)] and

def . 1
Kf. = | K, € lim H' (T, Tx,. ),
T M*CN

where T ranges over the finite subsets of Cusp(II*).
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Remark 5.10.1. In the notation of Definition 5.10, suppose that BGT = Gg.
Then the above construction of K7j. coincides with the reconstruction of the
Kummer classes of rational functions associated to II* [cf. [AbsToplIII], Propo-
sition 1.8].

Lemma 5.11 (Kummer classes of abstract functions). We maintain the

notation of Definitions 5.9, 5.10. Suppose that the restriction D, |K?1* of D,
S

to Kﬁg [cf. Definition 5.9, (iii); Definition 5.10] is injective for arbitrary choices

of “S” and “N” as in Definition 5.9, (ii). Then there exists a unique map

Im(FH*,S) — Im(/ﬁng)

[cf. Definition 5.9, (ii)] whose composite with the natural surjection Ig(I1*,II) —
Im(Fry+ s) determined by Fri- s coincides with the natural surjection Is(IT*, II) —
Im(nng) determined by Ky, and whose image lies in K"g. Moreover, by al-
lowing S to vary, one obtains a natural map

Ly \ {0} = lim H(IT ., x,., ),
N*CN

whose image lies in K{j..

Proof. First, we observe that it follows from the various definitions involved
that there exists a commutative diagram

Frx s

IS(H*7 H) FH(CUSP(H*) \ Sa @];GT)

| !

i H' (I, xe x,.) —— Fn(Cusp(I)\ S, lim H'(N*,TIx,.)),
N*CN Drrg N*CN

where the right-hand vertical arrow is the natural map induced by the homo-
morphism
—x ) .
tBaT © ¥BaT : Qpar —  lim HY(N* 1y, )
N*CN

[cf. Lemma 5.4, (iv)].
Next, we observe that sy factors as the composite of a map

Is(I", 1) — K.

with the inclusion Kyj. C  lim H'(II%,, v, Ix,..) [cf. Definition 5.10]. In-
N*CN

deed, since (IIp)*® = {0} [hence, in particular, H*(N*, (II3)2P) = {0}], it

follows immediately from the various definitions involved that Kl o INAPS

id € I{p,00y (ILII) [cf. Proposition 5.5, (ii)] to an element of K, ., Thus,

since any element fr« € Ig(II*,1I) may be thought of as the pull-back “via

}
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fu=" of id € Ijg,0y (I, II), by applying the functoriality of the constructions
involved [cf. also Definition 5.6, (3)], we obtain the desired conclusion.
Next, we apply our assumption that D, Kx, is injective. Thus, since the

above diagram is commutative, there exists a unique map Im(Fir- s) — Im(rny)
compatible with the maps Fii- s and sy in the desired sense. In particular,
since all of the constructions involved are functorially compatible with enlarge-
ment of the finite subset S C Cusp(Il*), by allowing S C Cusp(II*) to vary, we
obtain a natural map

Im(Fpe) = lm H (I ye )
N*CN

[cf. Remarks 5.9.1, 5.9.2]. On the other hand, by considering the composite of
tBaT © YpaT with the restriction map

hﬂ Hl(N*)HXOOO)c—) hﬂ Hl(H;N*7HXOOO)’

we obtain a natural map

Im<BH*)\{0}_> hgﬂ Hl(H;N*7HX0°c)‘
N*CN

Thus, since L+ = Im Fyi« UIm By« [where we note that Im Fp- N Im B~ = )
— cf. Remark 5.9.2], we obtain the desired conclusion. This completes the
proof of Lemma 5.11. O

Definition 5.12. Let BGT C GT be a closed subgroup satisfying the BC-
property [cf. Definition 3.3, (v)]. We apply the notation of Definitions 4.1,
5.1, 5.6, 5.8, 5.9. Write ¢ € Ly for the element determined by id € I(II,II)
[cf. Proposition 5.5, (ii)]. Then, if BGT satisfies the following conditions (i),
(ii), (iii) (respectively, (i), (ii), (iii), (iv)), then we shall say that BGT satisfies
the QAA-property [i.e., “quasi-algebraically ample property”] (respectively, AA-
property [i.e., “algebraically ample property”]):

(i) Write (Qpgr)daiv € Qper for the subfield generated over Q by Ker(tpgr o

Ypar) [cf. Lemma 5.4, (iv)]. Then (Qgar)daiv € Qpar is an infinite
extension of fields.

(ii) For
e each normal open subgroup IIf C II,

e each nonempty finite subset S C Cusp(II'), and
e any sufficiently small normal open subgroup N of BGT,

it holds that H'(IL}, Iy, )" = {0} [cf. Definition 5.10], and the restric-
tion Dyt |K~T of Dyt to Kﬁ* [cf. Definition 5.9, (iii); Definition 5.10] is
S HS S S

injective [cf. Lemma 5.11].
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(iii) Assume that condition (ii) holds. There exists a family of subsets

{Kut € Lyt b

— where II' ranges over the normal open subgroups of II — satisfying the
following conditions:

(a) Let IT* C II' be normal open subgroups of II. Then the natural injec-
tion L+ < Lz [determined by the natural surjection Cusp(IT#) —»
Cusp(IIT) — cf. Proposition 5.5, (ii); Remarks 5.6.2, 5.9.2] induces
an injection

KHT — K]‘[i-

In the remainder of the present paper, we regard K+ as a subset of
K via this injection.

(b) For each normal open subgroup II' C II, and each finite subset R C
Cusp(ITT), the restriction to K+ of the natural restriction map

Fn(Cusp(Il'), Qpgr U {oo}) = Fn(Cusp(IT') \ R, Qpgr U {o0})
is injective.
(c) For each normal open subgroup I C II, K+ admits a [necessarily
unique — cf. (b)] field structure compatible with the ring structure
of Fn(Cusp(II), Qpgr) in the following sense: Let f,g € Kui, T C
Cusp(IIT) a finite subset such that f(x),g(r) € Qpgr for any = €
Cusp(IT")\ T'. [For given elements f, g € Ky, the existence of such a

finite set T follows immediately from Remark 5.9.2.] Then the images
of f+ g and fg via the restriction map

FH(CUSP(HT)a Qpar U{oo}) - FH(CUSP(HT) \T, Qgar U {oo})
coincide, respectively, with the functions
Cusp(IIN\ T 3 & — f(z) + g(x) € Tper,

Cusp(IN)\ T 3 z — f(x)g(z) € Qpgr-
Moreover, relative to these unique field structures, Ky C Kt is a

finite Galois extension.

(d) Qpgr =Im By € Kpi, and ¢ € K. Moreover, if we write Qpgr(t) C
Ky for the subfield generated by Qpgr and t, then K1 = Qpgr(t).

(e) For each normal open subgroup IIf C II, the natural action of II on
Ly [cf. Proposition 5.2, (iv)] preserves Kyi. Moreover, the natural

homomorphism
/11" — Gal(Kyyi /K1)

is an isomorphism.
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(f) For each normal open subgroup IIT C II, the image of K[ (C Lyt)
via the natural map

Lo\ 0} i (€t )
NiCBGT

[cf. condition (ii); Definition 5.10; Lemma 5.11] is surjective.

(iv) Assume that conditions (ii), (iii) hold. In the notation of condition (iii),
write Qpgrlt, 1, 725) € Ln for the Qpgp-subalgebra generated by ¢, 1

1
%; X@BGT def Spec Qparlt, %, t%] [Thus, it follows immediately

from Lemma 5.13, (ii), below that the natural outer surjection II — IIx
determines a natural outer isomorphism II Xgner 51 x.] Then the natu-

and

ral outer isomorphism HX@BGT 5 Iy is induced by a(n) [uniquely deter-
mined, up to composition with an element of &5 C Out(Ilx,) that fixes
the element 5 € {1,2,3,4,5} — cf. Corollary 3.1, (ii); Remark 4.5.1;
[CbTpII], Theorem A, (i); the first display of [HMM], Corollary C] outer
isomorphism

HX2 :> H(X@BGT )2

via the natural outer surjections IIx, — IIx and H(X@ o)z HX@BGT
BGT

determined by the respective first projections [cf. Remark 5.12.2 below].

Remark 5.12.1. In the notation of Remark 4.4.1, it follows immediately from
Remark 4.4.1, together with the various definitions involved and the fact that F'
is Kummer-faithful [cf. [AbsToplII], Definition 1.5; [AbsTopIII], Remark 1.5.4,
()], that G satisfies the AA-property [cf. the proof of Theorem 6.8, (i), below,
for more details].

Remark 5.12.2. In condition (iv), we regard IIyx, as an abstract topological
group and ITx as a quotient of Ilx,, i.e., as in Corollary 4.5 [cf. also Remark
45.1].

Lemma 5.13 (Geometric interpretation of the set of cuspidal inertia
subgroups of IT). Suppose that BGT satisfies conditions (ii), (iii) of Definition
5.12. Let

{Knt € Lyt brrcn
be a family of subsets as in Definition 5.12, (iii). Write

Kn < lim Ky,
e

where IIT ranges over the normal open subgroups of II. Then the following hold:
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(i) Let TIT C 11 be a normal open subgroup. Write Yyt — P}@ for the finite
BGT

ramified Galois covering of smooth, proper, connected curves over Qpar
corresponding to the extension of function fields Qpar(t) = Kn C K

[¢f. Definition 5.12, (iii), (a), (c), (d), (e)]; Yut(Qpar) for the set of
Qpgr-valued points of Yri. Then the natural map

evyrt : Cusp(ITT) — Yit (Qpar)

induced by evaluating elements of Ky at elements of Cusp(If) is bijec-
tive.

(ii) Ki is an algebraic closure of Qpar(t) = K. Moreover, the natural
action of Il on K11 determines an isomorphism

~ def ~ =

I =Gy, ..ct) = Gal(Kn/Qpgr(t))
that induces a bijection between the respective sets of cuspidal inertia
subgroups of I and G@BGT(t)'

Proof. Let Kﬁlg be an algebraic closure of K. First, we verify assertion (i).
Note that it follows immediately from the various definitions involved [cf. es-
pecially, Definition 5.12, (iii), (d)] that evy is bijective. Note, moreover, that
the natural map evyys : Cusp(II') — Yyt (Qpgr) is compatible with the isomor-
phism IT/TIT 5 Gal(Kyps /Kn) [cf. Definition 5.12, (iii), (e)] and the respective
natural actions of II/IIT and Gal(Kyys/K). Thus, it follows immediately from
the transitivity of the natural action of Gal(Kp+/Km) on the fibers of the finite
ramified Galois covering Y+ — P}@B that evp: is surjective.

GT
Write
Cusp(I) = Jim  Cusp(I¥), ¥ (@pgr) = lim Vi @par),
I+ CII I+ CII

where IT* ranges over the normal open subgroups of II. Observe that the natural
maps {evy: }yy:cp induce a natural map ¢v : Cusp(Il) — Y (Qpgr) that, for each
normal open subgroup II* of II, fits into a commutative diagram

Cusp(Il) —%— ¥ (@per)

! |

Cusp(ITF) —5 ¥y (Qpar)-

One verifies easily that this commutative diagram is compatible with the natural
isomorphism I = Gal(K1/Qpgr(t)) [cf. Definition 5.12, (iii), (e)] and the
respective natural actions of IT and Gal(Kr/Qpgr(t)).

Suppose that evy(c1) = evypr(cz), where ¢1,co € Cusp(If). Let I; C IIT,
I, CIIt, J C Gal(f(H/Km) be cuspidal inertia subgroups associated to ci,
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ca, evypr(cr), respectively. Thus, since év is compatible with the isomorphism
It 5 Gal(Kp/Kp:) and the respective natural actions, one verifies immediately
that by choosing suitable conjugates of I, I, and .J, we may assume without
loss of generality that the natural isomorphism IIT = Gal(Ky/Kp+) induces
inclusions ¢1 : Iy < J, 12 : I = J. Next, observe that any cuspidal inertia
subgroup of Gal(K/Kp+) is a quotient of some cuspidal inertia subgroup of
Gal(K¥®/Kyp+) via the natural surjection Gal(K3%/Kyt) — Gal(Kn/Kpt),
and that every cuspidal inertia subgroup of Gal(Kﬁlg /K+t) is isomorphic to Z.
Thus, we conclude that J is abelian, and hence, by applying the inclusions ¢1,
L, that Iy C Ny (I3), Io € Npi(I1), which [ef. Proposition 5.5, (ii)] implies
that I; = I, as desired. This completes the proof of the injectivity of evy+ and
hence of assertion (i).

Next, we verify assertion (ii). Recall from Proposition 5.2, (i), that there
exists an isomorphism ¢ : 1T = Gral(Kfi‘[lg /Qpar(t)) of profinite groups that in-
duces a bijection between the respective sets of cuspidal inertia subgroups. In
particular, since the natural isomorphism II = Gal(K1/Qpar(t)) [cf. Defini-
tion 5.12, (iii), (e)] induces a bijection between the respective sets of cuspidal
inertia subgroups of II and Gal(Ky/Qpgr(t)) [cf. assertion (i)], the composite
morphism

Gal(K{® /Qpar(t)) - Gal(Kn/Qpar(t)) ¢ 11 % Gal(K{®/Qpar(t))

is a surjection that induces a bijection between the respective sets of conjugacy

classes of cuspidal inertia subgroups of the domain and codomain [i.e., both of
which are equal to Gal(K%®/Qper(t))]. Thus, we conclude from Proposition
5.2, (vi), that this composite morphism is an isomorphism, hence that Kﬁlg =

Kp1. This completes the proof of assertion (ii), hence of Lemma 5.13. O

Theorem 5.14 (Uniqueness of function fields). Suppose that BGT satisfies
the QAA-property [cf. Definition 5.12]. Then any family

{Knt € Lyt brrcn
of subsets as in Definition 5.12, (iii), is unique.

Proof. Let {Ky+ C Lyt brircr, {* Kt € Lt rircn be families of subsets as in
Definition 5.12, (iii). Recall that, if IT¥ C II' are normal open subgroups of II,
then K+ € Kppr and *Kppr € *Kpp: [cf. Definition 5.12, (iii), (a)]. Write

=~ def . o> def .. °
Kn = lm Ky, °“Kp = lim *Kpys,
micm i cm

where It ranges over the normal open subgroups of II. Then since Ky and
* K11 are algebraic closures of Ky [cf. Lemma 5.13, (ii)], there exists an abstract
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field isomorphism £ : IN(H = 'Z(H over Ky, which determines an isomorphism
of profinite groups o : Gal(*Ky/Kn) — Gal(Kn/Km). Fix a normal open
subgroup It C II.

Write

o “Kpyt o Y Kn+) € Ku;

oY — PL (respectively, *Y — PL  °Y — PL

Qpar Qpar Qpar -
ramified Galois covering of smooth, proper, connected curves over Qpgr

corresponding to the extension of function fields Qpgr(t) = Kn € Kt
(respectively, Qpar(t) = K C *Kyt, Qpar(t) = K C °Kyyi) [cf. Defi-
nition 5.12, (i), (a), (¢), (), (e)]

. P}@ (Qsar), Y (@par), *Y (Qpar), °Y (Qpgr) for the respective sets of
B

GT

Qpgr-valued points of PL | Y, *Y, °Y.
Qpar

) for the finite

Observe that there exist natural bijections

Cusp(II) = ]%BGT(@BGT), CUSP(HT) = Y(@BGT)7 CUSP(HT) = 'Y(@BGT)

L]
evrr evrt evyt

[cf. Lemma 5.13, (i)] that fit into a commutative diagram

Gal(Ky/Kn) & 11 X Gal(*Kn/Kn) 5 Gal(Ky/Kn)
{ 4 { 4
Gal(Kpi /Kn) /11t 5 Gal(*Ky+/Kn) % Gal(°Kpi/Kn)

o ~ ~ ~
Y(Qgar) egf Cusp(1IT) '651 *Y (Qper) ? °Y (Qpar)
L T L 5
I%BGT (Qpar) e<v—n Cusp(II) E;; P}@BGT (Qar) = I%BGT (Qpar),

where the vertical arrows denote the natural surjections; the horizontal arrows
Gal(*Kyi/Ku) = Gal(°Kpi/Kn) and *Y (Qpgr) %) °Y(Qpgr) denote the

bijections induced, respectively, by « and .
Note that it follows immediately from the above commutative diagram that
the sets C IE% (Qggr) of branch points of the finite ramified Galois coverings
B

GT

Y — PL and °Y — PL coincide. Write T C Cusp(II) for the image of

Qpar Qpar
the set of branch points of the finite ramified Galois covering Y — IP’}@BGT via
the bijection evﬁl. Then, by replacing the normal open subgroup IIf C II by
the pull-back of a suitable characteristic open subgroup of Iy [cf. Definition
5.1, (ii)] via the natural surjection II — IIp, we may assume without loss of
generality that Ky+ = ° K, Y = °Y.

Write

o :Y(Qpgr) = °Y (Qpar) = Y (Qper)
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for the composite of the horizontal arrows in the third row of the above commu-
tative diagram. Recall that the images of K[1;,*KJj; (C Lyt) via the natural
map

LHJf \ {O} — hﬂ Hl(HLNhHX()oo)
NTCBGT

coincide with Ky; [cf. Definition 5.12, (iii), (f)]. In particular, for each f € KJ;,
there exist

¢5 € Fn(Y (Qpar), (Q@ar)iy) (€ Fn(Y (Q@par), Qar U{x})), g5 € Kpi;

such that f7 % foo = ¢; - g [cf. Definitions 5.9; 5.10; 5.12, (i)]. Note that it

follows immediately from the above commutative diagram that o lies over the

identity automorphism of IP’}@ (QpgT)- Thus, we conclude from Corollary 1.3
BGT

[cf. also Definition 5.12, (i)] that, relative to the notational conventions of loc.
cit., 0 € Gal(Ky+ /K1) and hence that Ky = ® K. This completes the proof
of Theorem 5.14. O

Theorem 5.15 (Injectivity of Cor(BGT) — Aut(Qpgr)). Suppose that
BGT satisfies the QAA-property [cf. Definitions 3.3, (v); 5.12]. Write

{Knut € Lyt }ntcn
for the unique family of subsets as in Definition 5.12, (iii) [cf. Theorem 5.14];
En¥ lim Ky,
mtC1n

where IIt ranges over the normal open subgroups of I1;

Qpar(t) = Gal(f{H/Kﬂ) (= Gal(f{H/@BGT(t)))

[¢f. Definition 5.12, (i), (d)];

p: Car(BGT) = Goper = Aut(Qpar)

for the homomorphism induced by the natural action of Car(BGT) on the field
Qgar [¢f. Theorem 4.4]. Then the following hold:

out ~
(i) II x Caor(BGT) acts naturally on the algebraically closed field Ky [cf.
Lemma 5.13, (ii)]. Moreover, this action induces a commutative diagram

Car(BGT) —2— Goper

l !

Out(ll) —=— Out(Gg,..(1))
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where the left-hand vertical arrow denotes the homomorphism induced by
the natural outer action of Car(BGT) on II; the right-hand vertical ar-
row denotes the natural outer representation; the lower horizontal arrow
denotes the isomorphism induced by the isomorphism II = G@BGT(U [cf.

Lemma 5.13, (ii)].

(i) The commutative diagram of (i) induces a commutative diagram

Car(BGT) —2— Gopor

| l

Out(ITx) - Out(HX@ ),

BGT

where the left-hand vertical arrow denotes the homomorphism induced by
the natural faithful outer action of Cor(BGT) C GT on Ilx; the right-
hand wvertical arrow denotes the natural outer representation; the lower
horizontal arrow denotes the isomorphism induced by the isomorphism
My & My [ef. Lemma 5.13, (ii)].

(iii) The homomorphism p is injective. In particular, the restriction p|pgr
of p to BGT is injective.

(iv) Suppose, moreover, that BGT satisfies the AA-property. Write GTpar C
Out(H(X@BGT)Q) for the Grothendieck-Teichmiller group associated [cf.

Corollary 4.5] to H(X@ )2- Then the commutative diagram of (i) in-
BGT
duces a commutative diagram

CGT (BGT) L) GQBGT

l l

GT % GTBGT7

where the vertical arrows denote the matural injections; the lower hori-
zontal arrow denotes the isomorphism induced by an outer isomorphism

My, = Il op)2 @8 in Definition 5.12, (iv).
BGT

Proof. First, we verify assertion (i). Note that it follows immediately from the

t
various definitions involved that II Cer(BGT) acts naturally on the family
of sets {Lyy+ }rrrcm, where IIT ranges over the normal open subgroups of II [cf.
Definition 5.8]. Thus, we conclude from the uniqueness of the family of subsets

out
{Knt € Lpt}ntcn [cf. Theorem 5.14] that II x Cqr(BGT) acts naturally

on the algebraically closed field I?H. Moreover, it follows immediately from
the various definitions involved that this natural action induces the desired
commutative diagram. This completes the proof of assertion (i). Next, since
the natural surjection II — IIx is compatible with the respective outer actions
of Car(BGT) [cf. Definition 5.1, (i)], assertion (ii) follows immediately from
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assertion (i). Assertion (iii) follows immediately from assertion (ii). Assertion
(iv) follows immediately from the various definitions involved. This completes
the proof of Theorem 5.15. ]

Lemma 5.16 (Elementary property of profinite groups). Let G be a
profinite group, H C G a closed subgroup, g € G an element such that H C
H9:=¢g-H-¢g~'. Then H= HY.

Proof. By considering quotients of G by normal open subgroups, one reduces
immediately to the case where G is finite. Then the equality H = HY follows
immediately from the fact that H and HY have the same cardinality. This
completes the proof of Lemma 5.16. O

Theorem 5.17 (Combinatorial construction of Gg).

(i) Write Out!®!/(ITx) C Out(Ilx) for the closed subgroup of outer automor-
phisms that induce the identity automorphisms on the set of conjugacy
classes of cuspidal inertia subgroups of llx. Then the conjugacy class
of subgroups of Out‘cl(HX) determined by the absolute Galois group of
Q may be constructed from the abstract topological group M x, [cf. Corol-
lary 4.5, Remark 4.5.1], in a purely combinatorial/group-theoretic way, as
the set of maximal elements [relative to the relation of inclusion] in the
set of closed subgroups of Out!!(Ilx) that arise as Out!®!(I1x)-conjugates
of closed subgroups of GT that satisfy the QA A-property [cf. Definitions
3.3, (v); 5.12].

(i) The conjugacy class of subgroups of GT determined by the absolute
Galois group of Q may be constructed from the abstract topological group
IIx, [c¢f. Corollary 4.5, Remark 4.5.1], in a purely combinatorial/group-
theoretic way, as the set of maximal elements [relative to the relation
of inclusion] in the set of closed subgroups of GT that arise as closed
subgroups of GT that satisfy the AA-property [cf. Definitions 3.5, (v);
5.12].

Proof. Recall from Remark 5.12.1 that Gg = Gal(Q/Q) may be regarded as a
closed subgroup of GT that satisfies the A A-property, hence may itself be taken
to be “BGT”. Thus, it follows formally from Theorem 5.15, (ii) [cf. also Lemma
5.13, (ii)] (respectively, Theorem 5.15, (iv)), that any Out/®/(Ilx)-conjugate
(respectively, GT-conjugate) of a closed subgroup of GT that satisfies the QAA-
property (respectively, AA-property) is contained in — hence equal to, whenever
it is maximal with respect to the relation of inclusion among such conjugates of
closed subgroups — some Out!“!(I1x )-conjugate (respectively, GT-conjugate) of
Gg. In particular, the maximality of any Outlc‘(H x )-conjugate (respectively,
GT-conjugate) of Gg follows formally from Lemma 5.16. This completes the
proof of Theorem 5.17. O
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6

Application to semi-absolute anabelian geom-
etry over TKND-AVKF-fields

In this section, we introduce the notion of a TKND-AVKF-field [cf. Def-
inition 6.6, (iii)] and show that the absolute Galois group of a TKND-AVKF
subfield of Q satisfies the AA-property [cf. Theorem 6.8, (i)]. We then apply the
theory developed in the present paper to prove a semi-absolute version of the
Grothendieck Conjecture for higher dimensional configuration spaces [of dimen-
sion > 2] associated to hyperbolic curves of genus 0 over TKND-AVKF-fields
[cf. Theorem 6.10, (ii)].

Write Q2P (C Q) for the maximal abelian extension of Q.

Definition 6.1. Let p € Primes; X C Primes a nonempty subset.

(i)

(i)

(iii)

(iv)

Let M be an abelian group. Then we shall say that M is p*>-tor-finite if
the subgroup of p-power torsion elements of M is finite. We shall say that
M is X*°-tor-finite if, for each [ € X, M is [°°-tor-finite.

Let G be a profinite group. Then we shall say that G is p-subfree if there
exists a closed subgroup of G' isomorphic to Z,. We shall say that G is
Y.-subfree if, for each | € 3, G is [-subfree. We shall say that G is p-sparse
if the maximal pro-p quotient of every open subgroup of G is finite. We
shall say that G is 3-sparse if, for each [ € X, G is I-sparse.

Let K be a field. If K satisfies the following condition, then we shall say
that K is an AVKF-field [i.e., “abelian variety Kummer-faithful field”]:

Let A be an abelian variety over a finite extension L of K.
Write A(L)> for the group of divisible elements € A(L). Then
A(L)>® ={1}.

If K is an AVKF-field, then we shall also say that K is AVKF.

Let K be a field. If K satisfies the following condition, then we shall say
that K is p-AV-tor-indivisible (respectively, p>-AV-tor-finite):

Let A be an abelian variety over a finite extension L of K. Write
o A(L)P™ for the group of p-divisible elements € A(L);
o A(L)s for the group of torsion elements € A(L);
o A(L)pe for the group of p-power torsion elements € A(L).
Then A(L)P” C A(L)w (respectively, A(L)ye is finite).

We shall say that K is X-AV-tor-indivisible (respectively, X°°-AV-tor-
finite) if, for each [ € ¥, K is [*°-AV-tor-finite.

Let K be a field. Then we shall say that K is stably ¥-x p-indivisible (re-
spectively, stably s -finite) if, for each I € ¥, K is stably l-x u-indivisible
(respectively, stably pye-finite) [cf. [Tsjm], Definition 3.3, (v), (vii)].
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Remark 6.1.1. If a profinite group G is X-subfree (respectively, X-sparse), then
so is any open subgroup of G.

Remark 6.1.2. Let [ be one of the following properties:

AVKF,
3-AV-tor-indivisible,
3°-AV-tor-finite,
stably X-x p-indivisible,
stably pxos-finite.

Then one verifies immediately that if L is an extension field of a field K, then
the following implication holds:

Lisd = KisO.

Remark 6.1.3. In the notation of Definition 6.1, (iii), suppose further that K
is of characteristic 0. Then it follows immediately from [AbsTopllI], Definition
1.5, that the following implication concerning K holds:

( torally Kummer-faithful and AVKF > < Kummer-faithful.

Lemma 6.2 (Stably p-xpu-indivisible and p-AV-tor-indivisible fields).
Let p € Primes, K a field of characteristic # p. Then:

(i) Let L be a [not necessarily finite!] Galois extension of K such that
Gal(L/K) is p-sparse. Let O be one of the following properties:

stably p-xpu-indivisible,
stably ppe-finite,
p-AV-tor-indivisible,
p>°-AV-tor-finite.

Then if K is (J, then so is L.
(i) Let L be a [not necessarily finite!] Galois extension of K.

(1% ) Suppose that L is stably ppe-finite. Then if K is stably p-xpu-
indivisible, then so is L.

(ii'V) Suppose that L is p>-AV-tor-finite. Then if K is p-AV-tor-
indivisible, then so is L.

(iii) The following properties hold:
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(1ii* ) Suppose that K is stably p-x p-indivisible, stably jipiimeso-finite,
and of characteristic 0. Then K is torally Kummer-faithful. If,
moreover, K is AVKF, then K is Kummer-faithful [cf. Remark
6.1.3].

(iiiV ) Suppose that K is p-AV-tor-indivisible and Primes™-AV-tor-
finite. Then K is AVKEF.
(iv) The following properties hold:
(w*) If K is torally Kummer-faithful, then K is stably psgprimese-
finite.
(ivYV) If K is AVKF, then K is Primes™-AV-tor-finite.

(v) Suppose that K is a sub-p-adic field [cf. [LocAn], Definition 15.4, (i)].
Then K is

stably p-xu-indivisible,
stably pgprimes~-finite,
p-AV-tor-indivisible,
Primes™-AV-tor-finite.

Proof. First, we consider assertion (i). We begin by observing that any finite
extension field L' of L arises as a Galois extension of some finite extension field
KT of K such that Gal(LT/KT) is p-sparse. Next, we observe that the Galois
group Gal(M/K) of any [not necessarily finite!] Galois extension M of K that
arises by

e adjoining compatible systems of p-power roots of elements of K or by
e adjoining infinitely many p-power roots of unity,

admits an open subgroup which is a pro-p group. Assertion (i) in the case where
0 is taken to be one of the first two properties then follows immediately from the
above observations, together with our assumption that Gal(L/K) is p-sparse.
Assertion (i) in the case where O is taken to be one of the latter two properties
follows by a similar argument. This completes the proof of assertion (i).

Assertion (ii*) follows immediately from [Tsjm], Lemma D, (v). Next, we
verify assertion (ii1V). Let LT be a finite extension field of L; AT an abelian
variety over LT. To verify assertion (ii?"), it suffices to prove that AT(LT)P™ C
AN(LN)s. Let z € AT(LT)P™. By replacing K by a finite extension field of K,
we may assume without loss of generality that

o LT =1,
o AT = A xg L, where A is an abelian variety over K;
o r € A(K).

Thus, since K is p-AV-tor-indivisible, it suffices to verify the following assertion:

Claim 6.2.A: x € A(K)P™.
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Indeed, let n be a positive integer. Since L is p>-AV-tor-finite, A(L) e is finite.
Write p™ for the cardinality of A(L),~. Then since z € A(L)P", there exists

an element x,,,, € A(L) such that p"*" - z,,, 1, = . Write x, def P T -
Thus, since p" - x,, = z, it suffices to prove that x,, € A(K). Let 0 € Gal(L/K).
Observe that

m—+n

p ((Tman)” = Tmgn) =27 —2 =10,

hence, in particular, that (zm,4n)7 — Zmin € A(L)pe. Thus, we conclude that
l’z —Tn = Pm ’ ((xm+n)g - mm+n) =0,

hence that x,, € A(K). This completes the proof of Claim 6.2.A, hence of
assertion (ii4").

Assertions (iii*), (iii4V) follow immediately from the fact that, for any [ €
Primes, the divisible group Q;/Z; has no nontrivial finite quotient.

Next, we verify assertion (iv). Recall that, for any [ € PBrimes, the group of
[-torsion points of an abelian variety over an algebraically closed field is finite
[cf. e.g., [Mumf], p. 64]. Thus, assertion (iv) follows immediately from the fact
that, for any [ € Primes, every infinite subgroup of Q;/Z; is divisible.

Assertion (v) follows immediately from a similar argument to the argument
applied in [AbsTopIII], Remark 1.5.4, (i). This completes the proof of Lemma
6.2. U

Remark 6.2.1. The argument applied in the proof of Claim 6.2.A [in the proof
of Lemma 6.2, (ii*")] is similar to the argument applied in the proof of [Moon],
Proposition 7.

Proposition 6.3 (Examples of AVKF-fields). Let FF C Q be a number field.

(i) Let L be a [not necessarily finite!] Galois extension of F - Q* C Q such
that Gal(L/F - Q%) is Primes-sparse. Then L is
e stably Primes-x u-indivisible,
e Primes-AV-tor-indivisible,
o Primes™-AV-tor-finite.

In particular, L is a stably xp-indivisible AVKF-field [¢f. Lemma
6.2, (iiiV ); [Tsjm], Lemma D, (i)].

(i) Let {vi,ve,...} be an infinite set of non-archimedean primes of F. [Here,
we assume, for simplicity, that the indices of the “v;” are chosen in such
a way that v; # vy for j # j'.] Let {¥; C Primes};>1 be a family of
subsets such that, for any positive integer j,

U 3; = Primes,

i2]
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where i ranges over the positive integers > j; M C Q a [not necessarily
finite!l] Galois extension of F; L a [not necessarily finite!] Galois
extension of M C Q such that Gal(L/M) is ‘Primes-sparse. Suppose
that for each positive integer j, the absolute Galois group of the residue
field of the ring of integers of M at [every prime that divides| v; is X ;-
subfree. Then L is

e stably Primes-x u-indivisible,
o stably ppcimes-finite,

o Primes-AV-tor-indivisible,

o Primes™-AV-tor-finite.

In particular, L is « Kummer-faithful field [cf. Lemma 6.2, (iit™),

(iii4V)].
Proof. First, we verify assertion (i). Note that it follows immediately from
Lemma 6.2, (i), that we may assume without loss of generality that L = F-Q?P.
Then since L is an abelian extension of a number field, it follows immediately
from [Tsjm], Lemma D, (iii), (iv), that L is stably Primes-x p-indivisible. On
the other hand, it follows immediately from [KLR], Appendix, Theorem 1, that
L is Primes™-AV-tor-finite. Next, observe that F' is Primes-AV-tor-indivisible
[cf. Lemma 6.2, (v)]. Thus, since L is a Primes™ -AV-tor-finite Galois extension
of F, we conclude from Lemma 6.2, (ii*V), that L is Primes-AV-tor-indivisible.
This completes the proof of assertion (i).

Next, we verify assertion (ii). Note that it follows immediately from Lemma
6.2, (i), that we may assume without loss of generality that L = M. For each
positive integer j, write p; for the residue characteristic of v;. Then it follows
immediately from our assumption on various unions of the subsets 2; C Brimes
that, for any positive integer j,

U i\ {pi} = Primes,
i>]

where i ranges over the positive integers > j. Let p € Primes; Lt a finite
extension of L; A' an abelian variety over Lf; j a positive integer such that
p € ¥; \ {p;}, and A" has good reduction at some prime 9; of L' that divides
vj [cf. the above display!]. Write

. O;[)j C LT for the ring of integers at 9;;
° k:[}j for the residue field of (9:[))_;
. .A} for the abelian scheme over O;j whose generic fiber is AT;

todef t
° Aﬁj = .Aj Xogj kﬁj‘

Then since the morphism A;r- — A;L- given by multiplication by a power of p is
finite étale, it follows immediately that there exists a natural injection

AL ) oo < AL ().

Thus, it follows immediately from
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e our assumption [cf. Remark 6.1.1] that the absolute Galois group of kgj is
X j-subfree,

e the well-known fact that the absolute Galois group of a finite field is iso-
morphic to Z, and

o the well-known fact that, for any positive integer n, GL,,(Z,) contains an
open subgroup which is a pro-p-group

that AT(L'),~ is finite. Thus, by allowing p to vary, we conclude that L
is Primes™-AV-tor-finite. A similar argument applied to the multiplicative
group G,, implies that L is stably piprimese-finite. Next, observe that L is a
Primes™ -AV-tor-finite Galois extension of the PBrimes-AV-tor-indivisible field
F [cf. Lemma 6.2, (v)]. Thus, we conclude from Lemma 6.2, (ii?V), that L is
Primes-AV-tor-indivisible. A similar argument implies that L is stably Primes-
X p-indivisible. This completes the proof of assertion (ii), hence of Proposition
6.3. O

Remark 6.3.1. The following example was suggested to the authors of the
present paper by A. Tamagawa. Let {G;};cr be a family of nonabelian finite
simple groups [i.e., such as the alternating group on n letters 2,,, where n > 5].
Then the direct product group

¢ €] c

el

endowed with the product topology is Primes-sparse. Indeed, this follows imme-
diately from the definition of the product topology, together with the elementary
fact that, for each p € Primes, ¢ € I, the maximal pro-p quotient of G; is trivial.
If I is countable, and we assume that G; and G; are non-isomorphic whenever
I 34 #j € I, then it follows immediately from the well-known fact that number
fields are Hilbertian [cf. [FJ], §6.2; [FJ], Theorem 13.4.2] that G may be realized
as the Galois group of a Galois extension E of a number field F'. Here, we note
that such a Galois extension E of F' is necessarily linearly disjoint from any
abelian field extension of F.

Remark 6.3.2. Later [cf. Remark 6.6.3 below], we shall see that the fields “L”
of Proposition 6.3, (i), (ii), are in fact “TKND-AVKF-fields”.

Remark 6.3.3. Let F C Q be a number field such that v/—1 € F; {vy,v,...}
an infinite set of non-archimedean primes of F'. [Here, we assume, for simplicity,
that the indices of the “v;” are chosen in such a way that v; # v; for j # j'.]
Let {¥; C Primes};>1 be a family of finite subsets such that, for any positive
integer j,

U 3; = Primes,

i2]
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where i ranges over the positive integers > j. For each positive integer j, write
Primes \ ¥ = {pjm}m>1; Fy, for the completion of F' at v;. For each pair
of positive integers 7,j such that j < i, write FJj [i] for the finite unramified
[abelian] extension of F),, of degree

II #m

1<m<i

For each positive integer j, let Ffj be an abelian totally wildly ramified infinite
extension of F, . For each pair of positive integers i,j such that j < 4, let
Fvij [i] C FEJ_ be a finite subextension of F,, such that

FLlCFLli+1, |J FLim=F,

Vi Vi
j<m

where m ranges over the positive integers > j. [Here, we observe that the
existence of such extensions of F,, follows immediately from [Neu], Chapter
II, Proposition 10.2; [Neu], Chapter V, Theorems 1.3, 6.2.] Next, let i be
a positive integer; M; an abelian extension of F such that, for each pair of
positive integers ¢, j such that j < 4, the local extensions of M;/F' at v; coincide
with the extension FJJ_ [d] - ng [i]/F,,. [Here, we observe that, in light of our
assumption that v/—1 € F, the eristence of such an abelian extension M; of
F follows immediately from [NSW], Definitions 9.1.5, 9.1.7; [NSW], Theorem
9.2.8.] Write
McCQ

for the field generated by {M,};>1 over F. Then we make the following obser-
vations, each of which follows immediately from the construction of M:

(a) M is an abelian extension of F;

(b) for each positive integer j, the absolute Galois group of the residue field of
the ring of integers of M at [every prime that divides] v; is X;-subfree;

(c) for each positive integer j, the ramification index of the extension M/F at
vj is infinite [so if {v1, v, ... } coincides with the set of all non-archimedean
primes of F', then M is not a generalized sub-p-adic field for any prime
number p — cf. [AnabTop], Definition 4.11];

(d) for each positive integer j, the residue field of the ring of integers of M at
[every prime that divides] v; is infinite.

Thus, in particular, any Galois extension L of M whose Galois group is Primes-

. . def . .
sparse — such as, for instance, a composite field L = M - E, where F is as in

Remark 6.3.1 — satisfies the assumptions of Proposition 6.3, (ii), as well as the
properties discussed in (c), (d).
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Remark 6.3.4. Note that it follows immediately from the various definitions
involved that the field “L” of Proposition 6.3, (i), satisfies properties analogous
to the properties (c¢), (d) of Remark 6.3.3. That is to say, in the notation of
Proposition 6.3, (i),

e the ramification index of the extension L/F at every non-archimedean
prime of L is infinite [so L is not a generalized sub-p-adic field for any
prime number p — cf. [AnabTop], Definition 4.11];

e the residue field of the ring of integers of L at every non-archimedean
prime of L is algebraically closed, hence infinite.

Remark 6.3.5. The properties (c), (d) of Remark 6.3.3 [cf. also Remark 6.3.4]
are of interest in that they show that

anabelian geometry over fields such as the fields L of Proposition
6.3, (i), (ii) [cf. Theorem 6.10 below] cannot be treated by means
of well-known techniques of anabelian geometry that require the
use of p-adic Hodge theory or Frobenius elements of absolute Galois
groups of finite fields [cf. [Tamal|, Theorem 0.4; [LocAn], Theorem
A; [AnabTop], Theorem 4.12].

Corollary 6.4 (AVKF-fields satisfy the CS-property). Let K C Q be

an AVKF-field [cf. Definition 6.1, (iii)]. Write Gk def Gal(Q/K) C Gg def

Gal(Q/Q). Thus, we obtain natural injections
Gk C GQ — GT C Out(Hx)

[cf. the discussion of the beginning of [Tsjm/, Introduction], which we use to
identify G g with its image in GT. Then the closed subgroup G C GT satisfies
the CS-property.

Proof. Indeed, it follows immediately from a similar argument to the argument
applied in the proof of [Tsjm], Theorem 3.1, and [Tsjm], Corollary 3.2, that

(ISC) the injectivity portion of the Section Conjecture for arbitrary hyperbolic
curves over AVKF-fields holds.

The CS-property for the closed subgroup Gx € GT then follows formally from
this property (ISC). This completes the proof of Corollary 6.4. O

Corollary 6.5 (AVKF-fields satisfy the BC-property). In the notation
of Corollary 6.4, the closed subgroup G C GT satisfies the BC-property.
Moreover, if one takes “BGT” to be Gk [cf. Definition 3.3, (v)], then the
following hold:
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(i) In the notation of Theorem /.4, there exists a natural isomorphism of
fields

@G}(:}@

that is compatible with the inclusion Gk C Ggq. In the remainder of the
present §6, we shall use this natural isomorphism to identify Qg,. with Q.

(i) In the notation of Definition 5.1, there exists a natural outer isomor-
phism
5 Gy

between the profinite group I1 and the absolute Galois group Gk, of

the function field Kx of X def

phism is compatible with the respective natural outer actions of BGT = G
on 1l and Gk .

IP’}@\{O, 1,00}. This natural outer isomor-

(iii) There exists a natural homomorphism
CGT(GK) — GQ
whose restriction to G is the natural inclusion G C Gyg.

Proof. First, we observe that it follows immediately — from the evident scheme-
theoretic interpretation of the various arithmetic Belyi diagrams that arise —
that the closed subgroup G C GT satisfies the COF-property. Thus, it fol-
lows immediately from Corollaries 3.7, 6.4, together with the various definitions
involved, that the closed subgroup Gx C GT satisfies the BC-property. Next,
we observe that it follows immediately — from the evident scheme-theoretic
interpretation of the various arithmetic Belyi diagrams that arise — that these
arithmetic Belyi diagrams determine

e a natural isomorphism of fields @GK 5 Q that is compatible with the
inclusion G C Gg, and

e a natural outer isomorphism 11 = Gy, that is compatible with the re-
spective natural outer actions of BGT = Gk on Il and Gk,

[cf. Claim 4.4.F in the proof of Theorem 4.4]. Thus, we conclude [cf. the proof
of Theorem 4.4] that there exists a natural homomorphism

CGT(GK) — GQ

whose restriction to G is the natural inclusion G C Gg. This completes the
proof of Corollary 6.5. O

Definition 6.6. Let K be a field, K an algebraic closure of K. Write Kppm C K
for the prime field of K.

84



(i) Write
Kdiv d§f U L><oo g F;

L/K
where L (C K) ranges over the finite extensions of K, and we write

Lyoo & Ky (L*®) C L.

(i) If Kq;y € K is an infinite field extension, then we shall say that K is a
TKND-field [i.e., “torally Kummer-nondegenerate field”]. If K is a TKND-
field, then we shall say that K is TKND.

(iii) If K C K is both TKND and AVKF, then we shall say that K is a
TKND-AVKF-field. If K is a TKND-AVKF-field, then we shall say that
K is TKND-AVKEF.

Remark 6.6.1. One verifies immediately that if L is an algebraic extension of a
field K, then the following implication holds:

Lis TKND = Kis TKND.

Remark 6.6.2. In the notation of Definition 6.6, suppose further that K is
of characteristic 0. Then the following implications concerning K hold [cf.
Definition 6.1, (iii); [AbsTopIII], Definition 1.5; [Tsjm], Definition 3.3, (v); the
well-known fact that Q*> C Q is an infinite field extension]:

torally Kummer-faithful = stably X p-indivisible = TKND;

Kummer-faithful = stably X u-indivisible and AVKF = TKND-AVKF.

Remark 6.6.3. It follows immediately from Remark 6.6.2 that the fields “L” of
Proposition 6.3, (i), (i), are TKND-AVKF-fields.

Remark 6.6.4. Recall that
o the TKND-field “L” of Proposition 6.3, (i) [cf. Remark 6.6.3], contains

the entire subset p(Q), while

e the TKND-field “L” of Proposition 6.3, (ii) [cf. Remark 6.6.3], is stably
Hsprimes™> -ﬁm'te.
That is to say, the TKND-fields of Proposition 6.3, (i), (ii), may be thought of
as two “extremal cases”, i.e., with regard to the property of containing roots
of unity. On the other hand, a detailed analysis of the various “intermediate
cases” that, in some sense, lie in between these two “extremal cases” is beyond
the scope of the present paper.
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Lemma 6.7 (Generalities on rational functions). Let K be a field of char-

acteristic 0; K an algebraic closure of K; Y a smooth curve over K. For each

algebraic extension M (C K) of K, write Gy o Gal(K/M); Yu Yy xx M;

Y (M) for the set of M-rational points of Y; O;M for the group of invertible
reqular functions on Yas;
Ry 103 =l OF  — lim H'(ly,,,ps(K)
KCKT KCKT

for the Kummer map, where p5(K) def Hom(Q/Z, w(K)); Kt (C K) ranges

over the finite extensions of K. Lety € Y(KT), where Kt (C K) is a finite
extension of K. Thus, y € Y (K1) determines a section Gyi — Iy, [ie.,
strictly speaking, an outer homomorphism] of the natural surjection Uy , —

Gki. In particular, by allowing KT and y € Y (K1) to vary, we obtain a natural
homomorphism

Dy: lim H'(lly,,,nz(K)) — Fa(Y(K), lim H'(Ggi,pz(K))).
KCKH1 KCKt

Then the following hold:
(i) Suppose that K is AVKF, and'Y is proper over K. Then

H' (Iy,., 15 ()% = {0}.

(ii) Suppose that

e K CK=0Q, and K is AVKF:;

e the function field of Yz is equipped with the structure of a finite Galois
extension of Kx [cf. Corollary 6.5, (ii)].

We apply the notation of Definition 5.9, (ii), where we take “BGT” to
be Gk [cf. Corollary 6.5], “II* C II” to be the normal open subgroup
determined by Yg [cf. Corollary 6.5, (ii)], and “S C Cusp(Il*)” to be the
subset corresponding to the set of cusps of the hyperbolic curve Yg. Then

the natural outer isomorphism 11g = Hy@ [which is compatible with the
respective outer actions of N (C BGT = G) — cf. Corollary 6.5, (ii)]
and the natural scheme-theoretic isomorphism Ix, . = pz(K) induce an
isomorphism Im(ky ) = K. [ef. (i); Definition 5.10].

(iii) Suppose that K is TKND-AVKF. Then the restriction Dy |im(xy) of Dy

to Im(ky) is injective.

Proof. First, we verify assertion (i). Recall that since Y is a smooth, proper
curve over K, Hi‘,b? is naturally isomorphic to the Tate module of the Jacobian
J of Y. In particular, if (H?%)GK # {1}, then there exists a nontrivial divisible
element of J(K). Thus, since K is AVKF, we conclude that (I[§? )9x = {1}.
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On the other hand, Poincaré duality yields a Gi-equivariant isomorphism of
topological modules

H' Ty, p3(K)) = Hom(I5Y, p5(K)) = TI52.

Thus, we conclude that H'(Ily_, uz(K))¢* = {0}. This completes the proof
of assertion (i). Assertion (ii) follows immediately from the various definitions
involved [cf. the argument applied in the proof of [Tsjm]|, Theorem 3.1].

Finally, we verify assertion (iii). First, we observe that it follows from the
various definitions involved that there exists a commutative diagram

Oy Y, Fn(Y(

K
lim H'(Ily,,,u5(K)) —2— Fu(Y(K), lim H'(Ggi,u5(K))),

= =
KCKT KCKT

where evy denotes the homomorphism induced by evaluating elements of Oéf
at elements of Y (K); the right-hand vertical arrow denotes the natural homo-
morphism induced by the Kummer map

K= lim (K" — lim H'(Ggr,p3(K)).
KCKT KCKT

Let f € Ker(Dy o ky). Then the commutativity of the above diagram implies
that Im(evy (f)) € Kj, C K”. On the other hand, we note that, for any

nonconstant rational function g € O}X,?, the complement K © \ Im(evy (g)) is a
finite set. In particular, it follows immediately from our assumption that K is
TKND [i.e., the fact that Kg, C K is an infinite field extension] that f is a
constant function such that sy (f) = 0. Thus, we conclude that Dy |1y (., ) is
injective. This completes the proof of assertion (iii), hence of Lemma 6.7. O

Theorem 6.8 (TKND-AVKF-fields satisfy the AA-property). Let K C
Q be a TKND-AVKF-field. Then the following hold:

(i) The closed subgroup Gg C GT satisfies the AA-property [cf. Definition
5.12).

(i) The natural homomorphism
CGT(GK) — GQ

[¢f. Corollary 6.5, (iii)] is injective.

87



Proof. First, we verify assertion (i). Since K is AVKF, it follows from Corollary
6.5 that the closed subgroup G C GT satisfies the BC-property. Next, since K
is TKND, it follows immediately from the various definitions involved that the
closed subgroup Gx C GT satisfies condition (i) of Definition 5.12. Moreover,
since K is TKND-AVKF, it follows immediately from Lemma 6.7, (i), (iii),
together with the various definitions involved, that the closed subgroup G C
GT satisfies condition (ii) of Definition 5.12. On the other hand, since K is
AVKEF, it follows immediately from Lemma 6.7, (ii), together with the various
definitions involved, that the function fields of finite ramified Galois coverings
of IP’}@ [i.e., the projective line over Q] determine a family

{Knut € Lt bitcn

of subsets as in Definition 5.12, (iii). Finally, it follows immediately from the
various definitions involved that condition (iv) of Definition 5.12 holds. Thus,
we conclude that the closed subgroup G C GT satisfies the A A-property. This
completes the proof of assertion (i). Assertion (ii) follows immediately from
assertion (i), together with Theorem 5.15, (iii). This completes the proof of
Theorem 6.8. O

Remark 6.8.1. Theorem 6.8, (i), may be regarded as a generalization of Remark
5.12.1 [cf. Remark 6.6.2]. In this context, we observe that the proof of Theorem
6.8, (i), (ii), can be simplified considerably in the case where K is assumed to be
Kummer-faithful, in which case one may combine the techniques of [AbsTopIII],
Theorem 1.11, or [Hsh1], Theorem A, with the combinatorial approach to Belyi
cuspidalizations developed in §3 of the present paper.

Corollary 6.9 (Semi-absolute Grothendieck Conjecture-type result over

TKND-AVKF-fields for tripods). Let n be an integer > 2; K,L C Q
TKND-AVKF-fields. Write Xi < PL\{0,1,00}; X1 % P1\{0,1,00}; (X)n
(respectively, (X1)n) for the n-th configuration space associated to Xg (respec-

tively, X1); G wof Gal(Q/K) (respectively, G, of Gal(Q/L));

Out(Il(x ), /Gk 1 (x,),/GL)

Jor the set of outer isomorphisms Il x ) = I x,), that induce outer isomor-

n

phisms G =+ Gr. Then the natural map

Isom((X g )n, (X2)n) — Out(Il x,, /Gr, U (x,),/GL)
is bijective.
Proof. Write X def }P’}@\{O, 1,00}; X, for the n-th configuration space associated
to X. Let 0 € Out(Il(x), /Gr,U(x,),/GL);

& : H(XK)'IL :> H(XL)

n
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an isomorphism that lifts o. Write o € Out(ILy, ) for the outer automorphism
determined by the restriction of 6 to Ilx, ; 6gal : Gk 5 @Gy, for the isomorphism
induced by the isomorphism &. Thus, it follows immediately from the various
definitions involved that there exists a commutative diagram

&GalJVZ Lf’@ll

GL _— Out(HXn),

where the horizontal arrows denote the natural outer representations; the right-
hand vertical arrow denotes the automorphism Log obtained by conjugating by
og- Next, we verify the following assertion:

Claim 6.9.A: The isomorphism Gga) arises from an isomorphism (e
Q that maps K C Q onto L C Q.

Indeed, [cf. the above commutative diagram] since the closed subgroups Gk C
GT and G C GT satisfy the BC-property [cf. Corollary 6.5], the functorial
constructions of Corollary 4.5, together with the isomorphism of Corollary 6.5,
(i) [applied to Gk and Gp], determine a commutative diagram

GGal

~

GK = GK — GL = GL
m &% &% m

~

@&@GK:)@GL_}@a

where the lower horizontal arrows are isomorphisms of fields. Thus, we obtain
the desired conclusion. This completes the proof of Claim 6.9.A.

Now it follows from Claim 6.9.A that we may assume without loss of gener-
ality that K = L C Q. Next, it follows from Theorem 6.8, (ii), together with
the various definitions involved, that

Nar(Gk) C Car(Gk) C Go.

In particular, we conclude that Ngr(Gk)/Grx = Ngo,(Gk)/Gk. Note that
since Ilx, is center-free [cf. [MT], Proposition 2.2, (ii)], there exists [cf. the
above commutative diagram] a natural isomorphism

Out(Il(x ), /Gk) = Nouaix,)(Gk)/Gxk,

where Out(Il(x,),/Gk) denotes the set of outer automorphisms of II(x,,
that induce outer automorphisms of Gg. In particular, o € Out(Il(x ), /GK)
determines an element of

Now(ix,)(Gx)/Gx = Natxs,,s(Gkr)/GKx
= (Nor(GK)/GK) X Snys
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[cf. the first display of [HMM], Corollary C]. Thus, in light of the natural
isomorphism
Aut(K) — NGQ(GK)/GK = NGT(GK)/GK,

we conclude that the natural group homomorphism
Aut((Xk)n) — Out(Il x,), /GK)

is surjective, and [by considering the various fiber subgroups of IIx, and cusp-
idal inertia subgroups of IIx] that any element o € Aut((Xg),) in the kernel
of this group homomorphism is K -linear and compatible with the identity auto-
morphism of X relative to any of the n + 3 generalized projection morphisms
(XK)n — Xk [cf. [HMM], Definition 2.1, (i)]. But this implies that any such
a is equal to the identity automorphism of (Xk),. This completes the proof of
Corollary 6.9. O

Theorem 6.10 (Semi-absolute Grothendieck Conjecture-type result
over TKND-AVKF-fields for arbitrary hyperbolic curves). Let (m,n)
be a pair of positive integers; K, L C Q TKND-AVKF-fields; Xk (respectively,
Y1) a hyperbolic curve over K (respectively, L). Write gx (respectively, gy )
for the genus of Xi (respectively, Y1,); (X )m (respectively, (Y1)n) for the m-
th (respectively, n-th) configuration space associated to Xy (respectively, Yr,);

G ¥ Gal(Q/K) (respectively, G, def Gal(Q/L));
OUt(H(XK)m/GK, H(YL),L/GL)

for the set of outer isomorphisms 1L x,.y, — Il(y,), that induce outer isomor-
phisms between G and Gp. Then the following hold:

(i) Suppose that

em>4orn>4if X orY is proper;
em>3o0rn>3if X orY is affine.

Then the outer isomorphism
Gk = G

induced by any outer isomorphism € Out(Il x,,. /G, Uy,),/GL) arises
from a field isomorphism K = L.

(i) Suppose that

em>2o0rn>2;

e gx =0 orgy =0.
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Then the natural map
Isom((Xx )m, (Y2)n) — Out(Ilx,,./Gx, v,y /GL)
is bijective.
Proof. Write

o Zx EPIN0,1,00); 7, &

Pi\{O,l,oo};
o X ¥ Xy X Q; Y €y xr, Q; 7% 7 Xk Q=2 x,Q;

e rx (respectively, ry) for the cardinality of the set of cusps of X (respec-
tively, Y).

For each positive integer i, write

e X, (respectively, Y;, Z;) for the i-th configuration space associated to X
(respectively, Y, 7).

Note that, to verify assertions (i), (ii), it follows immediately from the various
definitions involved that we may assume without loss of generality that

OUt(H(XK)m/GKa H(YL)n/GL) 75 @

Thus, we conclude from [HMM], Theorem A, (i), that
m=n>2gx=g¢gy, Tx =T"y-.

Let o € Out(Il(x,),/Gk,y,),/GL);
7 Mixpe), = My,

an isomorphism that lifts 0. Write o5 : Ilx,, 5 Iy, for the outer isomorphism

determined by the restriction of & to Ilx,; 6gal : Gx — G, for the isomorphism
induced by the isomorphism &.

Next, we verify assertion (i). Note that m = n > 3. Let H;pd C IIx,
(respectively, H;tpd C Ily,) be a 3-central {1, 2, 3}-tripod of Ilx, (respectively,
Iy, ) [cf. [CbTpll], Definition 3.7, (ii)]. Then since m = n, gx = gy, and
rx = ry, it follows immediately from [HMM], Theorem B; [CbTpll], Theorem
A, (ii); [CbTplI], Theorem C, (ii); the discussion of [CbTpll], Remark 4.14.1,
that we may assume without loss of generality that

* 0g induces bijections between the respective sets of fiber subgroups and
inertia subgroups;

e the outer isomorphism Iy, = Iy, induced by og determines an outer

. . tpd ~ tpd
isomorphism oeipa @ 15T = T3P
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e there exists a commutative diagram of profinite groups

Outc (Ix,) —)TX Out(Hggpd)

ik i

Out™“(Ily, ) —— Out(IIy™),

where the vertical arrows denote the isomorphisms induced by the outer
isomorphisms ) and ocpa, and T'x and Ty denote the respective tripod
homomorphisms.

. . . tpd tpd . . . ~ tpd
Here, we identify 11z with TI$PY, IR, via outer isomorphisms I1; = TI5P°,

n, = Hg’fpd that arise from the respective G3-torsors of scheme-theoretic iso-
morphisms of tripods over Q in such a way that

~

e the outer automorphism oz : II; = Hg;pd =5 H;tpd & 11, obtained by
conjugating octpq by these identifying outer isomorphisms determines an
element € GT C Out(IIz)

[cf. [CbTplII], Theorem C, (iv), together with our assumptions on m =
(iv), to-

Moreover, it follows immediately [again from [CbTpll], Theorem C,
gether with our assumptions on m = n| that

e the images of Tx and Ty are contained in GT C Out(Iz).

In particular, the above commutative diagram, together with the natural outer
representations Gx — Out"C(Ily, ), G — Out"(Ily, ), determines a commu-
tative diagram of profinite groups

Gxg —— GT

&Galll Uzlz

G, —— GT,

where the right-hand vertical arrow denotes the inner automorphism obtained
by conjugating by oz; the horizontal arrows denote the natural injections. Ob-
serve that since Iz, is center-free [cf. [MT], Proposition 2.2, (ii)], this last
commutative diagram determines an outer isomorphism II 2, ), = Iz, ), that
lies over Ggal between the second configuration spaces (Zk )2, (Z1)2 associated
to Zi, Zr, respectively. Thus, we conclude from Corollary 6.9 that the outer
isomorphism determined by Gga : Gx — G, arises from a field isomorphism
K = L. This completes the proof of assertion (i).

Next, we verify assertion (ii). First, it follows from a similar argument to
the argument applied in the final portion of the proof of Corollary 6.9 that the
natural map

ISOIn((XK>n, (YL)n> — OU-t(H(XK)n/GK7H(YL)n/GL)
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is injective. Thus, it suffices to prove that this map is surjective. Observe
that since Ily, is slim [cf. [MT], Proposition 2.2, (ii)], it follows immediately
from [NodNon|, Theorem C, (ii), that Il(y,), is slim. In particular, it follows
immediately, by applying Galois descent, that we may assume without loss of
generality that every cusp of X (respectively, Y) is K-rational (respectively,
L-rational). On the other hand, since gx = gy = 0, it suffices to consider the
case where rx = ry >4 [cf. Corollary 6.9].

Next, we verify the following assertion:
Claim 6.10.A: There exists an isomorphism of schemes X — Y.

Indeed, observe that it follows from Theorem 2.1 [cf. our assumption that
rx = ry > 4] that there exist open immersions Xx — Zg, Y < Z1 over
K, L, respectively, which, together with &, determine a IIz, -outer isomorphism
oz, iz, = II(z,), that lies over the isomorphism Gga. Thus, by applying
Corollary 6.9, we may assume without loss of generality that

e K=1;
® J@a is the identity automorphism;
e 0z, is the identity 1l -outer automorphism.

In particular, since ) induces a bijection between the respective sets of fiber
subgroups and inertia subgroups [cf. Corollary 2.2; the discussion of [CbTpII],
Remark 4.14.1], 6 determines a IIy-outer isomorphism o7 : IIx, = Iy, [cf.
[CbTpl], Theorem A, (i)] such that

e 0 lies over G;

e ¢ induces a bijection between the respective sets of cuspidal inertia sub-
groups.

Thus, we conclude from the property (ISC) [cf. the proof of Corollary 6.4],
applied to Zg, that there exists an isomorphism Xy = Yx over K. This
completes the proof of Claim 6.10.A.

In summary, it follows formally from Claim 6.10.A, together with the above
discussion, that we may assume without loss of generality that

[ ] KZL,XK:YK,

e 7 is an automorphism of Il x ), that lies over the identity automorphism
of GK;

e the Iz, -outer automorphism oz, : Iz, =+ Il z,), [induced by & and
the open immersion X — Zk over K] is the identity Il -outer auto-
morphism;

e the outer automorphism o : llx, 5 Iy, [determined by &] induces the
identity automorphism on the set of fiber subgroups;
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e the IIy-outer automorphism oy : Ilx,, — Ix, [determined by &] induces
the identity automorphism on the set of conjugacy classes of cuspidal iner-
tia subgroups of Il x [cf. the discussion above of the property (ISC) applied
to ZK].

Thus, if we regard Gk as a subgroup of Outs” (ITx, )P via the natural in-
jection G < Outs¥(Ilx, )P [cf. [NodNon], Theorem C, (ii)], then og €
ZOutgF(Hxn )ousp (GK) Write

B € Zouer (115, )euer (GK)

for the element determined by oz via the natural injection Oute" (I x, )P
Out® (I, )P [cf. [NodNon], Theorem BJ;

I = Oute® (I, )P — Out#™ (I1z, )™

for the natural homomorphism induced by the natural open immersion X, <>
Zy [cf. Theorem 2.1]. Then it follows immediately from our assumption that
0z, : Uiz, = Uz, is the identity I1z, -outer automorphism that h(8) = 1.
Thus, we conclude from Theorem 3.6 [where we take “V° C W” to be the
open immersion X < Z in the above discussion], together with Corollary 6.4,
that 3 = 1, hence that oz = 1. Finally, since Ilx, is center-free [cf. [MT],
Proposition 2.2, (ii)], it holds that & is an inner automorphism, hence that
o = 1. Thus, we obtain the desired surjectivity. This completes the proof of
assertion (ii), hence of Theorem 6.10. O

Remark 6.10.1. In the notation of Theorem 6.10, write
OUt(H(XK)m 5 H(YL)'H,)

for the set of outer isomorphisms I x,, . = I(y,),- Suppose that Gk and G,
are very elastic [cf. [AbsTopl], Definition 1.1, (ii)]. Then since IIx, and Ily,
are topologically finitely generated [cf. [MT], Proposition 2.2, (ii)], it follows
formally that

Out(H(XK)m 5 H(YL)n) = Out(H(XK)wL/GK’ H(YL)7L/GL)7

i.e., that the “absolute version” of Theorem 6.10 holds.

Remark 6.10.2. In the notation of Theorem 6.10, suppose that K and L arise
as fields “L” of the sort discussed in Proposition 6.3, (i), (ii) [cf. Remark 6.6.3].
Suppose, further, that K and L are abelian extensions of number fields. Then
K and L are very elastic [cf. [FJ], Theorem 13.4.2; [FJ], Theorem 16.11.3; [Mi,
Theorem 2.1]. In particular, it follows immediately from Remark 6.10.1 that
the absolute version of Theorem 6.10 holds.
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