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Abstract
We consider a polyhedron P represented by linear inequalities with {0,±1}-

coefficients. We show a condition that guarantees existence of an integral vector in
P , which also turns out to be an extreme point of P . We reveal how our polyhedral
and geometric approach shows the recent interesting integrality results of Murota
and Tamura about subdifferentials of integrally convex functions. Their proofs are
algebraic, based on the Fourier-Motzkin elimination for the relevant systems of linear
inequalities. Our approach provides further insight into subdifferentials of integrally
convex functions to fully appreciate the integrality results of Murota and Tamura
from a polyhedral and geometric point of view.

1. Introduction
The present note is motivated by the recent results of Tamura and Murota [9, 10]. They
have recently shown interesting integrality properties about subdifferentials of integrally
convex functions:

(i) For any integer-valued, integrally convex function its subdifferential at every point
in the effective domain contains an integral vector ([9]).

(ii) It still holds true with the addition of any integral box constraint having the nonempty
intersection with the subdifferentials ([10]).

1



Their proofs are algebraic, based on the Fourier-Motzkin elimination for the relevant sys-
tems of linear inequalities.

In the present note we show a polyhedral and geometric approach to proving the re-
sults (i) and (ii) stated above by focusing our attention on a greedy point in the relevant
polyhedron, which turns out to be an integral extreme point.

1.1. Definitions
Let n be a positive integer and put V = {1, · · · , n}. Let Z be the set of integers and R
be that of reals. For any positive integer k define [k] = {1, · · · , k}. For any two integral
vectors a, b ∈ ZV with a ≤ b define a box [a, b]R = {z ∈ RV | a ≤ z ≤ b} in RV

and an integral box [a, b]Z = [a, b]R ∩ ZV in ZV . For any x ∈ RV and X ⊆ V define
x(X) =

∑
i∈X x(i). Also define xX ∈ RX to be xX(i) = x(i) for i ∈ X .

Denote by 3V the set of all ordered pairs (X,Y ) of disjoint subsets X, Y of V . For
any (X, Y ) ∈ 3V we identify (X, Y ) with the {0,±1}-vector χ(X,Y ) in ZV defined by

χ(X,Y )(i) =


1 for i ∈ X
−1 for i ∈ Y
0 for i ∈ V \ (X ∪ Y )

(i ∈ V ). (1.1)

Each (X,Y ) ∈ 3V is called a signed set. We also write χX as χ(X,∅) for X ⊆ V .

2. Linear Inequalities with {0,±1}-coefficients
Given a function f : 3V → Z ∪ {+∞} with nonempty F ≡ {(X, Y ) | f(X,Y ) < +∞},
consider a system of linear inequalities with {0,±1}-coefficients given by

x(X)− x(Y ) ≤ f(X, Y ) ((X, Y ) ∈ F). (2.1)

A signed set (X,Y ) ∈ F is called tight in (2.1) if x(X) − x(Y ) = f(X,Y ) for some x
satisfying (2.1). Define a polyhedron P(f) by

P(f) = {x ∈ RV | ∀(X, Y ) ∈ F : x(X)− x(Y ) ≤ f(X, Y )}. (2.2)

We assume the following (A1) and (A2):

(A1) (∅, ∅) ∈ F and f(∅, ∅) = 0.

(A2) For all i ∈ V , we have ({i}, ∅), (∅, {i}) ∈ F and signed sets ({i}, ∅) and (∅, {i})
are tight in (2.1).
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Theorem 2.1: Under Assumptions (A1) and (A2), if P(f) ̸= ∅, then there exists at least
one integral vector that is an extreme point of P(f).

(Proof) Denote by Q the set of points in (ZV ∪{n+1})∗ given by

Q = {(χ(X,Y ), f(X, Y )) | (X,Y ) ∈ F}. (2.3)

By the assumption there exists a vector x̃ ∈ P(f). That is, the closed half-space

H+ ≡ {(y, z) | (y, z) ∈ (RV ∪{n+1})∗, ⟨y, x̃⟩ ≤ z} (2.4)

of (RV ∪{n+1})∗ includes Q, where ⟨y, x̃⟩ =
∑

i∈V y(i)x̃(i). Hence Q generates a convex
cone Cone(Q) such that Cone(Q) ⊆ H+. We show that there exists a facet F̂ of Cone(Q)
that has an integral normal vector (x̂,−1) ∈ ZV ∪{n+1}. More specifically, we find an n-
dimensional simplex S in a facet F̂ of Cone(Q) such that the projection of S to (RV )∗ is
contained in (RV

≥0)
∗. Define

Q≥0 = {(y, z) ∈ Q | y ∈ (RV
≥0)

∗}. (2.5)

Now, let us consider the following greedy-type procedure.

—————————————————————————————————–
Algorithm Greedy
—————————————————————————————————–
Step 1: For a sufficiently large integer M put x ∈ RV as x(i) = −M (∀i ∈ V ).
Step 2: For each i = 1, 2, · · · , n do the following:

(†) Compute ᾱ = max{α ∈ R≥0 | ∀(y, z) ∈ Q≥0 : ⟨y, x+ αχ{i}⟩ ≤ z}.
Put x(i)← x(i) + ᾱ.

Step 3: Return x̂ = x.
—————————————————————————————————–

When computing (†) for current i, we have x(j) = −M for all j = i + 1, · · · , n.
Note that we have assumed (A1) and (A2), so that ({k}, ∅) belongs to F and is tight
in (2.1) for all k ∈ V and {χ{k} | k ∈ V } generates the cone (RV

≥0)
∗. Hence there

exists (χXi
, zi) ∈ Q≥0 such that (i) i ∈ Xi and Xi ⊆ [i] and (ii) after updating x as

x(i)← x(i) + ᾱ we have
⟨χXi

, x⟩ = zi. (2.6)

Consequently, when we finish the nth iteration, the finally obtained x = x̂ satisfies (2.6)
for all i ∈ V . Here (2.6) for all i ∈ V is a system of linear equations (with a variable
vector x) whose coefficient matrix is an n×n triangular {0, 1}-matrix having all diagonal
entries equal to one. Hence the obtained x̂ must be an integral vector since the right-hand
side of (2.6) for each i ∈ V is an integer zi. Moreover, putting X0 = ∅ and z0 = 0, we
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have an n-dimensional simplex S ≡ {(χXi
, zi) | i = 0, 1, · · · , n} that lies in a facet F̂

of cone Cone(Q). It follows from the convexity of Cone(Q) that the integral x̂ belongs
to P(f) and is an extreme point of P(f) since (x̂,−1) is the normal vector of facet F̂ of
Cone(Q). 2

Remark 1: It should be noted that the greedy-type procedure considered in the above
proof employs the underlying permutation (1, · · · , n) and orientation in the orthant RV

≥0.
We can show the existence of an integral vector in P(f) associated with any other permu-
tation of [n](= V ) and an orthant obtained from RV

≥0 by re-orientation of some coordinate
axes, mutatis mutandis. (Note that each (re-)orientation is identified with a sign vector
σ : [n] → {+,−}; sign vector σ : [n] → {+} corresponds to RV

≥0.) Hence, under
Assumptions (A1) and (A2) there may exist n!2n integral extreme points of P(f) with
possible duplication. 2

Remark 2: An example of a system of linear inequalities with {0,±1}-coefficients sat-
isfying Assumptions (A1) and (A2) appears when we consider what is called a bisub-
modular function f : 3V → Z and its associated bisubmodular polyhedron P(f) (see [2,
Sec. 3.5(b)] and [3]). For such a bisubmodular polyhedron P(f) every extreme point of
P(f) is a greedy point obtained by the greedy-type procedure with respect to a permuta-
tion of [n] and an orientation σ : [n]→ {+,−}. 2

Remark 3: Algorithm Greedy described above is a special case of the algorithm to find
a lexicographically optimal solution, which is examined in [4] for what is called a greedy
system of linear inequalities with rational coefficients not necessarily taken from among
{0,±1}. 2

3. Implications in Integrally Convex Functions
We show implications of Theorem 2.1 in the recent results obtained by Murota and
Tamura [9, 10] about integrally convex functions.

We first give some basic definitions to state their results precisely.

3.1. Discrete convexity
3.1.1. Discrete integral convexity

Consider a function f : ZV → R ∪ {+∞} on integer lattice ZV such that its effective
domain dom(f) ≡ {x ∈ ZV | f(x) < +∞} is nonempty. Such a function f is called
discrete convex if it is extensible to a convex function f : RV → R∪{+∞} in such a way
that f(x) = f(x) for all x ∈ dom(f) and the epigraph {(x, α) ∈ RV ∪{n+1} | α ≥ f(x)}
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of f is obtained as the convex hull of the set of halflines {(x, α) | α ≥ f(x)} for all
x ∈ dom(f).

Favati and Tardella [1] introduced the concept of integrally convex function. For a
discrete convex function f : ZV → R ∪ {+∞} and its convex extension f : RV →
R ∪ {+∞} suppose that for every integral box [a, b]Z in ZV with max{b(v)− a(v) | v ∈
V } ≤ 1 and [a, b]Z ∩ dom(f) ̸= ∅ the following (∗) holds:

(∗) the convex extension of the restriction of f on [a, b]Z coincides with the restriction
of f on [a, b]R.

(Here, the restriction of f on [a, b]Z should be defined on ZV while its effective domain
is within [a, b]Z. We consider the restriction of f on [a, b]R similarly in RV .) Then we
call such a discrete convex function integrally convex ([1]). Moreover, any set of integer
points in ZV is called integrally convex if it is the effective domain of an integrally convex
function on ZV .

Informally, a discrete convex function f is integrally convex if and only if its lower-
envelope f is obtained by pasting the lower-envelopes of f restricted on the unit hyper-
cubes [a, a+ 1] for all a ∈ ZV , where 1 is the vector of all ones in ZV .

See [6] for more details about integral convexity and for a class of integrally convex
functions appearing as M-convex functions, L-convex functions, and others.

3.1.2. Subdifferentials of discrete convex functions

Let f : ZV → Z ∪ {+∞} be a discrete convex function with dom(f) ̸= ∅. For any
x ∈ dom(f) the subdifferential of f at x is defined by

∂Rf(x) = {y ∈ (RV )∗ | ∀z ∈ ZV : f(x+ z) ≥ f(x) + ⟨y, z⟩}, (3.1)

which is equal to the subdifferential ∂Rf(x) of the lower envelope f of f at x in an
ordinary sense of convex analysis [11]. Each y ∈ ∂Rf(x) is called a subgradient of f at
x. If f is integrally convex, then (3.1) is equivalently represented by

∂Rf(x) = {y ∈ (RV )∗ | ∀z ∈ {0,±1}V : f(x+ z) ≥ f(x) + ⟨y, z⟩} (3.2)

at any x ∈ dom(f). This is a crucial property of integrally convex functions, which
characterizes integrally convex functions (cf. [4, Th. 2.2]).

3.1.3. Convex conjugate functions and discrete Fenchel duality

Consider a discrete convex function f : ZV → Z∪{+∞} and a discrete concave function
g : ZV → Z ∪ {−∞} with nonempty effective domains dom(f) = {x ∈ ZV | f(x) <
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+∞} and dom(g) = {x ∈ ZV | f(x) > −∞}. Also let f • and g◦, respectively, be the
discrete convex conjugate of f and the discrete concave conjugate of g, i.e.,

f •(y) = sup{⟨y, x⟩ − f(x) | x ∈ ZV } (y ∈ (ZV )∗), (3.3)

g◦(y) = inf{⟨y, x⟩ − g(x) | x ∈ ZV } (y ∈ (ZV )∗). (3.4)

Furthermore, define

f ••(x) = sup{⟨y, x⟩ − f •(y) | y ∈ (ZV )∗} (x ∈ ZV ), (3.5)

g◦◦(x) = inf{⟨y, x⟩ − g◦(y) | y ∈ (ZV )∗} (x ∈ ZV ). (3.6)

Recently Murota and Tamura [9] have shown that f •• = f and g◦◦ = g for any integrally
convex function f and any integrally concave function g, based on Theorem 3.1 stated in
Section 3.2.

It is an interesting subject to investigate conditions on f and g that validate the discrete
Fenchel duality expressed as

inf{f(x)− g(x) | ZV } = sup{g◦(y)− f •(y) | (ZV )∗}. (3.7)

It is well-known that the discrete Fenchel duality (3.7) holds for L♮-convex/concave func-
tions and M♮-convex/concave functions (see [6, 7, 8]). L♮-convex/concave functions and
M♮-convex/concave functions defined on the integer lattice ZV are integrally convex. Very
recently it has also been shown by Murota and Tamura [10] that the discrete Fenchel du-
ality (3.7) holds for an integrally convex function f and a separable discrete concave
function g, based on Theorem 3.2 stated in Section 3.2.

3.2. Recent results of Murota and Tamura [9, 10]
Murota and Tamura [9, 10] have recently shown the following three theorems for inte-
grally convex functions f : ZV → Z∪ {+∞}. Third one is a consequence of the second.

Theorem 3.1 ([9]): For any x ∈ dom(f) the subdifferential ∂Rf(x) of f at x contains an
integral vector.

Theorem 3.2 ([10]): For any x ∈ dom(f) and any integral box [a, b]Z in ZV , if we have
∂Rf(x) ∩ [a, b]R ̸= ∅, then we also have ∂Rf(x) ∩ [a, b]Z ̸= ∅.

Theorem 3.3 ([10]): The discrete Fenchel duality (3.7) holds for any integrally convex
function f and separable discreet concave function g such that dom(f) ∩ dom(g) ̸= ∅
and the left-hand side of (3.7) is a finite value.
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Remark 4: As noted in [10], the existence of a rational subgradient h of f at some x0 ∈
dom(f) implies h ∈ ∂R(f)(x0)∩ [⌊h⌋, ⌈h⌉]R and Theorem 3.2 with a bounded box [a, b]R
implies Theorem 3.1 (where ⌊h⌋ and ⌈h⌉ are, respectively, the rounding down and the
rounding up of h to the nearest integral vectors). Also, Theorem 3.2 in [10] is originally
stated by using a box [a, b]R with possibly a(i) = −∞ or b(i) = +∞ for some i’s in V
but allowing infinite boxes is not essential as seen here. 2

Murota and Tamura [9, 10] have shown Theorems 3.1 and 3.2 by means of the Fourier-
Motzkin elimination. Their algebraic approach itself is very interesting. We reveal how
our polyhedral and geometric approach shows their theorems.

3.3. Proof of Theorem 3.2
Since Theorems 3.1 and 3.3 are implied by Theorem 3.2, we show Theorem 3.2.

For a family F ⊆ 3V and (X1, Y1), (X2, Y2) ∈ F , we call the pair of (X1, Y1) and
(X2, Y2) is consistent if (X1 ∪X2) ∩ (Y1 ∪ Y2) = ∅ and inconsistent otherwise. We call
F consistent if every pair of (X1, Y1), (X2, Y2) ∈ F is consistent. Also define

(X1, Y1) ⊔ (X2, Y2) = ((X1 ∪X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪X2)), (3.8)
(X1, Y1) ⊓ (X2, Y2) = (X1 ∩X2, Y1 ∩ Y2). (3.9)

Note that the two binary operations ⊔ and ⊓ on 3V appear in the definition of bisubmod-
ular function ([2, Sec. 3.5(b)]). We write (X1, Y1) ⊑ (X2, Y2) if X1 ⊆ X2 and Y1 ⊆ Y2.

We first show the following lemma.

Lemma 3.4: Let f : ZV → Z ∪ {+∞} be any integrally convex function. Suppose that
for an x ∈ dom(f) and an integral box [a, b]Z in (ZV )∗ we have ∂Rf(x) ∩ [a, b]R ̸= ∅.
Then we have for each i ∈ V

max{x(i) | x ∈ ∂Rf(x) ∩ [a, b]R} ∈ Z, max{−x(i) | x ∈ ∂Rf(x) ∩ [a, b]R} ∈ Z.
(3.10)

(Proof) Because of the symmetry associated with ∂Rf(x) ∩ [a, b]R it suffices to show for
i = 1

max{x(1) | x ∈ ∂Rf(x) ∩ [a, b]R} ∈ Z. (3.11)

Without loss of generality suppose that x0 = 0 and f(0) = 0. Then, from (3.2) the
subdifferential of f at x0 = 0 is represented by

x(X)− x(Y ) ≤ f(X, Y ) ((X, Y ) ∈ F) (3.12)
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with F = {(X, Y ) ∈ 3V | f(X, Y ) < +∞}. Hence for (3.11) consider the problem:

(P) : Maximize x(1) (3.13)
subject to x(X)− x(Y ) ≤ f(X, Y ) ((X,Y ) ∈ F), (3.14)

x(i) ≤ b(i) (i ∈ V ), (3.15)
−x(i) ≤ −a(i) (i ∈ V ). (3.16)

By the LP duality theorem the maximum value of (3.13) is equal to the minimum value
of the following dual problem.

(D) : Minimize
∑

(X,Y )∈F

λ(X, Y )f(X, Y ) +
∑
i∈V

µ+(i)b(i)−
∑
i∈V

µ−(i)a(i) (3.17)

subject to
∑

(X,Y )∈F

λ(X,Y )χ(X,Y ) +
∑
i∈V

(µ+(i)− µ−(i))χ{i} = χ{1}, (3.18)

λ(X,Y ) ≥ 0 ((X,Y ) ∈ F), (3.19)
µ+(i) ≥ 0, µ−(i) ≥ 0 (i ∈ V ). (3.20)

Since b(i) − a(i) ≥ 0 for all i ∈ V , we can reduce1 the objective-function value by
putting µ+(i) ← µ+(i) − min{µ+(i), µ−(i)} and µ−(i) ← µ−(i) − min{µ+(i), µ−(i)}
while keeping feasibility of the solutions, so that we can assume µ+(i)µ−(i) = 0 for all
i ∈ V . Define

V + = {i ∈ V \ {1} | µ+(i) > 0}, V − = {i ∈ V \ {1} | µ−(i) > 0}. (3.21)

If µ−(1) > 0 (and µ+(1) = 0), then

µ−(1)
1+µ−(1)

{ ∑
(X,Y )∈F

λ(X,Y )χ(X,Y ) +
∑
i∈V +

µ+(i)χ{i} −
∑
i∈V −

µ−(i)χ{i}
}
− µ−(1)χ{1} = 0

(3.22)
and since Problem (D) is feasible, we have

µ−(1)
1+µ−(1)

{ ∑
(X,Y )∈F

λ(X, Y )f(X, Y ) +
∑
i∈V +

µ+(i)b(i)−
∑
i∈V −

µ−(i)a(i)
}
− µ−(1)a(1) ≥ 0.

(3.23)
Hence for ν = (1 − µ−(1)

1+µ−(1)
), putting λ(X, Y ) ← νλ(X, Y ) ((X,Y ) ∈ F), µ+(i) ←

νµ+(i) (i ∈ V +), µ−(i) ← νµ−(i) (i ∈ V −), and µ−(1) ← 0, we can reduce the
objective-function value while keeping feasibility of the solutions, so that we can assume
that µ+(1) ≥ 0 and µ−(1) = 0. Furthermore, if µ+(i) > 1, we have∑
(X,Y )∈F

λ(X, Y )χ(X,Y ) +
∑
i∈V +

µ+(i)χ{i} −
∑
i∈V −

µ−(i)χ{i}+(µ+(1)−1)χ{1} = 0 (3.24)

1We use ’reduce’ even if the value remains the same.
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and since Problem (D) is feasible, we have∑
(X,Y )∈F

λ(X,Y )f(X, Y ) +
∑
i∈V +

µ+(i)b(i)−
∑
i∈V −

µ−(i)a(i) + (µ+(1)− 1)b(1) ≥ 0.

(3.25)
Hence putting λ(X,Y ) ← 0 ((X,Y ) ∈ F), µ+(i) ← 0 (i ∈ V +), µ−(i) ← 0 (i ∈
V −), and µ+(1) ← 1, we can reduce the objective-function value to b(1) while keeping
feasibility of the solutions.

Consequently, we can impose

(F1) µ+(i)µ−(i) = 0 for all i ∈ V , and µ−(1) = 0 and µ+(i) ≤ 1.

Now, suppose that for a feasible solution λ(X,Y ) ((X, Y ) ∈ F), µ+(i) (i ∈ V ) and
µ−(i) (i ∈ V ) of Problem (D) there exists an inconsistent pair of (X1, Y1) and (X2, Y2) in
F such that λ(X1, Y1) > 0 and λ(X2, Y2) > 0. Then we have

1
2
{χ(X1,Y1) +χ(X2,Y2)} = 1

2
{χ(X1,Y1)⊓(Y1,Y2) +χ(X1,Y1)⊔(Y1,Y2)} ∈ Conv(dom(f)), (3.26)

where Conv(dom(f)) is the convex hull of dom(f). It follows from (3.26) and the in-
tegral convexity of f that there exists an affinely independent set of points χ(Z(i),W (i))

(i ∈ I) with (Z(i),W (i)) ∈ F (i ∈ I) such that for all i ∈ I we have (X1, Y1)⊓(Y1, Y2) ⊑
(Z(i),W (i)) ⊑ (X1, Y1) ⊔ (Y1, Y2) and

1
2
{χ(X1,Y1) + χ(X2,Y2)} =

∑
i∈I

µ(Z(i),W (i))χ(Z(i),W (i)), (3.27)

1
2
{f(X1, Y1) + f(X2, Y2)} ≥

∑
i∈I

µ(Z(i),W (i))f(Z(i),W (i)) (3.28)

for some µ(Z(i),W (i)) > 0 (i ∈ I) with
∑

i∈I µ(Z
(i),W (i)) = 1. Hence it follows

from (3.27) and (3.28) that for α = min{λ(X1, Y1), λ(X2, Y2)} > 0 we can reduce the
objective-function value by putting

λ(X1, Y1)← λ(X1, Y1)− α, (3.29)
λ(X2, Y2)← λ(X2, Y2)− α, (3.30)
λ(Z(i),W (i))← λ(Z(i),W (i)) + 2αµ(Z(i),W (i)) (i ∈ I). (3.31)

For each i ∈ V , while there exists an inconsistent pair of (X1, Y1) and (X2, Y2) in F
such that λ(X1, Y1) > 0, λ(X2, Y2) > 0, and i ∈ (X1 ∪ X2) ∩ (Y1 ∪ Y2), update λ by
(3.29)–(3.31). Each such updating of λ for current i reduces the number of signed sets
(X, Y ) with i ∈ X ∪ Y at least by one while keeping solutions feasible and reducing the
objective-function value. Hence we obtain λ(X, Y ) ((X, Y ) ∈ F) such that
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(F2) {(X, Y ) ∈ F | λ(X, Y ) > 0} is consistent.
(See Remark 5 at the end of the present section.)

Moreover, under (F2) suppose that there exist signed sets (X, Y ) ∈ F such that λ(X, Y ) >
0 and 1 /∈ X ∪ Y . Putting G = {(X,Y ) ∈ F | 1 /∈ X ∪ Y, λ(X, Y ) > 0}, define
S = ∪{X | (X,Y ) ∈ G} and T = ∪{Y | (X, Y ) ∈ G}, where note that S ∩ T = ∅ due
to (F2). Then there exist positive numbers µ̂+(i) ≤ µ+(i) for i ∈ T and µ̂−(i) ≤ µ−(i)
for i ∈ S such that∑

(X,Y )∈G

λ(X, Y )χ(X,Y ) +
∑
i∈T

µ̂+(i)χ{i} −
∑
i∈S

µ̂−(i)χ{i} = 0. (3.32)

It follows from (3.32) and the feasibility of Problem (D) that∑
(X,Y )∈G

λ(X,Y )f(X,Y ) +
∑
i∈T

µ̂+(i)b(i)−
∑
i∈S

µ̂−(i)a(i) ≥ 0. (3.33)

Hence we can reduce the objective-function value by putting λ(X, Y )← 0 ((X,Y ) ∈ G),
µ+(i) ← µ+(i) − µ̂+(i) (i ∈ T ), and µ−(i) ← µ−(i) − µ̂−(i) (i ∈ S) while keeping
feasibility of the solutions. Consequently, under (F1) and (F2) we can also impose

(F3) 1 ∈ X for all (X,Y ) ∈ F with λ(X,Y ) > 0.

It follows from (F1), (F2), and (F3) that the minimum value of the objective function
of Problem (D) is equal to that of the following problem (D̂).

(D̂) : Minimize
∑

(X,Y )∈F

λ(X,Y ){f(X, Y )− a(X \ {1}) + b(Y )}+ βb(1) (3.34)

subject to {(X, Y ) ∈ F | λ(X, Y ) > 0} is consistent, (3.35)
1 ∈ X ((X,Y ) ∈ F with λ(X,Y ) > 0), (3.36)∑

(X,Y )∈F

λ(X, Y ) + β = 1, (3.37)

λ(X, Y ) ≥ 0 ((X, Y ) ∈ F), β ≥ 0. (3.38)

Because of the convex combination in (3.34) we see that the minimum value of Problem
(D̂) is given by

min
{
b(1),min{f(X,Y )− a(X \ {1}) + b(Y ) | (X, Y ) ∈ F , 1 ∈ X}

}
, (3.39)

which is an integer and is equal to max{x(1) | x ∈ P(f) ∩ [a, b]R} ∈ Z. 2
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(Proof of Theorem 3.2): Lemma 3.4 implies that the system of linear inequalities
(3.12) satisfies Assumptions (A1) and (A2) by putting

F ← F ∪ {({i}, ∅) | i ∈ V } ∪ {(∅, {i}) | i ∈ V }, (3.40)

f({i}, ∅)← max{x(i) | x ∈ ∂Rf(x) ∩ [a, b]R} (i ∈ V ), (3.41)

f(∅, {i})← max{−x(i) | x ∈ ∂Rf(x) ∩ [a, b]R} (i ∈ V ). (3.42)

(3.40)–(3.42) make the inequalities of (3.15) and (3.16) redundant for (3.12). Hence the
present theorem, Theorem 3.2, follows from Theorem 2.1. 2

Here we see how the box constraints in Theorem 3.2 make Assumption (A2) valid
under the integral convexity of f . We also see that Condition (F2) is crucial.

Remark 5: Condition (F2) can also be understood as follows. For a given F1 ⊆ 3V put
ξ =

∑
(X,Y )∈F1

χ(X,Y ). Define S+ = {i ∈ V | ξ(i) > 0} and S− = {i ∈ V | ξ(i) < 0}.
Then F1 is consistent if and only if for every (X,Y ) ∈ F1 we have (X, Y ) ⊑ (S+, S−).

2

4. Concluding Remarks
We have considered a polyhedron P represented by linear inequalities with {0,±1}-
coefficients and have shown conditions (in Theorem 2.1) that guarantee the existence
of an integral vector in P which also turns out to be an extreme point of P . We have
revealed how our polyhedral and geometric approach shows the recent integrality results
of Murota and Tamura [9, 10] about subdifferentials of integrally convex functions.

The greedy point obtained by Algorithm Greedy for each subdifferential can also
be obtained from the system of linear inequalities resulting from the Fourier-Motzkin
elimination adopted by Murota and Tamura [9, 10]. Our approach provides further insight
into structures of subdifferentials of integrally convex functions to fully appreciate their
integrality results from a polyhedral and geometric point of view.

Murota and Tamura [10] have shown the discrete Fenchel duality for a pair of an
integrally convex function and a separable discrete concave function. It is an interesting
and challenging problem to find a more general class of discrete convex/concave functions
(such as those given in [3]) for which the discrete Fenchel duality holds (also see [5] for
related subjects).

Acknowledgements
The author is very grateful to Akihisa Tamura and Kazuo Murota for their careful reading
of and useful comments on an earlier version of this note. This work was supported by

11



the Research Institute for Mathematical Sciences, an International Joint Usage/Research
Center located in Kyoto University. The author’s work is supported by JSPS KAKENHI
JP26280001.

References
[1] P. Favati and F. Tardella: Convexity in nonlinear integer programming. Ricerca Op-

erativa 53 (1990) 3–44.

[2] S. Fujishige: Submodular Functions and Optimization Second Edition (Elsevier,
2005).

[3] S. Fujishige: Bisubmodular polyhedra, simplicial divisions, and discrete convexity.
Discrete Optimization 12 (2014) 115–120.

[4] S. Fujishige: Greedy systems of linear inequalities and lexicographically optimal
solutions. RAIRO Operations Research 53 (2019) 1929–1035.

[5] S. Moriguchi and K. Murota: Projection and convolution operations for integrally
convex functions. Discrete Applied Mathematics 255 (2019) 283–298.

[6] K. Murota: Discrete Convex Analysis (SIAM, 2003).

[7] K. Murota: Discrete convex analysis: A tool for economics and game theory. Jour-
nal of Mechanism and Institution Design 1 (2016) 151–273.

[8] K. Murota and A. Shioura: Relationship of M-/L-convex functions with discrete
convex functions by Miller and by Favati-Tardella. Discrete Applied Mathematics
115 (2001) 151–176.

[9] K. Murota and A. Tamura: Integrality of subgradients and biconjugates of integrally
convex functions. Optimization Letters 14 (2020) 195–208.

[10] K. Murota and A. Tamura: Discrete Fenchel duality for a pair of integral convex and
separable convex functions. arXiv:2108.10502v1 [math.CO] 24 August 2021.

[11] R. T. Rockafellar: Convex Analysis (Princeton University Press, Princeton, N.J.,
1970).

12


	web-title
	RIMS1953Revised
	web-title
	RIMS1953Revised


