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ON ENDOMORPHISMS OF PROJECTIVE TORIC VARIETIES

NOBORU NAKAYAMA

Abstract. For any projective toric variety X defined over a field of charac-

teristic zero, there exist non-isomorphic surjective endomorphisms f : X → X

in which the characteristic completely invariant divisor is a proper subset of

the boundary divisor, the complement of the open torus. One can construct

also an equivariant version of such endomorphisms with respect to involutions

of X preserving the boundary divisor.

1. Introduction

We fix a field k and consider toric varieties as algebraic k-schemes. A toric

variety admits many non-isomorphic surjective endomorphisms (as k-morphisms).

As a typical example, we have an endomorphism induced by the k-th power map

u 7→ uk of the open torus for k > 1. In this article, we first prove:

Theorem 1.1. If a toric variety X is complete, then any surjective endomorphism

f : X → X is a finite morphism.

Here, X is said to be complete if the structure morphism X → Spec k is proper.

Note that the finiteness of surjective endomorphism is well known in the case of

projective varieties (cf. Lemma 3.2 below).

The complementD of the open torus inX is called the boundary divisor. In many

known examples of surjective endomorphisms f of X, D is f -completely invariant,

i.e., f−1D = D (cf. Definition 3.5 below). The main purpose of this article is to

construct explicitly non-isomorphic surjective endomorphisms f of a complete toric

variety X under which D is not completely invariant. This is done in Sections 4

below, and we can prove:

Theorem 1.2. Let X be a complete toric variety with the boundary divisor D. Let

B be a union of prime components Γ of D such that some multiple of Γ is linearly

equivalent to an effective divisor not containing Γ. Then there exist a positive

integer k > 1 and a non-isomorphic surjective endomorphism f : X → X satisfying

the following conditions :

(1) For any divisor F on X, the inverse image f∗F is Q-linearly equivalent to

kF , i.e., mf∗F ∼ mkF for some m > 0.

(2) If Γ is a prime component of D −B, then f∗Γ = kΓ.

(3) If Γ is a prime component of B, then f−1Γ 6= Γ.
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(4) The degree of f equals kr for r = dimX.

Moreover, when char k = 0 and X is projective, one can impose the following

additional conditions :

(5) The ramification index of f along a prime divisor C is less than k if C 6⊂

D −B.

(6) The characteristic completely invariant divisor Sf equals D −B.

Note that the pullback f∗F of a divisor F is well defined, since f is finite by

Theorem 1.1. The characteristic completely invariant divisor Sf is defined as the

union of prime divisors Γ on X such that (fk)∗Γ = bΓ for some k ≥ 1 and b ≥ 2

(cf. [12, §2.4] and Definition 3.5 below). Note also that (4) is a consequence of (1)

when X is projective. For equivariant versions of Theorem 1.2, we can pose:

Problem. Let X be a projective toric variety of characteristic zero admitting an

action of a finite group G which preserves the boundary divisor D. Under what

conditions, one can find a G-equivariant non-isomorphic surjective endomorphism f

of X such that the characteristic completely invariant divisor Sf is a proper subset

of D?

As a partial answer to the problem, we have:

Theorem 1.3. Assume that k is algebraically closed. Let X be a complete toric

variety with the boundary divisor D and let ι : X → X be an involution such that

ι(D) = D. For a prime component Γ of D and for the divisor B := Γ∪ι(Γ), assume

that some multiple of Γ is linearly equivalent to an effective divisor supported on

D − B. Then there exist a positive integer k > 1 and a non-isomorphic surjective

endomorphism f : X → X such that ι ◦ f = f ◦ ι and that conditions (1), (2),

(3), and (4) of Theorem 1.2 are all satisfied. Moreover, when char k = 0 and X is

projective, one can impose conditions (5) and (6) of Theorem 1.2.

Theorems 1.2 and 1.3 above are applied to proving Theorems 6.1 and 6.2 below

on endomorphisms of projective toric surfaces and half-toric surfaces (cf. [10, §7.1])

over k = C. These theorems supply examples of a normal projective surface X over

C admitting a non-isomorphic surjective endomorphism f such that KX +Sf is not

pseudo-effective (cf. [12], [13]).

Construction of this article. In Section 2, we fix and explain basic terminologies

and notions for toric varieties. We discuss the finiteness of endomorphisms in

Section 3, where Theorem 1.1 is proved in Section 3.1. The notions of ramification

divisor and characteristic completely invariant divisor are explained in Section 3.2

on remarks on finite surjective (endo-)morphisms.

Our method of constructing endomorphisms of complete toric varieties is given in

Section 4. We introduce in Section 4.1 the notion of trigger for endomorphisms (cf.

Definition 4.1) generalizing the notion of root in the study of automorphisms of toric

varieties in [2]. Some basic properties of triggers are obtained also in Section 4.1.

We define special endomorphisms Ξ = Ξα1,α2,k(P1, P2) of complete toric varieties

in Section 4.2 for triggers α1, α2, polynomials P1(x), P2(x) in k[x], and a positive
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integer k satisfying certain conditions (cf. Definition 4.10 and Proposition 4.13).

The definition is analogous to that of the automorphism xα(λ) in [2, §4, no5, Thm. 3,

p. 573] defined by a root α and a constant λ ∈ k (cf. [14, Prop. 3.14]). Some basic

properties of the endomorphism Ξ are obtained in Section 4.3, and we shall prove

Theorem 1.2 in Section 4.4.

We shall study automorphisms of a complete toric variety X preserving the

boundary divisor D in Section 5.1. When the automorphism is an involution,

in Section 5.2, we shall construct some non-isomorphic surjective endomorphisms

equivariant under the involution by using the endomorphism defined by a trigger

in Section 5.2. The proof of Theorem 1.3 is included in Section 5.2.

Applications to the study of non-isomorphic surjective endomorphisms of pro-

jective toric surfaces and half-toric surfaces over C are given in Section 6, where

Theorems 6.1 and 6.2 are proved.

Notation and conventions. We work in the category of algebraic k-schemes for

a fixed ground field k. A variety means an integral separated k-scheme. A variety

X is said to be complete if the structure morphism X → Spec k is proper. Note

that a proper subvariety of a complete variety is not necessarily complete. We use

the same notation and conventions as in [10], [11], [12], and [13]. For example:

• Two divisors D1 and D2 are is said to be Q-linearly equivalent if mD1 is

linearly equivalent to mD2 for some m > 0. We write D1 ∼Q D2 for the

Q-linear equivalence.

• The number of prime components of a reduced divisor D is denoted by

n(D) (cf. [13, Def. 4.1]).

• For a commutative algebra R, the group of invertible elements of R is

denoted by R⋆.

Acknowledgement. The author is partially supported by Grant-in-Aid for Sci-

entific Research (C), Japan Society for the Promotion of Science.

2. Some basic terminologies on toric varieties

For details of toric varieties, we refer the readers to [2], [6], [1], [14], and [3].

We fix a non-zero free abelian group N of finite rank, the dual abelian group M =

Hom(N,Z), and the canonical bilinear map 〈 , 〉 : M×N → Z. We write NR (resp.

MR) for the finite-dimensional real vector space N ⊗ R (resp. M ⊗ R), and use

the same symbol 〈 , 〉 for the induced bilinear map MR × NR → R. Our specific

notation on toric varieties is listed in Table 1.

A rational polyhedral cone of N is a closed convex cone in NR generated by finitely

many elements of N. A closed convex cone σ of NR is said to be strictly convex if

σ∩(−σ) = {0}. A face of a closed convex cone σ is the cone expressed as {m}⊥∩σ

for some m ∈ σ∨. A fan △ of N is a finite collection of strictly convex rational

polyhedral cones of N such that

• if σ ∈ △, then any face of σ belongs to △;

• for any cones σ and σ′ ∈ △, σ ∩ σ′ is a face of σ.
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Table 1. List of notations on toric varieties

S∨ dual cone {x ∈ MR | 〈x,S〉 ⊂ R≥0} (resp. {y ∈ NR | 〈S, y〉 ⊂ R≥0}) for

a subset S of NR (resp. MR).

S⊥ linear subspace {x ∈ MR | 〈x,S〉 = 0} (resp. {y ∈ NR | 〈S, y〉 = 0}) for

a subset S of NR (resp. MR).

TN algebraic torus Spec k[M] associated with N.

TN(σ) affine toric variety Spec k[σ∨ ∩ M] associated with a strictly convex

rational polyhedral cone σ in NR.

TN(△) toric variety
⋃

σ∈△ TN(σ) associated with a fan △ of N.

BN(△) boundary divisor, the complement of the open torus TN({0}) in TN(△).

Tφ morphism TN(△) → TN′(△′) of toric varieties associated with a mor-

phism φ : (N,△) → (N′,△′) of fans (cf. Definition 2.1).

e(m) element m ∈ M in the group ring k[M].

PN(△) set of primary vectors of (N,△) (cf. Definition 2.2).

R(v) 1-dimensional cone R≥0v for a primary vector v (cf. Definition 2.2).

Γ (v) prime component of BN(△) defined by a primary vector v (cf. Defini-

tion 2.2).

γv 1-parameter subgroup of Gm → TN corresponding to an element v ∈ N

or its extension (cf. Definition 2.9).

The fan is not necessary finite in [14], but we assume the finiteness for simplicity.

A fan △ is said to be complete if
⋃

σ∈△ σ = NR. Note that any strictly convex

rational polyhedral cone σ is identified with the fan consisting of all the faces of σ.

Definition. For a strictly convex rational polyhedral cone σ in NR, the affine toric

variety TN(σ) over the field k is defined as Spec k[σ∨ ∩M] for the semi-group ring

k[σ∨ ∩M]. If τ is a face of σ, then TN(τ ) is canonically an open subset of TN(σ).

Moreover, for any fan △ of N, affine toric varieties TN(σ) for all σ ∈ △ are glued to

an algebraic scheme TN(△) over k, which is called the toric variety associated with

△. The common open subset TN({0}) of TN(σ) for all σ ∈ △ is isomorphic to the

algebraic torus TN = Spec k[M] and is called the open torus. The complement of the

open torus in TN(△) is denoted by BN(△) and is called the boundary divisor. For

an element m ∈ M, we set e(m) to be m in the group ring k[M]. This is regarded

as a rational function on TN(△).

Remark. The toric variety TN(△) is a normal integral separated k-scheme of finite

type, i.e., a normal algebraic variety over k. The fan △ is complete if and only if

TN(△) is complete (cf. [2, §4, no2, Prop. 4, p. 561], [6, I, Thm. 8], [14, Thm. 1.11]).

In [14], TN(△) is denoted by TN emb(△).

Remark. The group law TN×TN → TN of the algebraic torus TN corresponds to the

k-algebra homomorphism µ∗ : k[M] → k[M]⊗kk[M] given by µ∗e(m) = e(m)⊗e(m)

for m ∈ M. The group law extends to an action of TN on TN(△) so that the open

immersion TN = TN({0}) →֒ TN(△) is equivariant under the action. In particular,

the open torus is a unique open dense orbit of TN in TN(△).
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Definition 2.1. Let N′ be another free abelian group of finite rank and let φ : N →

N
′ be a homomorphism of abelian groups. The dual of φ is denoted by φ∨, which

is a homomorphism M
′ = Hom(N′,Z) → M = Hom(N,Z) satisfying 〈φ∨(m′), n〉 =

〈m′, φ(n)〉 for any m′ ∈ M
′ and n ∈ N. The morphism Tφ : TN → TN′ of algebraic

tori associated with φ is defined by the k-algebra homomorphism k[M′] → k[M]

sending e(m′) to e(φ∨(m′)). Let △′ be a fan of N
′ and assume that, for any

σ ∈ △, the image φR(σ) under φR = φ ⊗ R : NR → N
′
R is contained in some cone

σ′ ∈ △′. In this case, φ : (N,△) → (N′,△′) is called a morphism of fans, and

Tφ extends to a morphism TN(△) → TN′(△′) equivariant under the actions of TN

and TN′ with respect to Tφ (cf. [14, Thm. 1.13]). This extended morphism is also

denoted by Tφ.

Definition 2.2. Let △ be a fan of N. A primary vector of △ with respect to N, or

a primary vector of (N,△), is defined as a primitive element of N generating a 1-

dimensional cone belonging to △. The set of primary vectors is denoted by PN(△).

Here, PN(σ) = PN(△) ∩ σ for any σ ∈ △. For a primary vector v, R(v) denotes

the 1-dimensional cone R≥0v, and the prime divisor Γ (v) on TN(△) is defined as

the complement of ⋃
σ∈△, v 6∈σ

TN(σ).

In particular, Γ (v) is the closure of TN(R(v)) \ TN({0}) in TN(△).

Remark. A complete fan △ of N is determined by PN(△) when rankN = 2. In

fact, for l := #PN(△), there is a bijection Z/lZ ∋ i 7→ vi ∈ PN(△) such that the

set of 2-dimensional cones belonging to △ is {R≥0vi +R≥0vi+1 | i ∈ Z/lZ} (cf. [10,

Exam. 3.4]).

Remark. The boundary divisor BN(△) is just the union of TN-invariant prime di-

visors, and hence,

BN(△) =
∑

v∈PN(△)
Γ (v).

Remark 2.3. For any m ∈ M, the principal divisor associated with the rational

function e(m) on TN(△) is written as

(II-1) div(e(m)) =
∑

v∈PN(△)
〈m, v〉Γ (v)

by [3, §3.3, Lemma], which is a special case of the equality in [14, Prop. 2.1(ii)].

Let I be the ideal sheaf OTN(△)(−B) of an effective divisor

B =
∑

v∈PN(△)
bvΓ (v)

defined by integers bv ≥ 0. By (II-1), we see that, for any cone σ ∈ △, I|TN(σ) is

generated by e(m) for all m ∈ M such that 〈m, v〉 ≥ bv for any v ∈ PN(σ).

Remark 2.4. Similarly to e(m), every element Q ∈ k[M] is regarded as a rational

function on TN(△) which is regular on the open torus. Assume that Q 6= 0. Then

we can consider the associated principal divisor div(Q) on TN(△). For a cone

σ ∈ △, if multΓ (v) div(Q) ≥ 0 for any v ∈ PN(σ), then Q ∈ k[σ∨ ∩ M]. In fact,

in this case, multΓ div(Q) ≥ 0 for any prime divisor Γ on the affine toric variety
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TN(σ), and hence, Q belongs to the affine coordinate ring k[σ∨ ∩ M], since it is

normal.

Lemma 2.5. Let P (x) be a polynomial in k[x] for a variable x such that P (0) 6= 0.

Then, for any v ∈ PN(△) and α ∈ M, one has

(II-2) multΓ (v) div(P (e(α))) = min{0, (degP )〈α, v〉},

where we regard P (e(α)) as a rational function on TN(△).

Proof. The assertion holds if degP = 0, since P is a constant and div(P (e(α))) = 0.

Thus, we may assume that d := degP > 0. For the expansion P (x) =
∑d

s=0 psx
s

with ps ∈ k, we have p0 6= 0 and pd 6= 0. If 〈α, v〉 > 0, then e(α) is regular

on TN(R(v)) and vanishing along Γ (v) by (II-1) in Remark 2.3; hence, P (e(α)) is

regular on TN(R(v)) and not vanishing along Γ (v) by P (0) 6= 0. Therefore, (II-2)

holds when 〈α, v〉 > 0.

Assume that 〈α, v〉 < 0. Let us consider another polynomial

P ◦(x) := xdP (x−1) =
∑d

s=0
pd−sx

s ∈ k[x].

Note that P ◦(0) 6= 0 and P (e(α)) = e(α)dP ◦(e(−α)). Since 〈−α, v〉 > 0, we have

multΓ (v) div(P (e(α))) = multΓ (v) div(e(α)
d) + multΓ (v) div(P

◦(e(−α))) = d〈α, v〉

by (II-1) in Remark 2.3 and by (II-2) in the case where 〈α, v〉 > 0. Thus, (II-2)

holds when 〈α, v〉 < 0.

Finally, assume that 〈α, v〉 = 0. We can regard α as a homomorphism N → Z,

and now, it descends to a non-zero homomorphism ᾱ : N(v) := N/Zv → Z. Let

Tᾱ : TN(v) → TZ = Gm be the homomorphism of algebraic torus induced by ᾱ,

where Gm stands for the 1-dimensional torus Spec k[t, t−1]. Then Tᾱ is dominant,

and the induced morphism

Γ (v) ∩ TN(R(v)) ≃ TN(v)
Tᾱ−−→ Gm

is just the restriction of the rational function e(α) : TN(△) ···→P1. Since degP > 0,

Γ (v) ∩ TN(R(v)) dominates P1 by the rational function P (e(α)) : TN(△) ···→P1.

Hence, multΓ (v) div(P (e(α))) = 0, and (II-2) holds. Thus, we are done. �

Corollary 2.6. Let r be a positive integer. For variables t1, . . . , tr, we set

A = k[t±1
1 , t±1

2 , . . . , t±1
r ] and Ai = k[t±1

1 , . . . , t±1
i−1, ti, t

±1
i+1, . . . , t

±1
r ]

as k-algebras, where 1 ≤ i ≤ r. Let α = t
a1

1 t
a2

2 · · · tar
r be a monomial in A defined

by integers a1, . . . , ar, and let P (x) be a polynomial in k[x] of degree d such that

P (0) 6= 0. Then

max{q ∈ Z | P (α) ∈ t
q
iAi} = min{0, dai}

for any 1 ≤ i ≤ r.

Proof. The polynomial ring Ã = k[t1, t2, . . . , tr] is identified with the semi-group

ring k[σ∨ ∩M] for a free abelian group N of rank r with a free basis (n1, . . . , nr),

the cone σ =
∑r

i=1 R≥0ni, and M = Hom(N,Z). For the dual basis (m1, . . . ,mr)

of (n1, . . . , nr), we have ti = e(mi) for any 1 ≤ i ≤ r under the identification. We
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apply Lemma 2.5 to the toric variety TN(σ) = Spec Ã. Here, PN(σ) = {n1, . . . , nr}.

Then div(ti) = Γ (ni), and A (resp. Ai) is identified with the affine coordinate ring

of TN({0}) (resp. TN(σ) \ Γ (ni)). Moreover, α = e(mα) for mα =
∑
aimi, where

〈mα, ni〉 = ai for any i. Hence,

max{q ∈ Z | P (α) ∈ t
q
iAi} = multΓ (ni) div(P (α)) = min{0, dai}

for any i by Lemma 2.5. �

Convention. For k-schemes Y and T , the set Homk(T, Y ) of morphisms of k-

schemes is denoted by Y 〈T 〉 and an element of it is called a T -valued point of Y (cf.

[4, I, §3.4]). Note that the correspondence T 7→ Y 〈T 〉 is a presheaf on the category

of k-schemes. When T = SpecR for a k-algebra R, T -valued points of Y are called

R-valued points, and Y 〈T 〉 is written as Y 〈R〉, for simplicity.

Definition 2.7. Let u be a T -valued point of TN(σ) for a k-scheme T and for a

strictly convex rational polyhedral cone σ in NR.

(1) For any m ∈ σ∨ ∩ M, we define u(m) to be the image of e(m) under the

associated k-algebra homomorphism u∗ : k[σ∨ ∩M] → H0(T,OT ).

(2) Let σ′ be a strictly convex rational polyhedral cone in N
′
R for a free abelian

group N
′, and let φ : N → N

′ be a homomorphism of abelian groups such

that φR(σ) ⊂ σ′. The image of u under Tφ〈T 〉 : TN(σ)〈T 〉 → TN′(σ′)〈T ′〉

is denoted by φ(u).

Remark. The set TN(σ)〈T 〉 of T -valued points is in one-to-one correspondence with

the set of homomorphisms σ∨∩M → R = (R,×) of semi-groups for R = H0(T,OT ).

The correspondence is given by u 7→ (m 7→ u(m)). In particular, TN〈T 〉 ≃ TN〈R〉 ≃

Hom(M, R⋆) for the group R⋆ of invertible elements of R. For the homomorphism

φ in (2) and its dual φ∨ : M′ = Hom(N′,Z) → M = Hom(N,Z), the image φ(u)

corresponds to the homomorphism (σ′)∨∩M
′ → R given by m′ 7→ u(φ∨m′) for any

m′ ∈ M
′.

Remark 2.8. Let v be a primary vector of (N,△). For a cone σ ∈ △ containing

v, a T -valued point u ∈ TN(σ)〈T 〉 is contained in Γ (v)〈T 〉 if and only if u(m) = 0

for any m ∈ σ∨ ∩M such that 〈m, v〉 > 0. This follows from the description of the

ideal sheaf of Γ (v) in Remark 2.3.

Definition 2.9. For v ∈ N, let jv : Z → N be the homomorphism sending 1 to v.

The 1-parameter subgroup associated with v (cf. [6, I, §1]) is defined as the associated

morphism γv := Tjv : Gm = TZ → TN of algebraic tori (cf. Definition 2.1). Assume

that v ∈ σ for a cone σ belonging to a fan △ of N. Then jv is a morphism

(Z,R≥0) → (M,△) of fans, and the associated morphism

Tjv : TZ(R≥0) = Spec k[t] → TN(σ) ⊂ TN(△)

of toric varieties is an extension of γv above. This extended morphism is also

denoted by γv.

Remark. The toric variety TZ(R≥0) is identified with the affine line Spec k[t] under

which the open torus TZ({0}) is identified with Spec k[t, t−1], where t = e(m) for
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the element m of Z∨ = Hom(Z,Z) corresponding to the identity homomorphism

idZ. For v ∈ N, the 1-parameter subgroup γv : Gm = Spec k[t, t−1] → TN is defined

by γ∗
ve(m) = t〈m,v〉 for m ∈ M. Assume that v is a primary vector of (N,△). Then

TN(R(v)) ≃ TZv(R(v))× TN(v)

for N(v) := N/Zv, and TZ(R≥0) ≃ TZv(R(v)) by the isomorphism jv : Z → Zv. For

the k-valued point 0 of Spec k[t] defined by t = 0, its image γv(0) under

γv : Spec k[t] ≃ TZv(R(v)) → TN(R(v)) ⊂ TN(△)

is considered as the “limit point” of the 1-parameter subgroup γv : Gm → TN (cf.

[6, I, Thm. 1′]), and it corresponds to the k-valued point (0, e) of TZv(R(v))×TN(v)

for the unit element e of the group TN(v)〈k〉 = N(v)⊗Z k⋆.

3. Finiteness of surjective endomorphisms

In Section 3.1, we shall prove Theorem 1.1 in the introduction, which states that

every surjective endomorphism of a complete toric variety is finite. In Section 3.2,

we shall give some remarks on finite morphisms and finite endomorphisms.

3.1. Proof of Theorem 1.1. For the proof of Theorem 1.1, we need the following

lemma, which seems to be well known:

Lemma 3.1. Assume that k is algebraically closed. Let f : X → Y be a proper

morphism of varieties such that OY ≃ f∗OX . Let G be a connected algebraic group

acting on X. Then the action of G descends to Y so that f is G-equivariant.

Proof. Let C be a complete curve contained in a fiber of f and let us consider the

composite

η : G× C
idG ×ι
−−−−→ G×X

σX−−→ X
f
−→ Y,

where ι : C →֒ X is the closed immersion and σX is the morphism of action of G.

For the unit element e of G, the image of {e} × C under η is a point. We have a

commutative digram

G× C
(pG,η)

//

pG

##❋
❋❋

❋❋
❋❋

❋❋
G× Y

qG
{{①①
①①
①①
①①
①

G

for first projections pG : G × C → G and qG : G × Y → G. By rigidity lemma

[9, Prop. 6.1] applied to the diagram, there is a morphism ζ : G → Y such that

η = ζ ◦ pG. As a consequence, f(σX({g} × C)) = η({g} × C) is a point for any

g ∈ G. Moreover, f(σX({g} × f−1(y))) is a point for any y ∈ Y and g ∈ G,

since f−1(y) is connected. Equivalently, every fiber of idG ×f : G × X → G × Y

is mapped to a point by the proper morphism θ : G ×X → G × Y × Y defined as
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(idG ×f, f ◦ σX): there is a commutative diagram

Y

G×X
θ //

f◦σX

99ssssssssss

idG ×f %%❏
❏❏

❏❏
❏❏

❏❏
G× Y × Y

p3

ff▼▼▼▼▼▼▼▼▼▼▼

p12xxqqq
qq
qq
qq
q

G× Y

for the projection p12 to the first and second factor and the projection p3 to the

third factor. For the Stein factorization G×X → Z → G×Y ×Y of θ, the induced

morphism φ : Z → G× Y × Y
p12
−−→ G× Y is finite and

OG×Y ≃ (idG ×f)∗OG×X ≃ φ∗OZ .

Hence, φ is an isomorphism. By φ−1 and by composing with p3, we have a morphism

σY : G × Y → Y such that σY ◦ (idG ×f) = f ◦ σX . Therefore, σY is a morphism

of an action of G on Y , and f is G-equivariant. �

Proof of Theorem 1.1. By base change, we may assume that k is algebraically

closed (cf. [5, Prop. (2.7.1)]). We may write X = TN(△) for a complete fan △

of a free abelian group N of finite rank. For the given surjective endomorphism

f : X → X, let X
ϕ
−→ X ′ τ

−→ X be the Stein factorization of f . By Lemma 3.1, the

action of TN on X descends to X ′ and ϕ is TN-equivariant. Then the exceptional

locus of ϕ is a union of orbits of TN, and hence, it is contained in the boundary

divisor BN(△) of X. Thus, X ′ contains an open orbit of TN, which is isomorphic

to TN. Therefore, X ′ is also a toric variety. By [6, I, Thms. 6 and 7], there is a

complete fan △′ of N such that

• X ′ ≃ TN(△
′),

• each σ ∈ △ is contained in some σ′ ∈ △′,

• ϕ is associated with the morphism idN : (N,△) → (N,△′) of fans.

In particular, we have an inequality #△ ≥ #△′ of cardinalities, where the equality

holds if and only if ϕ is an isomorphism.

We shall derive a contradiction assuming that f is not finite. Then ϕ is not an

isomorphism. For any integer k ≥ 1, let X
ϕk−−→ Xk

τk−→ X be the Stein factorization

of fk. Then X1 = X ′, ϕ1 = ϕ, τ1 = τ , and we have a commutative diagram

Xk+l

τk,l

""❉
❉❉

❉❉
❉❉

❉ τk+l

��

Xk

ϕk,l

<<②②②②②②②②

τk

""❋
❋❋

❋❋
❋❋

❋
Xl

τl

  ❆
❆❆

❆❆
❆❆

X
fk

//

ϕk

>>⑤⑤⑤⑤⑤⑤⑤

ϕk+l

//

X
f l

//

ϕl

<<②②②②②②②②
X

for any k, l ≥ 1, where morphisms ϕk,l and τk,l, respectively, are birational and

finite. By induction, ϕk and ϕk,l are not isomorphisms for any k, l ≥ 1. Thus,

we have an infinite sequence X → X1 → · · · → Xk → Xk+1 → · · · of birational
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morphisms by ϕ1 and ϕk,1. By the previous argument, Xk ≃ TN(△k) for a fan △k

of N, and we have an infinite sequence #△ > #△1 > #△2 > · · ·, which contradicts

the finiteness of the set △. Thus, we are done. �

3.2. Remarks on finite surjective (endo-)morphisms. We shall explain the

pullback of (Weil) divisors by a finite surjective morphism. In characteristic zero,

we shall also explain the ramification formula for a finite surjective morphism and

the characteristic completely invariant divisor for a finite endomorphism introduced

in [12, §2.4].

Lemma 3.2. Let X be a normal variety with a surjective endomorphism f : X →

X. If X is projective, then f is finite.

Proof. By base change, we may assume that k is algebraically closed. Let Num(X)

denote the group of Cartier divisors on X modulo the numerical equivalence rela-

tion. Then Num(X) is a free abelian group of finite rank (cf. [7, IV, §1, Prop. 4]):

the rank is just the Picard number of X. The pullback homomorphism E 7→ f∗E

for Cartier divisors E on X induces an injection f⋆ : Num(X) → Num(X) by [7,

IV, §1, Prop. 2]. Thus, f⋆ ⊗ Q : Num(X) ⊗ Q → Num(X) ⊗ Q is bijective. If an

irreducible curve C is contained in a fiber of f , then DC = 0 for any Cartier divisor

D on X by (f∗E)C = E(f∗C). This is a contradiction. Therefore, f is finite. �

Definition (Pullback of a divisor). Let f : X → Y be a finite surjective morphism

of normal varieties. For a divisor E on Y , the pullback f∗E is defined as a divisor

on X as follows: For the non-singular part Yreg of Y , the complement of f−1Yreg
in X has codimension ≥ 2. Thus, we can define f∗E by

f∗E|f−1Yreg
= f ′∗(E|Yreg

)

for the restriction f ′ = f |f−1Yreg
: f−1Yreg → Yreg of f , where f ′∗ indicates the

pullback of a Cartier divisor. The correspondence E 7→ f∗E gives rise to a homo-

morphism Div(Y ) → Div(X) of divisor groups, which is also denoted by f∗. When

E is reduced, we write

f−1E = (f∗E)red

by abuse of notation. Here, Supp f∗E = f−1 SuppE, since f is finite and surjective.

Remark. If E is Cartier on Y , then f∗E coincides with the pullback as a Cartier

divisor. Recall that the push-forward homomorphism f∗ : Div(X) → Div(Y ) is

defined by f∗Γ = dΓf(Γ) for a prime divisor Γ, where dΓ is the degree of the finite

morphism f |Γ : Γ → f(Γ). Then (deg f)E = f∗(f
∗E) for any divisor E on Y .

Definition 3.3 (Ramification divisor). Assume that char k = 0 and let f : X → Y

be a finite surjective morphism of normal varieties. For a prime divisor Γ on X, the

ramification index of f along Γ is defined as the multiplicity multΓ f
∗(f(Γ)) of the

divisor f∗(f(Γ)) along Γ. The ramification divisor Rf of f is an effective divisor

on X defined by

multΓRf = multΓ f
∗(f(Γ))− 1

for any prime divisor Γ.
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Remark. Since char k = 0, f is étale on a non-empty open subset of X, and more-

over, f is étale at the generic point of Γ if and only if the ramification index of f

along Γ equals 1. In particular, the number of prime components of Rf is finite.

Remark 3.4 (Ramification formula). Let η be a rational n-form on Yreg, where

n = dimY . The pullback f∗η is defined as a rational n-form on Xreg, since the

complement of Xreg ∩ f
−1Yreg in Xreg has codimension ≥ 2. We can consider the

canonical divisor KYreg
(resp. KXreg

) as the divisor of zeros (and the minus of poles)

of η (resp. f∗η). We define the canonical divisor KY (resp. KX) by KY |Yreg
= KYreg

(resp. KX |Xreg
= KXreg

). Then

KX = f∗KY +Rf

as a divisor on X. This equality is called the ramification formula. For a reduced

divisor E on Y , there is a divisor F on X such that F and f∗E have no common

prime components and Rf = F + f∗E − f−1E, i.e.,

KX + f−1E = f∗(KY + E) + F

(cf. [11, Lem. 1.39]). This is also called the ramification formula.

Definition 3.5. Assume that char k = 0 and let f : X → X be a non-isomorphic

finite surjective endomorphism of a complete normal variety. A reduced divisor

D on X (including 0) is said to be completely invariant under f , or f -completely

invariant if f−1D = D (cf. [12, Def. 2.12]). Let S(X, f) be the set of prime divisors

Γ on X such that (fk)∗Γ = bΓ for some k > 0 and b > 1. Then S(X, f) is finite by

the same argument as in the proof of [12, Prop. 2.15]. We define

Sf :=
∑

Γ∈S(X,f)
Γ and ∆f :=

∑
Γ6∈S(X,f)

(multΓRf )Γ

as in [12, Def. 2.16], where Sf is called the characteristic completely invariant divisor

and ∆f is called the refined ramification divisor.

Remark. The divisor Sf is f -completely invariant and we have KX+Sf = f∗(KX+

Sf ) + ∆f as a ramification formula for f (cf. [12, Lem. 2.17]).

Lemma 3.6. Let X be a normal complete variety with a reduced divisor D and

let f : X → X be a finite endomorphism such that f−1D = D. Assume that

char k = 0. Then Sf ⊂ D if there exist positive integers k and a satisfying the

following conditions for any prime divisor Γ not contained in D:

(i) The pullback (fk)∗Γ is Q-linearly equivalent to akΓ.

(ii) The ramification index of f along Γ is less than a.

Proof. Let Γ be a prime component of Sf . Then (f l)∗Γ = bΓ for some l > 0 and

b > 1. Assume that Γ 6⊂ D. Then (fkl)∗Γ = bkΓ ∼Q aklΓ by (i), and we have

b = al. We set Γj = f j(Γ) for 1 ≤ j ≤ l. Then Γ0 = Γl = Γ, and if j > 0, then

f∗Γj = bjΓj−1 for some bj ≥ 1. Here,
∏l

j=1 bj = b = al. Furthermore, Γj 6⊂ D and

bj < a for any 1 ≤ j ≤ l by f−1D = D and by (ii), since the ramification index of

f along Γj−1 equals bj ; this contradicts
∏l

j=1 bj = al. Therefore, Sf ⊂ D. �
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4. Surjective endomorphisms of complete toric varieties

We shall construct some special endomorphisms of complete toric varieties and

study their properties. We fix a free abelian group N of finite rank r > 0 and a

complete fan △ of N, and consider the toric variety X = TN(△) with the boundary

divisor D = BN(△). We keep the notation in Section 2.

4.1. Triggers for endomorphisms.

Definition 4.1. An element α of M = HomZ(N,Z) is called a trigger for endo-

morphisms on (N,△) if there is a unique primary vector vα ∈ PN(△) such that

〈α, vα〉 > 0. A trigger α is called a root of (N,△) if 〈α, vα〉 = 1.

The following result is mentioned in [2, §4, no5, Déf. 4, Rem. 3, p. 572], when α

is a root:

Lemma 4.2. For a trigger α for endomorphisms on (N,△) and for a cone σ ∈ △,

if σ ⊂ {α}⊥, then σ + R(vα) ∈ △.

Proof. There is a cone σ̃ ∈ △ of dimension r such that σ is a face σ̃. If vα 6∈ σ̃,

then 〈α, v〉 ≤ 0 for any v ∈ PN(σ̃), and hence, σ̃ is contained in the half space

{−α}∨. Thus, we may assume that vα ∈ σ̃, since △ is complete. We can write

σ = {β}⊥ ∩ σ̃ for some β ∈ σ̃∨ ∩ M. Then 〈β, vα〉 > 0 by 〈α, vα〉 > 0. We set

γ := 〈α, vα〉β − 〈β, vα〉α. Then 〈γ, vα〉 = 0 and 〈γ, v〉 ≥ 〈α, vα〉〈β, v〉 ≥ 0 for any

v ∈ PN(σ̃) \ {vα}. Thus, γ ∈ σ̃∨ ∩M, and {γ}⊥ ∩ σ̃ = σ + R(vα) by σ ⊂ {α}⊥.

Therefore, σ + R(vα) ∈ △. �

Remark 4.3. For two triggers α and β for endomorphisms on (N,△), if vα = vβ ,

then α + β is a trigger with vα+β = vα. In fact, 〈α, vα〉 > 0, 〈β, vα〉 > 0, and

〈α, v〉 ≤ 0 and 〈β, v〉 ≤ 0 for any v ∈ PN(△) \ {vα}.

Lemma 4.4. For the toric variety X = TN(△), let E be a divisor on X supported

on the boundary divisor D = BN(△). Then H0(X,OX(E)) has a canonical graded

M-module structure ⊕
m∈M

H0(X,OX(E))m

in which dimH0(X,OX(E))m ≤ 1 for any m ∈ M.

Proof. Let Y be the non-singular locus Xreg of X. Then E|Y is Cartier and the

restriction homomorphism H0(X,OX(E)) → H0(Y,OY (E|Y )) is an isomorphism.

Here, OY (E|Y ) is a TN-linearized invertible sheaf in the sense of [9, Ch. 1, §3,

Def. 1.6], since E is TN-invariant. In particular, H0(X,OX(E)) ≃ H0(Y,OY (E|Y ))

has a structure of graded M-modules by the dual action of TN. Let j : U →֒ Y be

the open immersion from the open torus U = TN({0}) = X \D. Then we have an

isomorphism OY (E|Y )|U ≃ OU of TN-linearized invertible sheaves by SuppE ⊂ D.

By the canonical injection OY (E|Y ) →֒ j∗(OY (E|Y )|U ), and we have an injection

of graded M-modules

H0(X,OX(E)) ≃ H0(Y,OY (E|Y )) →֒ H0(U,OU ) = k[M] =
⊕

m∈M
ke(m).
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Therefore, H0(X,OX(E))m = H0(X,OX(E)) ∩ ke(m) for any m ∈ M, and it is at

most 1-dimensional. Thus, we are done. �

Remark 4.5. By the proof, we see that m ∈ M satisfies H0(X,OX(E))m 6= 0 if

and only if div(e(m)) + E ≥ 0 for the principal divisor div(e(m)), i.e., 〈m, v〉 +

multΓ (v)E ≥ 0 for any v ∈ PN(△) (cf. (II-1) in Remark 2.3).

Remark. Lemma 4.4 and its higher cohomology version are well known at least in

the case where E is Cartier (cf. [6, I, §3, Thm. 12], [1, Thm. 7.2], [14, Thm. 2.6]).

Corollary 4.6. The following hold for any α ∈ M \ {0} and v ∈ PN(△):

(1) α is a trigger for endomorphisms on (N,△) with v = vα if and only if

H0(X,OX(kΓ (v)))−α 6= 0 for some k > 0;

(2) α is a root of (N,△) with v = vα if and only if H0(X,OX(Γ (v)))−α 6= 0.

Proof. For α and v above, α is a trigger for endomorphisms on (resp. a root of)

(N,△) with v = vα if and only if 〈α, v〉 = k for some k > 1 (resp. for k = 1) and

〈α, v′〉 ≤ 0 for any v′ ∈ PN(△) \ {v}: By Remark 4.5, this is also equivalent to

H0(X,OX(kΓ (v)))−α 6= 0. �

Corollary 4.7. Let Γ be a prime component of the boundary divisor D = BN(△).

(1) If some multiple of Γ is linearly equivalent to a non-zero effective divisor

not containing Γ, then Γ = Γ (vα) for a trigger α for endomorphisms on

(N,△).

(2) If some multiple of Γ is linearly equivalent to a non-zero effective divisor E

supported on D−Γ, then there is a trigger α for endomorphisms on (N,△)

such that div(e(α)) = kΓ− E for some k > 0.

Proof. (1): By assumption, there is a non-zero element ζ ∈ H0(X,OX(kΓ)) for

a positive integer k such that the divisor div(ζ) of zeros does not contain Γ as a

prime component. By Lemma 4.4, we can write ζ =
∑

α ζα for elements ζα ∈

H0(X,OX(kΓ))α for α ∈ M. Since X is complete, kΓ 6∼ 0. Thus, there is an

element α ∈ M \ {0} such that ζ−α 6= 0 and that the divisor div(ζ−α) of zeros does

not contain Γ as a prime component. This α is a trigger for endomorphisms on

(N,△), and Γ = Γ (vα) by Corollary 4.6(1).

(2): There is a rational function f on X such that the principal divisor div(f) is

expressed as kΓ−E for a positive integer k. Then f |U is nowhere vanishing on the

open torus U = X \D. The group H0(U,OU )
⋆ ≃ k[M]⋆ of invertible functions on

U consists of λe(m) for λ ∈ k⋆ and m ∈ M. Thus, we may write f = e(α) for some

α ∈ M. Then α is a trigger for endomorphisms on (N,△) by div(e(α)) = kΓ − E,

where Γ = Γ (vα) and k = 〈α, vα〉. �

Lemma 4.8. Let α and β be two triggers for endomorphisms on (N,△). If

〈α, vβ〉 ≤ 0 and 〈β, vα〉 ≤ 0, then one of the following holds :

(1) There exist triggers α′ and β′ such that vα = vα′ , vβ = vβ′ , and 〈α′, vβ′〉 =

〈β′, vα′〉 = 0.

(2) There exist positive integers a and b such that aα+ bβ = 0.
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Proof. By assumption, we have vα 6= vβ . For prime components Γα := Γ (vα) and

Γβ := Γ (vβ) of D and for non-negative integers

hα := 〈α, vα〉, hβ := 〈β, vβ〉, eα,β := −〈α, vβ〉, eβ,α := −〈β, vα〉,

we consider effective divisors

Gα := hαΓα − eα,βΓβ − div(e(α)) and Gβ := −eβ,αΓα + hβΓβ − div(e(β))

on X supported on D − (Γα + Γβ). Then

(IV-1)
hβGα + eα,βGβ = (hαhβ − eα,βeβ,α)Γα − div(e(hβα+ eα,ββ)),

eβ,αGα + hαGβ = (hαhβ − eα,βeβ,α)Γβ − div(e(eβ,αα+ hαβ)).

Hence, hαhβ − eα,βeβ,α ≥ 0. If hαhβ − eα,βeβ,α > 0, then α′ := hβα + eα,ββ

and β′ := eβ,αα + hαβ are triggers such that vα′ = vα, vβ′ = vβ , and 〈α′, vβ〉 =

〈β′, vα〉 = 0 by (IV-1). Thus, (1) holds in this case. Assume that hαhβ = eα,βeβ,α.

Then eα,β > 0 and eβ,α > 0 by hαhβ > 0, and hence, Gα = Gβ = 0 by (IV-1).

Consequently, hαΓα ∼ eα,βΓβ , eβ,αΓα ∼ hβΓβ , and

eβ,α div(e(α)) + hα div(e(β)) = hβ div(e(α)) + eα,β div(e(β)) = 0.

Therefore, eβ,αα+ hαβ = hβα+ eα,ββ = 0, and (2) holds. Thus, we are done. �

Lemma 4.9. Let P = P (x) be a polynomial in k[x] for one variable x such that

P (0) 6= 0. For a trigger α for endomorphisms on (N,△), there is an effective

divisor Eα(P ) on X such that any prime component of Eα(P ) is not contained in

D and

div(P (e(−α))) = Eα(P )− (degP )〈α, vα〉Γ (vα),

where P (e(−α)) is regarded as a rational function on X.

Proof. Since e(−α) ∈ k[M], P (e(−α)) is regular on the open torus X\D. Thus, the

assertion follows from Lemma 2.5, since 〈α, v〉 ≤ 0 for any v ∈ PN(△) \ {vα}. �

4.2. Endomorphisms of complete toric varieties defined by triggers.

Definition 4.10. Let α1 and α2 be triggers for endomorphisms on (N,△) and let

P1(x) and P2(x) be polynomials in k[x] for one variable x such that P1(0)P2(0) 6= 0.

Let Z1,2 ⊂ TN be the zero locus of the function P1(e(−α1))P2(e(−α2)). For a

positive integer k, a morphism Ξ = Ξα1,α2,k(P1, P2) : TN \ Z1,2 → TN is defined by

Ξ(u) = uk · γvα1
(P1(u(−α1)) · γvα2

(P2(u(−α2)))

for T -valued points u of TN \ Z1,2 for any k-scheme T , where · stands for the

multiplication in TN〈T 〉. For a trigger α and a polynomial P (x) with P (0) 6= 0 and

for the zero locus Z ⊂ TN of the function P (e(−α)), we set Ξα,k(P ) := Ξα,α,k(P, 1)

as a morphism TN \ Z → TN, in which

Ξα,k(P )u = uk · γvα
(P (u(−α)))

for any T -valued point u of TN \ Z for any k-scheme T .
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Remark 4.11. By definition,

Ξα1,α2,k(P1, P2) = Ξα2,α1,k(P2, P1) and Ξα,α,k(P1, P2) = Ξα,k(P1P2).

If P (x) = 1 + λx for a constant λ ∈ k and if α is a root, then Ξα,1(P ) is just the

morphism xα(λ) defined in [2, §4, no5, Thm. 3, p. 573] (cf. [14, Prop. 3.14]).

Remark 4.12. For Ξ = Ξα1,α2,k(P1, P2), we have

(IV-2) Ξ(u)(m) = u(km)P1(u(−α1))
〈m,vα1

〉P2(u(−α2))
〈m,vα2

〉

for any m ∈ M and for any T -valued point u of TN \Z1,2 for any k-scheme T . This

implies that

(IV-3) Ξ∗e(m) = e(km)P1(e(−α1))
〈m,vα1

〉P2(e(−α2))
〈m,vα2

〉

for any m ∈ M. Hence, Ξ is regarded as a rational map X ···→X by identifying TN

with X \D, since P1(e(−α1)) and P2(e(−α2)) are rational functions on X.

Proposition 4.13. In Definition 4.10, assume that one of the following holds :

(i) vα1
= vα2

, and the integer k satisfies

k ≥ 〈α1, vα1
〉 degP1 + 〈α2, vα2

〉 degP2;

(ii) either 〈α1, vα2
〉 = 0 or 〈α2, vα1

〉 = 0, and the integer k satisfies

k ≥ max{〈α1, vα1
〉 degP1, 〈α2, vα2

〉 degP2}.

Then Ξα1,α2,k(P1, P2) is regarded as an endomorphism of X = TN(△) and it induces

an endomorphism of the affine toric variety TN(σ) for any cone σ ∈ △ containing

vα1
and vα2

.

Proof. For simplicity, we set vi = vαi
and di = degPi for i = 1, 2, and set Ξ :=

Ξα1,α2,k(P1, P2). In (ii), we may assume that 〈α2, v1〉 = 0 by Remark 4.11. Note

that v1 6= v2 in (ii). We shall prove the assertion by the following three steps

modifying arguments in the proof of [14, Prop. 3.14].

Step 1. We shall prove the last assertion on TN(σ) for any σ ∈ △ such that

{v1, v2} ⊂ σ. In this case, 〈m, v1〉 ≥ 0 and 〈m, v2〉 ≥ 0 for any m ∈ σ∨∩M. Hence,

Ξ∗e(m) ∈ k[M] for the same m by (IV-3) in Remark 4.12. We set

ξv(m) := multΓ (v) div(Ξ
∗e(m))

for m ∈ M and v ∈ PN(△). Then

ξv(m) = 〈km, v〉+ d1〈m, v1〉min{0,−〈α1, v〉}+ d2〈m, v2〉min{0,−〈α2, v〉}

by Lemma 2.5 and by equalities (II-1) in Remark 2.3 and (IV-3) in Remark 4.12.

Thus, the following hold for any m ∈ σ∨ ∩M and v ∈ PN(σ) by (i) and (ii):

• If v 6∈ {v1, v2}, then ξv(m) = k〈m, v〉 ≥ 0.

• If v = v1 = v2, then ξv(m) = (k − d1〈α1, v1〉 − d2〈α2, v2〉)〈m, v〉 ≥ 0.

• If v1 6= v2 and if v = vi for i = 1, 2, then ξv(m) = (k−di〈αi, vi〉)〈m, v〉 ≥ 0.

Therefore, Ξ∗e(m) ∈ k[σ∨ ∩M] for any m ∈ σ∨ ∩M by Remark 2.4. This implies

that Ξ induces an endomorphism TN(σ) → TN(σ).
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Step 2. We shall show that Ξ induces a morphism TN(σ) → TN(△) when v1 ∈ σ

but v2 6∈ σ. Note that 〈α2, v1〉 = 0 by our assumption. Now, −α2 ∈ σ∨ ∩ M,

and e(−α2) is regular on TN(σ). Let U2 and V2 be Zariski-open subsets of TN(σ)

defined as the complements of zero loci of regular functions P2(e(−α2)) and e(−α2),

respectively. Then TN(σ) = U2 ∪V2 by P2(0) 6= 0, and V2 = TN({α2}
⊥ ∩σ) by [14,

Prop. 1.3]. Let τ 2 be the cone R(v2) + ({α2}
⊥ ∩ σ). Then τ 2 ∈ △ by Lemma 4.2,

and V2 ⊂ TN(τ 2). Moreover, {v1, v2} ⊂ τ 2, since 〈α2, v1〉 = 0. Hence, Ξ induces a

morphism V2 ⊂ TN(τ 2) → TN(τ 2) ⊂ TN(△) by Step 1 applied to τ 2. It suffices to

prove that Ξ induces a morphism U2 → TN(σ). Let ψ2 be the nowhere vanishing

function P2(e(−α2)) on U2. Then

Ξ∗e(m)|U2
= ψ2e(km)P1(e(−α1))

〈m,v1〉|U2

for m ∈ M by (IV-3) in Remark 4.12. Hence, it is enough to show that

ξ(1)v (v) := multΓ (v) div(e(km)P1(e(−α1))
〈m,v1〉) ≥ 0

for any m ∈ σ∨ ∩M and any v ∈ PN(σ), by Remark 2.4. Now,

ξ(1)v (m) = 〈km, v〉+ d1〈m, v1〉min{0,−〈α1, v〉}

by Lemma 2.5, and we have 〈m, v〉 ≥ 0 and 〈m, v1〉 ≥ 0. If v 6= v1, then ξ
(1)
v (m) =

k〈m, v〉 ≥ 0 by 〈α1, v〉 ≤ 0. If v = v1, then

ξ(1)v (m) = (k − d1〈α1, v1〉)〈m, v1〉 ≥ 0

by (ii). Therefore, ξ
(1)
v (m) ≥ 0 for any such v and m. Consequently, Ξ induces a

morphism U2 → TN(σ) and a morphism TN(σ) → TN(τ 2) ∪ TN(σ) ⊂ TN(△).

Step 3. The final step. By Steps 1 and 2, it suffices to prove that Ξ induces a

morphism TN(σ) → TN(△) for any cone σ ∈ △ not containing v1. In this case,

−α1 ∈ σ∨ ∩ M, and e(−α1) is regular on TN(σ). Let U1 and V1 be Zariski-

open subsets of TN(σ) defined as the complements of zero loci of P1(e(−α1)) and

e(−α1), respectively. Then TN(σ) = U1 ∪ V1, V1 = TN({α1}
⊥ ∩ σ), and the cone

τ 1 := R(v1) + ({α1}
⊥ ∩σ) belongs to △ by the same argument as in Step 2. Since

V1 ⊂ TN(τ 1) and since v1 ∈ τ 1, Ξ induces a morphism V1 ⊂ TN(τ 1) → TN(△) by

Steps 1 and 2. It remains to prove that Ξ induces a morphism U1 → TN(△). Let

ψ1 be the nowhere vanishing function P1(e(−α1)) on U1 and set Ξ′ := Ξα2
(P2) =

Ξα2,α2
(1, P2) (cf. Definition 4.10). Then

(IV-4) Ξ∗e(m)|U1
= ψ1e(km)P2(e(−α2))

〈m,v2〉|U1
= ψ1(Ξ

′∗e(m))|U1

for any m ∈ M by (IV-3) in Remark 4.12.

Assume that v2 ∈ σ. Then Ξ′∗e(m) ∈ σ∨ ∩M for any m ∈ σ∨ ∩M by Step 1,

and Ξ∗e(m)|U1
is regular for the same m by (IV-4). Thus, Ξ induces a morphism

U1 → TN(σ).

Assume that v2 6∈ σ. Then −α2 ∈ σ∨∩M. Let U2 and V2 be Zariski-open subsets

of TN(σ) defined as the zero loci of regular functions P2(e(−α2)) and e(−α2) on

TN(σ), respectively. Then TN(σ) = U2 ∪ V2, V2 = TN({α2}
⊥ ∩ σ), and τ 2 :=

R(v2) + ({α2}
⊥ ∩ σ) ∈ △ as in Step 2. Since v2 ∈ τ 2, Ξ

′ induces a morphism

V2 ⊂ TN(τ 2) → TN(τ 2) ⊂ TN(△) by Step 1. Hence, Ξ′∗e(m) is regular on V2 for
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any m ∈ τ∨
2 ∩M, and Ξ∗e(m) is also regular on U1 ∩ V2 for the same m by (IV-4).

Therefore, Ξ induces a morphism U1 ∩V2 → TN(τ 2). On the other hand, by (IV-3)

in Remark 4.12, we have

Ξ∗e(m)|U1∩U2
= e(km)ψ

〈m,v1〉
1 ψ

〈m,v2〉
2 |U1∩U2

for the nowhere vanishing function ψ2 = P2(−e(α2)) on U2. Thus, Ξ∗e(m) is

regular on U1∩U2 for any m ∈ σ∨∩M, and hence, Ξ induces a morphism U1∩U2 →

TN(σ). Consequently, Ξ induces a morphism TN(σ) → TN(△). Thus, we are

done. �

Example 4.14. We consider the case where X = P2. Here, N is of rank 2 with a

free basis (e1, e2), i.e., N = Ze1 ⊕ Ze2, and the complete fan △ of N consists of

{0}, R1 = R≥0e1, R2 = R≥0e2, R3 = R≥0(−e1 − e2), σ1 = R2 + R3, σ2 = R3 + R1,

and σ3 = R1 + R2. In particular, PN(△) = {e1, e2,−(e1 + e2)}. For a dual basis

(f1, f2) of M, i.e., 〈fi, ej〉 = δi,j , we set t1 := e(f1) and t2 := e(f2), which are

inhomogeneous coordinate functions of X = P2. Let α1 and α2 be triggers for

endomorphisms on (N,△) such that vα1
= e1, vα2

= e2, and 〈α1, vα2
〉 = 0. Then

α1 = a1f1 and α2 = −b2f1 + a2f2

for positive integers a1 = 〈α1, vα1
〉, a2 = 〈α2, vα2

〉, and an integer 0 ≤ b2 ≤ a2.

In particular, e(−α1) = t
−a1

1 and e(−α2) = t
b2
1 t

−a2

2 . For i = 1, 2, let Pi(x) be

a polynomial in k[x] such that Pi(0) 6= 0. We set di := degPi. For a positive

integer k ≥ max{d1a1, d2a2}, we have an endomorphism Ξ = Ξα1,α2,k(P1, P2) of X

by Proposition 4.13. Here,

Ξ∗t1 = tk1P1(t
−a1

1 ) and Ξ∗t2 = tk2P2(t
−a2

2 t
b2
1 )

by (IV-3) in Remark 4.12, and Ξ is determined by these equalities. We can describe

Ξ by a homogeneous coordinate (Z0 : Z1 : Z2) of P
2 such that Z1/Z0 = t1 and Z2/Z0 =

t2: For i = 1, 2, the homogeneous polynomial

Fi(U, V) := VdiPi(U/V) ∈ k[U, V]

is of degree di, and Fi(0, 1) 6= 0 and Fi(1, 0) 6= 0. Then Ξ is determined by

Ξ∗Z0 = Zk0 , Ξ∗Z1 = Z
k−d1a1

1 F1(Z
a1

0 , Z
a1

1 ), Ξ∗Z2 = Z
k−d2a2

2 F2(Z
a2−b2
0 Z

b2
1 , Z

a2

2 ).

4.3. Properties of endomorphisms defined by triggers. We shall study the

endomorphism Ξα1,α2,k(P1, P2) of X = TN(△) defined in Proposition 4.13. For

simplicity, we set

Ξ := Ξα1,α2,k(P1, P2), vi := vαi
and di := degPi

for i = 1, 2 as in the proof of Proposition 4.13.

Lemma 4.15. The degree of Ξ equals kr.

Proof. Let (m1,m2, . . . ,mr) be a free basis of M, and set tj := e(mj) for 1 ≤ j ≤ r.

Then the function field ofX is equal to k(t1, t2, . . . , tr), which is pure transcendental
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over k. The pullback Ξ∗tj is a rational function for any 1 ≤ j ≤ r, and deg Ξ equals

the degree of the field extension

k(t1, t2, . . . , tr)/k(Ξ
∗t1, . . . ,Ξ

∗tt).

We shall verify kr = deg Ξ by a suitable choice of (m1, . . . ,mr). For a fixed

(m1, . . . ,mr), we define integers ai,j for 1 ≤ i ≤ 2 and 1 ≤ j ≤ r by

(IV-5) α1 =
∑r

j=1
a1,jmj and α2 =

∑r

j=1
a2,jmj .

Case 1. First, we consider the case where v1 = v2. We set v◦ := v1 = v2. Since

v◦ is a primitive element of N, we can take a free basis (m1,m2, . . . ,mr) such that

〈m1, v
◦〉 = 1 and 〈mj , v

◦〉 = 0 for any j > 1. Then

〈α1, v
◦〉 = a1,1 > 0 and 〈α2, v

◦〉 = a2,1 > 0

by (IV-5). From (IV-3) in Remark 4.12, we have Ξ∗ti = tki for any i ≥ 2, and

Ξ∗t1 = tk1P1(e(−α1))P2(e(−α2)).

By Corollary 2.6, Ξ∗t1 ∈ k[t1, t
±1
2 , . . . , t±1

r ], since

k +min{0,−d1a1,1}+min{0,−d2a2,1} = k − d1a1,1 − d2a2,1 ≥ 0

by Proposition 4.13(i). Hence, there is a polynomial Q(x) ∈ K[x] of degree k for

the field K = k(t2, . . . , tr) such that Q(t1)− Ξ∗t1 = 0. Thus,

degK(t1)/K(Ξ∗t1) = k

by Lemma 4.16 below. On the other hand, degK(Ξ∗t1)/K
†(Ξ∗t1) = degK/K† =

kr−1 for the subfield K† = k(Ξ∗t2, . . . ,Ξ
∗tr) of K. Thus,

deg Ξ = deg k(t1, t2, . . . , tr)/k(Ξ
∗t1,Ξ

∗t2, . . . ,Ξ
∗tr) = degK(t1)/K

†(Ξ∗t1) = kr.

Case 2. Second, we consider the case where v1 6= v2. We may assume that

〈α2, v1〉 = 0 in Proposition 4.13(ii). Then primitive elements v1 and v2 of N are

linearly independent. Hence, we can find a free basis (m1,m2, . . . ,mr) of M and

integers p and q such that 0 ≤ p < q, gcd(p, q) = 1,

(IV-6) 〈m1, v1〉 = 1, 〈m1, v2〉 = p, 〈m2, v1〉 = 0, 〈m2, v2〉 = q,

and (m3,m4, . . . ,mr) is a free basis of {v1, v2}
⊥ ∩M. Then

(IV-7)
〈α1, v1〉 = a1,1 > 0, 〈α1, v2〉 = a1,1 p+ a1,2 q ≤ 0,

〈α2, v1〉 = a2,1 = 0, 〈α2, v2〉 = a2,1 p+ a2,2 q = a2,2 q > 0,

by (IV-5). In particular, a1,2 ≤ −a1,1p/q ≤ 0, and a2,2 > 0. From (IV-3) in

Remark 4.12, we have Ξ∗tj = tkj for any j ≥ 3,

Ξ∗t2 = tk2P2(e(−α2))
q, and Ξ∗t1 = tk1P1(e(−α1))P2(e(−α2))

p.

By Corollary 2.6, Ξ∗t2 ∈ k[t2, t
±1
3 , . . . , t±1

r ] and Ξ∗t1 ∈ k[t1, t
±1
2 , . . . , t±1

r ], since

k + d2qmin{0,−a2,2} = k − d2qa2,2 ≥ 0 and

k + d1 min{0,−a1,1}+ pd2 min{0,−a2,1} = k − d1a1,1 ≥ 0



19

by Proposition 4.13(ii). We set L2 := k(t3, . . . , tr) and L1 := k(t2, . . . , tr) = L2(t2)

as subfields of k(t1, . . . , tr). Then there exist polynomials Q2(x) ∈ L2[x] and

Q1(x) ∈ L1[x] of degree k such that Q2(t2) − Ξ∗t2 = 0 and Q1(t1) − Ξ∗t1 = 0.

By Lemma 4.16 below, we have

degL2(t2)/L2(Ξ
∗t2) = degL2(Ξ

∗t1, t2)/L2(Ξ
∗t1,Ξ

∗t2) = degL1(t1)/L1(Ξ
∗t1) = k,

where L2(Ξ
∗t1, t2) = L1(Ξ

∗t1). On the other hand,

degL2(Ξ
∗t1,Ξ

∗t2)/L
†
2(Ξ

∗t1,Ξ
∗t2) = degL2/L

†
2 = kr−2

for the subfield L†
2 = k(Ξ∗t3, . . . ,Ξ

∗tr) of L2. Hence,

deg Ξ = deg k(t1, . . . , tr)/k(Ξ
∗t1, . . . ,Ξ

∗tr) = degL1(t1)/L
†
2(Ξ

∗t1,Ξ
∗t2) = kr.

Thus, we are done. �

In the proof of Lemma 4.15 above, we use the following:

Lemma 4.16. For a field K and two variables x and y, let L = K(y) be the

field pure transcendental over K and let Q(x) be a polynomial in K[x] of degree

k > 0. Then y − Q(x) is irreducible in L[x] and degM/L = k for the field M =

L[x]/(y−Q(x)).

Proof. This follows from the irreducibility of y−Q(x) in K[x, y]. �

The endomorphism Ξ: X → X is finite by Theorem 1.1. Thus, we can consider

the pullback of a divisor by Ξ (cf. Section 3.2).

Proposition 4.17. For any divisor F on X, the pullback Ξ∗F is Q-linearly equiv-

alent to kF . Moreover, the following hold, where Ei is the effective divisor Eαi
(Pi)

defined in Lemma 4.9, for i = 1, 2:

(1) If v ∈ PN(△) \ {v1, v2}, then Ξ∗Γ (v) = kΓ (v).

(2) If v1 = v2, then

Ξ∗Γ (v◦) = k◦Γ (v◦) + E1 + E2

for v◦ := v1 = v2, where k
◦ := k − d1〈α1, v

◦〉 − d2〈α2, v
◦〉.

(3) If v1 6= v2, then

Ξ∗Γ (vi) = kiΓ (vi) + Ei

for any i = 1, 2, where ki := k − di〈αi, vi〉.

Proof. We may assume that 〈α1, v2〉 = 0 in Proposition 4.13(ii). Note that the

convex cone σα := R(v1) + R(v2) belongs to △. In fact, this is trivial in case

v1 = v2, and if v1 6= v2, then {α1}
⊥ ∩ R(v2) = R(v2) by Proposition 4.13(ii), and

σα ∈ △ by Lemma 4.2. We set

Dα :=
∑

v∈PN(△)\{v1,v2}
Γ (v).

First, we shall show (1). Since 〈αi, v〉 ≤ 0, e(−αi) is regular on TN(R(v)).

Note that TN(σα) ∩ Γ (v) = ∅. Since Ξ induces an endomorphism of TN(σα) (cf.

Proposition 4.13), we have TN(σα) ∩ Ξ−1Γ (v) = ∅. In particular, Ξ−1Γ (v) ⊂ Dα.
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By Lemma 4.9, Pi(e(−αi)) is a local defining equation of Ei in TN(R(v)) for i = 1,

2. We set U := TN(R(v)) \ (E1 ∪ E2) and ψi := Pi(e(−αi))|U for i = 1, 2. Then

(IV-8) Ξ∗e(m)|U = e(m)kψ
〈m,v1〉
1 ψ

〈m,v2〉
2

for any m ∈ M by (IV-3) in Remark 4.12. We can take an element m1 ∈ M such

that 〈m1, v〉 = 1, since v is primitive. Then m1 ∈ R(v)∨ ∩M, and e(m1) is a local

defining equation of Γ (v) in TN(R(v)). Hence, Ξ∗Γ (v)|U = kΓ (v)|U by (IV-8) for

m1. Therefore,

Ξ∗Γ (v) = kΓ (v) +G

for an effective divisor G supported on Dα−Γ (v). If Γ (v′) ⊂ SuppG for some v′ ∈

PN(△), then Γ (v′) ⊂ Ξ−1Γ (v′) by the same argument as above for v′, and hence,

Ξ(Γ (v′)) ⊂ Γ (v) ∩ Γ (v′). This contradicts the finiteness of Ξ, since dimΓ (v) ∩

Γ (v′) < dimΓ (v′). Therefore, G = 0, and we have proved (1).

Next, we shall prove the first assertion of Proposition 4.17. Every divisor on

X is linearly equivalent to a divisor supported on the boundary divisor D, since

the divisor class group of the open torus X \ D is zero. By (1), it is enough to

show that, for i = 1, 2, some multiple of Γ (vi) is linearly equivalent to a divisor

supported on Dα. Now, we have

div(e(αi)) = 〈αi, v1〉Γ (v1) + 〈αi, v2〉Γ (v2) +
∑

v∈PN(△)\{v1,v2}
〈αi, v〉Γ (v).

Thus, the assertion holds if v1 = v2. Even in case v1 6= v2, since we have assumed

〈α1, v2〉 = 0, the assertion holds by equalities above for div(e(α1)) and div(e(α2)).

The remaining assertions (2) and (3) are shown as follows:

(2): For v◦ = v1 = v2, we have σα = R(v◦). Let (m1,m2, . . . ,mr) be the

free basis of M in the proof of Lemma 4.15 taken for the case: v1 = v2. Then

(m2,m3, . . . ,mr) is a free basis of {v◦}⊥ ∩M and 〈m1, v
◦〉 = 1. As in the proof of

(1), e(m1) is a defining equation of Γ (v◦) in TN(σα). Hence,

Ξ∗Γ (v◦)|TN(v◦) = div(Ξ∗e(m1))|TN(v◦).

On the other hand, we have

Ξ∗e(m1) = e(km1)P1(e(−α1))P2(e(−α2))

by (IV-3) in Remark 4.12. Hence,

Ξ∗Γ (v◦)|TN(v◦) = (k◦Γ (v◦) + E1 + E2)|TN(v◦)

by Lemma 4.9. For any v ∈ PN(△) \ {v◦}, the prime divisor Γ (v) is not contained

in Ξ−1Γ (v◦) by (1) and by the finiteness of Ξ. Thus, we have the equality in (2).

(3): Let (m1,m2, . . . ,mr) be the free basis of M in the proof of Lemma 4.15

taken for the case: v1 6= v2. Then (m3,m4, . . . ,mr) is a free basis of σ⊥
α ∩ M,

and values of 〈mi, vj〉 for 1 ≤ i, j ≤ 2 are given as in (IV-6) in the proof of

Lemma 4.15 for mutually coprime integers p and q such that 0 ≤ p < q. We set

m̃1 := qm1 − pm2 ∈ σ∨
α ∩ M. Then 〈m̃1, v1〉 = q, 〈m̃1, v2〉 = 0, 〈m2, v1〉 = 0,
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〈m2, v2〉 = q, and moreover,

{m ∈ σ∨
α ∩M | 〈m, v1〉 ≥ q} = m̃1 + σ∨

α ∩M,

{m ∈ σ∨
α ∩M | 〈m, v2〉 ≥ q} = m2 + σ∨

α ∩M.

Hence, qΓ (v1) and qΓ(v2) are Cartier divisors on TN(σα) with local defining equa-

tions e(m̃1) and e(m2), respectively (cf. Remark 2.3). Thus,

Ξ∗(qΓ (v1))|TN(σα) = div(Ξ∗e(m̃1))|TN(σα) and

Ξ∗(qΓ (v2))|TN(σα) = div(Ξ∗e(m2))|TN(σα).

On the other hand, we have

Ξ∗e(m̃1) = e(km̃1)P1(e(−α1))
q and Ξ∗e(m2) = e(km2)P2(e(−α2))

q

by (IV-3) in Remark 4.12, and it implies that

Ξ∗(qΓ (vi))|TN(σα) = (qkiΓ (v1) + qE1) |TN(σα)

for i = 1, 2, by Lemma 4.9. Now, Ξ−1Γ (v1) and Ξ−1Γ (v2) do not contain Γ (v) for

any v ∈ PN(△) \ {v1, v2} by (1) and by finiteness of Ξ. Thus, (3) holds, and we are

done. �

Remark. When X is projective, we have another proof of Lemma 4.15 by applying

Proposition 4.17, since Ξ∗A ∼Q kA for an ample divisor A on X and since (Ξ∗A)r =

(deg Ξ)Ar for r = dimX.

When char k = 0, we can consider the ramification divisor RΞ and the charac-

teristic completely invariant divisor SΞ of the endomorphism Ξ (cf. Definition 3.5).

In some special cases, we have a simple description of RΞ and SΞ.

Example 4.18. Assume that char k = 0. For a positive integer k, the multiplication

map N → N by k induces a morphism (N,△) → (N,△) of fans, and we have an

associated endomorphism µk of X = TN(△). Then µk is a k-th power map, i.e., it

induces TN〈R〉 ≃ N⊗Z R
⋆ ∋ u 7→ uk for any k-algebra R. In particular, µk induces

a finite étale endomorphism of the open torus X \D. Moreover, µk = Ξα,k(1) for

any trigger α in the sense of Definition 4.10.

For a root α of (N,△) and for λ ∈ k \ {0}, let xα(λ) be the automorphism

Ξα,1(1 + λx) as in Remark 4.11. For integers k and l greater than 1, we set

Ξ := µl ◦ xα ◦ µk

as an endomorphism of X and consider its ramification divisor. Note that deg Ξ =

(kl)r and that Ξ = Ξkα,kl(P ) for the polynomial P (x) = (1 + λx)l by equalities

µ∗
ke(m) = e(km) and xα(λ)

∗e(m) = e(m)(1 + λe(−α))〈m,vα〉

for any m ∈ M (cf. (IV-3) in Remark 4.12). Now, µ∗
kΓ (v) = kΓ (v) for any v ∈

PN(△): This is a special case of Proposition 4.17(1). Moreover, xα(λ)
∗Γ (v) = Γ (v)

for any v ∈ PN(△) \ {vα}. For v = vα, note that xα(λ)
∗Γ (vα) is a prime divisor

not contained in the boundary divisor D, since we have assumed λ 6= 0. Hence,

Fα := µ∗
k(xα(λ)

∗Γ (vα))
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is a reduced divisor having no common prime components with D. Since the ram-

ification divisor Rµk
of µk equals (k − 1)D, the ramification divisor RΞ of Ξ is

expressed as

RΞ = Rµk
+ µ∗

k(xα(λ)
∗Rµl

) = (k − 1)D + (l − 1)µ∗
k(xα(λ)

∗D))

= (k − 1)D + (l − 1)k(D − Γ (vα)) + (l − 1)Fα

= (kl − 1)(D − Γ (vα)) + (k − 1)Γ (vα) + (l − 1)Fα.

In particular, for a prime divisor Θ not contained in D − Γ (vα), the ramifica-

tion index of Ξ along Θ is less than kl, since we have assumed k, l > 1. By

Proposition 4.17, we know that Ξ∗F ∼Q klF for any divisor F on X. Hence, the

characteristic completely invariant divisor SΞ equals D − Γ (vα) by Lemma 3.6.

For a general Ξ = Ξα1,α2
(P1, P2), we have only the following weaker result on

RΞ and SΞ.

Lemma 4.19. Assume that k is of characteristic zero, X is projective, and

(IV-9) k − 2 ≥ (d1〈α1, v1〉Γ (v1) + d2〈α2, v2〉Γ (v2))H
r−1

for an ample divisor H on X. Then the following hold for the divisor

Dα :=
∑

v∈PN(△)\{vα1
,vα2

}
Γ (v) :

(1) The ramification index of Ξ along any prime divisor Θ on X not contained

in Dα is less than k.

(2) Let g be an automorphism of X such that g−1D = D and g−1Dα = Dα.

Then Dα equals the characteristic completely invariant divisor Sg◦Ξ of the

endomorphism g ◦ Ξ.

Proof. For a prime divisor Θ, let rΘ be the ramification index of Ξ along Θ, i.e.,

rΘ = multΘ Ξ∗(Ξ(Θ)). For the automorphism g in (2), the ramification index of

g ◦Ξ along Θ is also equal to rΘ. Hence, (2) is a consequence of (1) by Lemma 3.6

and Proposition 4.17.

Assertion (1) is shown as follows: If Θ = Γ (vi) for some i = 1, 2, then rΘ = ki
(resp. = k◦) in case v1 6= v2 (resp. v1 = v2) by (3) (resp. (2)) of Proposition 4.17.

Here, k > ki (resp. k > k◦) by (IV-9), and (1) holds for this Θ.

Assume that Θ is a prime component of Ei for some i = 1, 2, where E1 and E2

are as in Proposition 4.17 (cf. Lemma 4.9). Then Θ|X\D is defined by an irreducible

element Q ∈ k[M] which is a factor of Pi(e(−αi)). Here, di = degPi > 0 by the

existence of Θ. Let

Pi(x) = c
∏l

t=1
(x− λt)

nt

be the polynomial factorization in k[x] for an algebraic closure k of k, where c ∈

k \ {0}, λt ∈ k \ {0}, and di =
∑l

t=1 nt. If α ∈ M is written as aβ for a primitive

element β ∈ M and an integer a > 0, then

e(α)− λa =
∏a−1

s=1
(e(β)− ζsλ)
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for any λ ∈ k, where ζ is a primitive a-th root of unity, and each factor e(β)−ζsλ is

irreducible in k[M]. This implies that the multiplicity of Q in Pi(e(−αi)) is at most

di = degPi, or equivalently, multΘEi ≤ di. On the other hand, rΘ = multΘEi by

(2) and (3) of Proposition 4.17. Therefore, rΘ ≤ k − 1 by (IV-9). Thus, (1) holds

for this Θ.

For the rest of the proof, it suffices to prove rΘ ≤ k − 1 for any prime divisor Θ

not contained in D+E1+E2. By Proposition 4.17, we have Ξ−1(D) = D+E1+E2.

As a ramification formula for Ξ, we have

KTN(△) +D + (E1 + E2)red = Ξ∗(KTN(△) +D) + ∆

for the effective divisor

∆ :=
∑

Θ 6⊂D+(E1+E2)red
(rΘ − 1)Θ

(cf. Remark 3.4). Hence, (E1 + E2)red ∼ ∆ by KTN(△) +D ∼ 0. If v◦ = v1 = v2,

then

E1 + E2 ∼ Ξ∗Γ(v◦)− k◦Γ (v◦) ∼ (k − k◦)Γ (v◦) =
∑2

i=1
di〈αi, vi〉Γ (vi)

by Proposition 4.17. If v1 6= v2, then

E1 + E2 ∼
∑2

i=1
(Ξ∗Γ (vi)− kiΓ (vi)) ∼

∑2

i=1
di〈αi, vi〉Γ (vi)

by Proposition 4.17. Hence, in both cases, by (IV-9), we have

k − 2 ≥ (E1 + E2)H
r−1 ≥ (E1 + E2)redH

r−1

= ∆Hr−1 ≥ (rΘ − 1)ΘHr−1 ≥ rΘ − 1

for any Θ ⊂ Supp∆. Thus, we are done. �

4.4. Proof of Theorem 1.2.

Proof of Theorem 1.2. We write X = TN(△) for a free abelian group N of rank r

and for a complete fan △ of N. For the boundary divisor D = BN(△), we are given a

reduced divisor B contained in D such that, for any prime component Γ of B, some

multiple of Γ is linearly equivalent to an effective divisor not containing Γ. We shall

construct an endomorphism ofX satisfying conditions (1)–(5) of Theorem 1.2. Note

that Theorem 1.2(6) follows from (1), (2), and (5) of Theorem 1.2 by Lemma 3.6.

First, we consider the case where B is a prime divisor. Then there is a trigger α

for endomorphisms on (N,△) such that B = Γ (vα), by Corollary 4.7(1). Let Ξ be

the endomorphism of X defined as Ξα,k(P ) for an integer k > 1 and a polynomial

P = P (x) in k[x] with P (0) 6= 0 such that degP > 0 and k ≥ 〈α, vα〉 degP . Then Ξ

satisfies (1), (2), (3) and (4) of Theorem 1.2 by Proposition 4.17 and Lemma 4.15.

Suppose that char k = 0 and X is projective. In this situation, we take k so that

k − 2 ≥ 〈α, vα〉(degP )BH
r−1

for an ample divisor H on X. Then Ξ satisfies Theorem 1.2(5) by Lemma 4.19(1).

Second, we shall prove Theorem 1.2 by induction on the number n(B) of prime

components of B. Let C be a prime component of B. By induction and by the
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argument above in the case of prime divisor, we may assume the existence of endo-

morphisms f1 : X → X and f2 : X → X with positive integers k1 and k2 satisfying

the following conditions

(i) f∗1F ∼Q k1F and f∗2F ∼Q k2F for any divisor F on X;

(ii) f∗1Γ = k1Γ (resp. f∗2Γ = k2Γ) for any prime component Γ of D − C (resp.

D − (B − C));

(iii) f−1
1 C 6= C and f−1

2 Θ 6= Θ for any prime component Θ of B − C;

(iv) deg f1 = kr1 and deg f2 = kr2.

Then the composite f = f2 ◦ f1 : X → X and the integer k = k1k2 satisfy (1), (2),

and (4) of Theorem 1.2 by (i), (ii), and (iv), respectively. We have f−1C 6= C by

(ii) and (iii), since f−1
2 C = C. Similarly, f−1Θ 6= Θ for any prime component Θ of

B−C. In fact, if f−1Θ = f−1
1 (f−1

2 Θ) = Θ, then we have f−1
2 Θ = Θ by f−1

1 Θ = Θ:

This is a contradiction. Thus, Theorem 1.2(3) is also satisfied. In the case where

char k = 0 and X is projective, we may assume the following additional condition

by induction:

(v) the ramification index of f1 (resp. f2) along a prime divisor not contained

in D − C (resp. D − (B − C)) is less than k1 (resp. k2).

Then Theorem 1.2(5) holds for f = f2◦f1 and for k = k1k2. Thus, we are done. �

5. Endomorphisms commuting with an involution

In Section 5.1, we shall study automorphisms of a complete toric variety preserv-

ing the boundary divisor, and compare endomorphisms defined by triggers. When

the automorphism is an involution, in Section 5.2, we shall prove Theorem 1.3

on the existence of certain non-isomorphic surjective endomorphisms equivariant

under the involution. In this section, we fix a complete fan △ of a non-zero free

abelian group N of finite rank, and set X to be the toric variety TN(△) and D to

be the boundary divisor BN(△).

5.1. Automorphisms of a toric variety preserving the boundary divisor.

Definition 5.1. We define Aut(X,D) to be the group of automorphisms g : X → X

such that g(D) = D, and define Aut(N,△) to be the group of automorphisms

φ : N → N such that φR(σ) ∈ △ for any σ ∈ △. For a k-valued point u of TN, we

define Lu to be the action of u as an automorphism in Aut(X,D).

Remark. The automorphism Lu is the composite of the morphism TN ×X → X of

action of TN on X and the morphism u× idX : Spec k×X ≃ X → TN ×X defined

by u ∈ TN〈k〉 = Homk(Spec k,TN). The correspondence u 7→ Lu gives rise to a

group homomorphism TN〈k〉 = N⊗Z k⋆ → Aut(X,D).

Remark. For any φ ∈ Aut(N,△), the associated morphism Tφ in Definition 2.1

is considered as an automorphism in Aut(X,D), since φ is a morphism (N,△) →

(N,△) of fans. Moreover, φ 7→ Tφ gives rise to a group homomorphism Aut(N,△) →

Aut(X,D).
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Lemma 5.2. The group Aut(X,D) is isomorphic to the semi-direct product TN〈k〉⋊

Aut(N,△) with respect to the homomorphism Aut(N,△) → Aut(TN〈k〉) given by

φ 7→ (u 7→ φ(u)) (cf. Definition 2.7(2)).

Proof. The restriction homomorphism Aut(X,D) → Aut(X \D) is injective, and

Aut(X \ D) is anti-isomorphic to the group Aut(k[M]/k) of k-algebra automor-

phisms of k[M]. Since an invertible element of k[M] is expressed as ce(m) for some

c ∈ k⋆ and m ∈ M, we have an isomorphism

Aut(k[M]/k) ≃ Hom(M, k⋆)⋊Aut(M),

where Hom(M, k⋆) is a right Aut(M)-module by χϕ(m) = χ(ϕ(m)) for m ∈ M,

ϕ ∈ Aut(M), and χ ∈ Hom(M, k⋆). Therefore, Aut(X \D) is isomorphic to TN〈k〉⋊

Aut(N). In particular, Aut(X \ D) is generated by actions Lu on the open torus

X \D for all u ∈ TN〈k〉 and by automorphisms Tφ of TN = TN({0}) = X \D for

all φ ∈ Aut(N). The automorphism Tφ extends to an automorphism of X if and

only if φ ∈ Aut(N,△), since Tφ is equivariant under the action of TN and △ is in

one-to-one correspondence with the set of orbits of TN in X (cf. [14, Prop. 1.6]).

Hence, Aut(X,D) is generated by Lu for u ∈ TN〈k〉 and Tφ for φ ∈ Aut(N,△).

Therefore, Aut(X,D) ≃ TN〈k〉⋊Aut(N,△). �

Remark 5.3. For any u ∈ TN〈k〉 and φ ∈ Aut(N,△), we have

(V-1) Tφ ◦ Lu ◦ T−1
φ = Lφ(u)

by Lemma 5.2. This is shown directly by equalities

(V-2) L∗
ue(m) = u(m)e(m) and T∗

φe(m) = e(φ∨m)

for any m ∈ M, where φ∨ : M → M stands for the dual of φ (cf. Definitions 2.1 and

2.7).

Definition 5.4. For an automorphism g ∈ Aut(X,D), we define g∗ ∈ Aut(N,△)

to be the image of g under the projection

Aut(X,D) ≃ TN〈k〉⋊Aut(N,△) → Aut(N,△).

We define g∗ to be the dual (g∗)
∨ as an automorphism of M.

Remark 5.5. If g = Lu ◦ Tφ for some u ∈ TN〈k〉 and φ ∈ Aut(N,△), then g∗ =

φ. When k = C, g∗ is just the induced automorphism of H1((X \ D)an,Z) ≃

H1((TN)
an,Z) ≃ N, where an indicates the associated complex analytic space.

Remark 5.6. For u ∈ TN〈k〉 and φ ∈ Aut(N,△), the automorphism Lu ◦ Tφ in

Aut(X,D) is an involution if and only if φ2 = idN and φ(u) = u−1. This is shown

by (V-1) in Remark 5.3.

Lemma 5.7. For any u ∈ TN〈k〉 and φ ∈ Aut(N,△) and for the endomorphism

Ξα1,α2,k(P1, P2) of X = TN(△) in Proposition 4.13, the equality

(V-3) Lu ◦ Tφ ◦ Ξα1,α2,k(P1, P2) ◦ (Lu ◦ Tφ)
−1 = Lu1−k ◦ Ξ

α
†
1,α

†
2
(P †

1 , P
†
2 )

holds as an endomorphism of X, where α†
i := (φ−1)∨αi and P †

i (x) := Pi(u(α
†
i )x)

for i = 1, 2.
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Proof. The automorphism φ induces a permutation of PN(△), and 〈(φ−1)∨m, v〉 =

〈m,φ−1v〉 for any v ∈ PN(△) and m ∈ M. Hence, α†
i is also a trigger and v

α
†
i

=

φ(vαi
) for i = 1, 2. The equality (V-3) is deduced from two equalities

Lu ◦ Ξα1,α2,k(P1, P2) ◦ L
−1
u = Lu1−k ◦ Ξα1,α2,k(P

‡
1 , P

‡
2 ),(V-4)

Tφ ◦ Ξα1,α2,k(P1, P2) ◦ T
−1
φ = Ξ

α
†
1,α

†
2,k

(P1, P2),(V-5)

where P ‡
i (x) := Pi(u(αi)x) for i = 1, 2 in (V-4). We can verify them using (IV-3)

in Remark 4.12 and (V-2) in Remark 5.3 for any m ∈ M: We set

Ξ := Ξα1,α2,k, Ξ‡ := Ξα1,α2,k(P
‡
1 , P

‡
2 ), and Ξ† := Ξ

α
†
1,α

†
2,k

(P1, P2).

Then (V-4) is equivalent to Luk ◦ Ξ = Ξ‡ ◦ Lu, and this is shown by

L∗
u(Ξ

‡∗e(m)) = L∗
u

(
e(km)P ‡

1 (e(−α1))
〈m,vα1

〉P ‡
2 (e(−α2))

〈m,vα2
〉
)

= L∗
u

(
e(km)P1(u(α1)e(−α1))

〈m,vα1
〉P2(u(α2)e(−α2))

〈m,vα2
〉
)

= u(km)e(km)P1(e(−α1))
〈m,vα1

〉P2(e(−α2))
〈m,vα2

〉

= u(km)Ξ∗e(m) = Ξ∗(uk(m)e(m)) = Ξ∗(L∗
uke(m))

for any m ∈ M. The other equality (V-5) is equivalent to Tφ ◦ Ξ = Ξ† ◦ Tφ, and

this is shown by

T∗
φ(Ξ

†∗e(m)) = T∗
φ

(
e(km)P1(e(−α

†
1))

〈m,v
α
†
1

〉
P2(e(−α

†
2))

〈m,v
α
†
2

〉
)

= T∗
φ

(
e(km)P1(e(−(φ−1)∨α1))

〈m,φ(vα1
)〉P2(e(−(φ−1)∨α2))

〈m,φ(vα2
)〉
)

= e(φ∨(km))P1(e(−α1))
〈m,φ(vα1

)〉P2(e(−α2))
〈m,φ(vα2

)〉

= e(kφ∨m)P1(e(−α1))
〈φ∨m,vα1

〉P2(e(−α2))
〈φ∨m,vα2

〉

= Ξ∗e(φ∨m) = Ξ∗(T∗
φe(m))

for any m ∈ M. Thus, we are done. �

5.2. Equivariant endomorphisms under involutions. By an endomorphism

defined by triggers studied in Section 4 and by results on automorphisms in Sec-

tion 5.1, we shall prove Theorem 1.3 in the introduction.

Lemma 5.8. Let φ : N → N be an involution and let u be a k-valued point of TN

such that φ(u) = u−1. If the square map k ∋ λ → λ2 ∈ k is surjective, then there

is a k-valued point uo of TN such that u = φ(uo)
−1uo.

Proof. Let N1 be the kernel of the endomorphism idN +φ : N → N and let N2 be

the image of idN −φ : N → N. Then 2N1 ⊂ N2 ⊂ N1, since φ
2 = idN and since

2n = n − φ(n) for any n ∈ N1. Hence, by the assumption of the square map, the

homomorphism

(idN −φ)⊗ idk⋆ : N⊗Z k⋆ → N1 ⊗Z k⋆

is surjective, which maps u′ ∈ TN〈k〉 = N⊗ k⋆ to u′φ(u′)−1. Since u ∈ N1 ⊗ k⋆, we

can find an expected uo. �
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Proposition 5.9. Let α1 and α2 be triggers for endomorphisms on (N,△) and let

g be an involution of X in Aut(X,D) such that g∗(α1) = α2 (cf. Definition 5.4).

Suppose that either 〈α1, vα2
〉 = 0 or 〈α2, vα1

〉 = 0. Then

(V-6) vα1
6= vα2

, 〈α1, vα1
〉 = 〈α2, vα2

〉 > 0, and 〈α1, vα2
〉 = 〈α2, vα1

〉 = 0.

If k is algebraically closed, then there exist polynomials P1(x), P2(x) in k[x] and an

element uo ∈ TN〈k〉 such that P1(0) 6= 0, P2(0) 6= 0, degP1 = degP2 > 0, and

(V-7) g ◦ Luo
◦ Ξα1,α2,k(P1, P2) = Luo

◦ Ξα1,α2,k(P1, P2) ◦ g

for the endomorphism Ξα1,α2,k(P1, P2) of X in Proposition 4.13 defined for any

integer k ≥ 〈α1, vα1
〉 degP1 = 〈α2, vα2

〉 degP2.

Proof. By Lemma 5.2, we can write g = Lu ◦ Tφ for some u ∈ TN〈k〉 and φ ∈

Aut(N,△), where φ2 = idN and φ(u) = u−1 by Remark 5.6. We have g∗α1 =

φ∨α1 = α2 and g∗α2 = α1 (cf. Definition 5.4). Moreover, vα1
= φ(vα2

), vα2
=

φ(vα1
), and we have (V-6) by 〈φ∨m,n〉 = 〈m,φ(n)〉 for any m ∈ M and n ∈ N.

For the second assertion, we set c := u(α1). Then u(α2) = c−1 by u−1(α2) =

φ(u)(α2) = u(φ∨α2) = u(α1). We can take polynomials P1(x) and P2(x) in k[x]

such that P2(0) 6= 0 and P1(x) = P2(cx). For any u
′ ∈ TN〈k〉, we have

(V-8) g ◦ Lu′ ◦ g−1 = Lu ◦ Tφ ◦ Lu′ ◦ T−1
φ ◦ Lu−1 = Lu ◦ Lφ(u′) ◦ Lu−1 = Lφ(u′)

by (V-1) in Remark 5.3. Then

g ◦ Lu′ ◦ Ξα1,α2,k(P1, P2) ◦ g
−1 = (g ◦ Lu′ ◦ g−1) ◦ g ◦ Ξα1,α2,k(P1, P2) ◦ g

−1

= Lφ(u′)u1−k ◦ Ξ
α

†
1,α

†
2,k

(P †
1 , P

†
2 )

by (V-3) in Lemma 5.7, where α†
1 = (g−1)∗α1 = α2, α

†
2 = (g−1)∗α2 = α1, and

P †
1 (x) = P1(u(α

†
1)x) = P1(c

−1x) = P2(x),

P †
2 (x) = P2(u(α

†
2)x) = P2(cx) = P1(x)

by the choices of P1 and P2. In particular,

Ξ
α

†
1,α

†
2,k

(P †
1 , P

†
2 ) = Ξα2,α1,k(P2, P1) = Ξα1,α2,k(P1, P2).

On the other hand, by Lemma 5.8, we can find an element uo ∈ TN〈k〉 such that

uo = φ(uo)u
1−k,

since φ(u1−k) = uk−1. Thus, (V-7) holds for this uo, and we are done. �

Proposition 5.10. Let α be a trigger for endomorphisms on (N,△) and let g be

an involution of X in Aut(X,D) such that g∗(α) = α (cf. Definition 5.4). If k

is algebraically closed, then there exist a polynomial P (x) in k[x] and an element

uo ∈ TN〈k〉 such that P (0) 6= 0, degP > 0, and

g ◦ Luo
◦ Ξα,k(P ) = Luo

◦ Ξα,k(P ) ◦ g

for the endomorphism Ξα,k(P ) = Ξα,α,k(P, 1) of X in Proposition 4.13 (cf. Defini-

tion 4.10) defined for any integer k ≥ 〈α, vα〉 degP .
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Proof. By Lemma 5.2, we can write g = Lu ◦ Tφ for some u ∈ TN〈k〉 and φ ∈

Aut(N,△), where φ2 = idN and φ(u) = u−1 by Remark 5.6. Since g∗α = φ∨α = α,

we have u(α) = ±1 by u(α) = u(φ∨α) = φ(u)(α) = u(−α). Let P (x) be a

polynomial in k[x2] ⊂ k[x] such that P (0) 6= 0. Then P (−x) = P (x). By (V-3) in

Lemma 5.7 and by (V-8) in the proof of Proposition 5.9, we have

g ◦ Lu′ ◦ Ξα,k(P ) ◦ g
−1 = g ◦ Lu′ ◦ g−1 ◦ g ◦ Ξα,α,k(P, 1) ◦ g

−1

= Lφ(u′)u1−k ◦ Ξα†,k(P
†)

for any u′ ∈ TN〈k〉, where α
† = (φ−1)∨α = (g−1)∗α = α and P †(x) = P (u(α†)x) =

P (u(α)x) = P (x). Then Ξα†,k(P
†
1 ) = Ξα,k(P ). On the other hand, by Lemma 5.8,

we can find an element uo ∈ TN〈k〉 such that

uo = φ(uo)u
1−k,

since φ(u1−k) = uk−1. Thus, we are done. �

Proof of Theorem 1.3. By the assumption on the prime component Γ of D and

by Corollary 4.7(2), there is a trigger α for endomorphisms on (N,△) such that

Γ = Γ (vα) and div(e(α)) = 〈α, vα〉Γ − E for an effective divisor E supported on

D −B, where B = Γ ∪ ι(Γ). Here, ι∗α is another trigger such that ι∗(Γ) = ι(Γ) =

Γ (ι∗(vα)) = Γ (vι∗α).

Assume that B is irreducible, i.e., B = Γ = ι(Γ). Then vα = vι∗α. By replacing

α with α+ ι∗α, we may assume that ι∗α = α (cf. Remark 4.3). By applying Propo-

sition 5.10 to the involution ι, we have a non-isomorphic surjective endomorphism

f of X such that ι ◦ f = f ◦ ι and that

f = Luo
◦ Ξα,k(P )

for some uo ∈ TN〈k〉, P (x) ∈ k[x], and k ≥ 〈α, vα〉 degP . Here, the following hold

by properties of Ξα,k(P ) shown in Propositions 4.15 and 4.17:

• f∗F ∼Q kF for any divisor F on X;

• f∗Θ = kΘ for any prime component Θ of D − Γ;

• f−1Γ 6= Γ;

• deg f = kr for r = dimX = rankN.

Thus, f satisfies conditions (1), (2), (3), and (4) of Theorem 1.2. When char k = 0

and X is projective, we may assume that

k − 2 ≥ 〈α, vα〉(degP )ΓH
r−1

for an ample divisor H, and the following holds by Lemma 4.19:

• the ramification index of f along any prime divisor C not contained inD−Γ

is less than k, and Sf = D − Γ.

Thus, f satisfies (5) and (6) of Theorem 1.2. Therefore, we have proved Theorem 1.3

in the case where B is irreducible.

Next, assume that B is reducible, i.e., B = Γ + ι(Γ). Then 〈α, vι∗α〉 = 0 for the

trigger α, since ι(Γ) 6⊂ SuppE ⊂ D−B. By Proposition 5.9 applied to the involu-

tion ι and triggers α and ι∗α, we have a non-isomorphic surjective endomorphism
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f of X such that ι ◦ f = f ◦ ι and that

f = Luo
◦ Ξα, ι∗α, k(P1, P2)

for some uo ∈ TN〈k〉, polynomials P1(x), P2(x) ∈ k[x] with P1(0) 6= 0, P2(0) 6= 0,

degP1 = degP2, and a positive integer k ≥ 〈α, vα〉 degP1. Here, the following hold

by properties of Ξα, ι∗α, k(P1, P2) shown in Propositions 4.15 and 4.17:

• f∗F ∼Q kF for any divisor F on X;

• f∗Θ = kΘ for any prime component Θ of D −B;

• f−1Γ 6= Γ and f−1ι(Γ) 6= ι(Γ);

• deg f = kr for r = dimX = rankN.

Thus, f satisfies conditions (1), (2), (3), and (4) of Theorem 1.2. When char k = 0

and X is projective, we may assume

k − 2 ≥ 〈α, vα〉(degP1)BH
r−1

for an ample divisor H, and the following holds by Lemma 4.19:

• the ramification index of f along any prime divisor C not contained in

D −B is less than k, and Sf = D −B.

Thus, f satisfies (5) and (6) of Theorem 1.2. Therefore, we have proved Theorem 1.3

also in the case where B is reducible. Thus, we are done. �

6. Endomorphisms of toric and half-toric surfaces

We shall apply results in Sections 4 and 5 to the study of non-isomorphic sur-

jective endomorphisms of projective toric surfaces surfaces and half-toric surfaces

defined in [10, §7.1] over k = C. A prime divisor Γ on a normal projective surface

is said to be negative if the self-intersection number Γ2 is negative, where we note

that the intersection number of two (Weil) divisors on a normal projective surface

is well defined by Mumford’s numerical pullback (cf. [8, II, (b), p. 17], [15, §1], [10,

§2.1]). We set k = C in this section.

Theorem 6.1. Let (X,D) be a projective toric surface, i.e., X is a projective toric

variety of dimension 2 and D is the boundary divisor. Let B be a reduced divisor

contained in D such that any prime component of B is not a negative curve. Then

there is a non-isomorphic surjective endomorphism f of X such that Sf = D −B.

Proof. By assumption, any prime component Γ ofB is semi-ample by [12, Thm. 1.5],

since −KX ∼ D is big. Thus, the assertion is a consequence of Theorem 1.2. �

Theorem 6.2. Let (X,D) be a half-toric surface and let C be an end component of

D such that a prime component of τ∗C is not a negative curve for the characteristic

double cover τ : X̃ → X (cf. Remark 6.3 below). Then X admits a non-isomorphic

surjective endomorphism f such that Sf = D − C.

Remark 6.3. The pair (X,D) of a normal projective surfaceX and a reduced divisor

D is called a half-toric surface if KX + D 6∼ 0, 2(KX + D) ∼ 0, and if there is a

double cover τ : X̃ → X such that

• (X̃, D̃) is a toric surface for D̃ = τ−1D,
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• τ is étale outside a finite set, i.e., τ is étale in codimension 1

(cf. [10, Def. 7.1]). We call τ the characteristic double cover. It is an index 1 cover

with respect to KX + D ∼Q 0 in the sense of [11, Def. 4.18]. The divisor D is a

linear chain of rational curves (cf. [10, Def. 4.1]), and the number n(D) of prime

components equals ρ(X) + 1 (cf. [10, Thm. 1.7(1)]). Conversely, by [10, Thm. 1.3],

a half-toric surface is characterized as a pair (X,D) of a normal projective surface

X and a reduced divisor D such that (X,D) is log-canonical, n(D) = ρ(X) + 1,

KX +D 6∼ 0, and KX +D ∼Q 0.

Proof of Theorem 6.2. We may write X̃ = TN(△) for a complete fan △ of a free

abelian group N of rank 2, where D̃ = τ−1D equals the boundary divisor BN(△).

For the Galois involution ι : X̃ → X̃ for τ , we have ι(D̃) = D̃. It suffices to

construct a non-isomorphic surjective endomorphism f̃ of X̃ such that ι ◦ f̃ = f̃ ◦ ι

and that Sf̃ = D̃ − τ∗C = τ−1(D − C). In fact, f̃ induces a non-isomorphic

surjective endomorphism f of X such that τ ◦ f̃ = f ◦ τ , and we have Sf = D −C

by Sf̃ = τ−1Sf (cf. [12, Lem. 2.19(3)]).

Let Γ be a prime component of τ∗C, which is not a negative curve by assumption.

Then Γ is semi-ample by [12, Thm. 1.5], since −K
X̃

∼ D̃ is big. The semi-ampleness

of Γ implies that Γ = Γ (vα) for a trigger α for endomorphisms on (N,△) by

Corollary 4.7(1). Thus, if τ∗C is irreducible, i.e., τ∗C = Γ, then we have an

expected endomorphism f̃ of X̃ by Theorem 1.3.

Assume that τ∗C is reducible. Then τ∗C = Γ + ι(Γ), and ι(Γ) = Γ (vι∗α) for

the trigger ι∗α. If we can take α to satisfy 〈α, vι∗α〉 = 0, then 〈α, vα〉Γ is linearly

equivalent to an effective divisor supported on D̃ − τ∗C, and we have an expected

endomorphism f̃ of X̃ by Theorem 1.3. Thus, by Corollary 4.8, we may assume

that ι∗α and −α are proportional. In particular, some positive multiples of Γ and

ι(Γ) are linearly equivalent. Let Θ be a prime component of D̃ intersecting Γ. Then

Θ intersects ι(Γ) also, and it implies that Γ + ι(Γ) + Θ is a cyclic chain of rational

curves, i.e., D̃ = Γ+ ι(Γ)+Θ, by a well-known property of projective toric surfaces

(cf. [10, Exam. 3.4]). Moreover, ρ(X̃) = 1 (cf. [10, Lem. 3.11]). Then some multiples

of Γ and Θ are linearly equivalent, and we have an expected endomorphism f̃ of X̃

by Theorem 1.3. Thus, we are done. �
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