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ABSTRACT. — In the present paper, we first prove that, for an arbitrary reducible Hodge-
Tate p-adic representation of dimension two of the absolute Galois group of a p-adic local field
and an arbitrary continuous automorphism of the absolute Galois group, the p-adic Galois
representation obtained by pulling back the given p-adic Galois representation by the given
continuous automorphism is Hodge-Tate. Next, we also prove the existence of an irreducible
Hodge-Tate p-adic representation of dimension two of the absolute Galois group of a p-adic
local field and a continuous automorphism of the absolute Galois group such that the p-adic
Galois representation obtained by pulling back the given p-adic Galois representation by the
given continuous automorphism is not Hodge-Tate.
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INTRODUCTION

In the present paper, we study the intrinsic Hodge-Tate-ness of p-adic representations
of the absolute Galois group of a p-adic local field. In the present Introduction, let p

be a prime number, k a finite extension of Q,, and k an algebraic closure of k. Write

G Y Gal(k/k) for the absolute Galois group of k determined by the algebraic closure k.

For a given QQ,-vector space V of finite dimension and a given continuous representation
p: Gr — Autg, (V) of Gy, we shall say that p is Aut-intrinsically Hodge-Tate if, for an
arbitrary continuous automorphism o of G}, the composite poa: Gi, = Gy, — Autg, (V)
is Hodge-Tate [cf. Definition 1.3].

Let us first recall that the author of the present paper proved that

if p is odd, and k = Q,, then there exists a p-adic representation of G}, that
is Hodge-Tate but not Aut-intrinsically Hodge-Tate [cf. [1, Remark 3.3.1]].

Moreover, in the present paper, we establish a refinement of this result. That is to say,
we verify that
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there exists a p-adic representation of Gy that is Hodge-Tate but not Aut-
intrinsically Hodge-Tate whenever p is odd, i.e., without the assumption
that k = Q, [cf. Corollary 1.5].

On the other hand, let us also observe that it is likely to be well-known that

an arbitrary Hodge-Tate p-adic representation of dimension 1 of Gy is
Aut-intrinsically Hodge-Tate [cf. Theorem 2.7].

In this state of affairs, one may have the following question:

Is there a p-adic representation of dimension 2 of Gy that is Hodge-Tate
but not Aut-intrinsically Hodge-Tate?

In the present paper, we give an answer to this question.
First, we consider the case where a given continuous representation is reducible. The
first main result of the present paper is as follows [cf. Theorem 2.10]:

THEOREM A. — Let V' be a Q,-vector space of dimension 2 and p: G, — Autg, (V)
a continuous representation. Suppose that the continuous representation p is reducible.
Then p is Hodge-Tate if and only if p is Aut-intrinsically Hodge-Tate.

Next, we consider the case where a given continuous representation is rreducible. The
second main result of the present paper is as follows [cf. Corollary 3.4]:

THEOREM B. — Let p be an odd prime number. Then there exist a finite extension
K of Qp, an algebraic closure K of K, a Q,-vector space V' of dimension 2, and
a continuous representation p: Gal(K/K) — Autg, (V) that is irreducible, abelian,
crystalline [hence also Hodge-Tate|, but not Aut-intrinsically Hodge-Tate.
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1. AUT-INTRINSIC HODGE-TATE-NESS OF REPRESENTATIONS

In the present §1, we introduce the notion of Aut-intrinsic Hodge-Tate-ness of p-adic
representations [cf. Definition 1.3 below]. Moreover, we prove the existence of a p-adic rep-
resentation that is potentially crystalline [hence also Hodge-Tate] but not Aut-intrinsically
Hodge-Tate [cf. Corollary 1.5 below]. Finally, we also recall some basic facts concerning
abelian Hodge-Tate p-adic representations [cf. Lemma 1.8 below and Lemma 1.9 below].

DEFINITION 1.1. — We shall refer to a field isomorphic to a finite extension of Q,, for
some prime number p, as an MLF. Here, “MLF” is to be understood as an abbreviation

for “mixed-characteristic local field”.
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In the remainder of the present §1, let k be an MLF and k an algebraic closure of k.
Write Gj, & Gal(k/k).

DEFINITION 1.2. — We shall write

e k@=1 C k for the [unique] minimal MLF contained in k [i.e., the unique subfield of
k isomorphic to Q,, for some prime number p],

e O, C k for the ring of integers of k,

e p;. for the characteristic of the residue field of O,

e d; for the extension degree of the [necessarily finite] extension k/k(“@=1),

e (k*)" for the profinite completion of the multiplicative module £~ of k,

e G2 for the topological abelianization of Gy, i.e., the quotient of Gy by the closure
of the commutator subgroup of Gy, and

e recy: (K*)" = G for the isomorphism induced by the reciprocity homomorphism
k* < G2° in local class field theory.

DEFINITION 1.3. — Let V be a Q, -vector space of finite dimension and p: G —
Autg,, (V) a continuous representation. Then we shall say that p is Aut-intrinsically
Hodge-Tate if, for an arbitrary continuous automorphism a of Gy, the composite p o
a: Gy = Gy, — Autg, (V) is Hodge-Tate.

The following result is a formal consequence of the main result of [1].

THEOREM 1.4. — For each O € {o, e}, let kg be an MLF and kg an algebraic closure
of ka. Let a: Gal(ko/ko) — Gal(ke/ks) be an open continuous homomorphism [which
thus implies that pg, = pr, — cf., e.g., [3, Proposition 3.4, (iii)] and [4, Proposition 3.6]].
Then the following two conditions are equivalent:

(1) There exists an isomorphism ke = E_O of fields that is compatible with the re-
spective natural actions of Gal(ke/ke), Gal(k./k,) on ke, ko relative to the given open
continuous homomorphism a: Gal(k,/k,) — Gal(ke/ke).

(2)  For an arbitrary Qy,, -vector space V, of finite dimension and an arbitrary con-
tinuous representation p,: Gal(ke/ke) — Athpk (V4), if pe is potentially crystalline,

then the composite p, o a: Gal(ko/ko) — Gal(ke/ke) — Autg,, (Ve) = Autg,, (Vs) is
Hodge-Tate.

PROOF. — The implication (1) = (2) is immediate. To verify the implication (2) = (1),
suppose that condition (2) is satisfied. Then it follows immediately from [9, Chapter
III, §A.4, Proposition 5|, together with a similar argument to the argument applied
in the proof of [1, Lemma 1.4], that the open continuous homomorphism « is of HT-
qLT-type [cf. [1, Definition 1.3, (ii)]]. Thus, it follows from [1, Theorem 3.3] [cf. also
Remark 1.4.1 below| that condition (1) is satisfied, as desired. This completes the proof
of the implication (2) = (1), hence also of Theorem 1.4. O



REMARK 1.4.1. — Unfortunately, the proof of [1, Theorem 3.3], which was applied in
the proof of Theorem 1.4 of the present paper, contains an inessential inaccuracy [cf. (i)
below]. In light of the importance of [1, Theorem 3.3] in the present paper, we thus pause
to discuss how this inaccuracy may be amended.

(i) In the final portion of the proof of [1, Claim 3.3.A], the author of the present paper
has claimed that S, i, is inertially compatible with a. However, it is not clear that Sy, x,
is inertially compatible with a.

(ii) Thus, the statement of [1, Claim 3.3.A] should be replaced by the following text:

(¥) Suppose that k. is Galois over Q,. Then the field k, is isomorphic to the field
Ke.

Here, let us observe that the argument given in the proof of [1, Claim 3.3.A] proves this
assertion.

(iii) Next, let us observe that one verifies immediately from the various definitions
involved that if the MLF k is Galois over k(=Y then, for an arbitrary positive real
number v, the algebraic extension of k in k that corresponds to the higher ramification
subgroup of Gy, associated to v in the “upper numbering” is Galois over k4=, In
particular, in the situation of [1, Theorem 3.3], one may conclude — by applying the
assertion (x) of (ii) to the various restrictions of the given continuous isomorphism |[cf.
the first paragraph of the proof of [1, Theorem 3.3]] « (respectively, of the inverse of the
given continuous isomorphism «) to the open subgroups of Gy, (respectively, of Gy, ) that
correspond to the finite extensions of k, in ke (respectively, of k, in E.) Galois over Q,
— that if &k, is Galois over Q,, then the continuous isomorphism [cf. the first paragraph
of the proof of [1, Theorem 3.3|] a is compatible with the respective higher ramification
subgroups of Gy, Gy, associated to the positive real numbers in the “upper numbering”.
Thus, the conclusion of [1, Theorem 3.3] in the case where k. is Galois over Q,, hence
also the conclusion of [1, Theorem 3.3] for an arbitrary k,, follows immediately from [6,
Theorem]|.

COROLLARY 1.5. — Let k be an MLF and k an algebraic closure of k. Suppose that
pr s odd. Then there exist a Q,, -vector space V' of finite dimension and a continuous
representation p: Gal(k/k) — Autg,, (V) that is potentially crystalline [hence also
Hodge-Tate] but not Aut-intrinsically Hodge-Tate.

PROOF. — Let us first recall that if d;, = 1 (respectively, d # 1), then it follows from,
for instance, the discussion given at the final portion of [7, Chapter VII, §5] (respectively,
[4, Proposition 3.6] and [5, Corollary 1.6, (iv)]) that we have a continuous automorphism
of Gal(k/k) such that an arbitrary automorphism of the field k is not compatible with the
natural action of Gal(k/k) on k relative to the continuous automorphism of Gal(k/k).

Thus, Corollary 1.5 follows from Theorem 1.4. This completes the proof of Corollary 1.5.
O

REMARK 1.5.1. — The content of Corollary 1.5 in the case where d, = 1 is essentially
contained in [1, Remark 3.3.1].

In the remainder of the present §1, let us recall some basic facts concerning abelian

Hodge-Tate p-adic representations. Let E be either k or k=Y. Suppose that E is
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absolutely Galois, i.e., that the finite extension E/k@=Y is Galois [cf. [3, Definition 4.2,

)]

DEFINITION 1.6. — We shall write £, for the Q,, -vector space [necessarily of finite
dimension| obtained by forming the underlying additive module of the MLF E. Thus,
we have a natural injective continuous homomorphism Oy, — Autg,, (E), i.e., by mul-

tiplication, by means of which we regard O}, as a [necessarily closed] subgroup of the
topological group Autg, (Ey):

DEFINITION 1.7. — Let 7 € Oy, be a uniformizer of O}, and ¢ an element of Gal(FE/k4=Y),
If E =k (respectively, E = k(4=1)  then we shall write

Q,: OF — Of

for the continuous automorphism of O determined by o (respectively, the continuous
homomorphism O — O;:w:l) determined by the norm map with respect to the finite

extension k/k(@=1)). Moreover, we shall write

®o

-1
Xro: G e (1) — 0 272 0

— where the second arrow is the surjective continuous homomorphism obtained by consid-
ering the quotient by the closed submodule of the topological module (k)" topologically
generated by m € k*.

LEMMA 1.8. — Let 7 € Oy, be a uniformizer of Oy and ¢: Gi* — OF a continuous
homomorphism. Then the following two conditions are equivalent:

(1) The continuous representation obtained by forming the composite

¢

G —= G "~ OF = Autg,, (E,)

— where the first arrow is the natural surjective continuous homomorphism, and the third
arrow 1s the natural inclusion — is Hodge-Tate.

(2) There exist an integer i, for each o € Gal(E/kW=V) and an open subgroup J of
the inertia subgroup of Gy such that

e the restriction to J of the composite of the natural surjective continuous homo-
morphism Gy — G and the given homomorphism ¢: Gi> — O}

coincides with

e the restriction to J of the composite of the natural surjective continuous homo-
morphism Gy, — G and the homomorphism

ia . ab X
H Xoo: G —= Op.
oc€Gal(E/k(d=1))

PrROOF. — This assertion follows from [9, Chapter III, §A.5, Corollary]. O
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LEMMA 1.9. — Let ¢: Gi* — O be a continuous homomorphism. Suppose that the
continuous representation obtained by forming the composite

¢

Gl —= G 2 OF —— Autg,, (k)
— where the first arrow is the natural surjective continuous homomorphism, and the
third arrow is the natural inclusion — is Hodge-Tate. Then the image of some open

submodule of (9]:<d:1> by the composite

recg b ¢
o OF G 0
— where the first arrow is the natural inclusion — is contained in the submodule
Oy CO.
pa=1) = Yk
PROOF. — This assertion follows immediately from Lemma 1.8. O

2. THE CASE OF REDUCIBLE REPRESENTATIONS OF DIMENSION TwO

In the present §2, we introduce the notion of intrinsic Hodge-Tate-ness of p-adic rep-
resentations [cf. Definition 2.2 below]. Moreover, we prove that an arbitrary reducible
Hodge-Tate p-adic representation of dimension 2 is Aut-intrinsically Hodge-Tate [cf. The-
orem 2.10 below].

DEFINITION 2.1. — We shall refer to a group isomorphic to the absolute Galois group of
an MLF as a group of MLF-type [cf. |2, Definition 1.1]]. Here, “MLF” is to be understood
as an abbreviation for “mixed-characteristic local field”. Let us always regard a group
of MLF-type as a profinite group by means of the profinite topology discussed in |2,
Proposition 1.2, (i)].

In the remainder of the present §2, let G be a group of MLF-type. Thus, by applying
various functorial group-theoretic reconstruction algorithms established in the study of
mono-anabelian geometry to the group G of MLF-type, we obtain

e a prime number p(G) [cf. [4, Definition 3.5, (i)]],

e a positive integer d(G) [cf. [4, Definition 3.5, (ii)]],

a normal closed subgroup I(G) C G of G [cf. [4, Definition 3.5, (iii)]],
topological modules O*(G) C k*(G) [cf. [4, Definition 3.10, (i), (iv)]], and

e a topological field Q,(G) [cf. [3, Definition 4.5, (iii)] and [3, Lemma 4.6, (i)]].

Moreover, in the remainder of the present §2, let V' be a Q,(G)-vector space of finite
dimension and p: G — Autg,e) (V') a continuous representation.

DEFINITION 2.2. — We shall say that the given continuous representation p is intrinsi-
cally Hodge-Tate if, for an arbitrary MLF-envelope (k, k, a: Gal(k/k) = G) of G [cf. [2,
Definition 1.1]], the continuous [cf. [2, Proposition 1.2, (ii)]] representation obtained by
forming the composite poa: Gal(k/k) = G — Autg, ) (V) = Autg,, (V) [cf. [3, Lemma
4.6, (i)] and [4, Proposition 3.6]] is Hodge-Tate.
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REMARK 2.2.1. — In the situation of Definition 1.3, it is immediate that the implications
p is intrinsically Hodge-Tate = p is Aut-intrinsically Hodge-Tate
—> p is Hodge-Tate
hold.

DEFINITION 2.3. — Let V' be a Q,(G)-vector space of finite dimension and p': G —
Autg, @) (V') a continuous representation. Then we shall say that p is inertially isomor-
phic to p’ if there exists an open subgroup J C I(G) of I(G) such that the restriction of
ptoJ C (I(G) C) G is isomorphic to the restriction of p' to J C (I(G) C) G.

DEFINITION 2.4. — Let w be an integer. Then we shall say that the continuous represen-
tation p is w-cyclotomic if p is isomorphic to the continuous representation of dimension
1 obtained by considering the w-th power of the character G — Q,(G)* determined by

the maximal pro-p(G) quotient of the cyclotome A(G) associated to G [cf. [4, Definition
4.1, (iii)]].

REMARK 2.4.1. — Let k& be an MLF and k an algebraic closure of k. Write G, &

Gal(k/k).
(i) Let us recall from [4, Proposition 3.6] that the normal closed subgroup I(Gy) C G
of GG, coincides with the inertia subgroup of Gy.

(ii) Let us recall from [4, Proposition 4.2, (iv)] that the character Gy, — Q,(G)* <
. lcf. [3, Lemma 4.6, (i)] and [4, Proposition 3.6]] determined by the maximal pro-
p(Gy), i.e., pro-py [cf. [4, Proposition 3.6]], quotient of the cyclotome A(G}) associated

to G coincides with the pi-adic cyclotomic character of Gy.

LEMMA 2.5. — Let k be an MLF, k an algebraic closure of k, V a Qp,. -vector space of
dimension 1, and p: Gal(k/k) — Autg, (V) a continuous representation. Then the
following two conditions are equivalent:

(1) The continuous representation p is Hodge-Tate.

(2) The continuous representation p is inertially isomorphic to the w-cyclotomic
representation of Gal(k/k) for some integer w.

PRrOOF. — This assertion follows — in light of Remark 2.4.1, (i), (ii) — from Lemma 1.8,
together with [9, Chapter III, §A.4, Corollary]. O

THEOREM 2.6. — Let G be a group of MLF-type, V a Q,(G)-vector space of dimen-
sion 1, and p: G — Autg, ) (V) a continuous representation. Then the following two
conditions are equivalent:

(1) The continuous representation p is intrinsically Hodge-Tate.

(2) The continuous representation p is inertially isomorphic to the w-cyclotomic

representation of G for some integer w.
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Proor. — This assertion follows from Lemma 2.5. O

THEOREM 2.7. — Let k be an MLF, k an algebraic closure of k, V a Qp,, -vector space
of dimension 1, and p: Gal(k/k) — Autg, (V) a continuous representation. Then the
following three conditions are equivalent:

(1) The continuous representation p is Hodge-Tate.
(2) The continuous representation p is intrinsically Hodge-Tate.

(3) The continuous representation p is Aut-intrinsically Hodge-Tate.

Proor. — It follows from Remark 2.2.1 that, to verify Theorem 2.7, it suffices to verify
the implication (1) = (2). On the other hand, the implication (1) = (2) follows from
Lemma 2.5 and Theorem 2.6. This completes the proof of Theorem 2.7. U

LEMMA 2.8. — Let k be an MLF, k an algebraic closure of k, V a Qy, -vector space of di-

mension 2, and p: Gy < Gal(k/k) — Autg,, (V) a continuous representation. Suppose
that the continuous representation p is reducible. Then the continuous representation
p is Hodge-Tate if and only if there exist integers w, w' and a G-stable Q,, -subspace
W CV of V of dimension 1 such that the continuous representations G — Aut(W),
Gy — Aut(V/W) determined by p are, respectively, inertially isomorphic to the w-
cyclotomic, w’-cyclotomic representations of Gy, and, moreover, one of the following
two conditions is satisfied:

(1) There exists an open subgroup J of the inertia subgroup of Gy, such that the natural
surjective homomorphism V- — V/W has a J-equivariant splitting.

(2) The equality w = w' does not hold.

PRrROOF. — First, we verify sufficiency. Suppose that there exist w, w’, W as in the
statement of Lemma 2.8. If condition (1) is satisfied, then it follows immediately — in
light of Remark 2.4.1, (i), (ii), and [9, Chapter III, §A.1, Corollary 2] — from Lemma 2.5
that the continuous representation p is Hodge-Tate. If condition (2) is satisfied, then
it follows immediately — in light of Remark 2.4.1, (i), (ii), and [9, Chapter III, §A.1,
Corollary 2] — from [10, Proposition 8, (b)] that the continuous representation p is
Hodge-Tate. This completes the proof of sufficiency.

Next, we verify necessity. Suppose that the continuous representation p is Hodge-
Tate. Then since [we have assumed that] the continuous representation p is reducible
and of dimension 2, there exists a Gy-stable Q,, -subspace W C V of V of dimension
1. Now since p is Hodge-Tate, and both W and V/W are of dimension 1, it follows
from Lemma 2.5 that there exist integers w, w’ such that the continuous representations
Gr — Aut(W), Gr, — Aut(V/W) determined by p are, respectively, inertially isomorphic
to the w-cyclotomic, w'-cyclotomic representations of Gj. Now suppose that condition
(2) is not satisfied. Then it follows immediately from [8, Corollary 1] that condition (1) is
satisfied, as desired. This completes the proof of necessity, hence also of Lemma 2.8. [J

THEOREM 2.9. — Let G be a group of MLF-type, V' a Q,(G)-vector space of dimension
2, and p: G — Autg,)(V) a continuous representation. Suppose that p is reducible.

Then the continuous representation p is intrinsically Hodge-Tate if and only if there
8



exist integers w, w' and a G-stable Q,(G)-subspace W C V of V of dimension 1
such that the continuous representations G — Aut(W), G — Aut(V/W) determined
by p are, respectively, inertially isomorphic to the w-cyclotomic, w’-cyclotomic
representations of G, and, moreover, one of the following two conditions is satisfied:

(1) There exists an open subgroup J C I(G) of I(G) (C G) such that the natural
surjective homomorphism V. — V/W has a J-equivariant splitting.

(2) The equality w = w' does not hold.

PRrROOF. — This assertion follows — in light of Remark 2.4.1, (i) — from Lemma 2.8. [J

THEOREM 2.10. — Let k be an MLF, k an algebraic closure of k, V a Q. -vector space
of dimension 2, and p: Gal(k/k) — Autg, (V) a continuous representation. Suppose
that the continuous representation p is reducible. Then the following three conditions
are equivalent:

(1) The continuous representation p is Hodge-Tate.
(2) The continuous representation p is intrinsically Hodge-Tate.

(3) The continuous representation p is Aut-intrinsically Hodge-Tate.

Proor. — It follows from Remark 2.2.1 that, to verify Theorem 2.10, it suffices to verify
the implication (1) = (2). On the other hand, the implication (1) = (2) follows — in
light of Remark 2.4.1, (i) — from Lemma 2.8 and Theorem 2.9. This completes the proof
of Theorem 2.10. O

3. THE CASE OF IRREDUCIBLE REPRESENTATIONS OF DIMENSION TwO

In the present §3, we prove the existence of an irreducible crystalline [hence also Hodge-
Tate] p-adic representation of dimension 2 that is not Aut-intrinsically Hodge-Tate |cf.
Corollary 3.4 below].

def

In the present §3, let k& be an MLF and k an algebraic closure of k. Write G), =
Gal(k/k). We shall also apply the notational conventions introduced in Definition 1.2.

LEMMA 3.1. — Suppose that p; is odd, and that d, = 2. Write Nm: k* — (k=) for
the norm map with respect to the finite extension k/k‘=Y. Then the following assertions
hold:

i) There exists an open submodule U C O of O such that
k k

(1) the topological module U has a natural structure of free Z,, -module of rank
2, and, moreover,

(2) the submodule U C Oy is preserved by an arbitrary continuous automorphism
of Of.

(i) Let U C Oy be as in (i). Then the topological modules U N O} ,_,,, U N Ker(Nm)
have natural structures of free Zp, -modules of rank 1, respectively.

(iii) Let U C Oy be as in (i). Then the equality UN O/ ,_,) NKer(Nm) = {1} holds.
9



(iv) Let U C Of be as in (i). Then the closed submodule of U topologically generated
by the closed submodules U N O/, and U N Ker(Nm) is open.

(v)  There exists a continuous automorphism « of Gy such that, for an arbitrary
nonzero integer n, if one writes o, for the continuous automorphism of O, induced by
a™ [cf. [4, Proposition 3.11, (iv)]], then the intersection o, (O} ,_,)) N O}y, is nOt open
mn O:(d:l)' In particular, the continuous automorphism o of O; does not preserve the
submodule O} ,_,, € O

PROOF. — Assertions (i), (ii) follow from [4, Lemma 1.2, (i)] [cf. also our assumption
that dy = 2]. Assertion (iii) is immediate [cf. the fact that U is torsion-free — cf.
condition (1) of assertion (i)]. Assertion (iv) follows from assertions (ii), (iii), together
with condition (1) of assertion (i).

Finally, we verify assertion (v). Let a be a continuous automorphism of Gy as in
the discussion preceding [5, Theorem 1.5] [cf. also [4, Proposition 3.6]]. Write [ for the
continuous automorphism of the submodule U C O;° obtained by forming the restriction
of a? [cf. condition (2) of assertion (i)]. Thus, it follows immediately from [5, Theorem
1.5] [cf. also [4, Definition 3.10, (vi)]] that

(a) the continuous automorphism f is not the identity automorphism of U, but

(b) the image of the square of the endomorphism of U given by “a — 3(a) - a™'”

consists of the identity element of U.
Moreover, it follows immediately from [5, Lemma 2.3, (i)] that
(c) the continuous automorphism J preserves the submodule U N Ker(Nm) of U.

Thus, it follows immediately from assertion (iv) [cf. also condition (1) of assertion (i)],
together with (b) and (c), that if the continuous automorphism  preserves some open
submodule of the submodule U N O:(d:m then ( is the identity automorphism of U —
in contradiction to (a). In particular, the continuous automorphism 3 does not preserve
any open submodule of the submodule U N O ,_,,, which thus implies [cf. assertion (ii)]
that B(U N O 4-ry) NUN O,y = {1}. Thus, it follows immediately from [4, Lemma
1.2, ()] that a% (O 41)) N Oy is not open in Of,_,,, as desired. This completes the
proof of assertion (v), hence also of Lemma 3.1. O

REMARK 3.1.1. — One may conclude from the final portion of Lemma 3.1, (v), that it
is tmpossible to establish a functorial group-theoretic reconstruction algorithm for con-
structing, from an arbitrary group H of MLF-type, a closed submodule of the topolog-
ical module O*(H) which “corresponds” to the closed submodule O,,_,, € O) of the
topological module O;. Put another way, one may conclude from the final portion of
Lemma 3.1, (v), that the closed submodule O/,_,, € Oy should be considered to be “not
group-theoretic” .

PROPOSITION 3.2. — Suppose that py is odd, and that dj. is even. Suppose, moreover,
that k is absolutely abelian, i.e., that k is absolutely Galois, and the Galois group
Gal(k/k@=1)) is abelian [cf. [3, Definition 4.2, (ii)]]. Then there evists a continuous
automorphism o of Gy, such that, for an arbitrary nonzero integer n, if one writes o, for
the continuous automorphism of O; induced by o [cf. [4, Proposition 3.11, (iv)]], then
the intersection % (O, 1)) N O, azyy s not open in O,y .

10



PROOF. — Let us first observe that since d; is even, and k is absolutely abelian, one
verifies easily that there exists a quadratic extension of k=Y contained in k. Moreover,
since k is absolutely abelian, it follows immediately from the implication (1) = (2) of
[3, Theorem F, (i)] that Gy is a characteristic subgroup of the absolute Galois group of
the quadratic extension of k(4= determined by the algebraic closure k. Thus, one may
conclude that we may assume without loss of generality, by applying a similar argument
to the argument applied in the proof of [5, Lemma 2.6, (ii)] and replacing k by the
quadratic extension of k(=Y that dj, = 2. On the other hand, if d;, = 2, then the desired
conclusion follows form Lemma 3.1, (v). This completes the proof of Proposition 3.2. [

THEOREM 3.3. — Let k be an MLF and k an algebraic closure of k. Suppose that py, is
odd, that dj, is even, and that k is absolutely abelian. Then there exist a Q,, -vector
space V of dimension dj, and a continuous representation p: Gal(k/k) — Autg, (V)
that is irreducible, abelian, crystalline |[hence also Hodge-Tate|, but not Aut-
intrinsically Hodge-Tate.

PrROOF. — Let m € Oy be a uniformizer of Q. Write p for the continuous representation

of Gy & Gal(k/k) [necessarily of dimension dj] obtained by forming the composite

b X?‘r,idk

G —= G2

Oli:(( Aut@pk (kJr)

— where the first arrow is the natural surjective continuous homomorphism, and the third
arrow is the natural inclusion. Then one verifies easily that this continuous representation
p is irreducible and abelian. Moreover, it follows immediately from [9, Chapter III, §A 4,
Proposition 5] that this continuous representation p is crystalline.

Next, to verify that the continuous representation p is not Aut-intrinsically Hodge-
Tate, let us recall that it follows immediately from the various definitions involved that
the composite

recg b X ,idy,

O ¢ G;, Oy

is an automorphism that restricts to an automorphism of the submodule O:(dzl) C Oy.
In particular, if « is a continuous automorphism of Gy as in Proposition 3.2, then it
follows immediately from Lemma 1.9, together with the various definitions involved, that
the composite p o a: Gj, = Gj — Autg,, (ky) is not Hodge-Tate, which thus implies
that the continuous representation p is not Aut-intrinsically Hodge-Tate, as desired. This
completes the proof of Theorem 3.3. O

COROLLARY 3.4. — Let p be an odd prime number. Then there exist an MLF K such
that px = p, an algebraic closure K of K, a Qp -vector space V' of dimension 2, and
a continuous representation p: Gal(K/K) — Autg, (V') that is irreducible, abelian,
crystalline [hence also Hodge-Tate|, but not Aut-intrinsically Hodge-Tate.

PrRoOOF. — This assertion is a formal consequence of Theorem 3.3. O
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