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Mono-anabelian reconstruction of generalized fiber subgroups
from a configuration space group equipped with its collection of
log-full subgroups

Kazumi HIGASHIYAMA

ABSTRACT. In the present paper, we study combinatorial anabelian geometry. The
goal is to reconstruct group-theoretically the set of generalized fiber subgroups from
the associated configuration space group equipped with its collection of log-full
subgroups.

0. Introduction

Mochizuki and Tamagawa gave bi-anabelian algorithm to reconstruct fiber sub-
groups (cf. [MzTal, Definition 2.3, (iii)):

THEOREM 1 ([MzTa], Corollary 6.3). Let n € Z~o; p a prime number;
O e {t,1}; (Pg,Pr) a pair of nonnegative integers such that 25g — 2 + Br > 1;
Ok an algebraic closed field of characteristic 0; 3 X'°8 o smooth log curve over Bk
of type (Bg,Pr) (cf. Definition 4, (v)). Write ¥ (FX1°8) for the mazimal pro-p
quotient of the fundamental group of n-th configuration space (cf. Definition 5;
Definition 10, (i), (ii)). Let a: 7} (TX8) = 7P (*X18) be an isomorphism of
profinite groups. Then « induces a bijection between the set of fiber subgroups
of TP (tX1°8) and the set of fiber subgroups of 7} (¥ Xo8).

After that, Hoshi, Minamide, and Mochizuki gave mono-anabelian algo-
rithm to reconstruct generalized fiber subgroups (cf. Definition 10, (iv); [HMM],
Definition 2.1, (ii)):

THEOREM 2 ([HMM], Theorem A, (i), (ii)). Let n € Zs1; p a prime
number; (g,7) a pair of nonnegative integers such that 29 — 2+ r > 0; k an
algebraic closed field of characteristic 0; X'°8 a smooth log curve over k of type
(g,7); AP(g,7,n) a profinite group which is isomorphic to w5 (X°8). Then the
following hold:

(i) One may construct (g,r,n) associated to the intrinsic structure of AP(g,r,n),
i.e.,

Ap(g7r’n) ~ («g?r?n)'
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(i) One may construct a set GFS (cf. Definition 3.1, (v)) associated to the
intrinsic structure of AP(g,r,n), i.e.,

AP(g,r,n) ~ GFS.

At the same time, the author gave bi-anabelian algorithm to reconstruct
generalized fiber subgroups.

TueEOREM 3 ([Hgsh], Theorem 0.1, (v)). Letn € Zsy; 0 € {f,1}; p a
prime number; (Bg,Pr) a pair of nonnegative integers such that 25 g—24+5r > 0
and “r > 07; 9k an algebraic closed field of characteristic # Up; B X% a4 smooth

log curve over Ok of type (Pg,P7); a: WIP(TX,IZOg) = ﬂip(iX,llog) an isomorphism
of profinite groups such that « induces a bijection between the set of log-full
subgroups of WIP(TXL"g) (cf. Definition 10, (iii)) and the set of log-full subgroups
of ﬂ'ip(iXiLOg). Then « induces bijection between the set of generalized fiber
subgroups of WIP(TX}LOg) and the set of generalized fiber subgroups of ﬂip(iX}fg).

In the present paper, we give mono-anabelian algorithm to reconstruct

(g,m,n) if r > 0 (cf. Theorem A, (ii)), and we give mono-anabelian algorithm to
reconstruct generalized fiber subgroups, if > 0 (cf. Theorem A, (v)), i.e.,

(AP(g.r.n),LFS) ~ (g,r,n) (if r > 0),
(AP(g.r.n),LFS) ~» GFS (if r > 0).
Our main result is as follows:

THEOREM A. Letn € Zs1; (g9,7) a pair of nonnegative integers such that
2g—2+1 >0 and “r > 07; p a prime number; k an algebraic closed field of
characteristic # p; X'°% a smooth log curve over k of type (g,7); AP(g,7,n) a
profinite group which is isomorphic to ) (X°8). Write LFS (resp. LD, TD,
DD, GFS) for the set of subgroups of AP(g,r,n) such that any isomorphism
AP(g,r,n) = 77 (X1°8) induces a bijection

LFS = {log-full subgroups of w¥(X1°8)}
(resp. LD = {inertia subgroups C 7% (X)) associated to log divisors},
TD = {inertia subgroups C ¥ (X1°8) associated to tripodal divisors},
DD = {inertia subgroups C 7% (X\°8) associated to drift diagonals},

GFS = {generalized fiber subgroups of m¥(X18)})
(cf. Definition 6, (iv); Definition 7, (ii), (iv)). Write DC for the set of subsets
of DD such that any isomorphism AP(g,r,n) = 7 (X8 induces a bijection
DC = {{inertia subgroups C 7F(X°¢) associated to V € A}
| A: a drift collection}

(cf. Definition 7, (v)). Then the following hold:
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(i) One may construct a set LD associated to the intrinsic structure of AP(g,r,n)

and LFS (cf. Proposition 32, (i)), i.e.,
(AP(g,7,n),LFS) ~ LD.
(i) One may construct (g,r,n) associated to the intrinsic structure of AP(g,r,n)
and LFS (cf. Proposition 32, (v)), i.e.,
(AP(g,r,n),LFS) ~ (g,r,n).
(ii) One may construct a set TD associated to the intrinsic structure of AP(g,r,n)
and LD (c¢f. Proposition 34, (viii)), i.e.,
(AP(g,r,n),LD) ~» TD.
(iv) One may construct a set DD associated to the intrinsic structure of AP(g,r,n)
and LFS (cf. Proposition 35, (iii)), i.e.,
(AP(g,r,n),LFS) ~ DD.
(v) One may construct a set GFS associated to the intrinsic structure of AP(g,r,n)
and LFS (cf. Proposition 37, (iii)), i.e.,
(AP(g,r,n),LFS) ~ GFS.
REMARK 1. Note that one verifies easily that Theorem 2, (i), (ii), imply

Theorem A, (ii), (v). In the present paper, we do not apply Theorem 1; Theorem
2, (i), (i), to prove Theorem A.

This paper is organized as follows: In §1, we explain some notations. In §2,
we introduce various type of log divisors and we calculate the number of various
type of log divisors. In §3, we give mono-anabelian algorithm to reconstruct
(g,r,n) if » > 0, and we give mono-anabelian algorithm to reconstruct a set
GFSif r > 0.

1. Notation

DEFINITION 1. Let a,b be nonnegative integers. Then

b def{ag(bb!a)! (a<b)

) =00 (a > b),

Wheren!défnx(n—l)xn-><2><1fornEZ>o7andO!d§ 1.

DEFINITION 2. Let p be a prime number, and G a semi-graph of anabelioids
of pro-p PSC-type (cf. [CmbGC], Definition 1.1, (i)) and G the underlying semi-
graph of G. Write

Cusp(G) (resp. Node(G), Vert(G), Edge(G))

for the set of cusps (resp. nodes, vertices, edges) of G and

Cusp(G) Lof Cusp(G), Node(9) Lof Node(G),



(i)
(i)
(i)

(iv)

(v)

(vi)

Kazumi HIGASHIYAMA

Vert(G) e Vert(G), Edge(9) def Edge(G).

DEFINITION 3. Let S8 be an fs log scheme (cf. [Nky], Definition 1.7).

Write S for the underlying scheme of S'°8.

Write Mg for the sheaf of monoids that defines the log structure of S'°8.
Let 5 be a geometric point of S. Then we shall denote by I(5, Mg) the ideal
of Og 5 generated by the image of Mgz \ (9357g via the homomorphism of
monoids Mgz — Og3 induced by the morphism Mg — Og which defines
the log structure of S'°8.

Let s € S and 5 a geometric point of S which lies over s. Write (Ms,z/@fés)gp
for the groupification of Mg35/O g’g. Then we shall refer to the rank of the
finitely generated free abelian group (Mg s/ O§7§)gp as the log rank at s.
Note that one verifies easily that this rank is independent of the choice of
35, i.e., depends only on s.

Let m € Z. Then we shall write

Glos<m df {s € S| the log rank at s is < m}.

Note that since S'°8=™ is open in S (cf. [MzTa], Proposition 5.2, (i)), we
shall also regard (by abuse of notation) S'°<™ as an open subscheme of
S.

We shall write Ug def G108<0 41 d refer to Us as the interior of S'°8. When
Us = S, we shall often use the notation S to denote the log scheme S'°8,

DEFINITION 4. Let (g,r) be a pair of nonnegative integers such that 2g —

2+1r >0 and k a field.

(i)

(i)

(iii)

(iv)

Write M, , for the moduli stack (over k) of pointed stable curves of type
(g,7), and M, . € M, . for the open substack corresponding to the smooth
curves (cf. [Knu]). Here, we assume the marked points to be ordered.
Write

Cyr — My,
for the tautological curve over My ,; Dy, o Mg, \ M, for the divisor
at infinity.

P | N
Write M gcjf for the log stack obtained by equipping the moduli stack M, .
with the log structure determined by the divisors with normal crossings
Dy r- B B B
The divisor of Cy,,- given by the union of Cy X7 Dy, with the divisor of

égm determined by the marked points determines a log structure on Cg ;

—log

we denote the resulting log stack by C ;i. Thus, we obtain a morphism of
log stacks

—log —log

Cw — Mw,
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. . —log .
which we refer to as the tautological log curve over M, . 1If S8 is an
arbitrary log scheme, then we shall refer to a morphism

Clog N Slog

whose pull-back to some finite étale covering T' — S is isomorphic to the

pull-back of the tautological log curve via some morphism 7"°8 def glog S

T — M;i as a stable log curve (of type (g,7)). If C — S is smooth, i.e.,
every geometric fiber of C' — S is free of nodes, then we shall refer to

C'% — Sl°8 as a smooth log curve (of type (g,7)).

DEFINITION 5. Let k be a field; S ef Spec(k); (g,7) a pair of nonnegative
integers such that 2g — 2 4+ r > 0;

Xe 5 8

(cf. Definition 3, (vi)) a smooth log curve of type (g,7); n € Zsg. Suppose
the marked points of X'°% are equipped with an ordering. Then the smooth

. . . —1
log curve X'°8 over S determines a classifying morphism S — M ;f. Thus, by

—1 —1 —1
pulling back via this morphism S — M ;E the morphism M ;E M ;E given

by forgetting the last n marked points, we obtain a morphism of log schemes
X5, g

We shall refer to X% as the n-th log configuration space associated to X'°8 — S.
Note that X% = X°8. Write X8 < 5.

DEFINITION 6. Let “n € Z<¢”; (g,7) a pair of nonnegative integers such
that 2g—2+7 > 0; p a prime number; k an algebraic closed field of characteristic
# p; X'°8 a smooth log curve over k of type (g,7); P a point of X,,.

(i) By abuse of notation, we shall use the notation“P” both for the correspond-
ing point of the scheme X,, and for the reduced closed subscheme of X,
determined by this point. Then we shall say that P is a log-full point of
Xlog if

dim(Ome/I(P, Mxn)) =0
(cf. Definition 3, (iii)).

(ii) P parametrizes a pointed stable curve of type (g,r + n) over k. Thus, P
determines a semi-graph of anabelioids of pro-p PSC-type (cf. [CmbG(],
Definition 1.1, (i)), which is in fact easily verified to be independent of
the choice of geometric point lying over P. We shall write Gp for this
semi-graph of anabelioids of pro-p PSC-type.

(iii) Let us fix an ordered set

def
Cron = {c1,.- s Cron}-

Thus, by definition, we have a natural bijection C,., — Cusp(Gp) that
determines a bijection between the subset {cy,..., ¢} and the set of cusps
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of X'°2 (cf. [Hgsh], Definition 2.2, (v)). In the following, let us identify the

set Cusp(Gp) with C,.,,. Write z; def ¢ryi for each i € {1,...,n}.

(iv) We shall refer to an irreducible divisor of X, contained in the complement
X, \ Ux, of the interior Ux, of X, as a log divisor of X'°6. That is to
say, a log divisor of X! is an irreducible divisor of X,, whose generic
point parametrizes a pointed stable curve with precisely two irreducible
components (cf. [Hgsh], Definition 2.2, (vi)).

(v) Let V be a log divisor of X°8. Then we shall write Gy for “Gp” in the
case where we take “P” to be the generic point of V.

(vi) Let m € Z~1;y1,- .., Ym € Crp, distinct elements such that §({y1,...,ym}N
{c1,...,¢}) < 1. Then one verifies immediately — by considering clutch-
ing morphisms (cf. [Knu], Definition 3.8) — that there exists a unique log
divisor V' of X! which we shall denote by V(y1,...,ym), that satisfies
the following condition: the semi-graph of anabelioids Gy has precisely two
vertices vy, vg such that vy is of type (0, m+1), vy is of type (g, n+r—m+1),
and y1, ..., Ym are cusps of Gy |,, (cf. [CbTpl], Definition 2.1, (iii)).

(vii) Foreachi € {1,...,n}, write p;: X!°8 — X8 for the projection morphism
of co-profile {i} (cf. [MzTa], Definition 2.1, (ii)). Write

def 1 1 1
L= (P1yeypn): X8 = X% X -0 X X908,

REMARK 2. Let V be a log divisor of X\°6. Then let us observe that
there exists a unique collection of distinct elements y1,...,ym € Crp, such that
f{y1, - s ymtn{ct,...ser}) <1l andV =V (y1,...,ym). (Note that uniqueness
holds even in the case where g = 0 (in which case v > 3), as a consequence of
the condition that §({y1, ..., ym} N{c1,..., ¢ }) <1.)

2. Geometric description of log divisors

In the present §2, let “n € Z<1”; (g,r) a pair of nonnegative integers such that
29 — 2+ r > 0; k an algebraic closed field; X'°¢ a smooth log curve over k of
type (g,7). In the present §2, we introduce various type of log divisors and we
calculate the number of various type of log divisors.

DEFINITION 7. (i) For positive integers ¢ € {1,...,n — 1}, j € {i +
1,...,n}, write

def def
Tt X" E XX x, X =5 X2E X xp X

for the projection of the fiber product of n copies of X — Spec(k) to the i-
th and j-th factors. Write 6§7 ; for the inverse image via m; ; of the image of
the diagonal embedding X «— X?2. Write d;,; for the uniquely determined
log divisor of X!°8 whose generic point maps to the generic point of 5. ; via
the natural morphism X,, = X™ (cf. Definition 6, (vii)). We shall refer to
the log divisor d; ; as a naive diagonal of Xlos,
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(ii) Let V be a log divisor of X!°8. We shall say that V is a tripodal divisor
if one of the vertices of Gy (cf. Definition 6, (vi)) is of type (0,3) (cf.
Definition 6, (vii); [CbTpl], Definition 2.3, (iii)).

(iii) Let V be a log divisor of X!°¢. We shall say that V is a (g, r)-divisor if one
of the vertices of Gy is of type (g, 7).

(iv) Let V be a log divisor of X!°8. We shall say that V is a drift diagonal if
there exist a naive diagonal § and an automorphism « of X°% over S such
that V' = «(9).

(v) Let A be a set of drift diagonals of X!°¢. Then we shall say that A is a
drift collection of X!°® if there exists an automorphism «a of X!°8 over S
such that A = {«(V') | V is a naive diagonal}.

PRrROPOSITION 1. The following hold:
(i) {log divisors of X'°&} = {log-full points of X'°8}.
(i3) #{log-full points of X'°8} = r.
PROOF. Assertions (i), (ii) follow from Definition 6, (i), (iv). O
PROPOSITION 2.
{naive diagonals} C {drift diagonals} C {tripodal divisors} C {log divisors},
{(g,7)-divisors} C {log divisors}.

PrOOF. It follows from Definition 6, (iv); Definition 7, (i), (ii), (iii), (iv);
[Hgsh], Proposition 3.4, (i). O
PROPOSITION 3. Letm € {2,...,n+1}. Write

V[‘T’,‘f]rtical def {V(y1,- s Ym) | Y1, -y Ym € Cypy distinct elements
such that $({y1, .., ym} N{c1,..., ¢ }) =1},

an?ivc def Vv, s Ym) | Y1, - Ym € Cypy distinct elements
such that §({y1, ..., ym}t N{c1,...,¢c}) =0},

- déf V'[\r/:;]rtical L V'[;lrfiive (2 <m< n)
[m] ‘/[;/Leitli]cal (m =n-+ 1)

(cf. Remark 2). Note that V}, ;1] = V[;’T‘f]”ical =0 ifr=0. Then

vertice n naiv n
WVt = V=)
PRrROOF. It follows from Definition 6, (vi); Remark 2. O

PROPOSITION 4. Let V be a log divisor of X\°6. Write V°% for the log
scheme obtained by equipping V' with the log structure induced by the log structure
of Xlo8. Let T'°® — Spec(k) be a smooth log curve of type (0,3). For m € Zo,
write T8 for the m-th log configuration space associated to T'°® — Spec(k).
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(i) Let V € Vig, then Vo<l s isomorphic to Ux, _, .

(ii) Let V € Vipy1), then VI°5=! is isomorphic to Ur,_,.
(iti) Let m € {3,...,n} and V € V|p). Then V'°5=! is isomorphic to Ur,, _, X},

Uanerl .

Proor.
Lemma 6.1, (i), (ii), (iii).

PROPOSITION 5.

Assertions (i), (ii), (iii) follow from Definition 3, (v); [Hgsh],
O

n+1

{log divisors} = H Vim)
m=2
n+1 n
_ vertical naive
=TT vemeto IT vig™,
m=2 m=2
.. n n n n n n
b{log divisors) = (1 )+ (D)t (D) + (D) (T
=2"-1)r+2"-1-n).
ProoF. Note that
n n n n n., n
([l

Then it follows from Remark 2; Proposition 3.
PROPOSITION 6. The following hold:
(i) If (9,7) # (0,3), then
{tripodal divisors} = Vjg = V[gfmcal L V[Izlflive7
#{tripodal divisors} = ( 711 )+ ( g ).
(ii) If (g,7) = (0,3), then

{t? Zp()dal arvisor S} - L 2 [ [ n+1

— ‘/[;]ertical L ‘/[n+1] 5] ,
#{tripodal divisors} = (( ? )+ ( Z N7+ ( TQl )-

PROOF. Assertions (i), (ii) follow from Proposition 3; [Hgsh], Proposition
3.3, (ii), (iii). O
PROPOSITION 7. (i) If (g,7) # (0,3), (1,

phism
Auty(X8) 5 {8 € Aut(C,.p) | B(ci) = ¢; fori € {1,...,r}}

a — B

1), then there exists an isomor-
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such that

a(V(ys, - ym)) = V(BWw1), -, B(ym))
for each log divisor V (y1, ..., Ym) (cf- Remark 2). In particular, Auty(X18)
is isomorphic to the symmetric group on n letters S,,.

(i1) If (g,7) = (0,3) or (1,1), then there exists an isomorphism
Auty (X°8) 5 Aut(C,.)
a =

such that

a(V(y, .- ym)) = V(BWy1), -, B(ym))
for each log divisor V (y1, ..., Ym) (cf- Remark 2). In particular, Auty(X18)
is isomorphic to the symmetric group on r 4+ n letters Syqy,.

PROOF. Assertions (i), (ii) follow from the proof of [Hgsh], Proposition 3.4,
(), i) .

PROPOSITION 8. Let A be a drift collection of X\°¢ (cf. Definition 7, (v)).
Then the following hold:

()
#{naive diagonals} = A = ﬁv[g]aive =( g ).
(i) If (g,7) # (0,3),(1,1), then
A = {drift diagonals} = {naive diagonals} = V[g]ai"c,

g{ drift diagonals} = ( Z ),

g{ drift collections} = ( Z )=1.

(i) If (g,7) = (0,3), then there exist distinct elements y1,...,yn € Csn such
that
A= {V(y,y;) |1<i<j<n},

{drift diagonals} = {tripodal divisors},

#{ drift diagonals} = (( 711 )+ ( Z N7+ ( g ),
g{ drift collections} = ( " :Lr 3 ).

() If (g,7) = (1,1), then there exist distinct elements yi,...,yn € C1p such
that
A={V(yy;) |1 <i<j<n},
{drift diagonals} = {tripodal divisors},

#{drift diagonals} = ( 711 )+ ( ;L )s
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n+1

g{drift collections} = ( n

).

PROOF. Assertion (i) follows from Proposition 3; [Hgsh]|, Proposition 3.3,
(i). Assertions (ii), (iii), (iv) follow from Proposition 6, (i), (ii); Proposition 7;
[Hgsh], Proposition 3.4, (ii), (iii); the proof of [Hgsh], Lemma 8.10. O

PROPOSITION 9.  The following hold:
(i) Ifr >0 and (g,r) # (0,3), then
{(g,7)-divisor} = Vi1
and
#{(g,r)-divisor} = ( Z ).
(ii) If (g,7) = (0,3), then
{(g,r)-divisor} = {tripodal divisors}
and
#{(g,r)-divisor} = (( Tll )+ (

(iii) If r =0, then

Dr+( )

{(g,r)-divisor} = .

PROOF. Assertions (i), (ii), (iii) follow from Definition 7, (iii); Proposition
3; Proposition 6, (ii). O

PROPOSITION 10. Let Vi = V(y1,--- ,ys), Va =V (21, -+, 2:) be log divi-
sors of X8 (cf. Remark 2). Then the following conditions are equivalent:
(Z) inv, # 0.
(i1) there exists a log-full point contained in Vi N Vs.
(111) {y1,-- - yst{z1,- -,z =0 or{yr, ... us} S {21,z or{y1, .-, ys} 2
{#z1,..., 2z} in Crpn.

PROOF. The equivalence (i) <= (ii) follows from [Hgsh|, Lemma 8.4. The
implication (i) = (iii) follows immediately (cf. the proof of [Hgsh], Lemma 8.6).
The implication (iii) = (i) follows immediately (cf. the proof of [Hgsh], Lemma
8.5). O

PROPOSITION 11. Let P be a log-full point of X'°¢ and V a log divisor of
Xog,
(i) P € V < Gy is obtained from Gp by generalization (cf. [CbTpl|, Defi-
nition 2.8).
(11) Cusp(Gp) = Cusp(Gy) = Cy, (cf. Definition 2). In particular, §Cusp(Gp) =
r+n.
(iii) Node(Gy) =1 (cf. Definition 2).
(i) If r > 0, then Node(Gp) = n.
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(v) If r > 0, then there exist distinct log divisors Vy,...,V, of X8 such that
P=Vin---NnV,.
(vi) If r =0, then fNode(Gp) =n — 1.
(vii) If r = 0, then there exist distinct log divisors Vi,...,Va_1 of X% such
that PeVin---NV,_;.

PROOF. Assertion (i) follows from [Hgsh], Proposition 2.9. Assertion (ii)
follows from Definition 6, (iii). Assertion (iii) follows from Definition 6, (iv).
Assertions (iv), (vi) follow immediately from Definition 6, (i), together with
the well-known modular interpretation of the log moduli stack that appear in
the definition of X!°8 (where we recall that the log structure of this log stack
arises from a divisor with normal crossings) (cf. [Hgsh|, Proposition 3.6). As-
sertions (v), (vii) follow from [Hgsh], Proposition 3.7, (iii); the proof of [Hgsh],
Proposition 3.7, (iii). O

PROPOSITION 12. Let p: X8 — X!°% be a projection and m € {2,...,n+
1}. Write TV[m] for the set Vi) C PR (cf. Proposition 3) and iV[m] for the set
Vim) C 9XE1 . Then the following hold:

(i) Let V be a log divisor of X\°8. Then p(V) is a log divisor of X\°%, or
p(V) = X,_1. Moreover, suppose that p: X°& — Xilofl s a projection of
co-profile {n} (cf. [MzTal], Definition 2.1, (ii)). Then

p(V) = X,_1 <= there exists y € Crn \ {zn} such that V =V (y,x,).

(it) p("Vim)) C Vi) UHVipu_q) for m € {3,...,n}.
(iii) Let V € TVig. Then p(V) = Xn—1 or p(V) € *Vjy). In particular,

(Vi) = Vg U {Xn1}
(iv) p(TV[nH]) = iV[n]. In particular,
p({(g,r)-divisor of X,°%})

_ {{@,T)-dmsor of X, (if (g,7) # (0,3))
{(g,7)-divisor of X*®, Y U{Xn_1} (if (g,7) = (0,3)).

PROOF. Assertions (i), (ii), (iii), (iv) follow immediately from the latter
portion of Definition 6 (iv), together with the well-known modular interpretation
of the log moduli stacks that appear in the definition of X°8 and X°8 (cf.

n—1

[Hgsh], Proposition 4.1, (i), (ii)). O
PROPOSITION 13. Let p: X!°8 — X8 be a projection. Then the following
hold:
(i) Let P be a log-full point of X'°8. Then p(P) is a log-full point of X}fl.
(i) Let V' be a log divisor of Xilofl, Then there exist distinct log divisors
Wi, Wo of X8 such that Wy U Wy = p~ (V). Moreover, suppose that
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p: Xlos XiLo_gl is a projection of co-profile {n} and V.=V (y1,...,¥s),
where {y1,...,ys} € Crn—1. Then

{W17 W2} = {V(y17 e 7ys)a V(yla e a%ﬁ%)}a

where {ylv <o Ysy mn} c Cr,n'
(i4i) Suppose that r > 0. Let P be a log-full point of Xiofl. Then there exist log
divisors Vi, ..., Vyn_1) of X2 such that

ﬂ{vl, e '7‘/7L(n—1)} =2n — 27

Vititn—1)s " s Va—1+i(n—1) are distinct log divisors,
n—1
p (P = U Vigitn—1) NN Vo _i4i(n—1))-
i=0

PROOF. Assertion (i) follows immediately from the latter portion of Def-
inition 6 (iv), together with the well-known modular interpretation of the log
moduli stacks that appear in the definition of X% and X'°%, (cf. [Hgsh], Propo-
sition 4.1, (i), (ii)). Since §Vert(Gy ) = 2 (cf. Definition 2; Proposition 11, (iii)),
assertion (ii) follows immediately. Next, we consider assertion (iii). Let W be an
irreducible component of p~!(P). Since {Node(Gp) = n — 1 (cf. Proposition 11,
(iv)), it holds that fNode(Gw ) = n — 1. In particular, there exists distinct log
divisors Viyi(n—1), " » Va—1+4i(n—1) such that W = Vi ;o yN- NV 1 45m—1)-
Since gVert(Gp) = tNode(Gp) + 1 = n, it holds that

#{irreducible components of p~*(P)} = n.
Since §Node(Gp) = n — 1, it holds that
HVi, . V-1 } = 2n — 2.
This completes the proof of assertion (iii). O

PROPOSITION 14. Let p: X8 — X!°8. be a projection and P a log-full
point of Xlog

n—1-
(i) If r > 0, then
#{log-full points of X'°8 contained in p~*(P)} = r 4+ 2(n — 1).
In particular,

n—1

#{log-full points of X'°8} = H (r 4 2i).
i=0

(i) If r =0, then
#{log-full points of X'°8 contained in p~*(P)} = 2n — 3.
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PrOOF. First, suppose that » > 0. Note that by [Hgsh|, Proposition 3.7,
(i), it holds that #Node(Gp) = n — 1 and fCusp(Gp) = #§Cprpn_1 =7+ n — 1.
Thus, if follows immediately from Proposition 1, (ii). Next, suppose that r = 0.
Then it holds that fNode(Gp) = n — 2 and §Cusp(Gp) = £C; n—1 = n — 1. Thus,
assetions (i), (ii) follow immedaitely from the various definitions involved. [

DEFINITION 8. Suppose that » = 0. Then we shall say that an irreducible
subset W of X is log-full curve if each element of W is a log-full point.

PROPOSITION 15. Suppose that v = 0. Let W be a log-full curve of X8
and p: X8 — Xks ¢ projection.

n—1
i ere ezists a projection q: — such that q induces a bijection
i) Th jst jecti Xlog 5 X8 sych that q ind bijecti
W — X.
.. . lo,
(ii) If n > 2, then p(W) is a log-full curve of X, %,.
111 ere exist distinct log divisors Vi,..., V1 o such that =n
iii) Th ist distinct log divi Vi v Xlog h that W = V;
N V.
(iv) Suppose that n > 2. Let Z be a log-full curve of X:lofl, Then there exist
log divisors Vi,...,Vin_1)(n—2) of X8 such that

HV1, o V- (n—2)} = 2n — 4,

Vititn—2)s s Va—ati(n—2) are distinct log divisors,
n—2
p'(2)= U Vititn—2) NN Vo_apin—2))-
i=0

(v) Suppose that n > 2. Let Z be a log-full curve of X\°%,. Then
#{log-full curves of X'°¢ contained in p~*(Z)} = 2n — 3.
(vi)
n—2

#{log-full curves of X8} = H (20 +1).
i=0

PRrROOF. Assertions (i), (ii) follow immediately from the latter portion of
Definition 6 (iv), together with the well-known modular interpretation of the log
moduli stacks that appear in the definition of X8, X!°% and X'°%. Assertion
(iii) follows from Proposition 11, (vii). Next, we consider assertions (iv), (v).
Let P € W be a log-full point of X!°¢. Since Node(Gp) = n — 2, Cusp(Gp) =
n — 1, assertions (iv), (v) follow immediately (cf. the proof of Proposition 13,
(iii); the proof of Proposition 14, (i)). Assertion (vi) follows from assertion (v);
Proposition 14, (ii). O

PROPOSITION 16. Letm € {2,...,n+ 1} and V = V(y1,...,ym) € Vim

a log divisor of X°8, where y1,...,ym € Cr.n are distinct elements. Then the
following hold:
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(i)
#H{W C X8 log divisors | V N W # 0}
t{log divisors of T'°% ,} + #{log divisors of X:LO_gmH 3<m<n)

= { #{log divisors of X\° (m=2)

n—1

t{log divisors of T'°%} (m =n+1)
=2m 42t ) —r—n—4 (2<m<n+1).

(i1) If r > 0, then

#{log-full points of X'°8 contained in V'}

t{log-full points of T'o8,} - t{log-full points of X,%,. .1} (3 <m <n)
= { #{log-full points of X\%,} (m = 2)
#{log-full points of T'*%,}  (m =n+1).

(#ii) If r =0, then

#{log-full curves of X'°® contained in V'}

#{log-full points of T'%%,} - #{log-full curves of Xilome} B<m<n-1)
= { #{log-full curves of X\°%,} (m =2)
#{log-full points of TTILCL%} (m=mn).

(w) If (g,7) # (0,3) and V € V[nma]ive. Then

{W C X% tripodal divisors |V # W,V N\W # 0}
={V(yi,yj) |1 <i<j<m}\{V})

UA{V (21, 22) | 21,22 € {x1,.. ., 2o} \ {¥1,-- -, Ym }: distinct }

U{V(z,c) |z €{z1,. ., xn} \ {¥1,-- s Um}, c € {c1,...,cr}}

In particular,

#{W C XI¢: tripodal divisors |V # W,V NW # 0}

m n—m

)+, )H—mr 3<m<n)

(" b2 (m=2)
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(v) If (g,7) # (0,3) and V € V[;’Tf]”ical. We may assume that yp, € {c1,...,¢r}.
Then
(W C X% tripodal divisors |V # W,V W # 0}
={Vl(yy;) |1 <i<j<m-—-1}
ULV (21,22) [ 21,22 € {1, ;2 } \ {y1, ..., ym }+ distinct }
I—'{V(ykvym) | 1 S kgm_ 1}
U{V(z,c) |z €{z1, - 2} \{¥1,- s Um}, c € {c1, -, et \{ym}}
In particular,
#{W C X[ tripodal divisors |V # W,V W # (0}
—1 — 1
SRS I ?+ V- m=T+m—m+1)r—1) B<m<n+1)
- n—1
(y )+t-1-1) (m=2)

(vi) For each 2 < m < n, it holds that
m n—m m—1 n—m+1
T ey = (T e D (e 1) (r-1)

n—2

=" m-yr=(" v e -

= r=1
(¢f. (), (v)).
(vit) If (g,r) = (0,3). Then
{W C X8 tripodal divisors |V # W,V NW # 0}
={V(yi,yy) |1 <i<j<m}\{V})
LJ ({V(Zh 22) | 21,22 € Cr,n \ {yl, .

In particular,

s Ym e distinet }\ {V}).

#H{W C X% tripodal divisors |V # W,V W # 0}

(Z)+(”+Z_m) (3<m<n)

(n—2i—1) (m=2orn+1).

(viii) If m=n+1, i.e., V is a (g,7)-divisor. Then

#{W C X[ tripodal divisors |V # W,V W # 0} = ( n;— ! )-
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PROOF. Assertions (i), (ii), (iii) follow from Proposition 4, (i), (ii), (iii);
Proposition 10. Assertions (iv), (v), (vii), (viii) follow from Proposition 10.
Assertion (vi) follows immediately. O

PROPOSITION 17. Let m € {2,...,n+ 1}. Write ay, = 2m 4 2n=m+1(p 4
1) —r —n—4 (cf. Proposition 16, (i)). Then the following hold:

(i) Qi1 — Qm = 27 — 277 (4 1).
(ii) If 16 > 2"™(r + 1), then a,, is a monotonically increasing sequence i.e.,

az <agz < -+ < apti-
(#ii) If 2™ < r 41, then ap, is a monotonically decreasing sequence i.e.,
ag > ag > -+ > Apit1-

(iv) Let m,m’ € {2,...,n+ 1} be distinct elements. Then an = any if and
only if r + 1 is a power of 2 and m +m’ = logy (2" (r + 1)).

ProOF. Assertions (i), (ii), (iii), (iv) follow immediately. O
PROPOSITION 18. Suppose that r > 0. Let m € {2,...,n}. Then

(Vi) U Ving) N{V [ VAW # 0 for each W € Va} = Vi ).
PrROOF. Assertion follows immediately from Proposition 10. O

PROPOSITION 19. Suppose that r > 0. Then the following hold:
(i) Let V € Viyyq). Then
n?+n

HW € Vg UV [ VW £0, V#W} = 5

(i) Let V € Vig. Then

n?+2nr —2r —5n+6
5 .

HW € Vg UV [ VAW #£0, V#W} =
(iii)

2 24 2nr —2r—>5 6
n;rn:n+m' 27" nt if and only if r=3

(cf- (i), (ii).

PROOF. Assertions (i), (ii), (iii) follow immediately from Proposition 10.
O

PROPOSITION 20. Suppose that g # 0 and r = 3. Then the following hold:
(i) Let V € Vi yq) U V[;’f”ical. Then

HW eV |[VAW #0, V#W}r=n+1.
(ii) LetV € V[’Q‘]aive. Then
HW eV VAW #0, V#W} =3n—5.



Mono-anabelian reconstruction of generalized fiber subgroups 17
(iii)
n+1=3n—->5 ifand only if n=3
(cf. (i), (ii)).

PROOF. Assertions (i), (ii), (iii) follow immediately from Proposition 10.
O
PROPOSITION 21. Suppose that (g,7) # (0,3),(1,1) and r > 0. Let m €

{2,...,n} and V € V}). Then the following hold:

(i) If V e V[nma]i"e, then

Ho(V) |0 € Aute(X0%)} = ().
(i) If V € Vet then
Ho(V) | o€ Auty (X5} =( " ).

(iii)

(cf. (1), (i1)).
) V e Vhalve «— there exists W € V11 such that W N a(V) # 0 for each
[m] [m+1]

o € Auty(Xo8).

PROOF. Assertions (i), (ii), (iii) follow immediately from Proposition 7,
(i). Assertion (iv) follows immediately (cf. Remark 2). O

PROPOSITION 22.  Suppose that (g,7) # (0,3),(1,1), r > 0, and n > 2. Let
VeV UVingy. Ifi{o(V)| o€ Auty(X8)} =1, then V € Vin+1)-

PROOF. Assertion follows immediately from Proposition 7, (i); Proposition
21, (i), (ii). O

DEFINITION 9. Suppose that r > 0. Let N be a set of tripodal diagonals
of X8 such that A" = n. Then we shall say that A is a new vertical collection
of X°¢ if there exist an automorphism of X% over k and ¢ € {c1,...,¢.} C Crn
such that N' = a({V(c,z;)} ;).

PROPOSITION 23.  Suppose that r > 0 and (g,r) # (0,3),(1,1). Let N be a
set of tripodal diagonals of X!°8 such that $N = n. Then the following conditions
are equivalent:

(i) N is a new vertical collection of Xo%.
(ii) There exists ¢ € {c1,...,¢} C Cry such that N = {V (x;,¢) ;.
(i4i) There exists a (g,r)-dwisor V such that

N ={W C X!°8: tripodal divisors |V "W # 0} \ {naive diagonals}.
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(iv) There exists a (g,r)-divisor V' such that
N = {W C X°¢: tripodal divisors | V N W # (0}
\ {W C X tripodal divisors | V(x1,...,x,) "W # @}.
PROOF. The implication (i) = (ii) follows from Proposition 7, (i); Defini-
tion 9. The implication (ii) = (i) follows immediately from Definition 9. Next,
we consider the implication (ii) = (iii). Write V' def V(z1,...,%n,c). Then by
Proposition 10, V' is a (g, r)-divisor, and
{W C X8 tripodal divisors | V # W,V N W # (1}

={V(y1,y2) | y1,y2 € {x1,...,2n,c} are distinct elements}

=N U {naive diagonals}.
This completes the proof of the implication (ii) = (iii). Next, we consider
the implication (iii) == (ii). Let V be a (g,r)-divisor. Then by Proposition
9; Remark 2, there exist distinct elements y1,...,yn41 € Cpp such that V =

V(ys---rYnt1), and §({v1,- -, yn+1} N{c1,...,¢}) < 1. Note that n +1 >
#{z1,...,xn}. Thus, t({y1,. - Unt1} N{c1,..., ¢ }) = 1, and {y1,...,yn} =
{z1,...,2,}. We may assume y,+1 € {c1,...,¢}. By Proposition 10, it holds
that

{W C X8 tripodal divisors | V # W,V NW # (0}

= {V (@i, yns1) bisg U{V (i, 25) | 1 < i < j <n}

= {V (2, Yn+1) }io; U {naive diagonals}.
In particular, N' = {V (2, yn+1) }i~;. This completes the proof of the implication
(ili) = (ii). Next, we consider the equivalence (iii) <= (iv). Let W is a
tripodal divisor. Since (g,7) # (0,3), it follows immediately from Proposition
8, (ii); Proposition 10, that V(z1,...,2z,) NW # ) <= W is a naive diagonal.
This completes the proof of the equivalence (iii) <= (iv). O

PROPOSITION 24. Suppose that (g,r) = (0,3). Let N be a set of tripodal
diagonals of X!°8 such that £V = n. Then the following conditions are equivalent:

(i) N is a new vertical collection of X1°8.
(11) There exist distinct elements y1,. .., Ynt+1 € Crpn such that

N ={V(yn+1,¥:) }iz1-
(#ii) There exist a (g,r)-divisor V and a drift collection A such that
N = {W C X8 tripodal divisors |V # W,V NW # 0} \ A.

(v) There exist a (g,7)-divisor TV and ¥V € Vig UV}, such that 1V # V,
VNV 40, and

N ={W C X!°¢: tripodal divisors | TV # W,TV AW # 0}
\{W C X°¢: tripodal divisors | *V N W # 0}.
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PROOF. The equivalence (i) <= (ii) follows from Proposition 7, (ii); Def-
inition 9. Next, we consider the implication (ii) = (iii). Write
def def .
Vv = V(ylv cee >yn+l); and A = {V(yl7y]) | I<i< J < 7’L}
Then by Proposition 8, (iii); Proposition 10, it holds that V is a (g, r)-divisor,
A is a drift collection, and

{W C X;Og: tripodal divisors | V # W,V NW # 0}
={V(yi,y;) [1<i<j<n+1} =NUA.

This completes the proof of the implication (ii) = (iii). Next, we consider
the implication (iii) = (ii). By Proposition 9, (ii), we may assume that the
(g, r)-divisor V is equal to V' (y1,...,Yn+1). Then it follows from Proposition 10
that

{W: tripodal divisors | V # W, VNW # 0} ={V(y;,y;) | 1 <i<j<n+1}
Since

. n+1)n

HV(yy)) [1<i<j<n+1}= %
n(n—1)

=" =,

and
(n+1)n  n(n—1)
2 2 ’

it holds that
A C {W: tripodal divisors | V # W,V NW # 0}.
So we may assume
A={V(yi,y;) |1 <i<j<n}
and
N ={V(yn+1,¥:) Hiz1-
This completes the proof of the implication (iii) = (ii). Next, we consider the
implication (i) = (iv). Write TV % V(y1, ..., yns1), TV < V(yr, ..., yn), and
A% {(V(y,y;) | 1 <i < j<n}. Then by Proposition 8, (iii); Proposition 10,
it holds that TV is a (g, r)-divisor, ¥V € Vi3 U Vjn), A is a drift collection, and
{W C X8 tripodal divisors | TV # W, TV N W # 0}
={V(yi,yj) [1<i<j<n+1}
=N U {W C X°¢: tripodal divisors | FV N W # }.
This completes the proof of the implication (ii) = (iv).
Next, we consider the implication (iv) = (ii). By Proposition 9, (ii),
we may assume that the (g,r)-divisor TV is equal to V(y1,...,¥ns1), and ¥V
is equal to V(21,...,2,). Since 'V # ¥V and 'V N ¥V # (), it holds that
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{z1,---s2n} CA{y1,..-,Yn+1} (cf. Proposition 10). Thus, we may assume that
z; =y; for i € {1,...,n}. Then it follows from Proposition 10 that

{W: tripodal divisors | TV # W, TV AW # 0} = {V(ys,y;) | 1 <i<j <n+1},

{W: tripodal divisors | ¥V N W # 0} N {V (yi,y;) | 1 <i<j<n+1}
={V(yi,y;) |1 <i<j<n}.
Thus,
N = {V(yn+1,¥:) Hi=1-
This completes the proof of the implication (iv) = (ii). O

PROPOSITION 25. Suppose that (g,r) = (1,1). Let N be a collection of
tripodal diagonals of X1°¢ such that YN = n. Then the following conditions are
equivalent:

(i) N is a new vertical collection of X1°8.
(11) There exist distinct elements y1,...,Yn+1 € Crn such that

N =A{V(yn+1,yi) Hier-
(iii) There ezist a (g,r)-divisor V and a drift collection A such that
N = {W C X[°¢: tripodal divisors | V N W # (0} \ A.
(iv) There exist a (g,r)-dwisor 'V € Vi) and 'V € Vi) such that
N ={W C X°¢: tripodal divisors| "V NW # ()}
\{W C X tripodal divisors | *V N W # 0}.
PRrROOF. This follows from the same proof of Proposition 24. O

PROPOSITION 26. The following hold:

(i) Let N be a new vertical collection. Then there exist a unique (g,)-divisor
V' and a unique drift collection A such that

N = {W C X8 tripodal divisors |V # W,V NW # 0} \ A.
In particular, if N = {V (yn+1, i)}y, then
V=V(y,. - ¥n+1)s
and
A={V(yi,y;) [1<i<j<n}
(i) Let
A={V(yi,yj) |1 <i<j<n}

be a drift collection. Then N = {V (yn+1,v:) 1 is a new vertical collection
such that

N = {W C X8 tripodal divisors |V # W,V NW # 0} \ A,
where Ypt1 € Crn \{¥1,-- -, Yn}, and V=V (y1,...,Ynt1).
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PROOF. First, we consider assertion (i). The existence and final portion
follows from by the proof of the implication (ii) = (iii) of Proposition 23;
the proof of the implication (ii) == (iii) of Proposition 24; the proof of the
implication (ii) = (iii) of Proposition 24. Next, we consider the uniqueness of
assertion (i). By the implication (i) = (ii) of Proposition 23; the implication
(i) = (ii) of Proposition 24; the implication (i) = (ii) of Proposition 25, we
may assume the new vertical collection N is equal to {V (yn+1, i)} ,. Since

N C{W C X!°¢: tripodal divisors | V # W,V N W # 0},

by Proposition 10, it holds that V is equal to V(y1,...,yn+1). By the proof of
the implication (iii) = (ii) of Proposition 23; the proof of the implication (iii)
= (ii) of Proposition 24; Proposition 10, it holds that

A C{W C X°¢: tripodal divisors | V # W,V NW # 0}

and A is equal to {V(y;,y;) | 1 < i < j < n}. This completes the proof of
assertion (i). Assertion (ii) follows immediately. O

PROPOSITION 27.
#{new vertical collections} = ri{drift collections}.

ProOF. Since £(Crpn \ {¥1,--.,Yn}) = 7, this follows from Proposition 26,
(), Gi). 0

3. Mono-anabelian reconstruction

In the present §3, let n € Z<o; (g,7) a pair of nonnegative integers such that
2g —2+7r > 0and “r > 0”; p a prime number; k an algebraic closed field
of characteristic # p; X'°¢ a smooth log curve over k of type (g,7). In the
present §3, we give mono-anabelian algorithm to reconstruct (g, r,n) associated
to intrinsic structure of the profinite group AP(g,r,n) which is isomorphic to
7t (X°8) (cf. Proposition 32, (v), below), and we give mono-anabelian algorithm
to reconstruct a set GFS associated to intrinsic structure of AP(g,r,n) and LFS
(cf. Proposition 37, (iii), below).

DEFINITION 10. (i) Write 71 (X1°8) for the fundamental group of the log
scheme X[°¢ (for a suitable choice of basepoint). We refer to [Hsh], Theo-
rem B.1, B.2, for more datails on fundamental groups of log schemes.

(i) Write 7} (X8) for the maximal pro-p quotient of my (X1°8).

(iii) Let P be a log-full point of X8 (cf. Definition 6, (i)) and P the log
scheme obtained by restricting the log structure of X!°¢ to the reduced
closed subscheme of X,, determined by P. Then we obtain an outer ho-
momorphism 71 (P°8) — 7 (X18) (for suitable choices of basepoints). We
shall refer to the subgroup Im(my (P2) — 77 (X8)), which is well-defined
up to ﬂf(X,llog)—conjugation, as a log-full subgroup at P.
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(iv) Let H be a closed subgroup of 7} (X°8). We shall say that H is a gener-
alized fiber subgroup if there exist an automorphism « of X!°® over k& and
a fiber subgroup F C 77 (X°8) (cf. [MzTa], Definition 2.3, (iii)) such that
H = B(F), where 8 is an automorphism of 7} (X°8) which arises from «
(cf. [Hgsh], Definition 9.1; [HMM], Definition 2.1, (ii)).

(v) Let AP(g,7,n) be a profinite group which is isomorphic to 7% (X°8) (cf.
Definition 10, (i), (ii)). Write LFS (resp. LD, Vi), V[I;z}ve, V[‘;fﬁtical, TD,
DD, GFS) for the set of subgroups of AP(g,r,n) such that any isomorphism
AP(g,r,n) = 77 (X2) induces a bijection

LFS 5 {log-full subgroups of 7% (X°8)}

(resp. LD = {inertia subgroups C 7% (X!°8) associated to log divisors},
Vim) — {inertia subgroups C (X°8) associated to V' € Vimi},

V[r;fﬂve 5 {inertia subgroups C 77 (X°8) associated to V € V[?na]ive},

V[‘;ﬁjmal = {inertia subgroups C 7% (X°8) associated to V € V[‘T’,f]mcal},
TD = {inertia subgroups C 7% (X°%) associated to tripodal divisors},

DD = {inertia subgroups C 7¥(X°8) associated to drift diagonals},

n

GFS = {generalized fiber subgroups of 77 (X°%)}).
Write DC for the set of subsets of DD such that any isomorphism

AP(g,r,n) = 7} (X,78)
induces a bijection
DC = {{inertia subgroups C 7?(X!8) associated to V € A}
| A: a drift collection}.

PROPOSITION 28. The following hold:

(i) ’/Tf(XiOg) is elastic, i.e., every topologically fnitely generated closed normal
subgroup N C H of an open subgroup H C 7P (X\°%) is either trivial or of
fnite index in 7P (X|°®).
(i) If n > 1, then ©} (X1°%) is not elastic.
(iii) Let V be a log divisor of X'°8. Then the inertia group associated to V is
isomorphic to Zj.
(iv) Let P be a log-full point of X!°8. Then the log-full subgroup at P is iso-
morphic to ZE™.
(v)
n—1
#{ conjugacy class of log-full subgroups C «¥(X1°#)} = H (r + 2i).
i=0
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(vi)
#{ conjugacy class of inertia groups associated to log divisors}
=2"-1r+(2"—-1-n).

PROOF. Assertion (i) follows from [MzTa], Theorem 1.5. Next, we consider
assertion (ii). Let F' C 7¥(X[°8) be a generalized fiber subgroup (cf. Definition
10, (iv)). Since F is topologically finitely generated closed normal subgroup
of 7¥(X8) and F is of infinite index in 7} (X°%) (cf. [MzTa], Remark 2.4.1),
7P (X 8) is not elastic. This completes the proof of assertion (ii). Assertions
(iii), (iv) follow from [Hgsh], Proposition 3.7, (iii). Assertion (v) follows from
Proposition 14, (i). Assertion (vi) follows from Proposition 5. O

PROPOSITION 29. Suppose that n > 1. Then the following hold:
(i) One may construct a p associated to the intrinsic structure of AP(g,r,n),
i.e.,
AP(g,7,n) ~ p.
(ii) One may construct an n associated to the intrinsic structure of AP(g,r,n)
and LFS, i.e.,
(AP(g,r, ), LFS) = .
(ii) One may construct an r associated to the intrinsic structure of AP(g,r,n)
and LFS, i.e.,
(AP(g,r,n),LES) ~ 7.

PROOF. Since AP(g,r,n) is a pro-p group, assertion (i) follows immediate.
Assertion (ii) follows from Proposition 28, (iv). Assertion (iii) follows from
assertion (ii); Proposition 28, (v). O

DEFINITION 11. Let m € Z~q and G a profinite group. Then we shall say
that G is unique factorization-like if G satisfies the following properties:

(i) There exist nontrivial profinite subgroups G, ..., G, C G which are slim
(cf. [MzTa], §0) and strongly indecomposable (cf. [MzTa], Definition 3.1)
such that G = G1 X -+ X Gy,

(ii) Let Hy,..., H, C G be nontrivial profinite subgroups which are slim and
strongly indecomposable. If G = H; x - -+ x H,,, then there exists o € S,
such that G; = H, ;) for each i € {1,...,m}.

ProprosITION 30. The following hold:

(i) Let G be a unique factorization-like profinite group. Then one may con-
struct a set {G1,...,Gn} (cf. Definition 11) associated to the intrinsic
structure of G, i.e.,

G ~ {Gl,...,Gm}.

(ii) Let Gi,...,Gy, are nontrivial profinite groups which are slim and strongly
indecomposable. Then G1 X - -+ X Gy, is unique factorization-like, and one
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may construct a set {G1,...,Gn} associated to the intrinsic structure of
G1 X -+ X Gy, t.e.,
G1 X+ X Gy~ {G1,...,Gp}.
(iii) 77 (X1°8) is slim and strongly indecomposable.
PROOF. Assertion (i) follows immediately. Assertion (ii) follows from asser-

tion (i); [MzTa], Corollary 3.4. Assertion (iii) follows from [MzTa], Proposition
1.4; [MzTa], Proposition 3.2; [Ind], Theorem C, (i). O

PROPOSITION 31. Suppose that n > 1. Let m € {2,...,n+1}; V € V)
a log divisor of X\°¢; I, C wf(XrlLOg) an inertia group associated to V; T'°% q
smooth log curve over k of type (0,3). Then the following hold:
(i) If m =2, then Zﬂ_p(Xlog)(Iv)/IV is isomorphic to 7 (X!%%,).
1 n
(1) If m =n+ 1, then Zﬂ_f(X:log)(IV)/IV is isomorphic to ﬂf(TTlLO_gl).
(i1i) If m € {3,...,n}, then wa(XLog)(Iv)/Iv is isomorphic to
lo lo
ﬂ—f(Tm§2) X Wf(Xn§m+1)'
(iv) Zﬁf(Xilog)(Iv)/IV is unique factorization-like.
(v)
{Iy C 7P(X[8) | inertia subgroup associated to some log divisor V
such that Zﬂ_p(Xlog)(Iv)/IV is strongly indecomposable}
T(Xn
= {Iy C 7} (X\8) | inertia subgroup associated to V € Vigy U Vipy1)}-

PROOF. Assertion (i), (ii), (iii) follow from [Hgsh|, Lemma 6.1, (i), (ii),
(iii); [Hgsh], Remark 6.4. Assertion (iv) follows from assertions (i), (ii), (iii

Proposition 30, (ii), (iii). Assertion (v) follows from assertion (i), (ii), (iii
Proposition 30, (iii). O

);
).

)

PROPOSITION 32. Suppose that n > 1. Then the following hold;

(i) One may construct a set LD associated to the intrinsic structure of AP(g,r,n)
and LFS, i.e.,
(AP(g,7,n),LFS) ~~ LD.

(i) One may construct a set {AP(g,r,m), AP(0,3,m) |1 <m <n—1} asso-
ciated to the intrinsic structure of AP(g,r,n) and LD, i.e.,

(AP(g,r,n),LD) ~» {AP(g,7,m), AP(0,3,m) [ 1 <m <n —1}.

(#ii) One may construct a set {AP(g,r,1),AP(0,3,1)} associated to the intrinsic
structure of AP(g,r,n) and {AP(g,r,m),AP(0,3,m) |1 <m <n-1}, ie.,

(AP(g, 7, n),{A(g,r,m), AP(0,3,m) | 1 <m < n—1}) ~ {AP(g,7,1), AP(0,3,1)}.

(iv) One may construct a g associated to the intrinsic structure of AP(g,r,n),
{Ap(gv T, ]-)a A;D(O’ 37 1)}, and r, 7;.6.}

(AP(g,r,n), {AP(g,,1), AP(0,3,1)},7) ~ g.
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(v) One may construct (g,r,n) associated to the intrinsic structure of AP(g,r,n)

and LFS, i.e.,
(AP(g,r,n),LFS) ~ (g,r,n).

PROOF. Assertion (i) follows from [Hgsh], Theorem 4.7; [Hgsh], Lemma 5.1
(1), (i), (iii). Assertion (ii) follows from Proposition 30, (ii), (iii); Proposition 31,
(i), (ii), (iil), (iv). Assertion (iii) follows from Proposition 28, (i), (ii). Next, we
consider assertion (iv). Write N (g, ) for the number of generators of AP(g,r,1).
Since 2g —2+r > 0, it holds that N(g,r) = 2g+r—1 > N(0, 3) = 2 (cf. [MzTal,
Remark 1.2.2). Thus,

max(N(g,7),N(0,3)) —r+1 =g

2
This completes the proof of assertion (iv). Assertion (v) follows from assertions
(i), (ii), (iii), (iv); Proposition 29, (ii), (ii). O

Now, we consider a conjecture.

CONJECTURE 1. Suppose that n > 1. Let m € {2,...,n+ 1}. Then the
following hold:

(i) One may construct a set Vy,,,) associated to the intrinsic structure of AP(g,r,n)
and LFS, i.e.,

(AP(g,7,n), LES) ~ V).

(i) One may construct a set Vm‘]ive, V[‘;f;’itical associated to the intrinsic structure
of AP(g,r,n) and LFS, i.c.,

(Ap(% T, n), LFS) > V“ai"e and V[\;Sitical,

[m]
REMARK 3. Suppose that n > 1.
(i) If (g,7) # (0,3), then Conjecture 1, (i), follows immediately from Theorem
2, (i); Proposition 31, (i), (ii), (iii); [Hgsh], Lemma 6.5, (iii), (iv).
(i) If (g,7) # (0,3),(1,1), then Conjecture 1, (ii), follows immediately from
Congecture 1, (i); Proposition 21, (iv).
In this paper, we do not apply Theorem 2; Remark 3, (i), (ii).

PROPOSITION 33. Suppose that n > 1. Let Vi, Va be log divisors of X8,
Then the following conditions are equivalent:
(i) ViV # 0.
(i) There exists a log-full subgroup A C m}(X°8) which contains inertia groups
Iy, , Iv, associated to V1, Vs.

PRrROOF. It follows immediately from Proposition 10; [Hgsh], Proposition
4.3; [Hgsh], Lemma 8.4. O

PROPOSITION 34. Suppose that n > 1. Then the following hold:



26 Kazumi HIGASHIYAMA

(i) One may construct a set Vig) U Vi, 1] associated to the intrinsic structure
of AP(g,7,n) and LD, i.e.,

(AP(g,m,n),LD) ~ Vigy UV 1)

(ii) One may construct a set Vi3 LI Vy,) associated to the intrinsic structure of
AP(g,r,n) and LD, i.e.,

(Ap(g, T, n), LD) ~ V[g] U V[n].

(iii) Suppose that (g,7) # (0,3),(1,1). Then one may construct sets Vs|, Vi)
associated to the intrinsic structure of AP(g,r,n) and Vg U Vi, i.e.,

(AP(g,7,n), Vi) UV [p)) ~ Viap, Vi)

(iv) Suppose that r # 3. Then one may construct sets Vg, Vin41) associated to
the intrinsic structure of AP(g,r,n) and LFS, i.e.,

(AP(g,m,n), LES) ~ Vig), Vipy1)-

(v) Suppose that (g,r) # (0,3),(1,1) and n > 2. Then one may construct sets
Via], Vint1) associated to the intrinsic structure of AP(g,r,n) and LFS, i.e.,

(AP(g,7,n), LES) ~ Vi), Vipy1)-

(vi) Suppose that g # 0, r = 3, and n # 3. Then one may construct sets
V[Ié"]’i"e,V[V;]’rtical,V[nH] associated to the intrinsic structure of AP(g,r,n)
and LFS, i.e.,

(AP (ga T, TL), LFS) ~ V[%Tive7 V[\é?rtical7 V[’VH-I] .

(vii) Suppose that (g,7) # (0,3). Then one may construct sets Vig), Vip41] asso-
ciated to the intrinsic structure of AP(g,r,n) and LFS, i.e.,

(AP(g,m,n), LES) ~ Vig), Vipy1)-

(viii) One may construct a set TD associated to the intrinsic structure of AP(g,r,n)
and LD, i.e.,
(AP(g,r,n),LD) ~» TD.

PROOF. Assertion (i) follows from Proposition 31, (v). Assertion (ii) fol-
lows from Proposition 28, (i), (ii); Proposition 30, (ii); Proposition 31, (iii)
(cf. also Proposition 32, (iii)). Next, we consider assertion (iii). Since (g,r) #
(0,3),(1,1), it holds that N(g,r) > N(0,3) = N(1,1) = 2 (cf. the proof of
Proposition 32, (iv)). Thus, assertion (iii) follows immediately. Assertion (iv)
follows from assertion (i); Proposition 19, (i), (ii), (iii); Proposition 32, (i);
Proposition 33. Assertion (v) follows from assertions (i); Proposition 7, (i);
Proposition 22; Proposition 32, (i). Assertion (vi) follows from assertions (i),
(i), (iii); Proposition 18; Proposition 20, (i), (ii), (iii); Proposition 32, (i); Propo-
sition 33. Assertion (vii) follows from assertions (iv), (v), (vi). Assertion (viii)
follows from assertions (i), (vii); Proposition 6, (i), (ii). O

PROPOSITION 35. Suppose that n > 1. Then the following hold:
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(i) Suppose that (g,r) = (0,3),(1,1). Then one may construct a set DD asso-
ciated to the intrinsic structure of AP(g,r,n) and LFS, i.e.,

(AP(g,r,n),LFS) ~» DD.

(ii) Suppose that (g,r) # (0,3) and r > 1. Let m € {2,...,n}. Then one
may construct sets Vm‘]i"e, V[‘;f;’itical associated to the intrinsic structure of
AP(g,r,n), LFS, and Vi, i.c.,

(Ap (g’ T, n), LFS’ V[m]) PONY V[r?lije, V[‘fril]’tical.
(iii) Suppose that (g,7) # (0,3),(1,1). Let m € {2,...,n} such that n+1 # m.

Then one may construct sets V[‘;zi"e, V[‘;fjtical associated to the intrinsic
structure of AP(g,r,n), LFS, and Vi, i.e.,

(AP(g,7,n), LFS, Vi) ~ Vpaive, pestical,

(iv) Suppose that (g,7) # (0,3),(1,1). Let m € {2,...,n}. Then one may con-
ive pwertical qssociated to the intrinsic structure of AP(g,r,n),

[m]
LFS, V[m], and V[erl], z'.e.,

struct sets V[r;fi]
(AP (g7 T, n), LFS, V[m]7 V[erl]) ~ V[naive7 Vvertical

m] [m] -

(v) One may construct a set DD associated to the intrinsic structure of AP(g,r,n)
and LFS, i.e.,

(AP(g,7,n),LFS) ~» DD.

PROOF. Assertion (i) follows from Proposition 8, (iii), (iv); Proposition
34, (viii). Assertion (ii) follows from Proposition 16, (iv), (v), (vi); Proposition
33; Proposition 34, (viii). Assertion (iii) follows from Proposition 21, (i), (ii),
(iii). Assertion (iv) follows from Proposition 21, (iv). Assertion (v) follows from
assertion (i), (ii), (iii), (iv); Proposition 8, (ii) Proposition 34, (iii), (vii). O
PROPOSITION 36. Suppose that n > 1. Then the following hold:
(i) t: XMo8 — X108 x ... x5 X'°8 (cf. Definition 6, (vii)) induces the outer
surjective homomorphism
ta: T (XM08) 5 rP(X108) x ... x 7P (X108),

(ii) Kerua is topologically generated by the inertia groups associated to the naive
digonals.

(iii) Let V be a log divisor of X\°¢ then there exists an inertia group Iy associ-
ated to V. which is contained in Keria if and only if

n
ve T v
m=2
(iv) Let A be a drift collection. Write Iy for the subgroup of m}(X°8) which

is topologically generated by the inertia groups associated to' V.€ A. Then
7P (X1o8) /T is isomorphic to 7} (X1°8) x - x w}(X1°8).
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(v) One may construct a surjection AP(g,r,1) x --- x AP(g,r,1) — AP(g,r,1)
associated to the intrinsic structure of AP(g,r,1) x -+ x AP(g,r,1), i.e.,

Ap(g7’r71) X X A‘D(g”/" 1) ~ Ap(ga’ra 1) X X Ap(g7r7 1) - Ap(g,’/" 1)

PROOF. Assertion (i) follows immediately. Assertion (i) follows from
[Hgsh], Lemma 7.1. Assertion (iii) follows from [Hgsh], Lemma 7.2. Asser-
tion (iv) follows from assertion (i), (ii). Assertion (v) follows from Proposition
30, (ii), (iii). O

PROPOSITION 37. Suppose that n > 1. Then the following hold:

(i) One may construct a set DC associated to the intrinsic structure of AP(g,r,n),
LFS, and DD, i.e.,

(AP(g,r,n),LFS,DD) ~~ DC.

(i) One may construct a set GFS associated to the intrinsic structure of AP(g,r,n)
and DC, i.e.,
(AP(g,7,n),DC) ~» GFS.
(#ii) One may construct a set GFS associated to the intrinsic structure of AP(g,r,n)
and LFS, i.e.,
(AP(g,r,n),LFS) ~ GFS.

PROOF. Assertion (i) follows from [Hgsh], Proposition 8.12. Assertion (i)
follows from Proposition 36, (iv), (v). Assertion (iii) follows from assertions (i),
(ii); Proposition 35, (v). O
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