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ON ENDOMORPHISMS OF PROJECTIVE TORIC VARIETIES

NOBORU NAKAYAMA

ABSTRACT. For any projective toric variety X defined over a field of charac-
teristic zero, there exist non-isomorphic surjective endomorphisms f: X — X
in which the characteristic completely invariant divisor is a proper subset of
the boundary divisor, the complement of the open torus. One can construct
also an equivariant version of such endomorphisms with respect to involutions
of X preserving the boundary divisor.

1. INTRODUCTION

We fix a field k and consider toric varieties as algebraic k-schemes. A toric
variety admits many non-isomorphic surjective endomorphisms (as k-morphisms).
As a typical example, we have an endomorphism induced by the k-th power map
u — u® of the open torus for & > 1. In this article, we first prove:

Theorem 1.1. If a toric variety X is complete, then any surjective endomorphism
f: X — X is a finite morphism.

Here, X is said to be complete if the structure morphism X — Speck is proper.
Note that the finiteness of surjective endomorphism is well known in the case of
projective varieties (cf. Lemma B2 below).

The complement D of the open torus in X is called the boundary divisor. In many
known examples of surjective endomorphisms f of X, D is f-completely invariant,
ie., f71D = D (cf. Definition below). The main purpose of this article is to
construct explicitly non-isomorphic surjective endomorphisms f of a complete toric
variety X under which D is not completely invariant. This is done in Sections @
below, and we can prove:

Theorem 1.2. Let X be a complete toric variety with the boundary divisor D. Let
B be a union of prime components I' of D such that some multiple of T is linearly
equivalent to an effective divisor mot containing I'. Then there exist a positive
integer k > 1 and a non-isomorphic surjective endomorphism f: X — X satisfying
the following conditions:

(1) For any divisor F on X, the inverse image f*F is Q-linearly equivalent to
kF, i.e., mf*F ~ mkF for some m > 0.

(2) IfT is a prime component of D — B, then f*I' = kI.

(3) IfT is a prime component of B, then f~'T' #T.
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(4) The degree of f equals k" for r = dim X .

Moreover, when chark = 0 and X s projective, one can impose the following
additional conditions:

(5) The ramification index of f along a prime divisor C' is less than k if C ¢
D - B.
(6) The characteristic completely invariant divisor Sy equals D — B.

Note that the pullback f*F of a divisor F' is well defined, since f is finite by
Theorem [Tl The characteristic completely invariant divisor Sy is defined as the
union of prime divisors T' on X such that (f*)*T" = bI' for some k > 1 and b > 2
(cf. [12], §2.4] and Definition B:5] below). Note also that [@]) is a consequence of ()
when X is projective. For equivariant versions of Theorem [[.2] we can pose:

Problem. Let X be a projective toric variety of characteristic zero admitting an
action of a finite group G which preserves the boundary divisor D. Under what
conditions, one can find a G-equivariant non-isomorphic surjective endomorphism f
of X such that the characteristic completely invariant divisor S is a proper subset
of D?

As a partial answer to the problem, we have:

Theorem 1.3. Assume that k is algebraically closed. Let X be a complete toric
variety with the boundary divisor D and let 1: X — X be an involution such that
«(D) = D. For a prime component T' of D and for the divisor B := T'U(T"), assume
that some multiple of T' is linearly equivalent to an effective divisor supported on
D — B. Then there exist a positive integer k > 1 and a non-isomorphic surjective
endomorphism f: X — X such that 1o f = f o and that conditions (), (),
@), and @) of Theorem are all satisfied. Moreover, when chark =0 and X is
projective, one can impose conditions ([Bl) and (@) of Theorem [L2.

Theorems and [[.3] above are applied to proving Theorems and below
on endomorphisms of projective toric surfaces and half-toric surfaces (cf. [I0, §7.1])
over k = C. These theorems supply examples of a normal projective surface X over
C admitting a non-isomorphic surjective endomorphism f such that Kx 4 S is not
pseudo-effective (cf. [12], [13]).

Construction of this article. In Section[2] we fix and explain basic terminologies
and notions for toric varieties. We discuss the finiteness of endomorphisms in
Section [3, where Theorem [[LT] is proved in Section Bl The notions of ramification
divisor and characteristic completely invariant divisor are explained in Section
on remarks on finite surjective (endo-)morphisms.

Our method of constructing endomorphisms of complete toric varieties is given in
Section @l We introduce in Section ] the notion of trigger for endomorphisms (cf.
Definition [.]) generalizing the notion of root in the study of automorphisms of toric
varieties in [2]. Some basic properties of triggers are obtained also in Section F1]
We define special endomorphisms = = Z,, 4, k(P1, P2) of complete toric varieties
in Section for triggers ay, ai, polynomials P;(x), Po(x) in k[x], and a positive



integer k satisfying certain conditions (cf. Definition EI0] and Proposition FET3).
The definition is analogous to that of the automorphism z,(A) in [2, §4, n°5, Thm. 3,
p. 573] defined by a root « and a constant A € k (cf. [I4, Prop. 3.14]). Some basic
properties of the endomorphism = are obtained in Section [£3] and we shall prove
Theorem in Section 44l

We shall study automorphisms of a complete toric variety X preserving the
boundary divisor D in Section .l When the automorphism is an involution,
in Section .21 we shall construct some non-isomorphic surjective endomorphisms
equivariant under the involution by using the endomorphism defined by a trigger
in Section The proof of Theorem [[.3]is included in Section

Applications to the study of non-isomorphic surjective endomorphisms of pro-
jective toric surfaces and half-toric surfaces over C are given in Section [6] where
Theorems [6.1] and are proved.

Notation and conventions. We work in the category of algebraic k-schemes for
a fixed ground field k. A wvariety means an integral separated k-scheme. A variety
X is said to be complete if the structure morphism X — Speck is proper. Note
that a proper subvariety of a complete variety is not necessarily complete. We use
the same notation and conventions as in [10], [I1], [I2], and [13]. For example:

e Two divisors D; and Ds are is said to be Q-linearly equivalent if mD; is
linearly equivalent to mD; for some m > 0. We write D; ~g Ds for the
Q-linear equivalence.

e The number of prime components of a reduced divisor D is denoted by
n(D) (cf. [13] Def. 4.1]).

e For a commutative algebra R, the group of invertible elements of R is
denoted by R*.
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2. SOME BASIC TERMINOLOGIES ON TORIC VARIETIES

For details of toric varieties, we refer the readers to [2], [6], [1], [I4], and [3].
We fix a non-zero free abelian group N of finite rank, the dual abelian group M =
Hom(N, Z), and the canonical bilinear map { , ): M x N — Z. We write Ng (resp.
Mg) for the finite-dimensional real vector space N ® R (resp. M ® R), and use
the same symbol { , ) for the induced bilinear map Mg x Ng — R. Our specific
notation on toric varieties is listed in Table [

A rational polyhedral cone of N is a closed convex cone in Nr generated by finitely
many elements of N. A closed convex cone o of N is said to be strictly convez if
oN(—o) = {0}. A face of a closed convex cone o is the cone expressed as {m}+No
for some m € V. A fan A of N is a finite collection of strictly convex rational
polyhedral cones of N such that

e if o0 € A, then any face of o belongs to A;
e for any cones o and 0’ € A, o N o’ is a face of o.



TABLE 1. List of notations on toric varieties

SY dual cone {z € Mg | (x,8) C R>¢} (resp. {y € Nr | (S,y) C R>o}) for
a subset S of Ng (resp. Mg).

St linear subspace {z € Mg | (z,S) = 0} (resp. {y € Nr | (S,y) = 0}) for
a subset S of Ng (resp. Mg).

Tn algebraic torus Speck[M] associated with N.

Tn(o)  affine toric variety Speck[o¥ N M] associated with a strictly convex
rational polyhedral cone o in Ng.

Tn(A)  toric variety (J, . Tn(o) associated with a fan A of N.

Bn(4A)  boundary divisor, the complement of the open torus Ty ({0}) in Ty (A).

Ty morphism Tn(A) — T (A') of toric varieties associated with a mor-
phism ¢: (N, A) — (N, A’) of fans (cf. Definition 2.]).

e(m) element m € M in the group ring k[M].

Pn(A)  set of primary vectors of (N, A) (cf. Definition 222)).

R(v) 1-dimensional cone Rxgv for a primary vector v (cf. Definition [Z.2]).

I'(v) prime component of By(A) defined by a primary vector v (cf. Defini-
tion 2.2)).

Yo 1-parameter subgroup of G, — Ty corresponding to an element v € N
or its extension (cf. Definition 2.)).

The fan is not necessary finite in [I4], but we assume the finiteness for simplicity.
A fan A is said to be complete if |J, ., 0 = Ngr. Note that any strictly convex
rational polyhedral cone o is identified with the fan consisting of all the faces of o.

Definition. For a strictly convex rational polyhedral cone o in Ng, the affine toric
variety Tn(o) over the field k is defined as Speck[o¥ N M] for the semi-group ring
k[e¥ N M]. If 7 is a face of o, then Ty(7) is canonically an open subset of Tn(o).
Moreover, for any fan A of N, affine toric varieties Ty(o) for all o € A are glued to
an algebraic scheme Ty(A) over k, which is called the toric variety associated with
A. The common open subset Ty({0}) of Tn(o) for all o € A is isomorphic to the
algebraic torus Ty = Speck[M] and is called the open torus. The complement of the
open torus in Tn(A) is denoted by By(A) and is called the boundary divisor. For
an element m € M, we set e(m) to be m in the group ring k[M]. This is regarded
as a rational function on Tn(A).

Remark. The toric variety Tn(A) is a normal integral separated k-scheme of finite
type, i.e., a normal algebraic variety over k. The fan A is complete if and only if
Tn(A) is complete (cf. [2] §4, n°2, Prop. 4, p. 561], [6, I, Thm. 8], [I4, Thm. 1.11]).
In [14], Tn(A) is denoted by Ty emb(A).

Remark. The group law Ty x Ty — Ty of the algebraic torus Ty corresponds to the
k-algebra homomorphism p*: k[M] — k[M]®xk[M] given by u*e(m) = e(m)®e(m)
for m € M. The group law extends to an action of Ty on Tn(A) so that the open
immersion Ty = Tn({0}) < Tn(A) is equivariant under the action. In particular,
the open torus is a unique open dense orbit of Ty in Tn(A).
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Definition 2.1. Let N’ be another free abelian group of finite rank and let ¢p: N —
N’ be a homomorphism of abelian groups. The dual of ¢ is denoted by ¢V, which
is a homomorphism M’ = Hom(N’,Z) — M = Hom(N, Z) satisfying (¢¥(m'),n) =
(m/, ¢(n)) for any m’ € M’ and n € N. The morphism Ty: Ty — Ty of algebraic
tori associated with ¢ is defined by the k-algebra homomorphism k[M’] — k[M]
sending e(m’) to e(¢¥(m’')). Let A’ be a fan of N’ and assume that, for any
o € A, the image ¢r(o) under ¢pgp = ¢ ® R: Ng — Np is contained in some cone
o' € A'. In this case, ¢: (N,A) — (N',A) is called a morphism of fans, and
T4 extends to a morphism Ty(A) — T (A') equivariant under the actions of Ty
and Ty with respect to Ty (cf. [I4, Thm. 1.13]). This extended morphism is also
denoted by T.

Definition 2.2. Let A be a fan of N. A primary vector of A with respect to N, or
a primary vector of (N, A), is defined as a primitive element of N generating a 1-
dimensional cone belonging to A. The set of primary vectors is denoted by Py(A).
Here, Pn(o) = Pn(A) No for any o € A. For a primary vector v, R(v) denotes
the 1-dimensional cone R>qv, and the prime divisor I'(v) on Tn(A) is defined as

the complement of
UGGA, v¢o TN (U)
In particular, I'(v) is the closure of Tn(R(v)) \ Tn({0}) in Tn(AD).

Remark. A complete fan A of N is determined by Pn(A) when rankN = 2. In
fact, for [ := #Pn(A), there is a bijection Z/IZ > i — v; € Py(A) such that the
set of 2-dimensional cones belonging to A is {R>qv; +R>ovi41 | ¢ € Z/I1Z} (cf. [10]
Exam. 3.4]).

Remark. The boundary divisor By(A) is just the union of Ty-invariant prime di-

visors, and hence,
Bn(A) = ZvePN(A) I'(v).

Remark 2.3. For any m € M, the principal divisor associated with the rational
function e(m) on Tn(A) is written as

(1I-1) div(e(m)) = ZUGPN(A)W, v) I (v)

by [3, §3.3, Lemmal, which is a special case of the equality in [I4, Prop. 2.1(ii)].
Let 7 be the ideal sheaf O (a)(—B) of an effective divisor

B = ZvePN(A) bvr(’U)

defined by integers b, > 0. By ([I=I)), we see that, for any cone o € A, Z|g (s is
generated by e(m) for all m € M such that (m,v) > b, for any v € Py(0o).

Remark 2.4. Similarly to e(m), every element @ € k[M] is regarded as a rational
function on Ty(A) which is regular on the open torus. Assume that @ # 0. Then
we can consider the associated principal divisor div(Q) on Tn(A). For a cone
o € A, if multp,)div(Q) > 0 for any v € Pn(o), then Q € k[o¥ N M]. In fact,
in this case, multr div(Q) > 0 for any prime divisor T on the affine toric variety
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Tn(o), and hence, @ belongs to the affine coordinate ring k[o¥ N M], since it is
normal.

Lemma 2.5. Let P(x) be a polynomial in k[x] for a variable x such that P(0) # 0.
Then, for any v € Py(4A) and a € M, one has

(11-2) mult -,y div(P(e(a))) = min{0, (deg P)(a,v)},
where we regard P(e(«)) as a rational function on Tn(A).

Proof. The assertion holds if deg P = 0, since P is a constant and div(P(e(«))) = 0.
Thus, we may assume that d := deg P > 0. For the expansion P(x) = Egzo Psx®
with ps € k, we have py # 0 and pg # 0. If (o,v) > 0, then e(«) is regular
on Tn(R(v)) and vanishing along I'(v) by ([I-I) in Remark [Z3} hence, P(e(q)) is
regular on Tn(R(v)) and not vanishing along I'(v) by P(0) # 0. Therefore, ([I=2)
holds when («a, v) > 0.

Assume that (o, v) < 0. Let us consider another polynomial

d
o _.d -1\ __ s
Pe(x) =x'P(x™ ") = Zszopd,sx € k[x].

Note that P°(0) # 0 and P(e(a)) = e(a)?P°(e(—a)). Since (—a,v) > 0, we have
mult p(,y div(P(e(a))) = multp(,) div(e(a)?) + mult -,y div(P°(e(—a))) = d{a, v)
by ([I=1) in Remark and by ([I=2) in the case where (o,v) > 0. Thus, ([I=2)
holds when {(a,v) < 0.

Finally, assume that (a,v) = 0. We can regard « as a homomorphism N — Z,
and now, it descends to a non-zero homomorphism @: N(v) := N/Zv — Z. Let
Ta: Tnwy — Tz = Gu be the homomorphism of algebraic torus induced by a,

where G, stands for the 1-dimensional torus Speck[t,t™!]. Then Ty is dominant,
and the induced morphism

I(v) NTN(R(®)) = Ty —= Gy

is just the restriction of the rational function e(a): Tn(A) --— PL. Since deg P > 0,
I'(v) N Tn(R(v)) dominates P! by the rational function P(e(a)): Tn(A) --— PL.

Hence, mult -,y div(P(e(a))) = 0, and ([I=2) holds. Thus, we are done. O
Corollary 2.6. Let r be a positive integer. For variables ty1, ..., t,, we set
A=kt et and A =k[EF R et

as k-algebras, where 1 < i <r. Let a = t7't5*---t% be a monomial in A defined
by integers a1, ..., a,., and let P(x) be a polynomial in k[x] of degree d such that
P(0) # 0. Then

max{q € Z | P(«) € t!A;} = min{0,da;}

foranyl1 <i<r.

Proof. The polynomial ring A= k[t1,te,...,t,] is identified with the semi-group
ring k[oV N M] for a free abelian group N of rank r with a free basis (ny,...,n,),
the cone o = Y/, R>on;, and M = Hom(N, Z). For the dual basis (mq,...,m,)
of (n1,...,n,), we have t; = e(m;) for any 1 < ¢ < r under the identification. We
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apply Lemma 28] to the toric variety Ty(o) = Spec A. Here, Py (o) ={n1,...,n-}.
Then div(t;) = I'(n;), and A (resp. A;) is identified with the affine coordinate ring
of Tn({0}) (resp. Tn(o) \ I'(n;)). Moreover, a = e(my,) for mq = > a;m;, where
(mq,n;) = a; for any i. Hence,

max{q € Z | P(a) € t]A;} = multp(,,) div(P(a)) = min{0, da;}
for any 7 by Lemma O

Convention. For k-schemes Y and T, the set Homg(7,Y) of morphisms of k-
schemes is denoted by Y(T') and an element of it is called a T-valued point of Y (cf.
[4 I, 83.4]). Note that the correspondence T +— Y (T') is a presheaf on the category
of k-schemes. When T' = Spec R for a k-algebra R, T-valued points of Y are called
R-valued points, and Y(T') is written as Y (R), for simplicity.

Definition 2.7. Let u be a T-valued point of Tn(o) for a k-scheme T and for a
strictly convex rational polyhedral cone o in Ng.

(1) For any m € ¢ N M, we define u(m) to be the image of e(m) under the
associated k-algebra homomorphism u*: ko N M] — HO(T, Or).

(2) Let o’ be a strictly convex rational polyhedral cone in Ny, for a free abelian
group N’, and let ¢: N — N’ be a homomorphism of abelian groups such
that ¢r(o) C o’. The image of u under Ty(T): Tn(o)(T) — Tn (o ){(T")
is denoted by ¢(u).

Remark. The set Tn(o)(T') of T-valued points is in one-to-one correspondence with
the set of homomorphisms VMM — R = (R, x) of semi-groups for R = H(T, Or).
The correspondence is given by u — (m — u(m)). In particular, Tn(T") ~ Tn(R) ~
Hom(M, R*) for the group R* of invertible elements of R. For the homomorphism
¢ in @) and its dual ¢V: M’ = Hom(N’,Z) -+ M = Hom(N,Z), the image ¢(u)
corresponds to the homomorphism (a/)¥ MM’ — R given by m/' — u(¢¥m’) for any
m’ € M.

Remark 2.8. Let v be a primary vector of (N,A). For a cone o € A containing
v, a T-valued point u € Tn(o)(T) is contained in I'(v)(T) if and only if u(m) =0
for any m € ¥ N M such that (m,v) > 0. This follows from the description of the
ideal sheaf of I'(v) in Remark

Definition 2.9. For v € N, let j,: Z — N be the homomorphism sending 1 to v.
The 1-parameter subgroup associated with v (cf. [0l I, §1]) is defined as the associated
morphism v, := T;, : G, = Tz — Ty of algebraic tori (cf. Definition ). Assume
that v € o for a cone o belonging to a fan A of N. Then j, is a morphism
(Z,R>g) — (M, A) of fans, and the associated morphism

ijt Tz(Rzo) = Spec]k[t] — Tn (0’) C Tn (A)

of toric varieties is an extension of «, above. This extended morphism is also
denoted by ~,,.

Remark. The toric variety Tz(R>¢) is identified with the affine line Speck|t] under
which the open torus Tz({0}) is identified with Speck[t,t ], where t = e(m) for
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the element m of ZV = Hom(Z,Z) corresponding to the identity homomorphism
idz. For v € N, the 1-parameter subgroup 7, : G, = Speck[t,t~!] — Ty is defined
by v:e(m) = t{™?) for m € M. Assume that v is a primary vector of (N, A). Then

TN(R(U)) =~ TZU(R(U)) X TN('U)

for N(v) := N/Zv, and Tz(R>¢) ~ Tz, (R(v)) by the isomorphism j,: Z — Zv. For
the k-valued point 0 of Speck|t] defined by t = 0, its image «,(0) under

v, : Speck[t] ~ Tz,(R(v)) — Tn(R(v)) C Tn(A)

is considered as the “limit point” of the 1-parameter subgroup v,: G, — Ty (cf.
[6) I, Thm. 1']), and it corresponds to the k-valued point (0, e) of Tz, (R(v)) x Tn(y)
for the unit element e of the group Ty, (k) = N(v) ®z k*.

3. FINITENESS OF SURJECTIVE ENDOMORPHISMS

In Section 3], we shall prove Theorem [[.T]in the introduction, which states that
every surjective endomorphism of a complete toric variety is finite. In Section B.2]
we shall give some remarks on finite morphisms and finite endomorphisms.

3.1. Proof of Theorem [I.1l For the proof of Theorem [[.I] we need the following
lemma, which seems to be well known:

Lemma 3.1. Assume that k is algebraically closed. Let f: X — Y be a proper
morphism of varieties such that Oy ~ f,Ox. Let G be a connected algebraic group
acting on X. Then the action of G descends to Y so that f is G-equivariant.

Proof. Let C be a complete curve contained in a fiber of f and let us consider the
composite

n:GxC X g x X x Ly,

where ¢: C'— X is the closed immersion and oy is the morphism of action of G.
For the unit element e of G, the image of {e} x C' under 7 is a point. We have a
commutative digram

pG,n

GxC—" gy
G

for first projections pg: G x C — G and go: G X Y — G. By rigidity lemma
[0, Prop. 6.1] applied to the diagram, there is a morphism ¢: G — Y such that
17 = (opg. As a consequence, f(ox({g} x C)) = n({g} x C) is a point for any
g € G. Moreover, f(ox({g} x f~1(y))) is a point for any y € Y and g € G,
since f~1(y) is connected. Equivalently, every fiber of idg xf: G x X — G x Y
is mapped to a point by the proper morphism 6: G x X — G X Y X Y defined as



(idg x f, f o 0x): there is a commutative diagram

T

GxX GxY xY

idg X f %

GxY

for the projection p12 to the first and second factor and the projection p3 to the
third factor. For the Stein factorization G x X — Z — G xY xY of 6, the induced
morphism ¢: Z — G x Y x YV 22 G x Y is finite and

Ocxy = (idg xf)«Ogxx =~ $+Oz.

Hence, ¢ is an isomorphism. By ¢! and by composing with p3, we have a morphism
oy: G xY — Y such that oy o (idg Xf) = f o 6x. Therefore, oy is a morphism
of an action of G on Y, and f is G-equivariant. ([

Proof of Theorem [Tl By base change, we may assume that k is algebraically
closed (cf. [B, Prop. (2.7.1)]). We may write X = Tn(A) for a complete fan A
of a free abelian group N of finite rank. For the given surjective endomorphism
f: X = X, let X 5 X’ 5 X be the Stein factorization of f. By Lemma Bl the
action of Ty on X descends to X’ and ¢ is Tn-equivariant. Then the exceptional
locus of ¢ is a union of orbits of Ty, and hence, it is contained in the boundary
divisor By(A) of X. Thus, X’ contains an open orbit of Ty, which is isomorphic
to Tn. Therefore, X’ is also a toric variety. By [6, I, Thms. 6 and 7], there is a
complete fan A’ of N such that

o X'~ TN(A/),

e cach o € A is contained in some o’ € A/,

e ¢ is associated with the morphism idy: (N, A) — (N, A’) of fans.
In particular, we have an inequality #A > #/\’ of cardinalities, where the equality
holds if and only if ¢ is an isomorphism.

We shall derive a contradiction assuming that f is not finite. Then ¢ is not an

isomorphism. For any integer k > 1, let X 25 X, ™5 X be the Stein factorization
of f*. Then X; = X', ¢; = ¢, 71 = 7, and we have a commutative diagram

—> X1 ——
Tk+1

S
[ 2N

for any k, { > 1, where morphisms ¢y ; and 7, respectively, are birational and
finite. By induction, ¢, and ¢, are not isomorphisms for any k, { > 1. Thus,

we have an infinite sequence X — X; — --- = X — Xiy1 — --- of birational
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morphisms by ¢ and ¢y 1. By the previous argument, Xj, o~ Tn(Ay) for a fan Ay
of N, and we have an infinite sequence #A > #/\; > #/\5 > - - -, which contradicts
the finiteness of the set A. Thus, we are done. (I

3.2. Remarks on finite surjective (endo-)morphisms. We shall explain the
pullback of (Weil) divisors by a finite surjective morphism. In characteristic zero,
we shall also explain the ramification formula for a finite surjective morphism and
the characteristic completely invariant divisor for a finite endomorphism introduced
in [12, §2.4].

Lemma 3.2. Let X be a normal variety with a surjective endomorphism f: X —
X. If X is projective, then f is finite.

Proof. By base change, we may assume that k is algebraically closed. Let Num(X)
denote the group of Cartier divisors on X modulo the numerical equivalence rela-
tion. Then Num(X) is a free abelian group of finite rank (cf. [7, IV, §1, Prop. 4]):
the rank is just the Picard number of X. The pullback homomorphism F — f*FE
for Cartier divisors F on X induces an injection f*: Num(X) — Num(X) by [7|
IV, §1, Prop. 2]. Thus, f*® Q: Num(X) ® Q — Num(X) ® Q is bijective. If an
irreducible curve C' is contained in a fiber of f, then DC = 0 for any Cartier divisor
D on X by (f*E)C = E(f.C). This is a contradiction. Therefore, f is finite. O

Definition (Pullback of a divisor). Let f: X — Y be a finite surjective morphism
of normal varieties. For a divisor E on Y, the pullback f*FE is defined as a divisor
on X as follows: For the non-singular part Y;eg of Y, the complement of f~!'V,eq
in X has codimension > 2. Thus, we can define f*FE by

FElf-1v,, = 7 (Elyis)

for the restriction f' = flr-1y, : f~'Yieg = Yieg Of f, where f’* indicates the
pullback of a Cartier divisor. The correspondence E +— f*E gives rise to a homo-
morphism Div(Y) — Div(X) of divisor groups, which is also denoted by f*. When
FE is reduced, we write

fﬁlE = (f*E)red
by abuse of notation. Here, Supp f*E = f~! Supp E, since f is finite and surjective.

Remark. If E is Cartier on Y, then f*E coincides with the pullback as a Cartier
divisor. Recall that the push-forward homomorphism f.: Div(X) — Div(Y) is
defined by f.I' = dr f(T') for a prime divisor I, where dr is the degree of the finite
morphism f|p: T' — f(I"). Then (deg f)E = f.(f*FE) for any divisor E on Y.

Definition 3.3 (Ramification divisor). Assume that chark =0 andlet f: X - Y
be a finite surjective morphism of normal varieties. For a prime divisor I" on X, the
ramification index of f along I' is defined as the multiplicity multp f*(f(T")) of the
divisor f*(f(T')) along I'. The ramification divisor Ry of f is an effective divisor
on X defined by

multp Ry = multp f*(f(T)) — 1

for any prime divisor I'.
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Remark. Since chark = 0, f is étale on a non-empty open subset of X, and more-
over, f is étale at the generic point of I' if and only if the ramification index of f
along I' equals 1. In particular, the number of prime components of Ry is finite.

Remark 3.4 (Ramification formula). Let n be a rational n-form on Yes, where
n = dimY. The pullback f*n is defined as a rational n-form on X,es, since the
complement of X;ee N f _1Yreg in X;ce has codimension > 2. We can consider the
canonical divisor Ky, (resp. Kx,,, ) as the divisor of zeros (and the minus of poles)
of n (resp. f*n). We define the canonical divisor Ky (resp. Kx) by Ky
(resp. Kx|x,., = Kx,.,)- Then

Yeew = KVren

Kx = f*Ky + Ry

as a divisor on X. This equality is called the ramification formula. For a reduced
divisor E on Y, there is a divisor F' on X such that F' and f*F have no common
prime components and Ry = F + f*E — f'E, i.e.,

Kx+ [T'E=f"(Ky +E)+F
(cf. [11, Lem. 1.39]). This is also called the ramification formula.

Definition 3.5. Assume that chark = 0 and let f: X — X be a non-isomorphic
finite surjective endomorphism of a complete normal variety. A reduced divisor
D on X (including 0) is said to be completely invariant under f, or f-completely
invariant if f='D = D (cf. [12, Def. 2.12]). Let S(X, f) be the set of prime divisors
I' on X such that (f¥)*I' = I for some k > 0 and b > 1. Then S(X, f) is finite by
the same argument as in the proof of [I2, Prop. 2.15]. We define

Sy = ZI‘GS(X,f) I' and Ay:= ngs(x,f) (multp Ry)T

as in [12, Def. 2.16], where Sy is called the characteristic completely invariant divisor
and Ay is called the refined ramification divisor.

Remark. The divisor Sy is f-completely invariant and we have Kx+ Sy = f*(Kx +
S¢)+ Ay as a ramification formula for f (cf. [I2, Lem. 2.17]).

Lemma 3.6. Let X be a normal complete variety with a reduced divisor D and
let f: X — X be a finite endomorphism such that f~'D = D. Assume that
chark = 0. Then Sy C D if there exist positive integers k and a salisfying the
following conditions for any prime divisor I' not contained in D:

(i) The pullback (f*)*T is Q-linearly equivalent to a*T .

(ii) The ramification index of f along T is less than a.

Proof. Let T be a prime component of S¢. Then (f!)*T' = bI" for some [ > 0 and
b > 1. Assume that I' ¢ D. Then (f*)*T' = b*T" ~g a*'T by (@), and we have
b=a'. Weset I'; = f/(I') for 1 <j <I. Then Iy =T, =T, and if j > 0, then
f*I'; =b;I';_; for some b; > 1. Here, Hé-:l bj=b= a'. Furthermore, I'y ¢ D and
bj <aforany 1 <j<Iby f7'D = D and by (i), since the ramification index of

f along I';_1 equals b;; this contradicts Hl bj = a!. Therefore, Sy CD. (]

Jj=1
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4. SURJECTIVE ENDOMORPHISMS OF COMPLETE TORIC VARIETIES

We shall construct some special endomorphisms of complete toric varieties and
study their properties. We fix a free abelian group N of finite rank » > 0 and a
complete fan A of N, and consider the toric variety X = Tyn(A) with the boundary
divisor D = By(A). We keep the notation in Section [21

4.1. Triggers for endomorphisms.

Definition 4.1. An element a of M = Homy(N,Z) is called a trigger for endo-
morphisms on (N, A) if there is a unique primary vector v, € Pn(A) such that
(o, ) > 0. A trigger « is called a root of (N, A) if (o, v4) = 1.

The following result is mentioned in [2] §4, n°5, Déf. 4, Rem. 3, p. 572], when «
is a root:

Lemma 4.2. For a trigger o for endomorphisms on (N, A) and for a cone o € A,
if o C{a}t, then o + R(v,) € A.

Proof. There is a cone & € A of dimension r such that o is a face 6. If vy & &,
then (a,v) < 0 for any v € Pn(6), and hence, & is contained in the half space
{=a}V. Thus, we may assume that v, € &, since A is complete. We can write
o = {8}t Na for some B € ¢ NM. Then (3,v,) > 0 by (a,v,) > 0. We set
v = {0, Vo) B — (B,vq). Then (y,v4) = 0 and (y,v) > (o, ve)(B,v) > 0 for any
v € Pn(6) \ {va}. Thus, v € Y NM, and {y}* N& = o + R(va) by o C {a}t.
Therefore, o 4+ R(v,) € A. O

Remark 4.3. For two triggers o and 8 for endomorphisms on (N, A), if v, = vg,
then o + § is a trigger with vayp = vo. In fact, (o, ve) > 0, (8,v4) > 0, and
(o, v) <0 and (B,v) <0 for any v € Py(A) \ {va}.

Lemma 4.4. For the toric variety X = Tn(A), let E be a divisor on X supported
on the boundary divisor D = By(A). Then H°(X,Ox(E)) has a canonical graded
M-module structure

0
D H(X.0x (B
in which dim H°(X, Ox (E))m < 1 for any m € M.

Proof. Let Y be the non-singular locus X,e; of X. Then E|y is Cartier and the
restriction homomorphism H%(X,Ox(E)) — H(Y,Oy(E|y)) is an isomorphism.
Here, Oy (E|y) is a Tn-linearized invertible sheaf in the sense of [9, Ch. 1, §3,
Def. 1.6], since E is Ty-invariant. In particular, H(X,Ox(E)) ~ H°(Y, Oy (E|y))
has a structure of graded M-modules by the dual action of Ty. Let j: U — Y be
the open immersion from the open torus U = Tn({0}) = X \ D. Then we have an
isomorphism Oy (E|y )|y ~ Oy of Tn-linearized invertible sheaves by Supp £ C D.
By the canonical injection Oy (El|y) < j«(Oy (E|y)|v), and we have an injection
of graded M-modules

HO(X, Ox () =~ H'(Y, Oy (Ely)) = H(U,Op) =kM] = D) | ke(m).
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Therefore, H*(X, Ox (E))m = H°(X, Ox(E)) Nke(m) for any m € M, and it is at
most 1-dimensional. Thus, we are done. ([

Remark 4.5. By the proof, we see that m € M satisfies H*(X, Ox (E))., # 0 if
and only if div(e(m)) + E > 0 for the principal divisor div(e(m)), i.e., (m,v) +
mult 7,y E > 0 for any v € Py(A) (cf. ([I=I) in Remark 2.3).

Remark. Lemma 4] and its higher cohomology version are well known at least in
the case where E is Cartier (cf. [0 I, §3, Thm. 12], [I, Thm. 7.2], [I4, Thm. 2.6]).

Corollary 4.6. The following hold for any oo € M\ {0} and v € Py(A):
(1) « is a trigger for endomorphisms on (N,A) with v = v, if and only if
H(X,0x (kL (v)))_o # 0 for some k > 0;
(2) « is a root of (N, A\) with v = v, if and only if H*(X,Ox(I'(v)))_a # 0.

Proof. For a and v above, « is a trigger for endomorphisms on (resp. a root of)
(N, AA) with v = v, if and only if (o, v) = k for some k& > 1 (resp. for k = 1) and
(o, 0"y < 0 for any v € Pn(A) \ {v}: By Remark 5] this is also equivalent to
HO(X, Ox (kT(v)) - 0. O

Corollary 4.7. Let T be a prime component of the boundary divisor D = By(A).

(1) If some multiple of T is linearly equivalent to a mon-zero effective divisor
not containing T, then T' = I'(v,) for a trigger « for endomorphisms on
(N, ).

(2) If some multiple of T is linearly equivalent to a non-zero effective divisor E
supported on D —T', then there is a trigger o for endomorphisms on (N, A)
such that div(e(«)) = kI' — E for some k > 0.

Proof. (): By assumption, there is a non-zero element ¢ € HY(X,Ox(kT')) for
a positive integer k such that the divisor div(({) of zeros does not contain I" as a
prime component. By Lemma E4, we can write ( = ) (, for elements (, €
HY(X,0x(kI')), for o € M. Since X is complete, k' ¢ 0. Thus, there is an
element o € M\ {0} such that {_, # 0 and that the divisor div(¢_,) of zeros does
not contain I' as a prime component. This « is a trigger for endomorphisms on
(N, A), and T = I'(v,) by Corollary EOI]).

@): There is a rational function f on X such that the principal divisor div(f) is
expressed as kI' — E for a positive integer k. Then f|y is nowhere vanishing on the
open torus U = X \ D. The group H°(U, Oy)* ~ k[M]* of invertible functions on
U consists of Ae(m) for A € k* and m € M. Thus, we may write f = e(«a) for some
a € M. Then « is a trigger for endomorphisms on (N, A) by div(e(a)) = kI — E,
where I' = I'(v,) and k = {a, v4). O

Lemma 4.8. Let a and § be two triggers for endomorphisms on (N,A). If
(o, v8) <0 and (B,vq) <0, then one of the following holds:

(1) There exist triggers o' and ' such that v, = Vo, v = vgr, and (', vg) =
<B/a Ua’> =0.
(2) There exist positive integers a and b such that ac + b = 0.
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Proof. By assumption, we have v, # vg. For prime components I'y, := I'(v,) and
Iz := I'(vg) of D and for non-negative integers
hoz = <O‘7Ua>a hﬁ = <va,ﬂ>a €a,B = 7<Oé,’UB>, €8,a ‘= 7<57FU0¢>7
we consider effective divisors
Go = holy —enpl's —div(ie(a)) and Gp:= —egolo + hpl's — div(e(s))
on X supported on D — (', + I'g). Then
(IV 1) hBGa + eaﬁGB = (hahlg — €a7,36,37a)ra — diV(@(hﬁO& + eaﬁﬁ)),
) egyaGa + haGg = (hahg — ea’gegya)rg — div(e(egwaa + haﬂ)).

Hence, hohg — eqpega > 0. If hohg — eqpesa > 0, then o := hga + eq g
and 3’ = eg o0 + hof are triggers such that vy = v,, vg = vg, and (/,vg) =
(B',va) = 0 by (IV=1). Thus, (@) holds in this case. Assume that hohg = €4 g€s,0-
Then ea 3 > 0 and eg o > 0 by hohg > 0, and hence, G, = Gg = 0 by ([V=).
Consequently, hol'a ~ €q,81'3, €g.0l'a ~ hgl'g, and

eg,o div(e(a)) + hq div(e(B8)) = hg div(e(a)) + eq g div(e(B)) = 0.
Therefore, eg o + hofS = hga+ €436 = 0, and (@) holds. Thus, we are done. [J
Lemma 4.9. Let P = P(x) be a polynomial in k[x] for one variable x such that
P(0) # 0. For a trigger o for endomorphisms on (N,A), there is an effective

divisor Eo(P) on X such that any prime component of E,(P) is not contained in
D and

div(P(e(=))) = Ea(P) — (deg P){c, va)I'(va),

where P(e(—«)) is regarded as a rational function on X.

Proof. Since e(—a) € k[M], P(e(—«)) is regular on the open torus X \ D. Thus, the
assertion follows from Lemma 25 since (o, v) <0 for any v € Py(A) \ {va}. O

4.2. Endomorphisms of complete toric varieties defined by triggers.

Definition 4.10. Let a; and a9 be triggers for endomorphisms on (N, A) and let
P (x) and P»(x) be polynomials in k[x] for one variable x such that P;(0)P>(0) # 0.
Let Z12 C Tn be the zero locus of the function Pi(e(—aq))P2(e(—az)). For a
positive integer k, a morphism Z = 2, o, x(P1, P2): Tn \ Z1,2 — Tn is defined by

E() = u" -, (Pu(u(=01)) -7y, (P2(u(~02)))

for T-valued points u of Ty \ Z1,2 for any k-scheme T, where - stands for the
multiplication in Tn(T"). For a trigger a and a polynomial P(x) with P(0) # 0 and
for the zero locus Z C Ty of the function P(e(—«)), we set Eq 1 (P) := Zq,a.k(P, 1)
as a morphism Ty \ Z — Ty, in which

Ean(Pyu=u" -7, (P(u(-a)))

for any T-valued point u of Ty \ Z for any k-scheme 7.
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Remark 4.11. By definition,
Sar,a0.k(P1, P2) = Bag,a0 k(P2, P1) and  Eg o k(P1, P2) = Eq k(P P2).

If P(x) =1+ Xx for a constant A € k and if « is a root, then =, 1(P) is just the
morphism z,(A) defined in [2] §4, n°5, Thm. 3, p. 573] (cf. [I4, Prop. 3.14]).
Remark 4.12. For E = Z,, o, k(P1, P2), we have
(V2)  Z()m) = wlom) Py () ") Pafu(—a)) )
for any m € M and for any T-valued point u of Ty \ Z; 2 for any k-scheme T'. This
implies that
(IV-3) Z*e(m) = e(km) Py (e(—ay)) ™v1) Py(e(—ay))mvaz)
for any m € M. Hence, = is regarded as a rational map X ---— X by identifying Ty
with X \ D, since Pi(e(—a1)) and Py(e(—az)) are rational functions on X.
Proposition 4.13. In Definition [£10, assume that one of the following holds:

(i) Vay = Va,, and the integer k satisfies

k> (a1,v4,) deg P1 + (a2, vq,) deg Po;
(ii) either {a1,va,) =0 or {(a2,va,) = 0, and the integer k satisfies
k > max{({a1, va, ) deg P1, (0, Vo, ) deg Pa}.

Then Zq, as.k(P1, P2) is regarded as an endomorphism of X = Tn(A) and it induces

an endomorphism of the affine toric variety Tn(o) for any cone o € /A containing

Vo, and Vg, .

Proof. For simplicity, we set v; = v,, and d; = deg P; for i = 1, 2, and set = :=
Ear a0,k (P1, P2). In (), we may assume that (as,v1) = 0 by Remark LTIl Note
that v; # ve in (@l). We shall prove the assertion by the following three steps
modifying arguments in the proof of [I4, Prop. 3.14].

Step 1. We shall prove the last assertion on Ty(o) for any o € A such that
{v1,v2} C o. In this case, (m,v1) > 0 and (m, vs) > 0 for any m € o N M. Hence,
E*e(m) € k[M] for the same m by ([V-3)) in Remark [LT2l We set
§o(m) == multp(,y div(E*e(m))
for m € M and v € Py(A). Then
& (m) = (km,v) + d1(m, v1) min{0, —(a, v) } + da(m, vo) min{0, — (s, v)}

by Lemma [ZH and by equalities ([I-1) in Remark 23] and ([V=3) in Remark
Thus, the following hold for any m € oV N M and v € Py(o) by (@) and (@):

o If v & {vy,v2}, then &,(m) = k(m,v) > 0.

o If v = vy = vq, then &,(m) = (k — di{a1,v1) — da{ag, va))(m,v) > 0.

o If vy # w9 and if v = v; for i = 1, 2, then &,(m) = (k—d;{a;,v;))(m,v) > 0.
Therefore, =*e(m) € k[o¥ N M] for any m € ¥ N M by Remark 241 This implies
that Z induces an endomorphism Ty(o) — Tn(0o).
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Step 2. We shall show that E induces a morphism Tyn(o) — Tn(A) when v1 € o
but vo € o. Note that (as,v1) = 0 by our assumption. Now, —as € ¥ N M,
and e(—ay) is regular on Ty(o). Let Uy and V, be Zariski-open subsets of Ty(o)
defined as the complements of zero loci of regular functions Pe(e(—as)) and e(—az),
respectively. Then Ty (o) = Us UV, by P2(0) # 0, and Vo = Ty({az}* No) by [14]
Prop. 1.3]. Let 72 be the cone R(vg) + ({2}t Na). Then 75 € A by Lemma 2]
and Vo C Tn(72). Moreover, {v1,v2} C T2, since (az,v1) = 0. Hence, = induces a
morphism Vo C Tn(72) — Tn(72) C Tn(A) by Step M applied to 75. It suffices to
prove that = induces a morphism Uy — Tn(o). Let 13 be the nowhere vanishing
function Py(e(—ag)) on Us. Then

=" e(m)lu, = vae(km) Py (e(—ar))™ ™y,
for m € M by ([V=3) in Remark Hence, it is enough to show that
W) = mult p(, div(e(km)P;(e(—ay)) ™)) >0
for any m € 0¥ N'M and any v € Py(o), by Remark 241 Now,
W (m) = (km,v) + dy (m, v1) min{0, —(ay,v)}

by Lemma 25 and we have (m,v) > 0 and (m,v;) > 0. If v # vy, then &()l)(m) =
k(m,v) > 0 by (ai,v) <0. If v = vy, then

M (m) = (k — dy{aq,v1))(m,v1) >0

v

by (). Therefore, &gl)(m) > 0 for any such v and m. Consequently, = induces a
morphism Us — Tn(o) and a morphism Tn(o) — Tn(72) U Tn(o) C Tn(AD).

Step 3. The final step. By Steps [0 and Bl it suffices to prove that = induces a
morphism Tn(o) — Tn(A) for any cone o € A not containing v;. In this case,
—a; € oY N M, and e(—ay) is regular on Tn(o). Let U; and Vi be Zariski-
open subsets of Ty(o) defined as the complements of zero loci of P;(e(—aq)) and
e(—ay), respectively. Then Tn(a) = Uy U Vi, Vi = Tn({an}+ N o), and the cone
71 :=R(v1) + ({1} N o) belongs to A by the same argument as in Step 2l Since
Vi € Tn(7T1) and since vy € 71, Z induces a morphism Vi C Tn(71) = Tn(A) by
Steps Ml and 21 Tt remains to prove that = induces a morphism U; — Tn(A). Let

11 be the nowhere vanishing function Pj(e(—«1)) on Uy and set & := E,,(P) =
Eas,as (1, P2) (cf. Definition ELT0). Then
(IV-4) Ee(m)|u, = ¢re(km)Py(e(—az)) ™" |y, = $1(E"e(m))lv,

for any m € M by ([V=3) in Remark

Assume that va € o. Then E*e(m) € ¥ N M for any m € ¢V N'M by Step [
and =*e(m)|y, is regular for the same m by ([V=4)). Thus, E induces a morphism
U, — Tn (0’)

Assume that vo € 0. Then —as € VNM. Let Us and V5 be Zariski-open subsets
of Tn(o) defined as the zero loci of regular functions Pa(e(—as)) and e(—as) on
Tn(o), respectively. Then Tn(o) = Uy U Vo, Vo = Ty({az}t N o), and 79 =
R(v2) + ({2}t Na) € A as in Step Since vy € T2, = induces a morphism
Vo C Tn(72) = Tn(72) C Tn(A) by Step Il Hence, Z*e(m) is regular on V5 for
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any m € 7y N M, and Z*e(m) is also regular on U; N Vs, for the same m by ([V=4).
Therefore, Z induces a morphism Uy N Va2 — Tn(72). On the other hand, by ([V=3)
in Remark £.12, we have

= e(m)|vyno, = e(km)™ ™ 0, o,

=k

for the nowhere vanishing function ¢s = Py(—e(az)) on Uy. Thus, Z*e(m) is
regular on U; NU; for any m € oV NM, and hence, = induces a morphism U; NUs —
Tn(o). Consequently, E induces a morphism Ty(o) — Tn(A). Thus, we are
done. (]

Ezample 4.14. We consider the case where X = P2. Here, N is of rank 2 with a
free basis (e1,e2), i.e., N = Zey @ Zeo, and the complete fan A of N consists of
{0}, R1 = Rzoel, R2 = Rzoe% R3 = Rzo(—el - 62), g1 = R2 + Rg, g9 = R3 + Rl,
and o3 = R; + Ry. In particular, Py(A) = {e1,e2, —(e1 + e2)}. For a dual basis
(f1, f2) of M, ie., (fi,e;) = d;;, we set t1 := e(f1) and t2 := e(f2), which are
inhomogeneous coordinate functions of X = P2. Let a; and ay be triggers for
endomorphisms on (N, A) such that v,, = €1, Vo, = €2, and (a1,v4,) = 0. Then

oar=ar1fi and g = —bafi +aafo

for positive integers a; = (a1, vq,), a2 = (Q2,04,), and an integer 0 < by < as.
In particular, e(—a;) = t;*" and e(—ag) = t}?t;°%. For i = 1, 2, let P;(x) be
a polynomial in k[x] such that P;(0) # 0. We set d; := deg P;. For a positive
integer k > max{dia1,d2as}, we have an endomorphism = = Zq, o, x(P1, P2) of X
by Proposition [£13l Here,

Zt; = thP (t7) and E*ty = thPy(t5°2th2)

by ([V=3) in Remark 2121 and Z is determined by these equalities. We can describe
= by a homogeneous coordinate (Zg : Z : Zo) of P? such that Z; /Zg = t1 and Z3/Zg =
to: For ¢ = 1, 2, the homogeneous polynomial

F;(U,V) := v% P;(U/V) € k[U, V]
is of degree d;, and F;(0,1) # 0 and F;(1,0) # 0. Then Z is determined by

5470 =2k, =z =28 hapy (20,79, Bz, = zh 02y (702t zhe 78,

4.3. Properties of endomorphisms defined by triggers. We shall study the
endomorphism =g, o, x(P1, P2) of X = Tn(A) defined in Proposition I3l For
simplicity, we set

Ei=Eaank(P1, P2), v :=v,, and d;:=degP;
for i = 1, 2 as in the proof of Proposition [£.13]
Lemma 4.15. The degree of = equals k”.

Proof. Let (my,ma,...,m;) be a free basis of M, and set t; := e(m;) for 1 < j <r.
Then the function field of X is equal to k(t1, ta, . . ., t,), which is pure transcendental
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over k. The pullback =*¢; is a rational function for any 1 < j < r, and deg Z equals
the degree of the field extension
k(t1,to, ... t.) k(2 1, ..., Z%).

We shall verify k" = degZ by a suitable choice of (mq,...,m,). For a fixed

(ma,...,m,), we define integers a; j for 1 <i<2and 1< j<r by
I T
(IV-5) o) = Zj:l aj;m; and op = Zj:l az,jm;.
Case 1. First, we consider the case where v; = vy. We set v° := v; = vg. Since
v° is a primitive element of N, we can take a free basis (m1, ma,...,m,) such that

(m1,v°) =1 and (m;,v°) =0 for any j > 1. Then
(a1,v°) =a11 >0 and (ag,v°) =ag1 >0
by ([V=5)). From ([V=3)) in Remark ET2 we have =*t; = t¥ for any i > 2, and
', =tV Pi(e(—a1))Pa(e(—ay)).
By Corollary 8, =*t; € k[ty,t5!, ..., tF!], since
k 4+ min{0, —dya1,1} + min{0, —dsas1} = k — dia1 1 — deaa1 >0

by Proposition LT3({l). Hence, there is a polynomial Q(x) € K|x] of degree k for
the field K = k(¢a,...,t.) such that Q(¢t1) — E*t; = 0. Thus,

deg K(t1)/K(E"1) =k

by Lemma below. On the other hand, deg K (Z*t)/KT(Z*t;) = deg K/K' =
k"= for the subfield KT = k(Z*ty,...,=*t,) of K. Thus,

degE = degk(tl,tg, e ,tr)/k(E*tl, E*tg, ceey E*tr) = deg K(tl)/KT(E*tl) =k".
Case 2. Second, we consider the case where v; # v,. We may assume that
(a2,v1) = 0 in Proposition EI3|[). Then primitive elements v; and vy of N are
linearly independent. Hence, we can find a free basis (m,ma,...,m;) of M and
integers p and ¢ such that 0 < p < ¢, ged(p,q) =1,
(IV'G) <mlavl> = 17 <m1,1}2> =D, <m2,’l)1> = 07 <’I’TL2, U2> =4q,
and (ms3,my,...,m,) is a free basis of {v1, v} N M. Then

(1,v1) = a1 >0, (a1,v2) =a11p+ai2q<0,

(IV-7)
(,v1) = ag1 =0, (a2,v2) =az1p+az2q=az2q>0,

by ([V=5). In particular, a1 < —aj1p/q < 0, and az2 > 0. From ([V=3)) in
Remark BLT2] we have E*t; = t¥ for any j > 3,

Ety = thPy(e(—ap))?, and Z*t; = tFPi(e(—ay))Pa(e(—asz))P.
By Corollary 8, =ty € ktg, ti', ..., t!] and Z*t; € k[t1,t5",...,tF!], since
k4 dagmin{0, —as 2} = k — dagaz 2 > 0 and
k4 dqy min{0, —a1,1} + pde min{0, —as1} = k —dya11 >0
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by Proposition LI3|[). We set Lo :=k(¢s,...,t.) and Ly :=k(ta,...,t,) = La(t2)
as subfields of k(t1,...,%.). Then there exist polynomials Q2(x) € Ls[x] and
Q1(x) € L1[x] of degree k such that Qa(t2) — =ty = 0 and Q1(t1) — E*t; = 0.
By Lemma below, we have

deg La(to)/La(E%ts) = deg Lo(Et1,t2)/La(E%t1,E%ts) = deg L1 (t1)/L1(E7t1) = k,
where Lo(Z*t1,t2) = L1(Z2*¢1). On the other hand,
deg Lo(E*ty, E*ty) /LE(E*ty, E*ty) = deg Lo/ L = k"2
for the subfield L; = k(Z*t3,...,2*t,) of Ly. Hence,
deg 2 = degk(ty,...,t,)/k(E*ty, ..., E*,) = deg Ly (t1) /L (E*t1, E¥ty) = k"
Thus, we are done. (Il
In the proof of Lemma above, we use the following:

Lemma 4.16. For a field K and two variables x and y, let L = K(y) be the
field pure transcendental over K and let Q(x) be a polynomial in K|x| of degree
k> 0. Then y — Q(x) is irreducible in L[x| and deg M /L = k for the field M =
Llx]/(y = Q(x)).

Proof. This follows from the irreducibility of y — Q(x) in K|[x,y]. O

The endomorphism Z: X — X is finite by Theorem [[LT1 Thus, we can consider
the pullback of a divisor by = (cf. Section B.2)).

Proposition 4.17. For any divisor F on X, the pullback =Z*F is Q-linearly equiv-
alent to kF. Moreover, the following hold, where E; is the effective divisor E,, (F;)
defined in Lemma 9], fori=1, 2:

(1) If v € Pn(D) \ {v1,v2}, then E*I'(v) = kI'(v).

(2) If v1 = va, then

E*F(UO) = kOF(UO) + E1 + E2
for v° := vy = vy, where k° :=k — dy{a1,v°) — da{ag,v°).
(3) If v1 # v, then
B (vi) = ki (v;) + E;
for any i =1, 2, where k; := k — d;{c;, v;).

Proof. We may assume that (ay,v2) = 0 in Proposition EI3|[). Note that the
convex cone o, := R(v1) + R(v2) belongs to A. In fact, this is trivial in case
vy = vg, and if vy # vg, then {a;}t N R(ve) = R(v2) by Proposition EI3IH), and
oo € A\ by Lemma L2 We set

D, = I'(v).
« ZUEPN(A)\{Ul,vQ} (v)

First, we shall show (). Since {(a;,v) < 0, e(—q;) is regular on Tn(R(v)).
Note that Tn(o) N I'(v) = (. Since = induces an endomorphism of Ty (o) (cf.
Proposition EE13)), we have Tn(o,) NZ~ 1 (v) = 0. In particular, Z-1I'(v) C D,.
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By LemmalL9], P;(e(—«;)) is a local defining equation of E; in Ty(R(v)) for i = 1,
2. We set U := Tn(R(v)) \ (E1 U Es) and v; := P;(e(—a;))|y for i = 1, 2. Then

(IV-8) =re(m)lu = e(m)Fp{™ " pim

for any m € M by ([V=3) in Remark We can take an element m; € M such
that (my,v) = 1, since v is primitive. Then m; € R(v)¥ N M, and e(m;) is a local
defining equation of I'(v) in Tn(R(v)). Hence, Z*I'(v)|yy = kI'(v)|yy by ([[V=8) for
my. Therefore,

=*I'(v) =kI'(v)+G

for an effective divisor G supported on D, —I'(v). If I'(v") C Supp G for some v’ €
Pn(A), then T'(v') € 271 (v') by the same argument as above for v/, and hence,
E(I'(v")) € I'(v) N I'(v"). This contradicts the finiteness of =, since dim I'(v) N
I'(v') < dim I'(v"). Therefore, G = 0, and we have proved ().

Next, we shall prove the first assertion of Proposition [£.I7 Every divisor on
X is linearly equivalent to a divisor supported on the boundary divisor D, since
the divisor class group of the open torus X \ D is zero. By (), it is enough to
show that, for ¢ = 1, 2, some multiple of I'(v;) is linearly equivalent to a divisor
supported on D,. Now, we have

div(e(a;)) = (a;,v1) T (v1) + (i, v2) I'(va) + ZvepN(A (g, v)T(v).

N w102}
Thus, the assertion holds if v; = vs. Even in case vy # vg, since we have assumed
(a1, v2) = 0, the assertion holds by equalities above for div(e(a;)) and div(e(az)).
The remaining assertions (2) and (3] are shown as follows:

@): For v° = vy = vy, we have o, = R(v°). Let (my,ms,...,m,) be the
free basis of M in the proof of Lemma taken for the case: v; = vy. Then
(mg,m3,...,m,) is a free basis of {v°}+ N M and (m;,v°) = 1. As in the proof of

@), e(my) is a defining equation of I'(v°) in Tn(o ). Hence,
E*T(v°)| 1y (vey = div(E"e(ma1))|ry(we)-
On the other hand, we have
E*e(ml) = e(kml)Pl(6(70&1))P2(6(70[2))

by ([V=3) in Remark L.12l Hence,

(1]

“I(v°)|ry(wey = (K°T(v°) + E1 + Ea)|ry(v0)

by Lemma 291 For any v € Py(A) \ {v°}, the prime divisor I'(v) is not contained
in 271 (v°) by (@) and by the finiteness of =. Thus, we have the equality in (2.
@): Let (mi,ms2,...,m,) be the free basis of M in the proof of Lemma
taken for the case: vy # vo. Then (ms3,my,...,m,) is a free basis of at N M,
and values of (m;,v;) for 1 < 4,5 < 2 are given as in ([V=0)) in the proof of
Lemma for mutually coprime integers p and ¢ such that 0 < p < q. We set
my := qgmy —pma € o NM. Then (mi,v1) = q, (Mm1,v2) = 0, {(ma,v1) = 0,
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(ma,v2) = g, and moreover,
{mealnNM|(mv) >q}=mi +a.NM,
{mealNM| (m,ve) >q} =ma+alNM.

Hence, ¢I'(vy) and ¢T'(vg) are Cartier divisors on Ty(o ) with local defining equa-
tions e(my) and e(mz), respectively (cf. Remark 2.3). Thus,

(1]

YL (v1)) |y (o) = div(E"e(m1))|1y(0,) and
EX (L (v2))lmy(oa) = div(E"e(m2))|ny(o.)-
On the other hand, we have
=*e(my) = e(kmy)Pi(e(—a1))? and ZE*e(mq) = e(kmz)Pa(e(—asz))?
by ([V=3)) in Remark and it implies that

E(qL(vi)) |ty (o0) = (kL' (v1) + qE1) |1y (00)

for i =1, 2, by Lemma 3 Now, 2~'I'(v;) and £~ 'I'(v3) do not contain I'(v) for
any v € Py(A)\ {v1,v2} by @) and by finiteness of Z. Thus, @) holds, and we are
done. O

Remark. When X is projective, we have another proof of Lemma .15 by applying
Proposition 417, since Z* A ~g kA for an ample divisor A on X and since (E*A)" =
(degZ)A” for r = dim X.

When chark = 0, we can consider the ramification divisor Rz and the charac-
teristic completely invariant divisor Sz of the endomorphism = (cf. Definition B3).
In some special cases, we have a simple description of Rz and S=.

Ezxample 4.18. Assume that chark = 0. For a positive integer k, the multiplication
map N — N by & induces a morphism (N, A) — (N, A) of fans, and we have an
associated endomorphism gy of X = Tn(A). Then py is a k-th power map, i.e., it
induces Tn(R) ~ N ®z R* 3 u + u* for any k-algebra R. In particular, yy, induces
a finite étale endomorphism of the open torus X \ D. Moreover, pu = 24 (1) for
any trigger a in the sense of Definition 10

For a root o of (N,A) and for A € k\ {0}, let z,(A\) be the automorphism
Ea,1(1 + Ax) as in Remark T1] For integers k and [ greater than 1, we set

E =11 0Tq 0 i)
as an endomorphism of X and consider its ramification divisor. Note that deg= =
(kl)" and that = = Zj, i (P) for the polynomial P(x) = (1 + Ax)! by equalities
pre(m) =e(km) and z,(\)*e(m) = e(m)(1 4 le(—a)){mv=)
for any m € M (cf. (IN=3) in Remark E12). Now, piI'(v) = kI'(v) for any v €
Pn(A): This is a special case of Proposition LT7[I). Moreover, z,(A)*I'(v) = I'(v)
for any v € Py(A) \ {va}. For v = v,, note that 4 (A\)*I'(v,) is a prime divisor

not contained in the boundary divisor D, since we have assumed A # 0. Hence,

Fo = pj(2a(A)T'(va))
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is a reduced divisor having no common prime components with D. Since the ram-
ification divisor R, of uj equals (k — 1)D, the ramification divisor Rz of Z is
expressed as

R

(1

= Ry, + i (2a(N) Ry,) = (k= 1)D + (I = pg(za(A)* D))
— (k= 1)D+ (1= Dk(D — T'(va)) + (I — 1)Fa
= (kl_1)(D_F(Ua))+(k_1)r(va) (l_l) a

In particular, for a prime divisor © not contained in D — I'(v,), the ramifica-
tion index of = along © is less than kl, since we have assumed k, | > 1. By
Proposition [4I7, we know that =*F ~q kIF for any divisor F on X. Hence, the
characteristic completely invariant divisor Sz equals D — I'(v,) by Lemma

For a general = = Z,, o, (P1, P2), we have only the following weaker result on
RE and SE

Lemma 4.19. Assume that k is of characteristic zero, X is projective, and
(IV—Q) k—2> (d1<0q, U1>F(1}1) + d2<a2,U2>F(U2))HT71
for an ample divisor H on X. Then the following hold for the divisor

D, = I'(v):

ZUG'PN(A)\{UQI Wag }

(1) The ramification index of E along any prime divisor © on X not contained
m D, s less than k.

(2) Let g be an automorphism of X such that g7'D = D and g~'D, = D,.
Then D, equals the characteristic completely invariant divisor Sgo= of the
endomorphism g o =.

Proof. For a prime divisor O, let rg be the ramification index of = along O, i.e.,
re = multg Z*(Z(0)). For the automorphism g in (2)), the ramification index of
g o= along O is also equal to rg. Hence, (2 is a consequence of ({Il) by Lemma
and Proposition E.I7

Assertion (D)) is shown as follows: If © = I'(v;) for some i = 1, 2, then ro = k;
(resp. = k°) in case vy # vo (resp. v1 = vg) by @) (resp. [@)) of Proposition EI7}
Here, k > k; (vesp. k > k°) by ([V=9), and () holds for this ©.

Assume that © is a prime component of F; for some ¢ = 1, 2, where F; and F5
are as in Proposition .17 (cf. Lemma[9)). Then ©|x\ p is defined by an irreducible
element ) € k[M] which is a factor of P;(e(—«;)). Here, d; = deg P, > 0 by the
existence of ©. Let

=c H (x— )™

be the polynomial factorization in k[x] for an algebraic closure k of k, where ¢ €
k\ {0}, \s € k\ {0}, and d; = Zi:l ng. If a € M is written as af for a primitive
element 5 € M and an integer a > 0, then

a—1

e(a) A" =J[ _ (e(B) —¢*N)
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for any A\ € k, where ( is a primitive a-th root of unity, and each factor e(3) —(*\ is
irreducible in k[M]. This implies that the multiplicity of Q in P;(e(—a;)) is at most
d; = deg P;, or equivalently, multg F; < d;. On the other hand, rg = multg E; by
@) and @) of Proposition EETTl Therefore, r¢ < k — 1 by ([V=9). Thus, () holds
for this ©.

For the rest of the proof, it suffices to prove rg < k — 1 for any prime divisor ©
not contained in D+ E + Eo. By Proposition E17] we have =~ 1(D) = D+ E; + Fs.
As a ramification formula for Z, we have

Krya) + D+ (Br + Ea)rea = E" (Kry(a) + D) + A
for the effective divisor

A = —1)e
Z®¢D+<E1+E2)red (re —1)

(cf. Remark 3.4). Hence, (E) + Ea)red ~ A by Kryay +D ~ 0. If v° = vy = vy,
then

Ey + By ~ E*T(v°) — k°T'(v°) ~ (k — k°)I"(v°) = ZQ

di <Oti, Ui>F(Ui>

i=1

by Proposition L1717 If v; # vo, then

Byt By~ Y () ~ kL))~ Y dilan,v) D)
by Proposition ET7l Hence, in both cases, by ([V=9)), we have
k—2> (B + E)H ™' > (By 4 Ey)reaH" ™
=AH"'> (ro — 1)@HT_1 >rg—1
for any © C Supp A. Thus, we are done. [l

4.4. Proof of Theorem

Proof of Theorem [[2 We write X = Tn(A) for a free abelian group N of rank r
and for a complete fan A of N. For the boundary divisor D = Bn(A), we are given a
reduced divisor B contained in D such that, for any prime component I' of B, some
multiple of T" is linearly equivalent to an effective divisor not containing I'. We shall
construct an endomorphism of X satisfying conditions (Il)—(&l) of Theorem[[2l Note
that Theorem [L2Y[) follows from (), (@), and (E) of Theorem by Lemma
First, we consider the case where B is a prime divisor. Then there is a trigger «
for endomorphisms on (N, A) such that B = I'(v,,), by Corollary (). Let Z be
the endomorphism of X defined as =, ;(P) for an integer k£ > 1 and a polynomial
P = P(x) in k[x] with P(0) # 0 such that deg P > 0 and k > (o, v,) deg P. Then =
satisfies (dI), @), @B) and ) of Theorem [[.2 by Proposition 417 and Lemma [£.15
Suppose that chark = 0 and X is projective. In this situation, we take k so that

k—2> (a,v,)(deg PYBH"*

for an ample divisor H on X. Then = satisfies Theorem [[2([H) by Lemma TO(T).
Second, we shall prove Theorem by induction on the number n(B) of prime
components of B. Let C be a prime component of B. By induction and by the
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argument above in the case of prime divisor, we may assume the existence of endo-
morphisms f;: X — X and fo: X — X with positive integers k; and ko satisfying
the following conditions

(i) fiF ~q k1 F and f5F ~q koF for any divisor F' on X;
(ii) fiT = k1T (resp. foT = koI') for any prime component I" of D — C' (resp.
D —(B-0));

(iii) f{'C # C and f;'© # O for any prime component © of B — C;

(iv) deg f1 = k] and deg fo = k&.
Then the composite f = fy o f1: X — X and the integer k = k; ko satisfy (), @),
and (@) of Theorem by @), @), and (X)), respectively. We have f~1C # C by
@) and (@), since f, *C = C. Similarly, f~'0 # © for any prime component © of
B—C. In fact, if f~'0 = f;7'(f;'©) = ©, then we have f; '@ = © by f;'0 = ©:
This is a contradiction. Thus, Theorem [L2|[3)) is also satisfied. In the case where
chark = 0 and X is projective, we may assume the following additional condition
by induction:

(v) the ramification index of f; (resp. f2) along a prime divisor not contained
in D—C (resp. D — (B — C)) is less than k1 (resp. k2).

Then Theorem [[L2[H) holds for f = foo f1 and for k = k1ko. Thus, we are done. O

5. ENDOMORPHISMS COMMUTING WITH AN INVOLUTION

In Section 5.1} we shall study automorphisms of a complete toric variety preserv-
ing the boundary divisor, and compare endomorphisms defined by triggers. When
the automorphism is an involution, in Section (2] we shall prove Theorem [L3]
on the existence of certain non-isomorphic surjective endomorphisms equivariant
under the involution. In this section, we fix a complete fan A of a non-zero free
abelian group N of finite rank, and set X to be the toric variety Tn(A) and D to
be the boundary divisor By(A).

5.1. Automorphisms of a toric variety preserving the boundary divisor.

Definition 5.1. We define Aut(X, D) to be the group of automorphisms g: X — X
such that g(D) = D, and define Aut(N,A) to be the group of automorphisms
¢: N — N such that ¢r(o) € A for any o € A. For a k-valued point u of Ty, we
define L,, to be the action of v as an automorphism in Aut(X, D).

Remark. The automorphism L, is the composite of the morphism Ty x X — X of
action of Ty on X and the morphism u X idx: Speck x X ~ X — Ty x X defined
by u € Tn(k) = Homy(Speck, Ty). The correspondence u +— L, gives rise to a
group homomorphism Ty(k) = N ®z k* — Aut(X, D).

Remark. For any ¢ € Aut(N,A), the associated morphism Ty in Definition 2]
is considered as an automorphism in Aut(X, D), since ¢ is a morphism (N, A) —

(N, A) of fans. Moreover, ¢ — Ty gives rise to a group homomorphism Aut(N, A) —
Aut(X, D).
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Lemma 5.2. The group Aut(X, D) is isomorphic to the semi-direct product Ty (k) x
Aut(N, A) with respect to the homomorphism Aut(N,A) — Aut(Tn(k)) given by
o= (u— ¢(u)) (¢f. Definition ZT[)).

Proof. The restriction homomorphism Aut(X, D) — Aut(X \ D) is injective, and
Aut(X \ D) is anti-isomorphic to the group Aut(k[M]/k) of k-algebra automor-
phisms of k[M]. Since an invertible element of k[M] is expressed as ce(m) for some
c € k* and m € M, we have an isomorphism

Aut(k[M]/k) ~ Hom(M, k*) x Aut(M),

where Hom(M,k*) is a right Aut(M)-module by x¥(m) = x(¢(m)) for m € M,
v € Aut(M), and x € Hom(M, k*). Therefore, Aut(X \ D) is isomorphic to Ty (k) x
Aut(N). In particular, Aut(X \ D) is generated by actions L, on the open torus
X\ D for all u € Tn(k) and by automorphisms Ty of Ty = Tn({0}) = X \ D for
all ¢ € Aut(N). The automorphism Ty extends to an automorphism of X if and
only if ¢ € Aut(N, A), since Ty is equivariant under the action of Ty and A is in
one-to-one correspondence with the set of orbits of Ty in X (cf. [14, Prop. 1.6]).
Hence, Aut(X, D) is generated by L, for u € Ty(k) and T, for ¢ € Aut(N, D).

Therefore, Aut(X, D) ~ Tyn(k) x Aut(N, A). O
Remark 5.3. For any u € Ty(k) and ¢ € Aut(N, A), we have

(V-1) Tg o LyoT," = Ly

by Lemma This is shown directly by equalities

(V-2) Lie(m) =u(m)e(m) and Tje(m)=e(¢'m)

for any m € M, where ¢¥: M — M stands for the dual of ¢ (cf. Definitions 2.1] and
2.1).
Definition 5.4. For an automorphism g € Aut(X, D), we define g. € Aut(N, D)
to be the image of g under the projection

Aut(X, D) ~ Tn(k) x Aut(N, A) — Aut(N, A).
We define g* to be the dual (g.)¥ as an automorphism of M.
Remark 5.5. If g = L, o Ty for some v € Tn(k) and ¢ € Aut(N, A), then g, =

¢. When k = C, g. is just the induced automorphism of H;((X \ D)**,Z) ~
Hy((Tn)?™,Z) ~ N, where #* indicates the associated complex analytic space.

Remark 5.6. For u € Tn(k) and ¢ € Aut(N,A), the automorphism L, o Ty in
Aut(X, D) is an involution if and only if ¢? = idy and ¢(u) = u~!. This is shown
by (V=I) in Remark 5.3

Lemma 5.7. For any u € Tn(k) and ¢ € Aut(N,A) and for the endomorphism
Eor.as.k(P1, P2) of X = Tn(A) in Proposition LI3], the equality

(V-3)  LuoTyoZayan(Pr,Po)o(LuoTy) ™ = LynsoZ.0 i (P, Pf)

holds as an endomorphism of X, where o := (¢~1)V ey and P (x) := P;(u(a))x)
fori=1, 2.
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Proof. The automorphism ¢ induces a permutation of Py(A), and ((¢~1)Vm, v)

(m, ¢~ tv) for any v € Py(A) and m € M. Hence, ozzT is also a trigger and v, i =

®(va,) for i =1, 2. The equality (V=3)) is deduced from two equalities

(V-4) Ly 0 Eayan,k(P1, P2) 0 Lll =Ly-ro0 Eal,az,k(Pli’Pzi)a
(V-5) Ty 0 Zayan (P, P2) 0 T =21 i 1 (P1, Pa),

where P}(x) := P;(u(ay)x) for i = 1, 2 in (V=4). We can verify them using ([V=3)
in Remark and (V=2)) in Remark [5.3] for any m € M: We set

k(Pli,Pgi)7 and ET == + Tk(P17P2)-

ag,y,

— — =1 —
— — = (e S
o= ot i=4

ay,az,ks ay,az,

Then (V=4) is equivalent to L,x o = = =% o L,,, and this is shown by
Ly (2" e(m)) = L; (e(km) P (e(—an) ™) Pf(e(~az)) "))
= L (e(km) Py (u(ar)e(—an)) ™) Py(u(as)e(—as)) 1))
= u(km)e(km)Pi(e(—a1)) ") Py(e(—az)) ™ve2)
= u(km)Z*e(m) = Z* (u*(m)e(m)) = (L’ e(m))

—_

for any m € M. The other equality (V=5) is equivalent to Ty 0 = = = o Ty, and
this is shown by

TZ(ET*e(m)) =Tj (e(km)Pl(e(_ab)(m,vaI>P2(e(_a£))<m,va;)>
=T2<( m)Py(e(—(¢~ )041))<m’¢(””1)>P2(e(—(¢—1)Va2))<m,¢(vn2)>>
S ()P0 0 Py ) )

( ) ( ( )) ¢ m, UO‘1>P2( ( az))<¢vm,vaz>
"e(¢m) = =" (Tje(m))

for any m € M. Thus, we are done. (Il

o]

5.2. Equivariant endomorphisms under involutions. By an endomorphism
defined by triggers studied in Section ] and by results on automorphisms in Sec-
tion 5.1l we shall prove Theorem [[.3]in the introduction.

Lemma 5.8. Let ¢: N — N be an involution and let u be a k-valued point of Ty
such that ¢(u) = u=t. If the square map k > X\ — \? € k is surjective, then there

is a k-valued point u, of Tn such that u = ¢(uy) Lu,.

Proof. Let N1 be the kernel of the endomorphism idy +¢: N — N and let N be
the image of idy —¢: N — N. Then 2N; C Ny C Nj, since ¢? = idy and since
2n = n — ¢(n) for any n € N;. Hence, by the assumption of the square map, the
homomorphism

(ldN —¢) ® idg~: N ®z k* — N1 ®7 k*
is surjective, which maps u’ € Ty(k) = N ®k* to u'¢(u’)~1. Since u € Ny @ k*, we
can find an expected u,. O
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Proposition 5.9. Let a; and ay be triggers for endomorphisms on (N, A) and let
g be an involution of X in Aut(X, D) such that g*(a1) = ag (c¢f. Definition B4).
Suppose that either (a1, vVa,) =0 or {a2,va,) = 0. Then

(V_G) Vo 74‘ Vas <011,’Ua1> = <C¥2,’Ua2> > Ov and <a1’va2> = <Ck2,1)al> =0.

Ifk is algebraically closed, then there exist polynomials Py(x), Pa(x) in k[x] and an
element u, € Tn(k) such that Py(0) # 0, P2(0) # 0, deg P, = deg P> > 0, and

(V_7) go Luo © E'Oéhamk(PlvPQ) = Luo © Ea17a2,k(P17P2) °g

for the endomorphism Eq, a,.1k(P1, P2) of X in Proposition B3 defined for any
integer k > (a1, Vq, ) deg Py = (q2, Vg, ) deg Ps.

Proof. By Lemma 52 we can write g = L, o Ty for some u € Ty(k) and ¢ €
Aut(N, A), where ¢? = idy and ¢(u) = u~! by Remark We have g*a; =
¢Ya1 = ag and g*as = a; (cf. Definition [B4]). Moreover, vo, = ¢(Vay); Vay =
®(va, ), and we have (V=G)) by (¢¥Vm,n) = (m,¢(n)) for any m € M and n € N.

For the second assertion, we set ¢ := u(ay). Then u(az) = ¢! by u=1(ay) =
d(u)(az) = u(p¥az) = u(ay). We can take polynomials P;(x) and Ps(x) in k[x]
such that P»(0) # 0 and Pj(x) = Pa(cx). For any v’ € Tn(k), we have

(V-8) goLwog ' =LyoTgoLyoT," oLy =Lyo Ly o Ly = Ly
by (V=I) in Remark 53l Then

go Ly 0Zq, 0y k(P1,P2)o g = (go Ly o g_l) 0g0Ea,ask(P1,P2)og”

= Lo(uyur- © Eqt o1 (P, PJ)
g = ag, al = (g71)*ay = oy, and
x) = Pi(c™'x) = Po(x),
x) = Py(ex) = Pi(x)
by the choices of P; and P,. In particular,
Ea{,a;,k(PlTvpzT) = EaQ,aLk(P%Pl) = Eal,QQ,k(Pl,Pz)-
On the other hand, by Lemma 5.8 we can find an element u, € Ty(k) such that
o = pluo)u' ",

since ¢(u'~F) = u¥~1. Thus, (V=7) holds for this u,, and we are done. O

by (V=3) in Lemma B.7, where of = (
Pl(x) = Py(u(o]

+

2

)
Pj(x) = Py(u(ad)

Proposition 5.10. Let a be a trigger for endomorphisms on (N, A) and let g be
an involution of X in Aut(X, D) such that g*(a) = « (cf. Definition BA). If k
is algebraically closed, then there exist a polynomial P(x) in k[x] and an element
Uy € Tn(k) such that P(0) # 0, deg P > 0, and

g OLuO OEa,k(P) - Luo OEa,k(P) °g

for the endomorphism 2, k(P) = Eq a.k(P, 1) of X in Proposition (¢f. Defini-
tion ILI0N) defined for any integer k > (o, v,) deg P.
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Proof. By Lemma 52 we can write g = L, o Ty for some v € Tn(k) and ¢ €
Aut(N, A), where ¢? = idy and ¢(u) = u~* by Remark 5.6l Since g*a = ¢Va = «,
we have u(a) = £1 by u(a) = u(¢Va) = ¢(u)(a) = u(—a). Let P(x) be a
polynomial in k[x?] C k[x] such that P(0) # 0. Then P(—x) = P(x). By (V=3) in
Lemma [5.7] and by (V=8)) in the proof of Proposition [£.9] we have

1 1 1

goLyoZqx(P)og  =goLyog o0goZqaar(P1l)og”

= L(i)(u’)ul_’c © Eoﬁ,k(PT)

for any v’ € Ty(k), where o = (¢71)Va = (¢7!)*a = a and P'(x) = P(u(al)x) =
P(u(a)x) = P(x). Then Zg¢ 4(P]) = Z4.x(P). On the other hand, by Lemma [5.8]
we can find an element u, € Tn(k) such that

Uo = (b(uo)ul_ka

since ¢(u'~*) = uF~1. Thus, we are done. (]

Proof of Theorem [[L3l By the assumption on the prime component I' of D and
by Corollary L7, there is a trigger « for endomorphisms on (N, A) such that
I' = I'(vy) and div(e(a)) = (a,v,)T — E for an effective divisor E supported on
D — B, where B =T U (T"). Here, t*« is another trigger such that ¢*(T') = +(T") =
I'(14(ve)) = T'(vy20)-

Assume that B is irreducible, i.e., B=T = ((I"). Then v, = v,+o. By replacing
a with a4+ t*«, we may assume that t*a = « (cf. Remark[d3]). By applying Propo-
sition [5.10] to the involution ¢, we have a non-isomorphic surjective endomorphism
f of X such that to f = fo. and that

f = Luo © Ea,k(P)
for some u, € Tn(k), P(x) € k[x], and k > («a, v,) deg P. Here, the following hold
by properties of Z, ,(P) shown in Propositions and (17

o f*F ~q kF for any divisor ' on X;
e f*O = kO for any prime component © of D — T}

o [T 4T,
e deg f = k" for r = dim X = rank N.

Thus, f satisfies conditions (), @), @), and @) of Theorem [[L21 When chark = 0
and X is projective, we may assume that

k—2> (a,v,)(deg PYTH" !

for an ample divisor H, and the following holds by Lemma [ZT9t

e the ramification index of f along any prime divisor C not contained in D—T"
is less than k, and Sy =D —T.
Thus, f satisfies (B and (@) of Theorem[T.21 Therefore, we have proved Theorem [[3]
in the case where B is irreducible.
Next, assume that B is reducible, i.e., B =T + ((I'). Then (&, v,+) = 0 for the
trigger a, since «(T") ¢ Supp E C D — B. By Proposition (9 applied to the involu-
tion ¢ and triggers a and ¢*a, we have a non-isomorphic surjective endomorphism
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f of X such that 1o f = f o. and that
f = Luo © Ea,L*a,k(PhPQ)

for some u, € Tn(k), polynomials P (x), Py(x) € k[x] with P;(0) # 0, P»(0) # 0,
deg P; = deg P», and a positive integer k > (o, v, ) deg P;. Here, the following hold
by properties of Eq, i+a, k(P1, P2) shown in Propositions and [LIT

o f*F ~q kF for any divisor I’ on X;

e f*O = kO for any prime component © of D — B;

e [T #T and f~1(T) # o(T);

e deg f = k" for r = dim X = rankN.
Thus, f satisfies conditions (), @), @), and @) of Theorem [[2] When chark = 0

and X is projective, we may assume
k—2> (a,v,)(deg P)BH"!
for an ample divisor H, and the following holds by Lemma [ZT9t

e the ramification index of f along any prime divisor C' not contained in
D — B is less than k, and Sy = D — B.

Thus, f satisfies () and (@) of Theorem[[.2l Therefore, we have proved Theorem [[.3]
also in the case where B is reducible. Thus, we are done. O

6. ENDOMORPHISMS OF TORIC AND HALF-TORIC SURFACES

We shall apply results in Sections @ and [ to the study of non-isomorphic sur-
jective endomorphisms of projective toric surfaces surfaces and half-toric surfaces
defined in [10, §7.1] over k = C. A prime divisor I" on a normal projective surface
is said to be negative if the self-intersection number I'? is negative, where we note
that the intersection number of two (Weil) divisors on a normal projective surface
is well defined by Mumford’s numerical pullback (cf. [8 IT, (b), p. 17], [I5, §1], [10
§2.1]). We set k = C in this section.

Theorem 6.1. Let (X, D) be a projective toric surface, i.e., X is a projective toric
variety of dimension 2 and D is the boundary divisor. Let B be a reduced divisor
contained in D such that any prime component of B is not a negative curve. Then
there is a non-isomorphic surjective endomorphism f of X such that Sy =D — B.

Proof. By assumption, any prime component I' of B is semi-ample by [12, Thm. 1.5],
since —Kx ~ D is big. Thus, the assertion is a consequence of Theorem 0

Theorem 6.2. Let (X, D) be a half-toric surface and let C' be an end component of
D such that a prime component of 7*C' is not a negative curve for the characteristic
double cover 7: X — X (c¢f. Remark 63 below). Then X admits a non-isomorphic
surjective endomorphism f such that Sy =D — C.

Remark 6.3. The pair (X, D) of a normal projective surface X and a reduced divisor
D is called a half-toric surface if Kx + D + 0, 2(Kx + D) ~ 0, and if there is a
double cover 7: X — X such that

e (X, D) is a toric surface for D = 771D,
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e 7 is étale outside a finite set, i.e., 7 is étale in codimension 1

(cf. [I0, Def. 7.1]). We call 7 the characteristic double cover. It is an index 1 cover
with respect to Kx + D ~g 0 in the sense of [11, Def. 4.18]. The divisor D is a
linear chain of rational curves (cf. [10, Def. 4.1]), and the number n(D) of prime
components equals p(X)+1 (cf. [I0, Thm. 1.7(1)]). Conversely, by [10, Thm. 1.3],
a half-toric surface is characterized as a pair (X, D) of a normal projective surface
X and a reduced divisor D such that (X, D) is log-canonical, n(D) = p(X) + 1,
Kx+D #0,and Kx + D ~q 0.

Proof of Theorem [6.2. We may write X = Tn(A) for a complete fan A of a free
abelian group N of rank 2, where D=771D equals the boundary divisor By(A).
For the Galois involution 1: X — X for 7, we have (D) = D. It suffices to
construct a non-isomorphic surjective endomorphism f of X such that ¢ o f = f oL
and that S; = D—7C = 771D — C). In fact, f induces a non-isomorphic
surjective endomorphism f of X such that 7o f = for,and we have Sy =D — C
by S; = 7718 (cf. [12, Lem. 2.19(3)]).

Let T" be a prime component of 7*C, which is not a negative curve by assumption.
Then I is semi-ample by [12, Thm. 1.5], since —K g ~ Dis big. The semi-ampleness
of T implies that I' = I'(v,) for a trigger o for endomorphisms on (N,A) by
Corollary E7([). Thus, if 7*C is irreducible, i.e., 7*C = T', then we have an
expected endomorphism f of X by Theorem

Assume that 7%C' is reducible. Then 7*C =T+ (T"), and ¢(I') = I'(v,+4) for
the trigger (*a. If we can take « to satisfy (a,v,+) = 0, then (a, v, )T is linearly
equivalent to an effective divisor supported on D—1*C , and we have an expected
endomorphism f of X by Theorem Thus, by Corollary 1.8 we may assume
that t*a and —« are proportional. In particular, some positive multiples of I" and
(T") are linearly equivalent. Let © be a prime component of D intersecting I'. Then
O intersects «(I") also, and it implies that I' 4+ ¢+(I") + © is a cyclic chain of rational
curves, i.e., D=T+ (") + ©, by a well-known property of projective toric surfaces
(cf. [10, Exam. 3.4]). Moreover, p(X) = 1 (cf. [10, Lem. 3.11]). Then some multiples
of I and © are linearly equivalent, and we have an expected endomorphism f of X
by Theorem Thus, we are done. (I
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