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A study on anabelian geometry of higher local fields

Takahiro Murotani

Abstract. Anabelian geometry has been developed over a much wider class of fields
than Grothendieck, who is the originator of anabelian geometry, conjectured. So, it is
natural to ask the following question: What kinds of fields are suitable for the base
fields of anabelian geometry?

In the present paper, we consider this problem for higher local fields. First, to
consider “anabelianness” of higher local fields themselves, we give mono-anabelian re-
construction algorithms of various invariants of higher local fields from their absolute
Galois groups. As a result, the isomorphism classes of certain types of higher local
fields are completely determined by their absolute Galois groups. Next, we prove that
mixed-characteristic higher local fields are Kummer-faithful. This result affirms the
above question for these higher local fields to a certain extent.
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Introduction

Grothendieck gave the following conjecture in Esquisse d’un Programme and Brief an
G. Faltings (cf. [SL]):

Conjecture
Let K be a field finitely generated over the prime field and GK the absolute Galois group
of K. Then an “anabelian variety” V over K may be “reconstructed” from the étale
fundamental group (with the projection to GK) π1(V ) ↠ GK of V (for some choice of
basepoint).

This conjecture (which is referred to as the Grothendieck conjecture) is considered as a
main issue of anabelian geometry.
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As in the conjecture, Grothendieck considered that anabelian geometry should be
developed over fields finitely generated over prime fields. However, as we see below,
anabelian geometry is developed over a much wider class of fields than he conjectured.
So, it is natural to ask the following question:

What kinds of fields are suitable for the base fields of anabelian geometry?

This question is a main theme of the present paper and [Mu2]. In the present paper,
we consider this problem for higher local fields. (In [Mu2], we consider this problem
for complete discrete valuation fields with perfect residue fields (from the view point of
“ramifications of fields”).)

As he conjectured, fields finitely generated over prime fields are “suitable” in the sense
as in the above question. Indeed, the Grothendieck conjecture for hyperbolic curves
over fields finitely generated over Q was proved by Nakamura (the case where g = 0,
cf. [Nak1, Theorem C], [Nak2, (1.1)]), Tamagawa (the case where X is affine, cf. [T,
Theorem 0.3]) and Mochizuki (the general case, cf. [Mo1, Theorem A]), where X is a
hyperbolic curve over such a field and g is the genus of the smooth compactification of X.
On the other hand, the Grothendieck conjecture for hyperbolic curves over finite fields
(resp. fields finitely generated over finite fields) was proved by Tamagawa (the case where
X is affine, cf. [T, Theorem 0.6]) and Mochizuki (the general case, cf. [Mo6, Theorem
3.2]) (resp. by Stix (cf. [St1, Theorem 3.2], [St2, Theorem 5.1.1])). Moreover, the
Grothendieck conjecture for infinite fields finitely generated over prime fields themselves
was proved by Pop (cf. [P, Theorem 2]). (This result is a generalization of the theorem
of Neukirch-Uchida, which is stated only for number fields.) Furthermore, by using the
theorem of Neukirch-Uchida, in [Ho3, Theorem A], Hoshi established mono-anabelian
reconstruction algorithms of number fields from the absolute Galois groups. (For mono-
anabelian geometry, see also [Mo8, Introduction].)

Beyond the original version of Grothendieck’s conjecture, p-adic local fields are also
considered to be “suitable” (in the sense as in the above question). The Grothendieck
conjecture for hyperbolic curves over p-adic local fields (in fact, more generally, over
generalized sub-p-adic fields (i.e., fields isomorphic to subfields of fields finitely generated
over the quotient field of the Witt ring with coefficients in an algebraic closure of Fp))
was proved by Mochizuki (cf. [Mo3, Theorem A], [Mo4, Theorem 4.12]). Although the
analogue of the theorem of Neukirch-Uchida for p-adic local fields fails to hold as it is,
Mochizuki proved a certain analogue of the theorem for the absolute Galois groups with
ramification filtrations (cf. [Mo2, Theorem 4.2]). Moreover, various invariants of p-adic
local fields are recovered from their absolute Galois groups in the sense of mono-anabelian
reconstruction (cf. [Ho2] and [Ho4]).

More generally, Abrashkin proved an analogue of the theorem of Neukirch-Uchida (for
the absolute Galois groups with ramification filtrations) for higher local fields, (which
we shall abbreviate to HLF’s (cf. Definitions 1.1 and 1.4 (i)),) with (first) residue
characteristics (cf. Definition 1.1 (i)) at least 3 (cf. [A2, Theorems 5, 6]) (and for
complete discrete valuation fields of any positive characteristics with finite residue fields
(cf. [A1, Theorem A], [A3, Theorem A])). So, HLF’s are candidates for “suitable” fields
in the sense as in the above question. Considering the above examples, it is natural to
ask the following question:
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(A) Which invariants of HLF’s are reconstructed from the absolute Galois groups in
the sense of mono-anabelian reconstruction?

(B) Does the Grothendieck conjecture hold for hyperbolic curves over HLF’s?
In the present paper, we consider these problems.

For (A), we prove the following theorem:

Theorem A (cf. Proposition 2.1, Theorems 2.15, 2.16, 2.18)
Let K be an HLF, d ∈ Z≥0 the dimension of K (as an HLF), K = Kd, Kd−1, · · · , K1, K0
a chain of residue fields of K (cf. Definition 1.1 (i), Remark 1.2) and GK the absolute
Galois group of K. Then we may determine group-theoretically from GK which of the
following statements holds:

(i) K is an FF (cf. Definition 1.4 (i)).
(ii) K is an RPHLF (cf. Definition 1.4 (iii)) and is not an FF.
(iii) K is a PHLF (cf. Definition 1.4 (ii)) and is not an FF.
(iv) K is a ZRIHLF (cf. Definition 1.4 (iv)).

In the case where one of (ii)∼(iv) holds, there exist mono-anabelian reconstruction algo-
rithms of the following invariants from GK:

• the characteristic p of K0 (cf. Definition 1.1 (i));
• the cardinality of K0;
• the dimension of K (as an HLF) (cf. Definition 1.1 (ii));
• Ker(GK ↠ GK0) (where GK0 is the absolute Galois group of K0).

Moreover, in the case where (ii) holds, there exist mono-anabelian reconstruction algo-
rithms of the following invariants from GK:

• [K1 : Qp] (cf. Definition 1.1 (i));
• Ker(GK ↠ GK1) (where GK1 is the absolute Galois group of K1).

In particular, the isomorphism class of K is completely determined by GK in the case
where one of the following holds:

• K is a PHLF and is not an FF;
• K is an RPHLF and is not an FF, and the profinite group GK/Ker(GK ↠ GK1)

(which is automatically a profinite group of MLF-type (cf. Section 0, Profinite
groups)) is of GSMLF-type (cf. [Ho4, Definition 6.8]).

　
This theorem shows that, the absolute Galois groups of HLF’s (without the ramification
filtrations) also have weak “anabelianness”.

The following question gives an approach to the question (B):
(B′) Are HLF’s Kummer-faithful (cf. Definition 3.1 (ii))?

Known results in anabelian geometry introduced above are mainly the relative versions of
Grothendieck conjecture (for schemes over fields finitely generated over Q or p-adic local
fields). On the other hand, Mochizuki proved the absolute version of the Grothendieck
conjecture for hyperbolic curves over number fields (cf. [Mo5, Corollary 1.3.5]). However,
the absolute version of the Grothendieck conjecture for hyperbolic curves over p-adic
local fields is still open in general (for studies approaching this problem, see, e.g., [Mo6],
[Mo7, §3] and [Mu]). In absolute situations, there are essential difficulties which are



4 TAKAHIRO MUROTANI

not found in relative situations. As another (semi-)absolute result, Hoshi proved that
a point-theoretic and Galois-preserving isomorphism (cf. [Ho1, Definition 3.1]) between
the étale fundamental groups of affine hyperbolic curves over Kummer-faithful fields
arises from an isomorphism of schemes (cf. [Ho1, Theorem A]). Although (B′) does not
necessarily give an affirmative answer to (B), Hoshi’s theorem ensures that, to some
extent, Kummer-faithful fields are suitable for the base fields of anabelian geometry.

The following is an answer to (B′):

Theorem B (cf. Theorem 3.8)
MHLF’s (cf. Definition 1.4 (ii)) are Kummer-faithful.

　
We shall review the contents of the present paper. In Section 1, we discuss some

generalities on higher local fields. In Section 2, we treat the problem (A) by using the
theories in Section 1. In Section 3, we prove Theorem B by considering Néron models
and formal groups of abelian varieties.
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0. Notations and conventions

Numbers:
　
We shall write
• Z for the set of integers;
• Q for the set of rational numbers;
• R for the set of real numbers;
• Primes for the set of prime numbers.

For a ∈ R and X ∈ {Z, Q, R}, we shall write X≥a (resp. X>a, resp. X≤a, resp. X<a) for
{b ∈ X | b ≥ a (resp. b > a, resp. b ≤ a, resp. b < a)}.

For n ∈ Z and a subset A ⊂ Z, we shall write nA for {na ∈ Z | a ∈ A}.
　

Fields:
　
For p ∈ Primes and n ∈ Z>0, we shall write
• Zp for the p-adic completion of Z;
• Qp for the quotient field of Zp;
• Fpn for the finite field of cardinality pn.
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Let K be a field. We shall say that K is an MLF (resp. a PLF) if K is isomorphic to
a finite extension of Qp for some p ∈ Primes (resp. a complete discrete valuation field
of positive characteristic whose residue field is finite) (where “MLF” (resp. “PLF”) is
understood as an abbreviation for “Mixed-characteristic Local Field” (resp. “Positive-
characteristic Local Field”)).
　

Modules:
　
Let M be a Z-module. We shall write Mdiv for the submodule which consists of

divisible elements of M , i.e.,
Mdiv =

∩
n∈Z>0

nM.

For n ∈ Z>0, we shall write M [n] for the kernel of multiplication by n.
　

Profinite groups:
　
Let G be a profinite group and p ∈ Primes. Then we shall write Gab for the abelian-

ization of G (i.e., the quotient of G by the closure of the commutator subgroup of G),
and G(p) for the maximal pro-p quotient of G.

We denote the cohomological p-dimension of G by cdpG, and set:
cdG := sup

p∈Primes
cdpG.

We shall say that a profinite group G is of MLF-type (resp. PLF-type) if G is isomor-
phic, as a profinite group, to the absolute Galois group of an MLF (resp. a PLF).
　

1. Generalities on higher local fields

In this section, we discuss some generalities on higher local fields.
　
For a field K, we shall write
• K for an algebraic closure of K;
• Ksep for the separable closure of K in K;
• GK for the Galois group Gal(Ksep/K);
• ζl ∈ Ksep for a primitive l-th root of unity (for a prime number l different from

the characteristic of K).

Definition 1.1 (cf. [FK, §1.1])
(i) Let d be a non-negative integer. Then a field K is a d-dimensional local field if

there is a chain of fields K = Kd, Kd−1, · · · , K1, K0 where Ki+1 is a complete
discrete valuation field with residue field Ki for 0 ≤ i ≤ d− 1 and K0 is a finite
field. The field Kd−1 (resp. K0) is said to be the first (resp. the last) residue field
of K.

(ii) A field K is a higher local field if K is a d-dimensional local field for some non-
negative integer d.
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Remark 1.2
Let K be a higher local field of dimension d ∈ Z≥0. Since a complete discrete valuation
field admits only one (normalized) discrete valuation, a chain of residue fields K =
Kd, Kd−1, · · · , K1, K0 in Definition 1.1 (i) is unique up to isomorphism. In particular,
the dimension d of a higher local field K is well-defined.

　
We have a classification theorem for higher local fields (cf. [FK, §1.1]):

Theorem 1.3
Let K be a d-dimensional local field whose last residue field is of characteristic p. Then
one (and only one) of the following holds:

(i) K is isomorphic to Fq((T1)) · · · ((Td)) where q is the cardinality of the last residue
field of K;

(ii) K is isomorphic to a finite extension of k{{T1}} · · · {{Td−1}} where k is a finite
extension of Qp. (For the definition of k{{T}}, see [FK, §1.1]);

(iii) d ≥ 3 and K is isomorphic to a finite extension of k{{T1}} · · · {{Tm}}((Tm+1)) · · · ((Td−1))
where 1 ≤ m ≤ d− 2 and k is a finite extension of Qp;

(iv) d ≥ 2 and K is isomorphic to k((T1)) · · · ((Td−1)) where k is a finite extension of
Qp.

Definition 1.4
Let K be a field and G a profinite group.

(i) We shall say that K is an FF (resp. HLF) if K is a finite field (resp. higher local
field) (where “FF” (resp. “HLF”) is understood as an abbreviation for “Finite
Field” (resp. “Higher Local Field”)).

(ii) Suppose that K is an HLF. If Theorem 1.3 (i) (resp. (ii), resp. (i) or (ii), resp.
(iii) or (iv)) holds for K and for some non-negative integer d and some prime
number p, we shall say that K is a(n) PHLF (resp. MHLF, resp. PFHLF, resp.
ZFHLF) (where “PHLF” (resp. “MHLF”, resp. “PFHLF”, resp. “ZFHLF”) is
understood as an abbreviation for “Positive-characteristic Higher Local Field”
(resp. “Mixed-characteristic Higher Local Field”, resp. “Positive-First-residue-
characteristic Higher Local Field”, resp. “Zero-First-residue-characteristic Higher
Local Field”)).

(iii) Suppose that K is an HLF, and one (and only one) of the following conditions
holds:
• K is of dimension 0 (i.e., K is an FF).
• K is of dimension 1 and Theorem 1.3 (ii) holds for K and for some prime

number p (i.e., K is an MLF).
• Theorem 1.3 (iv) holds for K and for some non-negative integer d and some

prime number p. (In this case, automatically we have d ≥ 2.)
Then we shall say that K is an RPHLF (where “RPHLF” is understood as an
abbreviation for “Residually-Perfect Higher Local Field”). (Here, we also regard
K itself as a “residue field”.)

(iv) Suppose that K is an HLF, and one (and only one) of the following conditions
holds:
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• K is of dimension d ≥ 2 and Theorem 1.3 (ii) holds for K and for some
prime number p.
• Theorem 1.3 (iii) holds for K and for some non-negative integer d and some

prime number p. (In this case, automatically we have d ≥ 3.)
Then we shall say that K is a ZRIHLF (where “ZRIHLF” is understood as an
abbreviation for “Zero-characteristic Residually-Imperfect Higher Local Field”).

(v) We shall say that G is of FF-type (resp. HLF-type, resp. PHLF-type, resp.
MHLF-type, resp. PFHLF-type, resp. RPHLF-type, ZRIHLF-type) if G is iso-
morphic, as a profinite group, to the absolute Galois group of a(n) FF (resp.
HLF, resp. PHLF, resp. MHLF, resp. PFHLF, resp. RPHLF, resp. ZRIHLF).

Remark 1.5
Let K be an HLF. Then any finite extension L of K is an HLF and has the same type
and the same dimension as K.

　
We give a group-theoretic characterization of profinite groups of FF-type and RPHLF-

type:

Proposition 1.6
Let G be a profinite group of HLF-type. Then G is topologically finitely generated if and
only if G is of RPHLF-type. Moreover, G is isomorphic to Ẑ if and only if G is of
FF-type.

Proof.
Suppose that G is of RPHLF-type. Then, since profinite groups of MLF-type are

topologically finitely generated and the inertia subgroups of the absolute Galois groups
of RPHLF’s of dimensions greater than or equal to 2 are isomorphic to Ẑ(1), it follows
immediately that G is topologically finitely generated.

Let K be an HLF of dimension d (∈ Z≥0) such that GK is isomorphic to G as a profinite
group, and K = Kd, Kd−1, · · · , K1, K0 a chain of residue fields of K (cf. Definition 1.1
(i), Remark 1.2). Suppose that K is not an RPHLF. Then clearly d > 0. Moreover,
K1 is a PLF, hence GK1 is not topologically finitely generated (cf. [NSW, Proposition
6.1.7]). By considering the surjection GK ↠ GK1 , G (≃ GK) is not topologically finitely
generated.

The latter equivalence is immediate (note that for G not of FF-type, there exists a
surjection from G to a profinite group of MLF or PLF-type, which is not cyclic). □
　
In the remainder of this section, let K be an HLF of dimension d ∈ Z>0. Moreover,

we shall write:
• K = Kd, Kd−1, · · · , K1, K0 for a chain of residue fields of K (cf. Definition 1.1

(i), Remark 1.2);
• pK for the characteristic of K;
• p0 for the characteristic of K0;
• q0 for the cardinality of K0.
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Lemma 1.7
Suppose that K is an RPHLF and d > 1. Let I be the kernel of the surjection GK ↠
GKd−1. Then, for any prime number l, the following two conditions are equivalent:

(i) The natural homomorphism Hom(GK , Z/lZ)→ Hom(I, Z/lZ) is non-trivial.
(ii) K contains a primitive l-th root of unity.

Proof.
By considering an extension of K generated by a l-th root of a uniformizer of K, the

implication (ii)=⇒(i) holds. The implication (i)=⇒(ii) is immediate from the fact that
I ≃ Ẑ(1). □
Proposition 1.8
Suppose that K is an RPHLF. Set p := p0 and N := [K1 : Qp]. Then, for any prime
number l,

dimZ/lZ(Hom(GK , Z/lZ)) =

Nδpl + d + 1, (ζl ∈ K);
Nδpl + 1, (ζl ̸∈ K),

where

δpl =

0, (l ̸= p);
1, (l = p).

P roof.
We prove this proposition by induction on d. The case where d = 1 follows immediately

from local class field theory. Suppose that d > 1. Let I be the kernel of the surjection
GK → GKd−1 (note that I is isomorphic to Ẑ as a profinite group). Then we have the
following exact sequence:

0 // Hom(GKd−1 , Z/lZ) // Hom(GK , Z/lZ) // Hom(I, Z/lZ)(≃ Z/lZ).

Therefore, by Lemma 1.7,

dimZ/lZ(Hom(GK , Z/lZ)) =

dimZ/lZ(HomZ/lZ(GKd−1 , Z/lZ)) + 1, (ζl ∈ K);
dimZ/lZ(HomZ/lZ(GKd−1 , Z/lZ)), (ζl ̸∈ K).

By induction hypothesis, this completes the proof of Proposition 1.8 (note that ζl ∈ K
if and only if ζl ∈ Kd−1). □
　
The following proposition gives group-theoretic characterizations of p0 and N := [K1 :

Qp0 ] of an RPHLF:

Proposition 1.9
Let K, p and N be as in Proposition 1.8, and l a prime number. Then l = p if and only
if there exists an open subgroup H of GK of index l such that

dimZ/lZ(Hom(H, Z/lZ)) > dimZ/lZ(Hom(GK , Z/lZ)).
Moreover, if such an open subgroup H of GK exists (hence l = p), we have

dimZ/pZ(Hom(H, Z/pZ))− dimZ/pZ(Hom(GK , Z/pZ)) = (p− 1)N.
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Proof.
Suppose that l = p. Let L1 be a finite extension of K1 of degree l. Set L := K · L1,

and let H be the open subgroup of GK corresponding to L. Then, by Proposition 1.8,
we have

dimZ/lZ(Hom(H, Z/lZ)) > dimZ/lZ(Hom(GK , Z/lZ)).
Conversely, suppose that l ̸= p. Then, by Proposition 1.8, for any open subgroup of H
of index l, we have

dimZ/lZ(Hom(H, Z/lZ)) = dimZ/lZ(Hom(GK , Z/lZ)).
(Note that, by the choice of H, ζl ∈ K if and only if ζl ∈ L, where L is the finite
extension of K corresponding to H.)

The latter portion of the statement follows immediately from Proposition 1.8. □
　
The following proposition determines group-theoretically whether or not an RPHLF

contains a primitive p0-th root of unity:

Proposition 1.10
Let K, p and N as in Proposition 1.8. Then ζp ̸∈ K if and only if there exists an open
normal subgroup H of GK of index n such that n divides p− 1 and

dimZ/pZ(Hom(H, Z/pZ))− dimZ/pZ(Hom(GK , Z/pZ)) > (n− 1)N.

Proof.
Immediate from Proposition 1.8 (note that [K(ζp) : K] divides p− 1). □
　
We may describe explicitly the structure of the abelianization of the maximal pro-l

quotient of the absolute Galois group of an HLF of positive dimension (for l ∈ Primes
different from p0):

Proposition 1.11
Let K be an HLF (of dimension d ∈ Z>0). Then, for any prime number l different from
p0, we have

GK(l)ab ≃ Zl ⊕ (Z/lvl(q0−1)Z)⊕d,

where vl is the valuation of Ql such that vl(Q×
l ) = Z.

Proof.
Immediate from [EF, Remark 5.4]. □
　
The following proposition gives a group-theoretic characterization of p0 for a PHLF

or ZRIHLF:

Proposition 1.12
Let K be a PHLF or ZRIHLF (of dimension d ∈ Z>0), l a prime number. Set p := p0.
Then l = p if and only if GK(l) is not topologically finitely generated.

Proof.
Suppose that l ̸= p. Then GK(l) is topologically finitely generated by [EF, Remark

5.4]. On the other hand, there exists a surjection GK ↠ GK1 . Since K1 is a PLF (of
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characteristic p), GK1(p) (hence also GK(p)) is not topologically finitely generated (cf.
[NSW, Proposition 6.1.7]). □
　
The following proposition, together with Proposition 1.6, gives a group-theoretic char-

acterization of profinite groups of PHLF-type and ZRIHLF-type.

Proposition 1.13
Let K be a PHLF or ZRIHLF (of dimension d ∈ Z>0). Set p := p0.

(i) Suppose that K is a PHLF. Then
cdpGK = 1.

(ii) Suppose that K is a ZRIHLF. Then
cdpGK = d + 1.

P roof.
Immediate from [K, §0, Corollary] and [NSW, Propositions 6.1.7, 6.5.10]. □

Remark 1.14
Note that, by definition, a ZRIHLF is of dimension at least 2. Therefore, for a ZRIHLF
K, we have

cdpGK ≥ 3,

where p := p0.

Remark 1.15
Let G be a profinite group of HLF-type. Then, by the above arguments, one and only
one of the following condition holds:

(i) G is of FF-type.
(ii) G is of RPHLF-type and is not of FF-type.
(iii) G is of PHLF-type and is not of FF-type.
(iv) G is of ZRIHLF-type.

　

2. Reconstruction of various invariants of higher local fields

In this section, by applying theories in Section 1, we establish mono-anabelian recon-
struction algorithms of various invariants of HLF’s.
　
Let K be an HLF. We shall write
• Ksep for a separable closure of K;
• GK for the Galois group Gal(Ksep/K);
• K = Kd, Kd−1, · · · , K1, K0 for a chain of residue fields of K (cf. Definition 1.1

(i), Remark 1.2);
• d = d(K) for the dimension of an HLF K;
• p(K) for the characteristic of K0;
• q(K) for the cardinality of K0.
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If K is an RPHLF of positive dimension, set N(K) := [K1 : Qp(K)] (which clearly does
not depend on the choice of a chain K = Kd, · · · , K0 (cf. Remark 1.2)).
　
Let G be a profinite group of HLF-type.
　
We may determine the type of G group-theoretically:

Proposition 2.1
(i) G is of FF-type if and only if G is isomorphic to Ẑ as a profinite group.
(ii) G is of RPHLF-type and is not of FF-type if and only if G is topologically finitely

generated and is not isomorphic to Ẑ.
(iii) G is of PHLF-type and is not of FF-type if and only if there exists a unique prime

number p such that G(p) is not topologically finitely generated and cdpG = 1.
(iv) G is of ZRIHLF-type if and only if there exists a unique prime number p such

that G(p) is not topologically finitely generated and cdpG ≥ 3.

Proof.
Immediate from Propositions 1.6, 1.12, 1.13 and Remark 1.14. □

Definition 2.2
Suppose that G is of PHLF-type or ZRIHLF-type and is not of FF-type. We shall write
p(G) for the uniquely determined prime number in Proposition 2.1.

Lemma 2.3
Suppose that G is of RPHLF-type and is not of FF-type. Then there exists a uniquely
determined prime number p satisfying the following condition:

There exists an open subgroup H of G of index p such that

dimZ/pZ(Hom(H, Z/pZ)) > dimZ/pZ(Hom(G, Z/pZ)).

P roof.
Immediate from Proposition 1.9. □

Definition 2.4
Suppose that G is of RPHLF-type and is not of FF-type. We shall write p(G) for the
uniquely determined prime number in Lemma 2.3.

Lemma 2.5
Suppose that G is of HLF-type and is not of FF-type. For a prime number l different
from p(G), let vl(G) ∈ Z≥0 be the integer such that

lvl(G) = max{ord(σ) |σ ∈ G(l)ab is a torsion element},

where ord(σ) is the order of σ. Then vl(G) = 0 for all but finitely many prime numbers
l different from p(G).

Proof.
Immediate from Proposition 1.11. □
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Definition 2.6
Suppose that G is of HLF-type and is not of FF-type. For a prime number l different
from p(G), let vl(G) be as in Lemma 2.5. Set:

q(G) := 1 +
∏

l∈Primes\{p(G)}
lvl(G) ∈ Z.

(cf. Lemma 2.5.)

Definition 2.7
Suppose that G is of HLF-type and is not of FF-type. Let J0 be the set of open subgroups
H of G satisfying the following condition:

q(H) = q(G)[G:H].

Define a closed subgroup J0(G) of G as follows:

J0(G) :=
∩

H∈J0

H.

Definition 2.8
Suppose that G is of HLF-type and is not of FF-type. Set:

d(G) := max
l∈Primes\{p(G)}

H⊂G

(
dimZ/lZ(H(l)ab ⊗Zl

Z/lZ)
)
− 1,

where H runs through the set of open subgroups of G.

Lemma 2.9
Suppose that G is of RPHLF-type and is not of FF-type. Then let H be the set of open
subgroups H of G of index p(G) satisfying

dimZ/p(G)Z(Hom(H, Z/p(G)Z)) > dimZ/p(G)Z(Hom(G, Z/p(G)Z)).

(Note that H is non-empty by the definition of p(G).) Then, for any H ∈ H,

dimZ/p(G)Z(Hom(H, Z/p(G)Z))− dimZ/p(G)Z(Hom(G, Z/p(G)Z))

takes the same value. Moreover, p(G)− 1 divides this integer .

Proof.
Immediate from Proposition 1.9. □

Definition 2.10
Suppose that G is of RPHLF-type and is not of FF-type. Let H be as in Lemma 2.9.
Then, for an element H ∈ H, set:

N(G) :=
dimZ/p(G)Z(Hom(H, Z/p(G)Z))− dimZ/p(G)Z(Hom(G, Z/p(G)Z))

p(G)− 1
.

(Note that, by Lemma 2.9, this does not depend on the choice of H ∈ H.)

Definition 2.11
Suppose that G is of RPHLF-type and is not of FF-type. We shall say that G satisfies
(†) if the following condition holds:
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There exists an open normal subgroup H of G of index n such that n
divides p(G)− 1 and

dimZ/p(G)Z(Hom(H, Z/p(G)Z))− dimZ/p(G)Z(Hom(G, Z/p(G)Z)) > (n− 1)N(G).

Lemma 2.12
Suppose that G is of RPHLF-type and is not of FF-type. Then there exists a uniquely
determined maximal open normal subgroup of G which does not satisfy (†).

Proof.
Immediate from Proposition 1.10. □

Definition 2.13
Suppose that G is of RPHLF-type and is not of FF-type. We shall write Hp(G)(G) for
the uniquely determined maximal open subgroup of G which does not satisfy (†).

Definition 2.14
Suppose that G is of RPHLF-type and is not of FF-type. Let J1 be the set of open
subgroups H of Hp(G)(G) satisfying the following condition:

dimZ/p(G)Z(Hom(H, Z/p(G)Z))− dimZ/p(G)Z(Hom(Hp(G)(G), Z/p(G)Z))
= ([Hp(G)(G) : H]− 1)N(Hp(G)(G)).

Define a closed subgroup J1(G) of G as follows:

J1(G) :=
∩

H∈J1

H.

Theorem 2.15
Let K be an HLF which is not an FF.

(i) It holds that
• p(K) = p(GK);
• q(K) = q(GK);
• d(K) = d(GK);
• Ker(GK ↠ GK0) does not depend on the choice of a chain K = Kd, · · · , K0

and coincides with J0(GK).
(ii) Suppose that K is an RPHLF. Then it holds that

• N(K) = N(GK);
• Ker(GK ↠ GK1) does not depend on the choice of a chain K = Kd, · · · , K0

and coincides with J1(GK), (hence GK1 ≃ GK/J1(GK)).

Proof.
The assertion for p(K) follows immediately from Propositions 1.9, 1.12 and the def-

inition of p(G). The assertion for q(K) follows immediately from Proposition 1.11 and
the definition of q(G). The assertion for d(K) follows immediately from Remark 1.5,
Proposition 1.11 and the definition of d(K). The assertion for J0(GK) follows immedi-
ately from the definition of J0(GK) and the assertion for q(K). The assertion for N(K)
follows immediately from Proposition 1.9, the assertion for q(K) and the definition of
N(G). The assertion for J1(GK) follows immediately from the definition of J1(GK) and
the assertion for N(K). □
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We may determine group-theoretically the isomorphism class of a PHLF:

Theorem 2.16
For i = 1, 2, let Ki be a PHLF which is not an FF. Suppose that there exists an iso-
morphism of profinite groups GK1 ≃ GK2. Then there exists an isomorphism K1 ≃ K2
of fields.

Proof.
Since the isomorphism class of Ki is determined by q(Ki) and d(Ki), this theorem

follows immediately from Theorem 2.15 (i). □
Remark 2.17
In [A2, Theorem 5], Abrashkin recovered a PHLF (with characteristic at least 3) group-
theoretically from the absolute Galois group with ramification filtration in a functorial
fashion. On the other hand, the reconstruction in Theorem 2.16 is not functorial (such
reconstruction is sometimes referred to as a “weak (Isom-)version of Grothendieck con-
jecture”). However, Theorem 2.16 does not require the “preservation of ramification
filtration”.

　
We may also determine group-theoretically the isomorphism class of an RPHLF under

a certain condition:

Theorem 2.18
For i = 1, 2, let Ki be an RPHLF which is not an FF. Suppose that there exists an
isomorphism of profinite groups GK1 ≃ GK2. Suppose, moreover, that GKi

/J1(GKi
)

(which is clearly a profinite group of MLF-type) is of GSMLF-type for some i = 1, 2
(for the definition of GSMLF-type, see [Ho4, Definition 6.8]). Then there exists an
isomorphism K1 ≃ K2 of fields.

Proof.
By Theorem 2.15, an isomorphism GK1 ≃ GK2 induces an isomorphism GK1/J1(GK1) ≃

GK2/J1(GK2). Therefore, by the definition of GSMLF-type, GKi
/J1(GKi

) is of GSMLF-
type for i = 1, 2. Since the isomorphism class of Ki is determined by the isomorphism
class of (Ki)1 and d(Ki), this theorem follows immediately from [Ho4, Theorem 6.10]
and Theorem 2.15. □
　

3. Kummer-faithfulness of higher local fields of MHLF-type

In this section, we prove that MHLF’s are Kummer-faithful.

Definition 3.1 (cf. [Mo8, Definition 1.5], [Ho1, Definition 1.2])
Let K be a field.

(i) We shall say that K is pre-Kummer-faithful if, for every finite extension L of K
and every semi-abelian variety A over L, it holds that A(L)div = {0}.

(ii) We shall say that K is Kummer-faithful if K is pre-Kummer-faithful and perfect.



A study on anabelian geometry of higher local fields 15

Remark 3.2
Let K be a field and K ′ a finite extension of K. Then it is immediate that K is pre-
Kummer-faithful (resp. Kummer-faithful) if and only if K ′ is pre-Kummer faithful (resp.
Kummer-faithful).
Lemma 3.3
A field K is pre-Kummer-faithful if and only if, for any finite extension L of K, Gm(L)div =
{0} and A(L)div = {0} for any abelian variety A over L.
Proof.

Immediate from the definition of pre-Kummer-faithfulness. (See also [OT, Proposition
2.3].) □
Lemma 3.4
Let M be a Z-module.

(i) M is a divisible group if and only if M = Mdiv.
(ii) Suppose that M satisfies the following condition:

The inverse system (M [n!], φm, n) satisfies the Mittag-Leffler condition
(i.e., for any n ∈ Z>0, there exists an N ∈ Z>0 such that for all m, m′ ≥
N , φm, n(M [m!]) = φm′, n(M [(m′)!])), where φm, n : M [m!] → M [n!] is

given by multiplication by m!
n!

(m ≥ n).
Then Mdiv is a divisible group. In particular, if M [n] is a finite group for any
n ∈ Z>0, Mdiv is a divisible group.

Proof.
(i) follows immediately. For (ii), consider the following commutative diagram:

0 // M [m!] //

× m!
n!

��

M
×m! //

× m!
n!

��

m!M //
� _

�

0

0 // M [n!] // M
×n! // n!M // 0,

where m ≥ n and the horizontal sequences are exact. Since the inverse system (M [n!], φm, n)
satisfies the Mittag-Leffler condition, by taking the inverse limits, we have the following
exact sequence:

0 // lim←−
n→∞

M [n!] // lim←−M // Mdiv // 0.

Therefore, for any x ∈ Mdiv, there exists an element (yn)n∈Z>0 ∈ lim←−M such that

n!yn = x for all n ∈ Z>0. Since yn = m!
n!

ym for all m, n ∈ Z>0 satisfying m ≥ n, we
have that yn ∈ Mdiv for all n ∈ Z>0. This implies that Mdiv is a divisible group, as
desired. □
　
In the remainder of this section, we assume that K is a complete discrete valuation

field with positive residue characteristic.
We shall write
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• OK for the ring of integers of K;
• MK for the maximal ideal of OK ;
• k for the residue field of K;
• p for the characteristic of k;
• vK for the valuation of K such that vK(K×) = Z.

For a ∈ OK , we denote the image of a in k by a.
For an abelian variety A over K of dimension g ∈ Z>0, we shall write FA = (FA, 1, · · · , FA, g)

for the formal group associated to A (FA, 1, · · · , FA, g ∈ K[[X1, · · · , Xg, Y1, · · · , Yg]]).
(For the definition of the formal groups associated to abelian varieties, see [HS, §C.2].)

Remark 3.5
Let A be an abelian variety over K, and A the Néron model of A (cf. [BLR, §1.3,
Corollary 2]). Then we may define the formal group associated to A (for a fixed choice
of local parameters at the identity element) similarly to that of A. Therefore, by choosing
local parameters of A at the identity element which also determine local parameters of
A at the identity element, we obtain the formal group FA = (FA, 1, · · · , FA, g) associated
to A defined over OK (i.e., FA, 1, · · · , FA, g ∈ OK [[X1, · · · , Xg, Y1, · · · , Yg]]).

Suppose that FA is defined over OK . Then we shall write FA(MK) for the group
associated to FA/OK (cf. [HS, §C.2]).

Remark 3.6
Let FA and FA(MK) be as above. For i ∈ Z>0, denote the subset (Mi

K)⊕g ⊂ M⊕g
K =

FA(MK) by FA(Mi
K). Then FA(Mi

K) is clearly a subgroup of FA(MK), and we have∩
i∈Z>0

FA(Mi
K) = {0}.

Moreover, for any i ∈ Z>0, we have an isomorphism of groups FA(Mi
K)/FA(Mi+1

K ) ∼→
(Mi

K/Mi+1
K )⊕g, where the group law of the right hand side is the usual one. In particular,

we have ∩
i∈Z>0

piFA(MK) = {0}.

Proposition 3.7
Suppose that k is pre-Kummer-faithful. Then K is pre-Kummer-faithful.

Proof.
By considering finite extensions of K, it suffices to show that (K×)div = {1} and

A(K)div = {0} for any abelian variety A over K (cf. Remark 3.2 and Lemma 3.3). First,
we prove that (K×)div = {1}. Let us take any element a ∈ (K×)div. Then vK(a) = 0 and
a belongs to (k×)div. By the pre-Kummer-faithfulness of k, it follows that a = 1, i.e.,
a ∈ 1 + MK . Since a ∈ (K×)div, for any n ≥ 1, there exists b ∈ O×

K such that bpn = a.
As char(k) = p, we have b = 1 in k× and hence a = bpn ∈ (1 + MK)pn ⊂ 1 + Mn

K .
Therefore, we have (K×)div = {1}.

Next, we prove that A(K)div = {0} for any abelian variety A over K. Let g be
the dimension of A and A the Néron model of A. By taking a finite Galois extension
of K if necessary, we may assume without loss of generality that A has semi-abelian
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reduction (cf. [BLR, §7.4, Theorem 1]). Thus, A0
k is a semi-abelian variety, where

Ak := A×SpecOK
Spec k. Moreover, we have the following exact sequence:

0 // A0
k(k) // Ak(k) // π0(Ak)(k),

where π0(Ak) is the group of connected components of Ak. Note that π0(Ak)(k) is a
finite group. Therefore, it holds that Ak(k)div ⊂ A0

k(k). On the other hand, since k is
pre-Kummer-faithful, we have A0

k(k)div = {0}. So, it holds that Ak(k)div = {0}. Indeed,
Ak(k)div ⊂ A0

k(k) implies that (Ak(k)div)div ⊂ A0
k(k)div = {0}. Since Ak(k)[n] (hence also

Ak(k)div[n]) is finite for any n ∈ Z>0, it holds that Ak(k)div = (Ak(k)div)div by Lemma
3.4.

On the other hand, we have a bijection A(OK) ∼→ A(K) and a reduction map ρ :
A(OK)→ Ak(k). Let A1 be the kernel of ρ. Thus, we have the following exact sequence:

0 // A1 // A(OK) // Ak(k).

Since Ak(k)div = {0}, we have A1 ⊃ A(OK)div(≃ A(K)div). Therefore, it suffices to show
that (A1)div = {0}. (Note that A(K)div is divisible by Lemma 3.4 (ii).)

Let e be the identity element of A(OK) and ÔA,e be the completion of the local ring
OA,e of A at e with respect to the maximal ideal MA,e. Then we can choose local
coordinates x1, · · · , xg so that ÔA,e ≃ OK [[x1, · · · , xg]]. Let FA be the formal group
associated to A defined over OK (cf. Remark 3.5). By an argument similar to the proof
of [HS, Theorem C.2.6], we have A1 ≃ FA(MK) where FA(MK) is the group associated
to FA/OK . By Remark 3.6, we have∩

n∈Z>0

pnFA(MK) = {0}.

This implies that (A1)div = {0}, as desired. □
Theorem 3.8
Let K be a PFHLF. Then K is pre-Kummer-faithful. In particular, if K is an MHLF,
K is Kummer-faithful.

Proof.
This theorem follows immediately from the fact that finite fields are Kummer-faithful

(cf. [Ho1, Remark 1.2.3 (i)]) and Proposition 3.7. □
Remark 3.9
If K is a ZFHLF, K is not (pre-)Kummer-faithful. Indeed, let MK be the maximal ideal
of the ring of integers of K. Then any element of 1 + MK is contained in (K×)div.

　
In the remainder of this section, for i = 1, 2, we shall write
• Ki for a Kummer-faithful field;
• Ki for an algebraic closure of Ki;
• GKi

for the Galois group Gal(Ki/Ki);
• Xi for a hyperbolic curve over Ki;
• Xcpt

i for the smooth compactification of Xi;
• π1(Xi) for the étale fundamental group of Xi (for some choice of basepoint);
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• ∆Xi
= π1(Xi ×Spec Ki

Spec Ki) ⊂ π1(Xi) for the geometric fundamental group of
Xi (for some choice of basepoint).

Proposition 3.10
Suppose that Ki is an MHLF for i = 1, 2. Then any isomorphism of profinite groups
ϕ : π1(X1)

∼→ π1(X2) is Galois-preserving. (For the definition of Galois-preserving
isomorphisms, see [Ho1, Definition 3.1 (ii)].)

Proof.
Immediate from [MT, Corollary D]. □

Corollary 3.11
Suppose that Ki is an MHLF for i = 1, 2, and that either X1 or X2 is affine. Write
Isom(π1(X1), π1(X2)) for the set of isomorphisms of profinite groups π1(X1)

∼→ π1(X2),
IsomPT(π1(X1), π1(X2)) ⊂ Isom(π1(X1), π1(X2)) for the subset of point-theoretic iso-
morphisms of profinite groups π1(X1)

∼→ π1(X2), Isom(X1, X2) for the set of isomor-
phisms of schemes X1

∼→ X2, and Inn(π1(X2)) for the group of inner automorphisms
of π1(X2). (For the definition of point-theoretic isomorphisms, see [Ho1, Definition 3.1
(i)].) Then the natural map

Isom(X1, X2)→ Isom(π1(X1), π1(X2))/Inn(π1(X2))
determines a bijection

Isom(X1, X2)
∼→ IsomPT(π1(X1), π1(X2))/Inn(π1(X2)).

P roof.
Immediate from [Ho1, Theorem 3.4], Theorem 3.8 and Proposition 3.10. □

Remark 3.12
Minamide and Tsujimura proved (a certain weak version of) the Grothendieck conjecture
for hyperbolic curves of genus 0 over MHLF (cf. [MT, Theorem A]). (In fact, they proved
the conjecture for hyperbolic curves of genus 0 over a wider class of fields.)
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