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ON ISOGENY CHARACTERS OF DRINFELD MODULES OF

RANK TWO

SHUN ISHII

Abstract. In this paper, we study cyclic torsion subgroups of Drinfeld Fq [T ]-
modules of rank two over Fq(T ) via isogeny characters associated to them.
Among other things, we prove that such Drinfeld Fq [T ]-modules do not have a

cyclic p-torsion subgroup defined over Fq(T ) under various conditions, where
p is a maximal ideal of Fq [T ]. We also obtain some unconditional results.

1. Introduction

Let p be a prime, q a power of p, A := Fq[T ] a polynomial ring over Fq, K :=
Fq(T ) and p a maximal ideal of A. Let φ be a Drinfeld A-module of rank two
over K. The purpose of this paper is to study the character associated to each
cyclic subgroup of φ[p] (the p-torsion submodule of φ) which is defined over K.
In particular, we show that such a cyclic subgroup does not exist under various
assumptions. Such “various assumptions” are divided into the following three types
of conditions:

(†q) : conditions on q (e.g. q is even/odd).
(†p) : conditions on p (e.g. deg(p) is even/odd, deg(p) is greater than q, etc).
(†ϕ) : conditions on φ. Let Sϕ be the set of all finite places of K at which φ

has potentially good reduction. In this part, we assume that Sϕ is sufficiently large

(e.g. Sϕ contains a prime of degree one, Sϕ =
∑fin

K := the set of all finite places of
K, etc).

For example, we prove the following results:

Theorem 1.1 (=Theorem 4.2). Let φ be a Drinfeld A-module of rank two over K.
Assume that the following conditions are satisfied:

(†p) deg(p) is even and greater than two.
(†ϕ) p ∈ Sϕ and Sϕ contains a prime of degree one.
Then φ does not have a nontrivial cyclic p-torsion subgroup defined over K.

Theorem 1.2 (=Theorem 4.5). Let φ be a Drinfeld A-module of rank two over K.
Assume that the following conditions are satisfied:

(†q) q is even.
(†p) deg(p) is greater than q.
(†ϕ) p ∈ Sϕ and Sϕ contains a prime of degree one.
Then φ does not have a nontrivial cyclic p-torsion subgroup defined over K.

Let us exlpain some previous results and their relations to our results. First,
Pál proved that, if q = 2, no Drinfeld A-module of rank two over K admits a
p-isogeny defined over K for any maximal ideal p of A of degree greater than two
[11, Theorem 1.2]. To prove this result, he proved a weaker assertion [11, Theorem
8.10], which states that no Drinfeld F2[T ]-module of rank two over F2(T ) which
has good reduction at every finite place admits a p-isogeny defined over K for any
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maximal ideal p of A of degree greater than two. In this paper, we prove the latter
assertion for arbitrary q:

Theorem 1.3 (=Corollary 4.7). Let φ be a Drinfeld A-module of rank two over
K. Assume that the following conditions are satisfied:

(†p) deg(p) is greater than q.

(†ϕ) Sϕ =
∑fin

K .
Then φ does not have a nontrivial cyclic p-torsion subgroup defined over K.

Second, Armana proved that no Drinfeld A-module of rank two over K admits
a nontrivial K-rational p-torsion point for any maximal ideal p of A of degree three
or four [1, Théorème 1.4]. We prove a stronger assertion when deg(p) is equal to
four:

Theorem 1.4 (= Corollary 5.3). Let p be a maximal ideal of A of degree four.
Then no Drinfeld A-module of rank two over K has a p-isogeny defined over K.
Moreover, the set of K-rational points of the Drinfeld modular curve Y0(p) is empty.

We briefly explain the proof of these results. First, we prove a Drinfeld module
analogue of Mazur’s results in [9, §5 The Isogeny Character]. More precisely, let
C be a cyclic p-torsion subgroup of φ defined over K and r : Gal(K/K) → F∗

p(:=
(A/p)∗) the character associated to C which we call the isogeny character associated
to (φ,C). Assuming p ∈ Sϕ, we study ramification of r at p. Moreover, assuming
l ∈ Sϕ, we obtain a nontrivial congruence which relates p to l by using traces of
Frobenius endomorphisms of Drinfeld modules defined over finite fields. With some
more assumptions, such a congruence (or, such congruences for various l) lead(s)
us to conclude that C does not exist. Moreover, when deg(p) is equal to three or
four, we show that the existence of a cyclic p-torsion subgroup over K implies that
φ has potentially good reduction at every finite place of K.

This paper is organized as follows. In section 2, we collect some lemmas on
Drinfeld modules. In section 3, we study cyclic p-torsion subgroups of Drinfeld
modules which are defined over finite extensions of Kur

p (the maximal unramified
extension of the p-adic completion of K), by using a result of Raynaud [12]. In
section 4, we apply the result of section 3 and obtain certain local properties of
isogeny characters. In the last section, we discuss some unconditional results. More
precisely, we try to remove (†ϕ) appearing in main results and prove that the set
of K-rational points of the Drinfeld modular curve Y0(p) is empty when deg(p) is
equal to four. We also give a conjecture which relates the divisibility of certain
trinomials by p to the non-existence of K-rational points of Y0(p) when deg(p) is
equal to three.

Acknowledgement. The author deeply thanks Professor Akio Tamagawa for
his many helpful comments and warm encouragements.

Notation and Definition

• p: a prime.
• q := pr for some r ≥ 1.
• K := Fq(T ).
• A := Fq[T ].
• p: a maximal ideal of A of degree d =: deg(p) with monic generator f .
• ∞: a place of K which corresponds to 1

T (the infinite place).
• C∞: the completion of an algebraic closure of the ∞-adic completion K∞
of K.

• Let l be a maximal ideal of A. We denote the l-adic completion of A by Al.
Its field of fraction and residue field are denoted by Kl and Fl, respectively.
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• Let R be an A-algebra. R is called an A-field if R is a field.
• For a field R, we denote a separable closure of R by R.
• Let R be a commutative Fq-algebra. We define R{τ} as the skew poly-
nomial ring over R defined by τa = aqτ for every a ∈ R. This ring is
naturally regarded as a subring of End(Ga,R), the endomorphism ring of
the additive group scheme over R, via identifying τ with the q-th power
Frobenius endomorphism. A natural homomorphism R{τ} → R is defined
by τ 7→ 0.

• Let R be an A-field with structure homomorphism ι : A → R. A Drinfeld
A-module over R is defined to be a homomorphism φ : A → R{τ} such

that the composite of A
ϕ−→ R{τ} → R is equal to ι and the degree of φT

as a polynomial in τ is positive. If φ is a Drinfeld A-module over R, the
rank of φ is defined to be the degree of φT (:= φ(T )) as a polynomial in τ .
By definition, for every Drinfeld A-module φ of rank two over R, φT can
be written as φT = ι(T ) + a1τ + a2τ

2 for some a1 ∈ R and a2 ∈ R∗. Note
that, if R ⊂ S is a field extension, then φ is also naturally regarded as a
Drinfeld A-module over S which is denoted by the same character φ.

• A homomorphism between two Drinfeld A-modules φ1 → φ2 over R is de-
fined to be an element h ∈ R{τ} such that hφ1,T = φ2,Th. An isomorphism
between two Drinfeld A-modules is defined in the obvious manner.

• Let φ be a Drinfeld A-module over R and a a nonzero ideal of A. The a-
torsion subscheme of φ is defined to be the scheme theoretic intersection of
{ker(φa : Ga,R → Ga,R)}a∈a and denoted by φ[a]. This is a finite flat (A/a)-
module scheme over R. If ker(ι) does not divide a, then φ[a] is étale and
étale-locally isomorphic to the constant (A/a)-module scheme with value
in (A/a)deg(ϕT ). In this paper, we refer to a nonzero cyclic (A/a)-module
contained in φ[a](R) as a cyclic subgroup of φ[a]. We say that a cyclic
subgroup of φ[a](R) is defined over R if it is closed under the action of the
absolute Galois group of R.

• Let Y (p)A be the Drinfeld modular curve over Spec(A) of level Γ(p) ⊂
GL2(A) and X(p)A its compactification which are constructed by Gekeler

in [4, 5.1] (where Y (p)A and X(p)A are denoted byM(p) andM(p), respec-
tively). Similarly, let Y0(p)A be the Drinfeld modular curve over Spec(A) of
level Γ0(p) and X0(p)A its compactification which are constructed in [4, 5.2]

(where Y0(p)A and X0(p)A are denoted byM0(p) and M0(p), respectively).
• We define the Drinfeld modular curve over Spec(A) of level Γ1(p) which we
denote by Y1(p)A as the quotient of Y (p)A by the natural action of Γ1(p).
Similarly, we define X1(p)A to be the quotient of X(p)A by the natural
action of Γ1(p).

• For an A-scheme XA and an A-algebra R, XA ×Spec(A) Spec(R) is denoted
by XR unless otherwise specified.

2. Preliminaries on Drinfeld modules of rank two

In this section, we prepare some lemmas used later. Let R be an A-field with
structure homomorphism ι : A→ R.

Automorphism.

Lemma 2.1. Let φ be a Drinfeld A-module of rank two over R. Then Aut(φ) is
equal to F∗

q or F∗
q2 .

Proof. It is easy to see that Aut(φ) = {u ∈ R∗ | u−1φTu = φT }. The assertion
follows by comparing the coefficients of τ and τ2 in φT . □
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Lemma 2.2. Assume that R is separably closed and let φ be a Drinfeld A-module
of rank two over R. Let C be a cyclic subgroup of φ[p](R) and Aut(φ,C) the group
of automorphisms of φ which preserves C. Then the natural map Aut(φ,C) →
AutFp

(C) ∼= F∗
p is injective.

Proof. Each element h ∈ Aut(φ) induces an automorphism of φ[p] and is induced by
an element u of R∗ so the induced automorphism on φ[p] is simply the multiplication
by u. Hence h is uniquely determined by its value at a nonzero element of φ[p](R).
The assertion follows. □

Reduction.
Assume that R is equipped with a normalized discrete valuation v and ι(A) is

contained in the discrete valuation ring O of v.
Let φ be a Drinfeld A-module of rank two over R defined by φT = ι(T ) +

a1τ + a2τ
2 for a1 ∈ R and a2 ∈ R∗. We say φ has good reduction at v if there

exists u ∈ R∗ such that all coefficients of u−1φTu are contained in O and its
leading coefficient is contained in O∗. By definition, this is equivalent to saying
that there exists u ∈ R∗ such that v(uq−1a1) = (q − 1)v(u) + v(a1) ≥ 0 and

v(uq
2−1a2) = (q2 − 1)v(u)+ v(a2) = 0. We say φ has potentially good reduction at

v if there exists a finite extension of discrete valuation fields (S,w) of (R, v) such

that φ has good reduction at w. This is equivalent to saying that v(a1)
q−1 ≥ v(a2)

q2−1 .

Lemma 2.3. Let φ be a Drinfeld A-module of rank two over R which has potentially
good reduction at v. Then φ has good reduction at the unique extension of v to

R(π
1

q2−1 ) where π is a uniformizer of v.

Proof. Let w be the discrete valuation on R(π
1

q2−1 ) which extends v and u ∈
R(π

1
q2−1 ) an element with w(u) = −v(a2)

q2−1 . Then u−1φTu satisfies the desired

property. □

Let k be the residue field of O and assume that ker(A
ι−→ O → k) is equal to

p. Let φ be a Drinfeld A-module of rank two which has good reduction at v. By
replacing φ with u−1φu for suitable u ∈ R∗, we may assume that φT ∈ O{τ} and
its leading coefficient is contained in O∗. By reducing φ modulo the maximal ideal
of O, we obtain a Drinfeld A-module of rank two over k which we denote by φ.

Lemma 2.4. The degree of the lowest nonzero term of φf is equal to either d or
2d.

Proof. See Pál [11, Lemma 8.2]. □

If the first nonzero coefficient of φf appears in τd, we say that φ has good ordinary
reduction at v. Otherwise, we say that φ has good supersingular reduction at v.

Frobenius Trace.
Let l 6= p be a maximal ideal of A with monic generator g and φ a Drinfeld

A-module of rank two over Fl defined by φT = T +a1τ +a2τ
2. Then τdeg(g) defines

an endomorphism of φ called the Frobenius endomorphism of φ.

Lemma 2.5 (Gekeler [6, 1.8. Theorem], [5, 3.4. Corollary]). There exists a qua-
dratic polynomial Pϕ ∈ A[X] which satisfies the following properties:

(1) Pϕ is equal to the characteristic polynomial of τdeg(g) with regard to its
action on the p-adic Tate module of φ.

(2) Write Pϕ = X2 − aX + b for some a, b ∈ A. Then (b) = l.
(3) Pϕ is irreducible over K∞. In particular, 2 deg(a) ≤ deg(b) = deg(g).

We refer to this a as the Frobenius trace of φ.
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Corollary 2.6. Let l be a positive integer and Pϕ,l = X2−alX+bl the characteristic

polynomial of τ l deg(l) ∈ End(φ). Then 2 deg(al) ≤ deg(bl) = l deg(l).

Proof. See Gekeler [6, 1.8. Theorem (iii)]. □

3. Isogeny characters

3.1. Ramification Arising from Cyclic Subgroups of Drinfeld Modules.
In this subsection, let L be a finite extension of the maximal unramifield extension
Kur

p of the p-adic completion Kp of K, e the degree of L over Kur
p , v the normalized

discrete valuation on L, O the discrete valuation ring of L which corresponds to v
and m the maximal ideal of O.

Let φ be a Drinfeld A-module of rank two over L which has good reduction
and C a cyclic p-torsion subgroup of φ defined over L. We may assume that φT
is contained in O{τ} and its leading coefficient is contained in O∗. Let φ[p]O be
the p-torsion submodule scheme of φ which is a finite flat Fp-module scheme over
Spec(O) and CO the scheme-theoretic closure of C in φ[p]O. Then CO is naturally
equipped with a structure of finite flat Fp-module scheme over Spec(O).

By a result of Raynaud [12, COROLLAIRE 1.5.1], we have the following isomor-
phism of Fp-module schemes for some (δi)i∈Z/rdZ contained in O:

(1) CO ∼= Spec(O[{Xi}i∈Z/rdZ]/(X
p
i − δiXi+1)i∈Z/rdZ).

Note that the group scheme structure of the right hand side is induced by the
natural embedding into Grd

a . The Fp-module scheme structure of the right hand
side is, by rearranging {Xi}i∈Z/rdZ, described as follows: For a ∈ Fp, a acts on Xi

by a ·Xi := i(ap
i

)Xi. Here, i : Fp → Ap is the section homomorphism of the natual
surjection Ap → Fp.

In the following, we compute (v(δi))i∈Z/rdZ. First, assume that φ has good

ordinary reduction. In this case, φ[p]Fp
:= φ[p]O ×Spec(O) Spec(Fp) is a direct

sum of αqd := Spec(Fp[X]/(Xqd)) and a finite étale group scheme over Fp. In

particular, CFp
:= CO ×Spec(O) Spec(Fp) is isomorphic to either αqd or a finite étale

group scheme over Fp.
If CFp

is étale, it follows that v(δi) = 0 for all i. If CFp

∼= αqd , by comparing

the right hand side of (1) and αqd , it follows that there exists an index i such that
v(δi) = 0 and v(δj) > 0 for all j 6= i. Therefore, by [12, COROLLAIRE 1.5.1] there
exists an isomorphism of Fp-module schemes for some δ ∈ m:

CO ∼= Spec(O[X]/(Xqd − δX)).

We claim that v(δ) ≤ e. Since CO is a closed subscheme of φ[p]O, there exists an

h(X) ∈ O[X] such that h′(0) ∈ O∗ and Xqd − δX | φf (h(X)) in O[X]. Since the
coefficient of X in φf (h(X)) is equal to fh′(0) whose valuation is greater than v(δ),
it follows that v(δ) ≤ v(f) = e.

Next, assume that φ has good supersingular reduction at p. Then it follows that
φ[p]Fp

∼= αq2d and CFp

∼= αqd . By the same argument as above, there exists δ ∈ m

with v(δ) ≤ e 1 and an isomorphism:

CO ∼= Spec(O[X]/(Xqd − δX)).

Summarizing the above, we proved the following:

Proposition 3.1. Let L be a finite extension of the maximal unramifield extension
Kur

p , e the degree of L over Kur
p , v the normalized discrete valuation on L, O the

discrete valuation ring of L which corresponds to v.

1One can easily show that v(δ) < e by looking at the coefficient of Xqd appearing in ϕf (h(X)).

5



Let φ be a Drinfeld A-module of rank two over L which has good reduction and
C a cyclic p-torsion subgroup of φ defined over L. Assume that φT is contained
in O{τ} and its leading coefficient is contained in O∗. Then there exists a δ ∈ O
with v(δ) ≤ e such that CO is isomorphic to Spec(O[X]/(Xqdeg(p) − δX)) as Fp-

module schemes. In particular, the corresponding character Gal(Kp/L) → F∗
p(
∼=

Z/(qdeg(p) − 1)Z) is the Kummer character asscociated to δ ∈ L∗/(L∗)q
deg(p)−1.

3.2. Properties of Isogeny Characters. In this subsection and the next section,
we prove natural Drinfeld-module analogues of results which are proved by Mazur
in [9, §5 The Isogeny Character]. Let φ be a Drinfeld A-module of rank two over K
which has a cyclic p-torsion subgroup C defined over K. We have the corresponding
character

r : Gal(K/K) → AutFp
(C) = F∗

p

which is referred to as the isogeny character associated to (φ,C).

Lemma 3.2. Let AutK(φ,C) be the group of automorphisms of φ over K which
preserves C. Then the order of AutK(φ,C) divides q2 − 1. Moreover, if deg(p) is
odd, AutK(φ,C) is equal to F∗

q .

Proof. By Lemma 2.1, AutK(φ) is equal to either F∗
q or F∗

q2 . By Lemma 2.2,

the natural homomorphism AutK(φ,C) → AutFp,K(C) = F∗
p = AutFp,K

(C) is

injective. It follows that AutK(φ,C) = AutK(φ,C). If deg(p) is odd, it holds that
AutK(φ,C) = F∗

q because of the injectivity of the above homomorphism. □

Recall that the Carlitz module is a Drinfeld A-module of rank one overK defined
by A → K{τ} : T 7→ T + τ . Let χ = χp : Gal(K/K) → F∗

p be the character
associated to the p-torsion subgroup of the Carlitz module. It is known that χ is

unramified outside p and ∞, totally ramified at p and ∞ splits into |F∗
p/F∗

q | =
qd−1
q−1

places with ramification index q − 1 on the field extension of K which corresponds
to ker(χ) (for a proof, see Hayes [8, Theorem 3.2]).

Lemma 3.3. Let L/Kp be a finite tamely ramified extension with ramification

index e and I ⊂ Gal(L/L) the inertia subgroup of L. Then χ|I is equal to the e-th
power of the fundamental character θqd−1 (for the definition of the fundamental
character, see Serre [15, §1, 1.3]).

Proof. The proof is essentially the same as the one in [15, §1, 1.8, Proposition
8]. Indeed, the p-torsion subgroup of the Carlitz module has a natural Galois-
equivariant injection into V e

qd−1
which is defined at the beginning of [15, §1, 1.8]) and

the tame inertia subgroup of L acts on V e

qd−1
by θeqd−1 by [15, §1, 1.8, Proposition

6]. □

Lemma 3.4. There exists a unique k ∈ Z/(qd − 1)Z such that r = α · χk where
α : Gal(K/K) → F∗

p is unramified at p.

Proof. Let Ip ⊂ Gal(K/K) be the inertia subgroup at p (which is determined up to
conjugacy). Since r is tamely ramified at p, r|Ip factors through Itrp , the maximal
tame quotient of Ip. Since χ is equal to the fundamental character θqd−1 on I by
Lemma 3.3, it holds that every homomorphism Itrp → F∗

p is a power of the Carlitz
character. Hence the assertion follows. □
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We use the following notations:

m := |F∗
p/F∗

q | =
qd − 1

q − 1

n :=

{
qd−1
q−1 (if d is odd)
qd−1
q2−1 (if d is even)

t :=
m

n
=

{
1 (if d is odd)

q + 1 (if d is even)

Proposition 3.5. In the notation as above, α(q−1)t is trivial.

Proof. First of all, we prove that α(q−1)t is unramified everywhere outside ∞. By
construction, the natural morphism X1(p)A[ 1p ] → X0(p)A[ 1p ] is a finite flat Galois

covering with Galois group isomorphic to F∗
p/F∗

q . Let X2(p)A[ 1p ] → X0(p)A[ 1p ] be

the finite flat Galois covering which corresponds to the quotient of F∗
p/F∗

q of order
n. We claim that this morphism X2(p)A[ 1p ] → X0(p)A[ 1p ] is étale.

In the proof of [10, Lemma 8.17], it is proved that X2(p)K → X0(p)K is étale.
Moreover, for every maximal ideal l 6= p of A, X2(p)A[ 1p ] → X0(p)A[ 1p ] is étale over

the generic point of X0(p)Fl
. Indeed, let Y0(p)

∗
A[ 1p ]

and Y1(p)
∗
A[ 1p ]

be the inverse

images of A1
A[ 1p ]

\ {0} with respect to j-invariant maps. Since Y1(p)
∗
A[ 1p ]

is étale

over Y0(p)
∗
A[ 1p ]

, X1(p)A[ 1p ] → X0(p)A[ 1p ] is étale over the generic point of X0(p)Fl
.

In particular, X2(p)A[ 1p ] → X0(p)A[ 1p ] is étale over the generic point of X0(p)Fl
.

However, sinceX0(p)A[ 1p ] is smooth over Spec(A[ 1p ]) by [4, (5.2) ( i )], the branched

locus of X2(p)A[ 1p ] → X0(p)A[ 1p ] consists of codimension 1 irreducible closed sub-

schemes by Zariski-Nagata purity. Hence the branched locus of X2(p)A[ 1p ] →
X0(p)A[ 1p ] must be empty.

Let x be the K-rational point of X0(p) which corresponds to (φ,C). Let K1/K

be the finite Galois extension which corresponds to the kernel of Gal(K/K)
r−→

F∗
p → F∗

p/F∗
q . This is a cyclic extension of degree dividing m and x admits a lift to

a point of Y1(p)(K1). By the above argument, there exists a subextension K2/K
of K1/K which is unramified outside p and ∞ and such that [K1 : K2] divides t.
Hence r(q−1)t factors through Gal(K2/K). This shows that r(q−1)t is unramified
outside p and ∞, so is α(q−1)t. Moreover, since α is also unramified at p, tamely
ramified at ∞ and the geometric tame fundamental group of A1

Fq
is trivial, α(q−1)t

is also unramified at ∞. Hence α(q−1)t factors through Gal(Fq/Fq).

Now we prove that α(q−1)t is trivial. It suffices to prove that r(q−1)t|Gal(K∞/K∞)

is trivial since χq−1|Gal(K∞/K∞) is trivial. Let Λ be a Gal(K∞/K∞)-stable discrete

A-lattice of rank two in C∞ which corresponds to φ via analytic uniformization (for
the theory of analytic uniformization of Drinfeld modules over C∞, see [7, 4.6]).
Then the following commutative diagram exists:

AutA(Λ) GL2(A)

Gal(K∞/K∞) AutFp
(p−1Λ/Λ) GL2(Fp)

AutFp
(φ[p](K∞))

∼

∼

∼
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Since the image of Gal(K∞/K∞) → GL2(A) is finite, eigenvalues of each element
in this image is contained in Fq. In particular, the characteristic polynomial of

each element is contained in (Fq ∩ A)[T ] = Fq[T ]. This shows that the image
of r|Gal(K∞/K∞) is contained in F∗

q if d is odd and in F∗
q2 if d is even. Hence

r(q−1)t|Gal(K∞/K∞) is trivial. □

Lemma 3.6. In the notation as above, assume that φ has potentially good reduction
at p. Then the element k ∈ Z/(qd − 1)Z in the assertion of Lemma 3.4 takes only
the following values modulo n:

k =

{
x

q+1 where 0 ≤ x ≤ q + 1 (if deg(p) is odd)

0, 1 (if deg(p) is even)

Proof. Since φ has potentially good reduction at p, φ has good reduction over

L := Kp(π
1

q2−1 ) where π is a uniformizer of p by Lemma 2.3. We abbreviate the

fundamental character θqd−1 as θ. By Lemma 3.3, it holds that χ = θq
2−1 as

characters on the inertia subgroup I of L. So we have an equality r = θk(q
2−1)

on I. Moreover, by Proposition 3.1, r|I is also equal to the Kummer character
associated to some δ ∈ LKur

p with v(δ) ≤ q2−1 and this character is equal to θv(δ).

Hence it follows that 0 ≤ 〈k(q2 − 1)〉qd−1 ≤ q2 − 1. Here, 〈k(q2 − 1)〉qd−1 is defined

to be the unique integer y with 0 ≤ y < qd − 1 which satisfies y ≡ k(q2 − 1) mod
qd − 1. Since q2 − 1 | qd − 1 if d is even, k is equal to 0 or 1 modulo m. If d is odd,

since q + 1 is relatively prime to qd−1
q−1 , it follows that 〈k(q2 − 1)〉qd−1 = x(q − 1)

with some 0 ≤ x ≤ q + 1. □

4. Consequences

We use the same notation as in subsection 2.2.
Set Sϕ := {l | l is a maximal ideal of A at which φ has potentially good reduction}.

Assume that l ∈ Sϕ. By local class field theory, we have the following noncanonical
isomorphism which depends on the choice of a uniformizer of Kl:

Gal(Kl/Kl)
ab ∼= A∗

l × Ẑ.
We factorize αl := α|Gal(Kl/Kl)ab

as αl = γl · bl where γl factors through the

projection to A∗
l and bl is unramified. Moreover, by Lemma 3.5, the orders of γl

and bl divide (q− 1)t and the finite Galois field extension L/Kl which corresponds
to the kernel of γl is totally tamely ramified.

We claim that φL has good reduction over L. Let M/L be the field extension
corresponding to the kernel of bl · χk

p|Gal(L/L), the isogeny character of φ over L.

Now the claim follows from the following general lemma:

Lemma 4.1. Let p be a maximal ideal of A with d := deg(p) ≥ 2. Let L be an A-
field with complete discrete normalized valuation v which satisfies v(A) ≥ 0 and the
characteristic of the residue field of L is different from p, M/L a finite unramified
extension and φ a Drinfeld A-module of rank two over L which has potentially good
reduction. If φ has a nontrivial p-torsion over M , φ has good reduction over L.

Proof. First, write φT = T + a1τ + a2τ
2 where a1 ∈ L and a2 ∈ L∗. Since φ

has potentially good reduction over L, it holds that v(a1)
q−1 ≥ v(a2)

q2−1 . By replacing φ

with uφu−1 for a suitable u ∈ L∗, we may assume that 0 ≤ v(a2) < q2 − 1 (hence
v(a1) ≥ 0).

Since φ[p](L) is a two-dimensional Fp-vector space, the Newton polygon of
ϕf (X)

X ∈ L[X] has at most two line segments. Moreover, since φf (X) has a nonzero
root in M , it follows that at least one of their slopes is an integer.
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If the Newton polygon of
ϕf (X)

X ∈ L[X] is a line, the unique slope is equal to
v(a2)
q2−1 , which is an integer if and only if v(a2) = 0 i.e. φ has good reduction. On

the other hand, if the Newton polygon of
ϕf (X)

X consists of two line segments, some

computations show that the maximal slope is smaller than (qd+1)v(a2)
qd(q2−1)

. It follows

that the valuation of each root of
ϕf (X)

X is contained in [− (qd+1)v(a2)
qd(q2−1)

, 0]. Moreover,

if the minimal slope is zero, it holds that v(a2) = 0 or v(a1) = 0. Since v(a2) = 0

holds in both cases, we may assume that the valuation of each root of
ϕf (X)

X is

contained in [− (qd+1)v(a2)
qd(q2−1)

, 0).

However, since d ≥ 2, it holds that

(qd + 1)v(a2)

qd(q2 − 1)
≤ (qd + 1)(q2 − 2)

qd(q2 − 1)
< 1.

Hence the valuation cannot be an integer. □

Since L/Kl is totally ramified, by reducing φ modulo the maximal ideal of L
we obtain a Drinfeld A-module φFl

over Fl with p-isogeny defined over Fl whose
isogeny character is equal to bl · χk.

Write φT as T +a1τ +a2τ
2 for a1 ∈ K and a2 ∈ K∗. Let ρp : GK → GL2(Fp) be

the Galois representation associated to φ[p]. It is known that det(ρp) coincides with
the Galois representation associated to the p-torsion submodule of the Drinfeld A-
module ψ of rank one defined by ψT = T − a2τ (see van der Heiden [17], for
example). Therefore, if we denote a character Gal(K/K) → F∗

q associated to

(−a2)−1 ∈ K∗/(K∗)q−1 by ε : GK → F∗
q , it holds that det(ρp) = ε⊗ χ.

The Frobenius trace of φFl
modulo p is expressed as bl(Frobl)χ

k(Frobl)+ε(Frobl)bl(Frobl)
−1χ1−k(Frobl).

Moreover, it is easily observed that χ(Frobl) = g mod p. Hence the Frobenius trace
of φFl

modulo p is equal to bl(Frobl)g
k + ε(Frobl)bl(Frobl)

−1g1−k. In particular, it
is contained in F∗

q ·gk+F∗
q ·g1−k if deg(p) is odd and in F∗

q2 ·gk+F∗
q2 ·g1−k if deg(p)

is even. Similarly, one can calculate the trace of an arbitrary power of Frobenius
endomorphism.

For each positive integer l, we define a certain set a(Fll/Fl) ⊂ A as follows:

a(Fll/Fl) := {a ∈ A | a is the trace of τdeg(l)l of some Drinfeld A-module of rank two over Fl}.

Theorem 4.2. Let φ be a Drinfeld A-module of rank two over K. Assume that
the following conditions are satisfied:

(†p) deg(p) is even and greater than two.
(†ϕ) p ∈ Sϕ and Sϕ contains a prime of degree one.
Then φ does not have a nontrivial cyclic p-torsion subgroup defined over K.

Proof. Let l be an arbitrary prime of degree one contained in Sϕ. By Lemma 3.6,
we know that (q2 − 1)k ≡ 0 or q2 − 1 mod qd − 1. By considering the trace of
the Frobenius endomorphism τ ∈ End(φFl

), we see that one of the elements of
F∗
q2 ·T +F∗

q2 mod p is congruent to one of the elements of a(Fl/Fl). However, since

a(Fl/Fl) ⊂ Fq by Lemma 2.5 (3), it follows that T ∈ Fq2 ⊂ Fp. This is impossible
since d ≥ 4 and T generates Fp as an Fq-algebra. □

Proposition 4.3. Let φ be a Drinfeld A-module of rank two over K. Assume that
the following conditions are satisfied:

(†q) q is odd.
(†p) deg(p) is odd and greater than q.
(†ϕ) p ∈ Sϕ and Sϕ contains a prime of degree one.
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Then φ does not have a nontrivial cyclic p-torsion subgroup defined over K with

k 6≡ 1
2 mod qd−1

q−1 (i.e. x 6= q+1
2 ), where k and x are defined as in the previous

section.

Proof. Let l be an arbitrary prime of degree one contained in Sϕ. By considering
the trace of the (q + 1)-th power of Frobenius τ q+1 ∈ End(φFl

), it holds that one
of the elements of

F∗
q · g(q+1)k + F∗

q · g(q+1)(1−k)

is congruent modulo p to one of the elements of a(Flq+1/Fl). Here, g is the monic
generator of l.

First, we claim that (q + 1)k is not equal to 0 mod qd−1
q−1 (i.e. x 6= 0). Indeed,

if this is the case, by considering the trace of τ ∈ End(φFl
) and Lemma 2.5 (3), it

holds that one of the elements of F∗
q + F∗

q · g is congruent to one of the elements of
a(Fl/Fl) ⊂ Fq, which gives a contradiction. By the same argument, it holds that

(q + 1)k is not equal to q + 1 mod qd−1
q−1 (i.e. x 6= q + 1). Hence the degree of

F∗
q · g(q+1)k + F∗

q · g(q+1)(1−k) = F∗
q · gx + F∗

q · gq+1−x is greater than q+1
2 and less

than or equal to q if k is not congruent modulo qd−1
q−1 to 1

2 . On the other hand, the

degree of each element of a(Flq+1/Fl) is less than or equal to q+1
2 by Corollary 2.6.

Hence the assertion follows. □
Remark 4.4. In the above Proposition, if (†q) is replaced by the condition that q
is even, the above proof shows that such k does not exist.

Theorem 4.5. Let φ be a Drinfeld A-module of rank two over K. Assume that
the following conditions are satisfied:

(†q) q is even.
(†p) deg(p) is greater than q.
(†ϕ) p ∈ Sϕ and Sϕ contains a prime of degree one.
Then φ does not have a nontrivial cyclic p-torsion subgroup defined over K.

Proof. This follows from Remark 4.4 and Theorem 4.2. □
The rest of this section is devoted to the proof of the following theorem.

Theorem 4.6. Let φ be a Drinfeld A-module of rank two over K. Assume that
the following conditions are satisfied:

(†q) q is odd.
(†p) deg(p) is odd and greater than 1. If q = 3, then deg(p) > 3.

(†ϕ) Sϕ =
∑fin

K .
Then φ does not have a nontrivial cyclic p-torsion subgroup defined over K with

k ≡ 1
2 mod qd−1

q−1 (i.e. x = q+1
2 ), where k and x are defined as in the previous

section.

Proof. By Proposition 3.5, αq−1 is trivial. Hence, by taking the twist of φ which
corresponds to α−1, we may assume that r = χk.

Since we have reduced the situation to the case when α = 1, φ has good reduction
at every finite place outside p by Lemma 4.1. In particular, q − 1 | q2 − 1 | vl(a2)
for every maximal ideal l 6= p. Here, vl is the normalized discrete valuation on K
corresponding to l. Hence it holds that (−a2)−1 ∈ K∗ modulo (K∗)q−1 is equal to
sfu for some s ∈ F∗

q and some 0 ≤ u < q − 1.

Write 2k ≡ 1 + v qd−1
q−1 mod qd − 1 for some 0 ≤ v < q − 1 and fix an arbitrary

maximal ideal l 6= p of degree smaller than d with monic generator g. By considering
the trace of τ2 deg(l) ∈ End(φFl

), it holds that g2k + ε(Frobl)
2g2−2k is congruent

modulo p to one of the elements of a(Fl2/Fl).
10



Let X2 − aX + b be the characteristic polynomial of τdeg(l) ∈ End(φFl
). By

Lemma 2.5 (1), b is equal to the determinant of τdeg(l) with regard to the p-adic
representation associated to φ, which is equal to ε(Frobl)g.

The characteristic polynomial of τ2 deg(l) ∈ End(φFl
) is then equal to

X2 − (a2 − 2b)X + b2.

Therefore, it holds that

g2k + ε(Frobl)
2g2−2k ≡ a2 − 2ε(Frobl)gmod p.

Since deg(l) < d and deg(a) ≤ deg(l)
2 by Lemma 2.5(3), it holds that a2 = gNFp/Fq

(g)−v(ε(Frobl)+

NFp/Fq
(g)v)2 where NFp/Fq

(g) ∈ F∗
q is defined to be the unique element of F∗

q which

satisfies g
qd−1
q−1 ≡ NFp/Fq

(g) mod p. Since g is irreducible, it holds that a = 0 and
ε(Frobl) + NFp/Fq

(g)v = 0. In the following, we concentrate on the second equal-
ity. We have ε(Frobl) = NFl/Fq

(sfu) and, by the reciprocity law [13, Theorem

3.5], it holds that NFp/Fq
(g) = (−1)deg(l)NFl/Fq

(f). To sum it up, we have that

NFl/Fq
(sf ⟨u−v⟩q−1) = (−1)v deg(l)+1 where 〈u − v〉q−1 is defined to be the unique

integer y with 0 ≤ y < q − 1 which satisfies y ≡ u− v mod q − 1.
Let l := gcd(u − v, q − 1). Then it holds that NFl/Fq

(f ⟨u−v⟩q−1) ∈ (F∗
q)

l. First,

by taking l to be a prime of degree one, it follows that s ∈ (−1)v+1(F∗
q)

l. Next,

by taking l to be a prime of degree two, it follows that sq+1 = s2 ∈ −(F∗
q)

l. From

these facts, we obtain that −1 ∈ (F∗
q)

l (i.e. l | q−1
2 ) and s ∈ (F∗

q)
l.

In the following, we assume that deg(l) is odd.

Take arbitrary l-th roots of s and −1 and denote them by s
1
l and (−1)

1
l , re-

spectively. We take a q−1
2l -th power of NFl/Fq

(sf ⟨u−v⟩q−1) = (−1)v deg(l)+1. First,

since deg(l) is odd, it holds that NFl/Fq
(s)

q−1
2l = s

qdeg(l)−1
2l = (s

1
l )

q−1
2 . Second, note

that, since
⟨u−v⟩q−1

l is relatively prime to q−1
l which is even,

⟨u−v⟩q−1

l is odd. Since
(qdeg(l)−1)⟨u−v⟩q−1

q−1 · q−1
2l = qdeg(l)−1

2 · ⟨u−v⟩q−1

l , it holds that NFl/Fq
(f ⟨u−v⟩q−1)

q−1
2l =

NFl/Fq
(f)

q−1
2 . From these observations, we have the following equality:

(
f

l

)
=

(
s

1
l (−1)

v+1
l

l

)
.

Here,
(
l

)
denotes the quadratic residue symbol for Fl. Since v does not depend

on l, by taking f̃ to be s
1
l (−1)

v+1
l f , it follows that the following condition (†) holds:

(†) Let C be a hyperelliptic curve over Fq whose affine equation is given by

y2 = f̃(x) with natural double cover C → P1
Fq
. For each odd positive integer

d′ < d, every Fqd′ -rational point of P1
Fq

admits a lift to an Fqd′ -rational point of C.

Let d′ be an odd integer in (2 logq(d−1), d) which exists under (†q) and (†p). By
the Weil estimate, it holds that |C(Fqd′ )| ≤ qd

′
+1+2g(C)q

d′
2 = qd

′
+1+(d−1)q

d′
2 .

On the other hand, since (†) is satisfied, it holds that |C(Fqd′ )| ≥ 2qd
′
+ 1. By

combining these two inequalities, we have d ≥ 1+ q
d′
2 so d′ ≤ 2 logq(d− 1). This is

a contradiction. □

Corollary 4.7. Let φ be a Drinfeld A-module of rank two over K. Assume that
the following conditions are satisfied:

(†p) deg(p) is greater than q.
11



(†ϕ) Sϕ =
∑fin

K .
Then φ does not have a nontrivial cyclic p-torsion subgroup defined over K.

Proof. If q is even, the assertion follows from Theorem 4.5. So we may assume
that q is odd. If d is even, the assertion follows from Theorem 4.2. Otherwise, the
assertion follows from Proposition 4.3 and Theorem 4.6. □

Remark 4.8. (1) The above Corollary 4.7 can be seen as a generalization of the
result of Pál [11, Theorem 8.10] where he proved the case when q = 2 and φ (appears
in the assertion of the corollary) has good reduction at every finite place, as is
mentioned in the introduction.

(2) In the above Corollary 4.7, we cannot replace the condition d > q with d ≥ q.
For example, if q = d = 3, the Drinfeld modular curves X0(T

3 − T + 1) and
X0(T

3 − T − 1) have K-rational CM points which arise as Drinfeld modules with
cyclic torsion subgroups over K (see Lemma 5.4). Moreover, it is known that, if a
Drinfeld modular curve X0(p) with deg(p) ≥ 3 has a K-rational CM points, then
q = d = 3 and p is either T 3 − T + 1 or T 3 − T − 1 (see Schweizer [14, Remark
4.6]). In the end of the next section, we shall discuss K-rational points of X0(p)
with deg(p) = 3.

5. Unconditional Results

In this section, we discuss how one can remove the conditions (†ϕ) which appear
in the main results proved in the previous section when deg(p) is equal to three or
four. First, we introduce a result of Armana:

Proposition 5.1 (Armana, [1, Proposition 7.6]). Let φ be a Drinfeld A-module
of rank two over K which has a p-isogeny defined over K. Suppose that deg(p) is
equal to three or four. Then φ has potentially good reduction at every finite place
different from p.

Additionally, we prove the following concerning potentially good reduction at p:

Proposition 5.2. Let φ be a Drinfeld A-module of rank two over K which has a
p-isogeny defined over K. Suppose that deg(p) is equal to three or four. Then φ
has potentially good reduction at p.

Proof. Let J0(p) be the Jacobian of X0(p)K and J ′ an optimal quotient of J0(p)
over K. By [11, Lemma 3.4], J ′ does not have a K-rational p-primary torsion.
Suppose that the Mordell-Weil group of J ′ is finite. Let J ′ be the Neron model of

J ′ over Ap and set J ′
:= J ′ ×Spec(Ap) Spec(Fp). Since the torsion subgroup of the

kernel of the specialization map J ′(K) ∼= J ′(Ap) → J ′
(Fp) is a finite p-group (for

a proof, see [2, Proposition 3.2]), it follows that J ′(K) → J ′
(Fp) is injective.

Next, letX0(p)
sm
Ap

be the smooth locus ofX0(p)Ap
andX0(p)

sm
Fp

:= X0(p)
sm
Ap

×Spec(Ap)

Spec(Fp). Note that ∞ : Spec(Ap) → X0(p)Ap
factors through X0(p)

sm
Ap

. Let

x ∈ X0(p) be a K-rational point which reduces to ∞ after the reduction modulo p.
Observe the following commutative diagram:

X0(p)(K) J ′(K)

X0(p)
sm
Ap

(Ap) J ′(Ap)

X0(p)
sm
Fp

(Fp) J ′
(Fp)

∼
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Here, X0(p)(K) → J ′(K) is a morphism induced by X0(p)K ↪→ J0(p) : y 7→ [y−∞]
and X0(p)

sm
Ap

→ J ′ is a morphism induced by the Neron mapping property. Since

∞ is in the smooth locus of X0(p)Ap
, the morphism x : Spec(Ap) → X0(p)Ap

also
factors through X0(p)

sm
Ap

. So the above diagram shows that [x−∞] = 0 in J ′(K).

The rest of the proof follows from the same argument as in [1, Proposition 7.6]. □

Corollary 5.3. Let p be a maximal ideal of A of degree four. Then no Drinfeld
A-module of rank two over K has a p-isogeny defined over K. Moreover, the set of
K-rational points of the Drinfeld modular curve Y0(p) is empty.

Proof. The first half of the claim follows from Theorem 4.2, together with Proposi-
tion 5.1 and Proposition 5.2. To prove the last half of the claim, it suffices to show
that each K-rational point of Y0(p) comes from a Drinfeld module φ over K with
a cyclic p-torsion subgroup C over K. This follows from Lemma 5.4 below. □

Lemma 5.4. Let (φ,C) be a Drinfeld A-module of rank two over K and a cyclic
p-torsion subgroup of φ. Suppose that the isomorphism class of (φ,C) is invariant
under Gal(K/K)-action. Then there exists a pair (φ,C) of a Drinfeld A-module
over K and a cyclic p-torsion subgroup of φ defined over K such that (φ,C) is
isomorphic to (φ,C) over K.

Proof. The proof of this lemma is essentially the same as the one in [3, Proposition
3.2] since Aut(φ) is isomorphic to either µq−1 or µq2−1 by Lemma 2.1. □

Corollary 5.5. Assume q is even and let p be a maximal ideal of degree four. Then
the order of Aut(X0(p)K) (the automorphism group of the Drinfeld modular curve
X0(p)K) is two.

Proof. In the proof of [11, Corollary 1.7], it is proved that the order of AutK(X0(p))
is two if q is even and Y0(p)(K) is empty (See the paragraph above [11, Remark
9.6]). Hence the assertion follows. □

Lastly, let us add some observations when deg(p) is equal to three. Let (φ,C) be
a pair of a Drinfeld A-module of rank two and a cyclic p-torsion subgroup defined
over K. By Proposition 5.1 and Proposition 5.2, φ has potentially good reduction
at every finite place of K. Let k be an element of Z/(q3 − 1)Z which is associated
to the isogeny character of (φ,C) as is defined in section 3. By Lemma 3.6, k mod
q2 + q + 1 is equal to x

q+1 for some x with 0 ≤ x ≤ q + 1.

For each maximal ideal l of degree one with monic generator g, we know that
there exists (a, b) ∈ F∗

q × Fq such that gk + ag1−k ≡ b mod p, by taking the trace

of the Frobenius at l as in the previous section. Since the underlined condition is
still true after we replace k with any element of Z/(q3 − 1)Z which is congruent

to k modulo q2 + q + 1, we may take k to be q4−1
q2−1x = (q2 + 1)x. Then it is easy

to observe that the underlined condition is equivalent to the condition that there

exists (a, b) ∈ Fq × F∗
q such that g2x+q2 + agx + b ≡ 0 mod p. Note that, if x

is equal to q+1
2 , then the condition is trivially true for a = 0 and some b ∈ F∗

q

since 2x + q2 = q2 + q + 1. We conjecture that this is the only case such that the
underlined condition holds for every l:

Conjecture 5.6. Suppose that q is odd. Let p be a maximal ideal of A of degree
three and x an integer with 0 ≤ x ≤ q + 1. Suppose that, for every maximal ideal l
of A of degree one with monic generator g, there exists (a, b) ∈ Fq × F∗

q such that

g2x+q2 + agx + b ≡ 0 mod p. Then x is equal to q+1
2 .

This conjecture has the following consequence:
13



Proposition 5.7. Suppose q is odd and greater than three. Let p be a maximal ideal
of A of degree three. If Conjecture 5.6 is true, then no Drinfeld A-module of rank
two over K has a p-isogeny defined over K. Moreover, then the set of K-rational
points of the Drinfeld modular curve Y0(p) is empty.

Proof. Suppose that there exists a pair (φ,C) of a Drinfeld A-module of rank two
defined over K and a cyclic p-torsion subgroup defined over K. If Conjectue 5.6 is

true, it holds that k ≡ 1
2 mod q3−1

q−1 . However this contradicts Theorem 4.6. The

rest of the assertion follows from Lemma 5.4. □
We confirmed that Conjecture 5.6 is true for odd primes q = p ≤ 181, with the

help of SageMath. However, at the writing of this paper, the author does not know
how to prove this conjecture in general.
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