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Abstract

The 3-loop polynomial of a knot is a polynomial presenting the 3-loop part of the Kontsevich
invariant of knots. In this paper, we calculate the 3-loop polynomial of knots obtained by plumbing
the doubles of two knots; this class of knots includes untwisted Whitehead doubles. We construct the
3-loop polynomial by calculating the rational version of the Aarhus integral of a surgery presentation.
As a consequence, we obtain an explicit presentation of the 3-loop polynomial for the knots.

1 Introduction

The Kontsevich invariant of knots is a very strong invariant of knots, which is universal
to all quantum invariants and all Vassiliev invariants, and it is expected that the Kontse-
vich invariant classifies all knots. The Kontsevich invariant takes its value in the space of
Jacobi diagrams. Jacobi diagrams are some kinds of uni-trivalent graphs, and they have
universal properties among the pairs (g, V ), where g is a simple Lie algebra and V is its
representation. So we can “substitute” any pair of (g, V ) into Jacobi diagrams, and it is
the reason why the Kontsevich invariant is universal to all quantum invariants. In addi-
tion, each term of the Kontsevich invariant is a Vassiliev invariant, and we can calculate
it algorithmically. However, since the value of the Kontsevich invariant is presented by
an infinite sum of Jacobi diagrams, it is difficult to determine all terms of Kontsevich
invariant at the same time concretely. So far, a powerful method to present them is not
known.

One approach to restrict the image of the Kontsevich invariant is the “loop expansion”.
It is conjectured in [21] that the Kontsevich invariant of a knot is expanded in the form of
the loop expansion, and it is shown in [10] that the Kontsevich invariant of a knot can be
expanded in this form, and it is shown in [7] that the loop expansion is a knot invariant. It
is calculated by using the rational version of the Aarhus integral of a surgery presentation.
A n-loop diagram is a connected open Jacobi diagram whose first Betti number is n. When
we fix a loop number, each loop part is presented by some polynomials, and in particular,
the 1-loop part is presented by the Alexander polynomial. The polynomial presenting
the 2 (resp. 3)-loop part is called the 2 (resp. 3)-loop polynomial. The 2 (resp. 3)-loop
polynomial is a 2 (resp. 3)-variable polynomial invariant of knots.

The 2-loop polynomial is calculated in many cases. For example, the 2-loop polynomial
for knots with up to 7 crossings is calculated in [21], for torus knots in [11], [12], [16], for
untwisted Whitehead doubles in [9], and for genus 1 knots in [17]. On the other hand,
there are few examples of the calculation of the 3-loop polynomial of knots. The 3-loop
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part of the Kontsevich invariant of torus knots are calculated in [11], [12], where a cabling
formula for the Kontsevich invariant is used. However, it is not easy to calculate the 3-
loop part of the Kontsevich invariant in general, so the 3-loop polynomial of other knots
are not calculated so far. We can calculate the 3-loop polynomial in the same way as the
calculation of the 2-loop polynomial theoretically, but the calculation of the 3-loop part
is more complicated than that of the 2-loop part.

In this paper, we give some examples of the 3-loop polynomial of knots. More con-
cretely, in Theorem 3.1, we calculate the 3-loop polynomial of D(K,K ′), which are knots
obtained by plumbing the doubles of two knots K (with framing 0) and K ′ (with framing
k); this class of knots includes untwisted Whitehead doubles (Corollary 3.3). The 3-loop
polynomial of these knots are relatively easy to calculate, and this theorem is one of the
few examples of the calculation of the 3-loop polynomial of knots. We can get the loop
expansion of a knot by calculating the rational version of the Aarhus integral of a surgery
presentation of the knot, so we construct the 3-loop polynomial of D(K,K ′) in such a
way, and we can show that its 3-loop polynomial is only depend on Vassiliev invariants
of K and K ′ up to degree 4. As a consequence, we obtain an explicit presentation of the
3-loop polynomial of D(K,K ′) by using Vassiliev invariants of K and K ′ up to degree 4.
When we consider the sl2 reduction of the Kontsevich invariant of knots, we can get the
colored Jones polynomial of knots. In Proposition 7.2, we calculate the 3-loop part of the
colored Jones polynomial. In addition, by considering the Duflo isomorphism, we can get
the connected sum formula for the 3-loop polynomial of any knots.

This paper is organized as follows. In Section 2, we review the Kontsevich invariant and
its loop expansion. In addition, we define the 3-loop polynomial of a knot, and we define
knots D(K,K ′), which are obtained by plumbing the doubles of two knots. In Section 3,
we state the main theorem of this paper; we present the 3-loop polynomial ofD(K,K ′). As
its corollary, we present the 3-loop polynomial of untwisted Whitehead doubles of knots.
In Section 4, we state some properties of the 3-loop part of the Kontsevich invariant
without proofs, and we state the connected sum formula for the 3-loop polynomial. The
proof of the connected sum formula for the 3-loop polynomial is given in Appendix. In
Section 5, for the proof of the main theorem, we review the rational version of the Aarhus
integral. In Section 6, we prove the main theorem. In Section 7, we calculate the 3-loop
part of the colored Jones polynomial. Other topics are mentioned in Appendix.

The author would like to thank Advisor Tomotada Ohtsuki for encouragement and
valuable discussions and comments, and Professor Andrew Kricker for stimulating discus-
sions and comments.

2 The Kontsevich invariant and its loop expansion

In this section, we review the Kontsevich invariant and we define the 3-loop polynomial
of knots. For details, see [14],[15].

Let X be an oriented compact manifold. A Jacobi diagram on X is an uni-trivalent
graph such that univalent vertices are distinct points of X, and a cyclic order of the
three edges around each trivalent vertex is fixed, in other words, each trivalent vertex
is vertex-oriented. When we draw a Jacobi diagram on X, we draw X by thick lines
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and uni-trivalent graphs by thin lines, and each trivalent vertex is vertex-oriented in the
counterclockwise order. Furthermore, we define the degree of a Jacobi diagram to be half
the number of all vertices of the graph of the Jacobi diagram. We define A(X) to be
the quotient vector space spanned by Jacobi diagrams on X subject to the AS, IHX, and
STU relations.

the AS relation :                               =  －

the IHX relation :    =                   －

the STU relation :                      =                     －

Note that we get some equations by the above relations;

It is known, see [14],[15], that A(S1) forms a commutative algebra whose product is
given by connected sum of copies of S1, and A(↓) also forms a commutative algebra
whose product is given by connecting copies of ↓. We can see that A(S1) and A(↓) are
naturally isomorphic as commutative algebras by the isomorphism given by connecting
two end points of ↓. An open Jacobi diagram is a vertex-oriented uni-trivalent graphs.
We call outward pointing edges that end in a univalent vertex a leg. We define B to be
the quotient vector space spanned by Jacobi diagrams subject to the AS, IHX relations.
B forms a commutative algebra whose product is given by disjoint union. The PBW
isomorphism χ : B → A(↓) is defined by

D D
χ

for any diagram D ∈ B, where the box means the symmetrizer,
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n lines

= (                                                            )＋ ＋ ＋
…

.

Note that PBW isomorphism is not an algebra isomorphism.
The Kontsevich invariant Z(K) of a knot K is defined to be in A(S1)(∼= A(↓)); for

details, see [14],[15]. Note that Z(K) and χ−1Z(K) are group-like, which means that they
are exponentials of series of connected diagrams. The loop expansion of the Kontsevich
invariant of knot K is a presentation of the following form ([7],[10],[14]),

log(χ−1Z(K)) =

+
finite∑
i

+
finite∑
i

+ (terms of (> 3)-loop part),

where ∆K(t) denotes the Alexander polynomial, and pi,j(e
h) and qi,j(e

h) are polynomials
in e±h. Here, a labeling of f(h) = c0 + c1h+ c2h

2 + c3h
3 + · · · implies that ,

= + + + + …

.
.

Note that

=

,

by the AS relation. Further, we note that

= χ−1ν,

where we denote ν = Z(unknot) ∈ A(S1). Then, we define the 3-loop polynomial of K
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by

ΛK(t1, t2, t3, t4)

=
∑
i

τ∈S4

qi,1(t
sgnτ
τ(1) t

−sgnτ
τ(4) )qi,2(t

sgnτ
τ(2) t

−sgnτ
τ(4) )qi,3(t

sgnτ
τ(3) t

−sgnτ
τ(4) )qi,4(t

sgnτ
τ(2) t

−sgnτ
τ(3) )qi,5(t

sgnτ
τ(3) t

−sgnτ
τ(1) )qi,6(t

sgnτ
τ(1) t

−sgnτ
τ(2) )

∈ Q[t±1
1 , t±1

2 , t±1
3 , t±1

4 ]/(S4, t1t2t3t4 = 1).

For details about the 3-loop part of the Kontsevich invariant, see Section 4.1.

3 The 3-loop polynomial of D(K,K ′)

In this section, we define D(K,K ′), which are genus 1 knots with trivial Alexander
polynomial, and we state the main theorem of this paper.

Let K be a 0-framed knot, and let K ′ be a k-framed knot (k ∈ Z). Let D, D′ be
1-tangles whose closures are K, K ′, respectively, noting that isotopy classes of D and D′

are uniquely determined by K and K ′.

(0-framing) (k-framing)

D D'

(1)

We define D(K,K ′) to be the following knot,

where D(2) and D′(2) are the doubles of D and D′, respectively. We can obtain D(K,K ′)
by plumbing of the doubles of K and K ′, noting that D(K,K ′) is a genus 1 knot with
trivial Alexander polynomial.

The Kontsevich invariants of K and K ′ can be presented by

Z(K) = ν#exp
(
a2 + a3 + a4

+ (linear sum of diagrams with more than 4 trivalent vertices)
)
∈ A(S1), (2)
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Z(K ′) = ν#exp
(k
2

+ a′2 +
( linear sum of diagrams
with more than
2 trivalent vertices

))
∈ A(S1),

(3)

where ai is a degree i Vassiliev invariant of K, and a′i is a degree i Vassiliev invariant of
K ′.

Now, we state the main theorem of this paper. We put um,n = tmt
−1
n + t−1

m tn − 2 and
vm,n = tmt

−1
n − t−1

m tn (m,n ∈ {1, 2, 3, 4})

Theorem 3.1. Let K and K ′ be knots as shown in (1), and assume that their Kontse-
vich invariants are presented as in (2), (3). Then, the 3-loop polynomial of D(K,K ′) is
presented by

ΛD(K,K′)(t1, t2, t3, t4)

= (−16a2a
′
2 − k2a2 − 8ka3)(u1,2 + u1,3 + u1,4 + u2,3 + u2,4 + u3,4)

+ (−k
2a2
12

+ 4k2a4)(u1,4u2,4 + u1,4u3,4 + u2,4u3,4 + u1,3u2,3 + u1,3u4,3 + u2,3u4,3

+ u1,2u3,2 + u1,2u4,2 + u3,2u4,2 + u2,1u3,1 + u2,1u4,1 + u3,1u4,1)

+ 24k2a4(u1,2u3,4 + u1,3u2,4 + u1,4u2,3)

+ 8k2a22(u
2
1,2 + u21,3 + u21,4 + u22,3 + u22,4 + u23,4)

− k2a2
4

(v1,4v2,4 + v1,4v3,4 + v2,4v3,4 + v1,3v2,3 + v1,3v4,3 + v2,3v4,3

+ v1,2v3,2 + v1,2v4,2 + v3,2v4,2 + v2,1v3,1 + v2,1v4,1 + v3,1v4,1)

∈ Q[t±1
1 , t±1

2 , t±1
3 , t±1

4 ]/(S4, t1t2t3t4 = 1).

We prove the theorem in Section 6.
We put

T1,3 = t1t
3
2 + t1t

3
3 + t2t

3
1 + t2t

3
3 + t3t

3
1 + t3t

3
2

+ t21t
−1
2 t−1

3 + t22t
−1
1 t−1

3 + t23t
−1
1 t−1

2 + t−2
1 t−3

2 t−3
3 + t−2

2 t−3
1 t−3

3 + t−2
3 t−3

1 t−3
2 ,

T2,2 = t21t
2
2 + t22t

2
3 + t23t

2
1 + t−2

1 t−2
2 + t−2

2 t−2
3 + t−2

3 t−2
1 ,

T1,1,2 = t1t2t
2
3 + t2t3t

2
1 + t3t1t

2
2 + t−1

1 t−1
2 t−2

3 + t−1
2 t−1

3 t−2
1 + t−1

3 t−1
1 t−2

2

+ t1t
−1
2 + t1t

−1
3 + t2t

−1
1 + t2t

−1
3 + t3t

−1
1 + t3t

−1
2 ,

T2,2,4 = t21t
2
2t

4
3 + t22t

2
3t

4
1 + t23t

2
1t

4
2 + t−2

1 t−2
2 t−4

3 + t−2
2 t−2

3 t−4
1 + t−2

3 t−2
1 t−4

2

+ t21t
−2
2 + t21t

−2
3 + t22t

−2
1 + t22t

−2
3 + t23t

−2
1 + t23t

−2
2 ,

T2,3,3 = t21t
3
2t

3
3 + t22t

3
3t

3
1 + t23t

3
1t

3
2 + t1t2t

−2
3 + t2t3t

−2
1 + t3t1t

−2
2

+ t−1
1 t−3

2 + t−1
1 t−3

3 + t−1
2 t−3

1 + t−1
2 t−3

3 + t−1
3 t−3

1 + t−1
3 t−3

2 .
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Then,

u1,2 + u1,3 + u1,4 + u2,3 + u2,4 + u3,4 = T1,1,2 − 6,

u1,4u2,4 + u1,4u3,4 + u2,4u3,4 + u1,3u2,3 + u1,3u4,3 + u2,3u4,3

+ u1,2u3,2 + u1,2u4,2 + u3,2u4,2 + u2,1u3,1 + u2,1u4,1 + u3,1u4,1

= T2,3,3 + T1,3 − 6T1,1,2 + 4,

u1,2u3,4 + u1,3u2,4 + u1,4u2,3 = T2,2 − 2T1,1,2 + 4,

u21,2 + u21,3 + u21,4 + u22,3 + u22,4 + u23,4 = T2,2,4 − 4T1,1,2 + 6,

v1,4v2,4 + v1,4v3,4 + v2,4v3,4 + v1,3v2,3 + v1,3v4,3 + v2,3v4,3

+ v1,2v3,2 + v1,2v4,2 + v3,2v4,2 + v2,1v3,1 + v2,1v4,1 + v3,1v4,1

= T2,3,3 + T1,3 − 2T1,1,2.

Remark 3.2. The formula of Theorem 3.1 is rewritten,

ΛD(K,K′)(t1, t2, t3, t4)

= (−16a2a
′
2 − 32k2a22 − 8ka3 − 72k2a4)T1,1,2 + 8k2a22T2,2,4

+ (−k
2a2
3

+ 4k2a4)T2,3,3 + (−k
2a2
3

+ 4k2a4)T1,3 + 24k2a4T2,2

− 96a2a
′
2 + 48k2a22 +

17k2a2
3

+ 48ka3 + 112k2a4

∈ Q[t±1
1 , t±1

2 , t±1
3 , t±1

4 ]/(S4, t1t2t3t4 = 1).

In particular, we can get the 3-loop polynomial of untwisted Whitehead double of K.
We denote it by Wh±(K).

Here, D is a 1-tangle whose closure is K as shown in (1).
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Corollary 3.3. The 3-loop polynomial of Wh±(K) is presented by

ΛWh±(K)(t1, t2, t3, t4)

= (−a2 ± 8a3)(u1,2 + u1,3 + u1,4 + u2,3 + u2,4 + u3,4)

+ (−a2
12

+ 4a4)(u1,4u2,4 + u1,4u3,4 + u2,4u3,4 + u1,3u2,3 + u1,3u4,3 + u2,3u4,3

+ u1,2u3,2 + u1,2u4,2 + u3,2u4,2 + u2,1u3,1 + u2,1u4,1 + u3,1u4,1)

+ 24a4(u1,2u3,4 + u1,3u2,4 + u1,4u2,3)

+ 8a22(u
2
1,2 + u21,3 + u21,4 + u22,3 + u22,4 + u23,4)

− a2
4
(v1,4v2,4 + v1,4v3,4 + v2,4v3,4 + v1,3v2,3 + v1,3v4,3 + v2,3v4,3

+ v1,2v3,2 + v1,2v4,2 + v3,2v4,2 + v2,1v3,1 + v2,1v4,1 + v3,1v4,1)

∈ Q[t±1
1 , t±1

2 , t±1
3 , t±1

4 ]/(S4, t1t2t3t4 = 1).

The corollary immediately follows from Theorem 3.1.

Remark 3.4. As in Remark 3.2, the formula of Theorem 3.3 is rewritten,

ΛWh±(K)(t1, t2, t3, t4)

= (−32a22 ± 8a3 − 72a4)T1,1,2 + 8a22T2,2,4

+ (−a2
3

+ 4a4)T2,3,3 + (−a2
3

+ 4a4)T1,3 + 24a4T2,2

+ 48a22 +
17a2
3

∓ 48ka3 + 112a4

∈ Q[t±1
1 , t±1

2 , t±1
3 , t±1

4 ]/(S4, t1t2t3t4 = 1).

Remark 3.5. It is known ([24]) that Z(K) is presented by

Z(K) = ν#exp
(
− 1

2
c2 − 1

24
j3 +

1

24
(−12c4 + 6c22 − c2)

+ (linear sum of diagrams with more than 4 trivalent vertices)
)
,

where cn are coefficient of the Conway polynomial ∇K(z) =
∑
cnz

n and jn are coefficient
of the Jones polynomial JK(e

t) =
∑
jnt

n. Note that the Conway polynomial is defined

by ∇K(t
1
2 − t−

1
2 ) = ∆K(t). Therefore we can get

a2 = −1

2
c2, a3 = − 1

24
j3, a4 =

1

24
(−12c4 + 6c22 − c2)
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Example 3.6. As an example, we calculate the 3-loop polynomial of the untwisted White-
head double of (2, 2n+1) torus knots, T (2, 2n+1). We consider the untwisted Whitehead
double of them, Wh±

(
T (2, 2n+ 1)

)
. It can be shown by using the skein relation that

∇T (2,2n+1)(z) =
n∑

j=0

(
n+ j

2j

)
z2j, JT (2,2n+1)(t) =

tn − tn+3 − t3n+2 + t3n+3

1− t2
,

and so

c2 =
n(n+ 1)

2
, c4 =

(n+ 2)(n+ 1)n(n− 1)

24
, j3 = −n(n+ 1)(2n+ 1).

From this, we get

Z
(
T (2, 2n+ 1)

)
= ν#exp

(
− n(n+ 1)

4
+
n(n+ 1)(2n+ 1)

24
+
n(n+ 1)(2n2 + 2n+ 1)

48

+ (linear sum of diagrams with more than 4 trivalent vertices)
)
.

Therefore

ΛWh±(T (2,2n+1))(t1, t2, t3, t4)

=
n(n+ 1)

12

(
3± (8n+ 4)

)
(u1,2 + u1,3 + u1,4 + u2,3 + u2,4 + u3,4)

+
n(n+ 1)(8n2 + 8n+ 5)

48
(u1,4u2,4 + u1,4u3,4 + u2,4u3,4 + u1,3u2,3 + u1,3u4,3 + u2,3u4,3

+ u1,2u3,2 + u1,2u4,2 + u3,2u4,2 + u2,1u3,1 + u2,1u4,1 + u3,1u4,1)

+
n(n+ 1)(2n2 + 2n+ 1)

2
(u1,2u3,4 + u1,3u2,4 + u1,4u2,3)

+
n2(n+ 1)2

2
(u21,2 + u21,3 + u21,4 + u22,3 + u22,4 + u23,4)

+
n(n+ 1)

16
(v1,4v2,4 + v1,4v3,4 + v2,4v3,4 + v1,3v2,3 + v1,3v4,3 + v2,3v4,3

+ v1,2v3,2 + v1,2v4,2 + v3,2v4,2 + v2,1v3,1 + v2,1v4,1 + v3,1v4,1)

∈ Q[t±1
1 , t±1

2 , t±1
3 , t±1

4 ]/(S4, t1t2t3t4 = 1).
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4 Some properties of the 3-loop part of the Kontsevich invariant
and the 3-loop polynomial

4.1 The 3-loop part of Kontsevich invariant

In this section, we state some properties of the 3-loop part of the Kontsevich invariant.
We omit proofs, and for details, see [18].

Let Bconn be the subspace of B spanned by connected diagrams, and let B(3-loop)
conn be

the subspace of Bconn spanned by 3-loop open Jacobi diagrams. It is known ([18]) that

any elements in B(3-loop)
conn can be presented by the linear combination of diagrams of the

following form,

(4)

such that n1+n2+n3+n4+n5+n6 is an even number (If it is an odd number, the Jacobi
diagram equal to 0). We can correspond the diagram (4) to hn1

1 h
n2
2 h

n3
3 h

n4
4 h

n5
5 h

n6
6 . These

variables satisfy that

h1 − h2 − h6 = 0, h1 − h3 + h5 = 0, h4 + h5 + h6 = 0. (5)

Here, we regard as a tetrahedron, and introduce new variables corre-

sponding with faces of the tetrahedron,

x1 = h1 − h5 + h6, x2 = h2 + h4 − h6, x3 = h3 − h4 + h5, x4 = −h1 − h2 − h3. (6)

By definition, these variables satisfy that x1 + x2 + x3 + x4 = 0. Therefore, we get the
following isomorphism,

B(3-loop)
conn

∼= (C[x1, x2, x3, x4]/(x1 + x2 + x3 + x4 = 0)) /S4,

where the action of τ ∈ S4 takes a polynomial f(x1, x2, x3, x4) to
f((sgnτ)xτ(1), (sgnτ)xτ(2), (sgnτ)xτ(3), (sgnτ)xτ(4)). Therefore,

B(3-loop)
conn

∼= C[σ2, σ2
3, σ4]

where σi is the elementary symmetric polynomial of degree i. By (5), (6),

h1 =
x1 − x4

4
, h2 =

x2 − x4
4

, h3 =
x3 − x4

4
,

h4 =
x2 − x3

4
, h5 =

x3 − x1
4

, h6 =
x1 − x2

4
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so, we can correspond the diagram (4) to(
x1 − x4

4

)n1
(
x2 − x4

4

)n2
(
x3 − x4

4

)n3
(
x2 − x3

4

)n4
(
x3 − x1

4

)n5
(
x1 − x2

4

)n6

.

Note that there is a injection map

(C[t±1
1 , t±2

2 , t±3
3 , t±4

4 ]/(t1t2t3t4 = 1))/S4 ↪→ (C[[x1, x2, x3, x4]]/(x1 + x2 + x3 + x4 = 0)) /S4

ti 7→ exi/4

where (C[[x1, x2, x3, x4]]/(x1 + x2 + x3 + x4 = 0)) /S4 is the completion of
(C[x1, x2, x3, x4]/(x1 + x2 + x3 + x4 = 0)) /S4 with respect to the degree. Therefore we
put ti = exi/4 (i = 1, 2, 3, 4), then we can get the definition of the 3-loop polynomial as
in Section 2.

4.2 A connected sum formula for the 3-loop polynomial

In this section, we state a connected sum formula for the 3-loop polynomial.
Let K1, K2 be 0-framing knots, and let K1#K2 be their connected sum. We denote

f(x) =
1

2
log

sinh(x/2)

x/2
, gj(x) =

1

2
log∆Kj

(ex),

g(x) =
1

2
log∆K1#K2(e

x) = g1(x) + g2(x),

where ∆Kj
(t) is the Alexander polynomial of Kj. We denote

χ−1Z(K1) = exp
(

+ γ
(2)
1 + γ

(3)
1

+ (linear sum of diagrams with more than 4 trivalent vertices)
)
,

χ−1Z(K2) = exp
(

+ γ
(2)
2 + γ

(3)
2

+ (linear sum of diagrams with more than 4 trivalent vertices)
)
,

where γ
(2)
j , γ

(3)
j is the 2, 3-loop part of Kj, respectively.

11



Proposition 4.1. We can get

χ−1Z(K1#K2) = exp
(

+ γ
(2)
1 + γ

(2)
2 + γ

(3)
1 + γ

(3)
2

+
1

6
+

1

6

+ (linear sum of diagrams with more than 4 trivalent vertices)
)
.

When the 3-loop part of Kj is presented by

Z(3-loop)(Kj) =
∑
i

,

the 3-loop polynomial of Kj is given by

ΛKj
(t1, t2, t3, t4)

=
∑
i

τ∈S4

q
(j)
i,1 (t

sgnτ
τ(1) t

−sgnτ
τ(4) )q

(j)
i,2 (t

sgnτ
τ(2) t

−sgnτ
τ(4) )q

(j)
i,3 (t

sgnτ
τ(3) t

−sgnτ
τ(4) )q

(j)
i,4 (t

sgnτ
τ(2) t

−sgnτ
τ(3) )q

(j)
i,5 (t

sgnτ
τ(3) t

−sgnτ
τ(1) )q

(j)
i,6 (t

sgnτ
τ(1) t

−sgnτ
τ(2) )

∈ Q[t±1
1 , t±1

2 , t±1
3 , t±1

4 ]/(S4, t1t2t3t4 = 1) (j = 1, 2),

as in Section 2.
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Corollary 4.2. We get the 3-loop polynomial of K1#K2 as follows,

ΛK1#K2(t1, t2, t3, t4)

=
∑
i

τ∈S4

q
(1)
i,1 (tτ(1)t

−1
τ(4))q

(1)
i,2 (tτ(2)t

−1
τ(4))q

(1)
i,3 (tτ(3)t

−1
τ(4))q

(1)
i,4 (tτ(2)t

−1
τ(3))q

(1)
i,5 (tτ(3)t

−1
τ(1))q

(1)
i,6 (tτ(1)t

−1
τ(2))

×∆K2(tτ(1)t
−1
τ(4))∆K2(tτ(2)t

−1
τ(4))∆K2(tτ(3)t

−1
τ(4))∆K2(tτ(2)t

−1
τ(3))∆K2(tτ(3)t

−1
τ(1))∆K2(tτ(1)t

−1
τ(2))

+
∑
i

τ∈S4

q
(2)
i,1 (tτ(1)t

−1
τ(4))q

(2)
i,2 (tτ(2)t

−1
τ(4))q

(2)
i,3 (tτ(3)t

−1
τ(4))q

(2)
i,4 (tτ(2)t

−1
τ(3))q

(2)
i,5 (tτ(3)t

−1
τ(1))q

(2)
i,6 (tτ(1)t

−1
τ(2))

×∆K1(tτ(1)t
−1
τ(4))∆K1(tτ(2)t

−1
τ(4))∆K1(tτ(3)t

−1
τ(4))∆K1(tτ(2)t

−1
τ(3))∆K1(tτ(3)t

−1
τ(1))∆K1(tτ(1)t

−1
τ(2))

+
∑
τ∈S4

1

24
tτ(1)tτ(2)t

−2
τ(4)

×∆′
K1
(tτ(1)t

−1
τ(4))∆K1(tτ(2)t

−1
τ(4))∆K1(tτ(3)t

−1
τ(4))∆K1(tτ(2)t

−1
τ(3))∆K1(tτ(3)t

−1
τ(1))∆K1(tτ(1)t

−1
τ(2))

×∆K2(tτ(1)t
−1
τ(4))∆

′
K2
(tτ(2)t

−1
τ(4))∆K2(tτ(3)t

−1
τ(4))∆K2(tτ(2)t

−1
τ(3))∆K2(tτ(3)t

−1
τ(1))∆K2(tτ(1)t

−1
τ(2))

+
∑
τ∈S4

1

24
tτ(1)t

−1
τ(2)tτ(3)t

−1
τ(4)

×∆K1(tτ(1)t
−1
τ(4))∆K1(tτ(2)t

−1
τ(4))∆

′
K1
(tτ(3)t

−1
τ(4))∆K1(tτ(2)t

−1
τ(3))∆K1(tτ(3)t

−1
τ(1))∆K1(tτ(1)t

−1
τ(2))

×∆K2(tτ(1)t
−1
τ(4))∆K2(tτ(2)t

−1
τ(4))∆K2(tτ(3)t

−1
τ(4))∆K2(tτ(2)t

−1
τ(3))∆K2(tτ(3)t

−1
τ(1))∆

′
K2
(tτ(1)t

−1
τ(2))

∈ Q[t±1
1 , t±1

2 , t±1
3 , t±1

4 ]/(S4, t1t2t3t4 = 1).

In particular, if ∆K1(t) = ∆K2(t) = 1, then

ΛK1#K2(t1, t2, t3, t4) = ΛK1(t1, t2, t3, t4) + ΛK2(t1, t2, t3, t4).

For the proof of Proposition 4.1, see Appendix.
For example, we can get

ΛD(K1,K′
1)#D(K2,K′

2)
(t1, t2, t3, t4) = ΛD(K1,K′

1)
(t1, t2, t3, t4) + ΛD(K2,K′

2)
(t1, t2, t3, t4),

whereKj is a 0-framing knot andK ′
j is a kj-framing knot (kj ∈ Z, j = 1, 2), andD(Kj, K

′
j)

is the knot defined in Section 3. In a similar way, we can get the 3-loop polynomial of∑g
j=1D(Kj, K

′
j).

5 The rational version of the Aarhus integral and a computation
of the loop expansion

In this section, we review how to compute the loop expansion. Along this, we calculate
the 3-loop polynomial. For details, see for example, [7], [10].
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In the following of this paper, we represent “exponential” by , for example;

c

=

c

= ∅+
c

+
1

2

c c

+ · · · ,

c

=
c

= +
c

+
1

2

c

c + · · · .

Further, we write α ≡
(m+1)

β (α and β are Jacobi diagrams) if α − β can be presented by

a linear sum of Jacobi diagrams with more than m trivalent vertices, where we do not
count trivalent vertices generated by attached power series. When m = 4, we write “≡”
instead of “≡

(5)
”. If a uni-trivalent graph has m trivalent vertices, we can put it anywhere

modulo “ ≡
(m+1)

”, so we can write them separately, for example,

Z


z w

wz

(               ) (               )

(               )(               )

 ≡
(3)

-1

z wz w

×

1 +
1

24
w w

z z  .

Let K be a 0-framed knot in S3. It is known that K has a surgery presentation K0∪L,
such that K0 is isotopic to the unknot with 0 framing and L is a (l-components) framed
link, and the linking number of K0 and the each component of L is equal to 0, and the
pair obtained from the pair (S3, K0) by surgery along L is homeomorphic to (S3, K).
We can obtain the loop expansion of the Kontsevich invariant of K from the Kontsevich
invariant of K0 ∪ L, in the following way ([10]). Let A(∗X) be the space of open Jacobi
diagrams whose legs are labeled by elements of a set X.

Step 1 Compute the χ−1
h Z(K0 ∪ L)

We label the component corresponding to K0 by h, and label the components corre-
sponding to L by the set X = {x1, x2, · · · , xl}. Then, we compute χ−1

h Z(K0 ∪ L), where
χh : A(∗h ⊔

⊔
X S

1) → A(↓h ⊔
⊔

X S
1) ∼= A(S1

h ⊔
⊔

X S
1). As in [5], we note that

χ−1
h Z


 = ⊔ χ−1ν.

14



We put t = eh, and we write again (omitting χ−1ν for simplicity, because it does not
contribute to the 3-loop part),

χ−1
h Z


 = .

Step 2 Compute the χ−1Ž(K0 ∪ L)
χ−1
h Ž(K0 ∪ L) is obtained from χ−1

h Z(K0 ∪ L) by connected-summing by ν to each com-
ponent labeling by a component of X, where we denote ν = Z(unknot) ∈ A(↓). Note

that ν ≡
(3)

+
1

48
. Then, we compute χ−1

X χ−1
h Ž(K0∪L), where we choose a disjoint

union of the unknot and a string link K0 ∪ Ľ whose closure is isotopic to K0 ∪ L, and
χX : A(∗X) → A(

⊔
X ↓). We denote it by χ−1Ž(K0 ∪ L).

Step 3 Compute the rational version of the Aarhus integral (see [1], [2], [3], [10])
The Kontsevich invariant of K is computed by the rational version of the Aarhus integral
as follows,

χ−1Z(K) = χ−1ZLMO(S3, K)

= exp


 ⊔ ⟨⟨χ−1Ž(K0 ∪ L)⟩⟩

⟨⟨χ−1Ž(U+)⟩⟩σ+⟨⟨χ−1Ž(U−)⟩⟩σ−
,

where U± denotes the unknot with ±1 framing, and σ+ and σ− are the number of the
positive and negative eigenvalues of the linking matrix of L. “⟨⟨ ⟩⟩” is defined as follows.
It is known that χ−1Ž(K0 ∪ L) is presented by

χ−1Ž(K0 ∪ L) = exp
(1
2

∑
xi,xj∈X

)
∪ P

(
χ−1Ž(K0 ∪ L)

)
, (7)

where
(
lij(t)

)
is an equivariant linking matrix of L ⊂ S3\K0 satisfying that lji(t) =

lij(t
−1), and P

(
χ−1Ž(K0 ∪ L)

)
is a sum of diagrams which have at least one trivalent

vertex on each component. Then,

⟨⟨χ−1Ž(K0 ∪ L)⟩⟩ =
⟨
exp

(
− 1

2

∑
xi,xj∈X

)
, P
(
χ−1Ž(K0 ∪ L)

)⟩
, (8)

15



where
(
lij(t)

)
=
(
lij(t)

)−1
, and ⟨ , ⟩ is defined by

⟨C1, C2⟩ =
(

sum of all ways gluing the x-marked legs of C1

to the x-marked legs of C2 for all x ∈ X

)
. (9)

For details, see [1]. Note ([6]) that

⟨⟨χ−1Ž(U±)⟩⟩ = ⟨χ−1ν, χ−1ν⟩−1 exp

(
∓ 1

16

)
≡
(3)

exp

(
∓ 1

16

)
. (10)

From this, we can compute the loop expansion of the Kontsevich invariant of K, and we
get

the 3-loop part of χ−1Z(K)

= the 3-loop part of
⟨⟨χ−1Ž(K0 ∪ L)⟩⟩

⟨⟨χ−1Ž(U+)⟩⟩σ+⟨⟨χ−1Ž(U−)⟩⟩σ−
.

Then, we obtain the 3-loop polynomial ΛK(t1, t2, t3, t4).

6 The proof of Theorem 3.1

In this section, we prove Theorem 3.1.

Proof of Theorem 3.1. By handle slide, we can show that

= =

(surgery along the link drawn by thin lines),

16



so we get the following surgery presentation,

=

=

x y

z w

= K0 ∪ L,

where K0 is depicted by a thick line, and L is depicted by thin lines. We put

D0 = , and K0 ∪ L0 =

x y

z w

.

We can see that K0 ∪L0 is equal to the surgery presentation of D(unknot, K ′) = unknot,
so its 3-loop part is equals to 0. In addition, linking matrices of L and L0 are equal, and
α
(
in (17) below

)
are common for L and L0. Thus, we get

the 3-loop part of
⟨⟨χ−1Ž

(
K0 ∪ L)⟩⟩

⟨⟨χ−1Ž(U+)⟩⟩σ+⟨⟨χ−1Ž(U−)⟩⟩σ−

= the 3-loop part of
⟨⟨χ−1Ž

(
K0 ∪ L)− χ−1Ž

(
K0 ∪ L0)⟩⟩

⟨⟨χ−1Ž(U+)⟩⟩σ+⟨⟨χ−1Ž(U−)⟩⟩σ−
.

Then we calculate χ−1Ž(K0 ∪ L)− χ−1Ž(K0 ∪ L0). First, we calculate χ−1
h Z(K0 ∪ L)−

χ−1
h Z(K0 ∪ L0) by decomposing into the following parts. We note that each term of the

formula of (11) below has at least 2 trivalent vertices, so it is sufficient to calculate other
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parts modulo “≡
(3)
”.

Z(D)− Z(D0) = Z(K)#ν−1 − Z(D0)

≡ exp

a2 + a3 + a4

−

≡ a2 + ×

a3
x

x

+ a4

x x

x x

+
1

2
a22

x

x

x

x

 , (11)

Z(D′) = Z(K ′)#ν−1 ≡
(3)

exp

k2 + a′2

 = ×

1 + a′2
x

x  ,

(12)

Z


(             )

x
 ≡

(3)

x

×

1 +
1

96
x

x  , (13)

Z


(               )

(               )

x

z

 ≡
(3)

x

z

×

1 +
1

96
x

x

+
1

96
z

z

− 1

24

x x

z z

 ,

(14)

Z


z w

wz

(               ) (               )

(               )(               )

 ≡
(3)

-1

z wz w

×

1 +
1

24
w w

z z  , (15)

χ−1
h Z


(               ) (               )

z w

 ≡
(3)

tz w ×

1 +
1

96
z

z

+
1

96

w

w

− 1

24

z z

t t

w w

 .

(16)
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Then, by (13), (14), (15), (16), we get

χ−1
h Z(K0 ∪ L)− χ−1

h Z(K0 ∪ L0)

≡

x y

z w

(             ) (             )

×

1 +
1

96
x

x

+
1

96
y

y


≡
-1

t

x y

z w

× (1 + β0),

where

β0 =
1

48
x

x

+
1

48
y

y

+
1

48
z

z

+
1

48

w

w

− 1

24

x x

z z

− 1

24

y y

w w

+
1

24
w w

z z

− 1

24

z z

t t

w w

.

Hence, by (11), (12),

χ−1
h Z(K0 ∪ L)− χ−1

h Z(K0 ∪ L0)

≡ a2

k/2

-1

t

x y

z w

+

k/2

-1

t

x y

z w

× (β′
0 + β1),
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where

β′
0 = a2

x

x

⊔ β0

β1 = a2a
′
2

x

x

y

y

+ a3

x

x

+ a4

x x

x x

+
1

2
a22

x

x

x

x

.

Next, we calculate χ−1
h Ž(K0 ∪ L)− χ−1

h Ž(K0 ∪ L0). Recall that ν ≡
(3)

+
1

48
, so

χ−1
h Ž(K0 ∪ L)− χ−1

h Ž(K0 ∪ L0)

=
(
χ−1
h Z(K0 ∪ L)− χ−1

h Z(K0 ∪ L0)
)
#ν⊗4

≡
(
χ−1
h Z(K0 ∪ L)− χ−1

h Z(K0 ∪ L0)
)
×

1 +
1

48
x

x

+
1

48
y

y

+
1

48
z

z

+
1

48

w

w



≡ a2

k/2

-1

t

x y

z w

+

k/2

-1

t

x y

z w

× (β′′
0 + β1),

where

β′′
0 = a2

x

x

⊔

 1

24
x

x

+
1

24
y

y

+
1

24
z

z

+
1

24

w

w

− 1

24

x x

z z

− 1

24

y y

w w

+
1

24
w w

z z

− 1

24

z z

t t

w w

 .

Then, we get

χ−1Ž(K0 ∪ L)− χ−1Ž(K0 ∪ L0)

= χ−1
x,y,z,w

(
χ−1
h Ž(K0 ∪ L)− χ−1

h Ž(K0 ∪ L0)
)
20



≡ χ−1
x,y,z,w


a2

k/2

-1

t

x y

z w


+ χ−1

x,y,z,w



k/2

-1

t

x y

z w

× (β′′
0 + β1)


.

It is known [17] that

y

w

c
≡
(3)

y

w

c

y

y

×

1 +
1

8
w

y

− 1

12

y y

w w

+
c2

12
y

y

+
c

6
w

y

− c

12

y y

w w

 ,

where c is a scalar. Hence, by the above formula and Lemma 6.2 below,

χ−1
x,y


a2

k/2

-1

t

x y

z w


≡

k/2

-1

t

x

y

z w

y

y

×

a2
x

x

+ β2

 ,

where

β2 = a2
x

x

⊔

1

8
z

x

− 1

12

x x

z z

− a2
12

x

z

x

z

+
a2
6

x

z

,

+ a2
x

x

⊔

1

8
w

y

− 1

12

y y

w w

+
k2

48
y

y

+
k

12
w

y

− k

24

y y

w w

 .

21



Moreover, it is known [17] that

z

w

x y

∼
(3)

z

w

x y

z

w

×

1 +
1

8
w

z

t+1

+
1

12
w w

z z

− 1

12

z z

t t

w w

− 1

4

z y

w w

t

+
1

24

x x

z w

t-1
+

1

24

y y

z w

t-1
+

1

24

z z z

w

t
2t-1

+
1

24

z

w w w

t
2t-1

 .

For the notation “ ∼
(m+1)

”, see Remark 6.1 below. Therefore we get

χ−1
x,y,z,w


a2

k/2

-1

t

x y

z w


≡ χ−1

z,w



k/2

-1

t

x

y

z w

y

y

×

a2
x

x

+ β2





∼
(5)
α ⊔

a2
x

x

+ β2 + β3

 ,

where

α =
x y y yz zw w

, (17)

β3 = a2
x

x

⊔

1

8
w

z

t+1

+
1

12
w w

z z

− 1

12

z z

t t

w w

− 1

4

z y

w w

t

+
1

24

x x

z w

t-1
+

1

24

y y

z w

t-1
+

1

24

z z z

w

t
2t-1

+
1

24

z

w w w

t
2t-1

 .
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In addition, we get

χ−1
x,y,z,w



k/2

-1

t

x y

z w

× (β′′
0 + β1)


≡ α ⊔ (β′′

0 + β1).

Thus, we obtain

χ−1Ž(K0 ∪ L)− χ−1Ž(K0 ∪ L0) ≡ α ⊔

a2
x

x

+ β′′
0 + β1 + β2 + β3

 ,

where, putting x1 = x, x2 = y, x3 = z, x4 = w, the formula (7) is written in the following
form,

exp
(1
2

∑
xi,xj∈X

)
= α,

P
(
χ−1Ž(K0 ∪ L)− χ−1Ž(K0 ∪ L0)

)
≡ a2

x

x

+ β′′
0 + β1 + β2 + β3.

The equivariant linking matrix
(
lij(t)

)
of L ⊂ S3\K0 (and L0 ⊂ S3\K0) is given by

(
lij(t)

)
=


0 0 1 0
0 k 0 1
1 0 0 t− 1
0 1 t−1 − 1 0

 .

Hence,

−1

2

(
lij(t)

)
=

1

2


−k(t+ t−1 − 2) t− 1 −1 −k(t− 1)

t−1 − 1 0 0 −1
−1 0 0 0

−k(t−1 − 1) −1 0 k

 .

We put

α̂ = exp
(
− 1

2

∑
xi,xj∈X

)
=

xxx

xxxxx

yy

yy

z

z

wwww

ww

.
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Then, we obtain the 3-loop part of χ−1Z
(
D(K,K ′)

)
from above Kontsevich invariants

using the rational version of the Aarhus integral. By (8), we get

⟨⟨χ−1Ž(K0 ∪ L)− χ−1Ž(K0 ∪ L0)⟩⟩ ≡
⟨
α̂, a2

x

x

+ β′′
0 + β1 + β2 + β3

⟩
.

Note that
⟨
α̂, a2

x

x

+β′′
0 +β1+β2+β3

⟩
contains only diagrams with at least 2 trivalent

vertices. So, we calculate the normalization term modulo “≡
(3)
”. In our case, σ+ = σ− = 2,

so we get by (10)

⟨⟨χ−1Ž(U+)⟩⟩σ+⟨⟨χ−1Ž(U−)⟩⟩σ− = ⟨⟨χ−1Ž(U+)⟩⟩2⟨⟨χ−1Ž(U−)⟩⟩2

≡
(3)

exp

(
−1

8

)
exp

(
1

8

)
= 1.

Then, we calculate the Aarhus integral as follows,

⟨⟨χ−1Ž
(
K0 ∪ L)− χ−1Ž

(
K0 ∪ L0)⟩⟩

⟨⟨χ−1Ž(U+)⟩⟩σ+⟨⟨χ−1Ž(U−)⟩⟩σ−
≡
⟨
α̂, a2

x

x

+ β′′
0 + β1 + β2 + β3

⟩
.

Note that
⟨
α̂, a2

x

x ⟩
part is in the 2-loop part. Therefore, we get

3-loop part of χ−1Z
(
D(K,K ′)

)
= ⟨α̂, (β′′

0 + β1 + β2 + β3)⟩(conn),

where we denote the connected part of ⟨ , ⟩ by ⟨ , ⟩(conn).
Then, we calculate each term of ⟨α̂, (β′′

0 +β1+β2+β3)⟩(conn). We denote u = t+ t−1−2
and v = t− t−1.

We calculate ⟨α̂, β′′
0 ⟩(conn) , as follows.

⟨
α̂,

a2
24

x

x

x

x ⟩
(conn)

=
k2a2
12

=
k2a2
6

⟨
α̂,

a2
24

x

x

y

y ⟩
(conn)

=
a2
12

= −a2
6

⟨
α̂,

a2
24

x

x

z

z ⟩
(conn)

=
a2
12

=
a2
6

24



⟨
α̂,

a2
24

x

x w

w

⟩
(conn)

=
k2a2
12

= −k
2a2
6

⟨
α̂, −a2

24
x

x x x

z z

⟩
(conn)

=
ka2
12

− ka2
6

= −ka2
6

⟨
α̂, −a2

24
x

x y y

w w

⟩
(conn)

=
ka2
12

= −ka2
6

⟨
α̂,

a2
24

x

x

w w

z z ⟩
(conn)

=
ka2
12

=
ka2
6

⟨
α̂, −a2

24
x

x z z

t t

w w

⟩
(conn)

= −ka2
12

= −ka2
6

Hence,

⟨α̂, β′′
0 ⟩(conn)

= (−a2
6

− k2a2
6

− ka2
6

− ka2
6

) +
k2a2
6

+ (
a2
6

+
ka2
6

− ka2
6

)

= (−a2
6

− k2a2
6

− ka2
3

) +
k2a2
6

+
a2
6

. (18)

We calculate ⟨α̂, β1⟩(conn) , as follows.

⟨
α̂, a2a

′
2

x

x

y

y ⟩
(conn)

= 2a2a
′
2 = −4a2a

′
2

⟨
α̂, a3

x

x

⟩
(conn)

= −ka3 = −2ka3
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⟨
α̂, a4

x x

x x

⟩
(conn)

= 3k2a4 − k2a4

= 2k2a4 + 3k2a4

⟨
α̂,

a22
2

x

x

x

x ⟩
(conn)

= k2a22 = 2k2a22 .

Hence,

⟨α̂, β1⟩(conn)

= (−4a2a
′
2 − 2ka3) + 2k2a4 + 3k2a4 + 2k2a22 .

(19)

We calculate ⟨α̂, β2⟩(conn) , as follows.

⟨
α̂,

a2
8

x

x

z

x ⟩
(conn)

=
ka2
4

=
ka2
2

⟨
α̂, −a2

12
x

x x x

z z

⟩
(conn)

=
ka2
6

− ka2
3

= −ka2
3

⟨
α̂, −a2

12

x

z

x

z

⟩
(conn)

=
a2
12

=
a2
6

⟨
α̂,

a2
6

x

z

⟩
(conn)

= −a2
6

= −a2
3

⟨
α̂,

a2
8

x

x

w

y ⟩
(conn)

= −ka2
4

=
ka2
2

⟨
α̂, −a2

12
x

x y y

w w

⟩
(conn)

=
ka2
6

= −ka2
3
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⟨
α̂,

k2a2
48

x

x

y

y ⟩
(conn)

=
k2a2
24

= −k
2a2
12

⟨
α̂,

ka2
12

x

x

w

y ⟩
(conn)

= −k
2a2
6

=
k2a2
3

⟨
α̂, −ka2

24
x

x y y

w w

⟩
(conn)

=
k2a2
12

= −k
2a2
6

Hence,

⟨α̂, β2⟩(conn)

= (
ka2
2

− ka2
3

+
ka2
2

− ka2
3

− k2a2
12

+
k2a2
3

− k2a2
6

) + (
a2
6

− a2
3
)

= (
ka2
3

+
k2a2
12

) − a2
6

. (20)

We calculate ⟨α̂, β3⟩(conn) , as follows.⟨
α̂,

a2
8

x

x

w

z

t+1 ⟩
(conn)

=
ka2
4

= 0

⟨
α̂,

a2
12

x

x

w w

z z ⟩
(conn)

=
ka2
6

=
ka2
3

⟨
α̂, −a2

12
x

x z z

t t

w w

⟩
(conn)

= −ka2
6

= −ka2
3

⟨
α̂, −a2

4
x

x z y

w w

t

⟩
(conn)

=
ka2
2

t − ka2
2

= 0

⟨
α̂,

a2
24

x

x x x

z w

t-1

⟩
(conn)

= −k
2a2
12

= −k
2a2
6
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⟨
α̂,

a2
24

x

x y y

z w

t-1

⟩
(conn)

= −a2
12

=
a2
6

⟨
α̂,

a2
24

x

x
z z z

w

t
2t-1
⟩
(conn)

= 0

⟨
α̂,

a2
24

x

x
z

w w w

t
2t-1

⟩
(conn)

=
k2a2
12

= −k
2a2
6

− k2a2
24

− k2a2
8

Hence,

⟨α̂, β3⟩(conn)

= (
a2
6

− k2a2
6

) − k2a2
6

− k2a2
24

− k2a2
8

+ (
ka2
3

− ka2
3

)

= (
a2
6

− k2a2
6

) − k2a2
6

− k2a2
24

− k2a2
8

. (21)
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By (18), (19), (20), (21), we get

⟨α̂, (β′′
0 + β1 + β2 + β3)⟩(conn)

= ⟨α̂, β′′
0 ⟩(conn) + ⟨α̂, β1⟩(conn) + ⟨α̂, β2⟩(conn) + ⟨α̂, β3⟩(conn)

= (−a2
6

− k2a2
6

− ka2
3

) +
k2a2
6

+
a2
6

+ (−4a2a
′
2 − 2ka3) + (2k2a4 −

k2a2
24

) + 3k2a4 + 2k2a22

+ (
ka2
3

+
k2a2
12

) − a2
6

+ (
a2
6

− k2a2
6

) − k2a2
6

− k2a2
8

= (−4a2a
′
2 −

k2a2
4

− 2ka3) + (−k
2a2
24

+ 2k2a4)

+ 3k2a4 + 2k2a2 − k2a2
8

.

By the definition of the 3-loop polynomial, we get the required formula.

Remark 6.1. The symbol “∼” means the link relation, see [1], [2], [3],

D D D D

∼ 0,

and “ ∼
(m+1)

” is the equivalent relation which is generated by ≡
(m+1)

and ∼. It is known that

under the link relation, the result of the Aarhus integral does not change ([6]).

Lastly, we prove the lemma used in the above calculation.
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Lemma 6.2.

x

z

≡

x

z

x

x

+
x

z

×

1

8
x

x

z

x

− 1

12
x

x x x

z z

− 1

12

x

z

x

z

+
1

6

x

z

 .

Proof. The required formula follows from the equation below,

x

z

≡

x

z

+

x

z

×

−1

8
x

x

z

x

+
1

12
x

x x x

z z

+
1

12

x

z

x

z

− 1

6

x

z

 ,

and in order to prove this, it is sufficient to show that the following formula,

x

z

{       n

≡

x

z

{   n

− n(n− 1)

8
x

z

{   n-2 ×
x

x

z

x

+
n(n− 1)(n− 2)

12
x

z

{   n-3 ×
x

x x x

z z

+
n(n− 1)

12
x

z

{   n-2 ×

x

z

x

z

− n

6
x

z

{   n-1 ×

x

z

. (22)
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We show this. It is shown by a mirror image of Lemma 5.1 of [17] that

x

{       n

≡

x

{       n

− n− 1

2
x

{       n

+
(n− 1)(n− 2)

6
x

{       n

.

(23)

By applying (23) (replacing n with n+ 2) to the left-hand side of (22), we get

x

z

{       n

≡

x

z

{   n

− n+ 1

2

x

z

{   n

+
n(n+ 1)

6

x

z

{   n

.

(24)

The first term of the right-hand side of (24) is calculated by applying (23) (replacing n
with n+ 1) as follows,

x

z

{   n

≡

x

z

{   n

− n

2

x

z

{   n

+
n(n− 1)

6

x

z

{   n

≡

x

z

{   n

− n

4
x

z

{   n-1 ×

x

z

+
n(n− 1)

6
x

z

{   n-2 ×

x

z

x

z

, (25)

since it is shown that

x

z

{   n

≡ 1

2

x

z

{   n

≡ 1

2
x

z

{   n-1 ×

x

z

,
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x

z

{   n

≡

x

z

{   n

≡
x

z

{   n-2 ×

x

z

x

z

.

Further, it is shown that by Lemma 5.2 in [17] that

x

z

{       n ≡
(3)

x

z

{       n − n(n− 1)

8
x

z

{       n-1
+
n(n− 1)(n− 2)

12
x

z

{       n-1
.

(26)

By applying (26) to (25), we obtain that

x

z

{   n

≡

x

z

{   n

− n(n− 1)

8
x

z

{   n-2 ×
x

x

z

z

+
n(n− 1)(n− 2)

12
x

z

{   n-3 ×
x

x x x

z z

− n

4
x

z

{   n-1 ×

x

z

+
n(n− 1)

6
x

z

{   n-2 ×

x

z

x

z

.

(27)

The second term of the right-hand side of (24) is calculated as follows,

−n+ 1

2

x

z

{   n

≡ −n
2

x

z

{   n

≡ −n
2

x

z

{   n

+
n(n− 1)

4

x

z

{   n

,
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where we obtain the first equivalence by classifying the strand which is connected to the
bottom strand at the right hand side of the symmetrizer of the first term, and we obtain
the second equivalence by applying (23) to the left symmetrizer of the diagram of the
right-hand side of the first line. Hence,

−n+ 1

2

x

z

{   n

≡ n

4
x

z

{   n-1 ×

x

z

− n(n− 1)

4
x

z

{   n-2 ×

x

z

x

z

.

(28)

The third term of the right-hand side of (24) is calculated as follows. By classifying the
strand which is connected to the bottom strand at the right hand side of the symmetrizer,
the connected component of this strand is shown, as follows,

x z

≡ 0,
x z

≡ −

x

z

, (n− 1)
x

z

x

z

≡ (n− 1)

x

z

x

z

.

Then, we get

n(n+ 1)

6

x

z

{   n

≡ −n
6

x

z

{   n-1 ×

x

z

+
n(n− 1)

6
x

z

{   n-2 ×

x

z

x

z

. (29)

Thus, by applying (27), (28), (29) to (24), we obtain (22). Therefore, we obtain the
required formula of the lemma.

7 The sl2 reduction of the 3-loop polynomial

7.1 The review of the loop expansion of the colored Jones polynomial

In this section, we briefly review the colored Jones polynomial and the loop expansion
of it. For details, see [22], [23].

The colored Jones polynomial Jn(K; t) is the polynomial invariant of knots, which is
obtained by

Jn(K; t) =
Vn(K; t)

Vn(the unknot; t)
=
t1/2 − t−1/2

tn/2 − t−n/2
· Vn(K; t),
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where Vn(K; t) is obtained by Vn(K; e−h) = Wsl2,Vn

(
Z(K)

)
, andWsl2,Vn denotes the weight

system derived from the Lie algebra sl2 and its irreducible representation Vn. For details,
see [14], [15], and [13]. It is known, see Conjecture 1.2 of [22], Theorem 1.2 of [23],
Proposition 3.1 of [20], that Jn(K; t) can be presented in the following form,

Jn(K; eh) =
∑
l≥0

hl
∑
k≥0

dl,k(nh)
k =

∑
l≥0

hl
Pl(e

nh)

∆K(enh)2l+1

for some Pl(t) ∈ Q[t±1]. This is called the loop expansion of the colored Jones polynomial.

The 3-loop part of the colored Jones polynomial is given by
P2(e

nh)

∆K(enh)5
.

7.2 The 3-loop part of the colored Jones polynomial

In this section, we consider the 3-loop part of the colored Jones polynomial.
For a knot K, ΛK(t

1
2 , t

1
2 , t−

1
2 , t−

1
2 ) is a symmetric polynomial in t±1 divisible by t− 1

(since ΛK(1, 1, 1, 1) = 0) and, hence, divisible by (t − 1)2. We define the reduced 3-loop
polynomial by

Λ̂K(t) =
ΛK(t

1
2 , t

1
2 , t−

1
2 , t−

1
2 )

(t1/2 − t−1/2)2
,

which is symmetric polynomial in t±1.

Example 7.1. The reduced 3-loop polynomial of D(K,K ′) is presented by

Λ̂D(K,K′)(t)

= (−4k2a2
3

+ 64k2a4 + 32k2a22)(t+ t−1)− 16k2a2
3

− 64k2a22 − 64a2a
′
2 − 32ka3 − 128k2a4.

We denote the reduced 2-loop polynomial by Θ̂K(t) =
ΘK(t, t

−1, 1)

(t1/2 − t−1/2)2
defined in [16],

where ΘK(t1, t2, t3) is the 2-loop polynomial of K. For definition of the 2-loop polynomial,
see for example [14], [17].

Proposition 7.2. The 3-loop part of the colored Jones polynomial
P2(e

nh)

∆K(enh)5
is presented

by

P2(t)

∆K(t)5
=

(t1/2 − t−1/2)2

∆K(t)5
Λ̂K(t) +

(t1/2 − t−1/2)4

2∆K(t)5
Θ̂K(t)

2

+
∆

′
K(t)t

2

3(t− 1)∆K(t)2
+

∆
′′
K(t)t

2

6∆K(t)2
− ∆

′
K(t)

2t2

3∆K(t)3
.
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Proof. In this proof, we write α ≡sl2 β if Wsl2,Vn(α) = Wsl2,Vn(β). It is shown in the proof

of Proposition 3.1 in [20] that
∑
l≥0

Pl(t)

∆K(t)2l+1
hl is given by

∑
l≥0

Pl(t)

∆K(t)2l+1
hl =

1

t1/2 − t−1/2
· D
[D]

(
(t1/2 − t−1/2)

∑
l≥0

P̂l(t)

∆K(t)2l+1
hl

)
, (30)

where

D = 2t
d

dt
,

D
[D]

=
eh/2 − e−h/2

ehD/2 − e−hD/2
D = 1 +

h2

24
(1−D2) + (higher terms),

χ−1Z(K) ⊔ (χ−1ν)−1 ≡sl2

∑
l≥0

P̂l(t̂)

∆K(t̂)2l+1
hl, for some P̂ (t̂) ∈ Q[t̂±1].

Here, t̂ = e
√
2Ch, and C denotes the Casimir element of sl2 whose eigenvalue on Vn is equal

to
n2 − 1

2
. At first, we calculate P̂l(t̂). We put

Λ̃K(t) = (t1/2 − t−1/2)2Λ̂K(t), Θ̃K(t) = (t1/2 − t−1/2)2Θ̂K(t).

By using the equivalence below,

≡sl2 2h

 −

 , (31)

it is shown in [16], [20] that

≡sl2 ψ(t̂) + ψ(t̂−1) + ψ(1) (32)

exp


 ≡sl2

1

∆K(t̂)
,
∑
i

≡sl2

Θ̃K(t̂)

∆K(t̂)2
h,
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Further, by (32) and Lemma 7.4 below, we obtain

∑
i

≡sl2

∑
i

4h2


qi,3(1)qi,6(1) + qi,2(1)qi,5(1)

+qi,1(1)qi,4(1)


≡sl2

∑
i

4h2

∆K(t̂)4

(
qi,1(t̂)qi,2(t̂)qi,3(1)qi,4(t̂)qi,5(t̂

−1)qi,6(1) + qi,1(t̂
−1)qi,2(t̂

−1)qi,3(1)qi,4(t̂
−1)qi,5(t̂)qi,6(1)

+ qi,1(t̂)qi,2(1)qi,3(t̂)qi,4(t̂
−1)qi,5(1)qi,6(t̂) + qi,1(t̂

−1)qi,2(1)qi,3(t̂
−1)qi,4(t̂)qi,5(1)qi,6(t̂

−1)

+ qi,1(1)qi,2(t̂)qi,3(t̂)qi,4(1)qi,5(t̂)qi,6(t̂
−1) + qi,1(1)qi,2(t̂

−1)qi,3(t̂
−1)qi,4(1)qi,5(t̂

−1)qi,6(t̂)
)

≡sl2

Λ̃K(t̂)

∆K(t̂)4
h2.

Note that qi,1(1)qi,2(1)qi,3(1)qi,4(1)qi,5(1)qi,6(1) = 0. Hence, we get

∑
l≥0

P̂l(t̂)

∆K(t̂)2l+1
hl ≡sl2

1

∆K(t̂)

(
1 +

Θ̃K(t̂)

∆K(t̂)2
h+

Λ̃K(t̂)

∆K(t̂)4
h2 +

Θ̃K(t̂)
2

2∆K(t̂)4
h2 + (higher terms)

)

=
1

∆K(t̂)
+

Θ̃K(t̂)

∆K(t̂)3
h+

(
Λ̃K(t̂)

∆K(t̂)5
+

Θ̃K(t̂)
2

2∆K(t̂)5

)
h2 + (higher terms).
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Thus, by (30), we obtain∑
l≥0

Pl(t)

∆K(t)2l+1
hl =

1

t1/2 − t−1/2
· D
[D]

(
(t1/2 − t−1/2)

( 1

∆K(t)
+

Θ̃K(t)

∆K(t)3
h

+

(
Λ̃K(t)

∆K(t)5
+

Θ̃K(t)
2

2∆K(t)5

)
h2 + (higher terms)

))

=
1

∆K(t)
+

Θ̃K(t)

∆K(t)3
h+

(
Λ̃K(t)

∆K(t)5
+

Θ̃K(t)
2

2∆K(t)5

)
h2

+
h2

24
· 1

t1/2 − t−1/2
(1−D2)

(t1/2 − t−1/2

∆K(t)

)
+ (higher terms). (33)

Here, the last term of the right-hand side of (33) is calculated as follows,

1

t1/2 − t−1/2
(1−D2)

(t1/2 − t−1/2

∆K(t)

)
=

1

t1/2 − t−1/2

(
1−

(
2t
d

dt

)2)(t1/2 − t−1/2

∆K(t)

)
=

8∆
′
K(t)t

2

(t− 1)∆K(t)2
+

4∆
′′
K(t)t

2

∆K(t)2
− 8∆

′
K(t)

2t2

∆K(t)3
. (34)

By applying (34) to (33), we get∑
l≥0

Pl(t)

∆K(t)2l+1
hl =

1

∆K(t)
+

Θ̃K(t)

∆K(t)3
h

+

(
Λ̃K(t)

∆K(t)5
+

Θ̃K(t)
2

2∆K(t)5
+

∆
′
K(t)t

2

3(t− 1)∆K(t)2
+

∆
′′
K(t)t

2

6∆K(t)2
− ∆

′
K(t)

2t2

3∆K(t)3

)
h2

+ (higher terms).

Therefore, considering the h2 terms, we obtain the required formula.

We recall that the Conway polynomial ∇K(z) is defined by ∇K(t
1/2 − t−1/2) = ∆K(t).

Remark 7.3. The formula of Proposition 7.2 is rewritten in terms of the Conway poly-
nomial as

P2(t)

∆K(t)5
=

z2

∇K(z)5
Λ̂K(t) +

z4

2∇K(z)5
Θ̂K(t)

2

+
3z2 + 8

24z

∇′
K(z)

∇K(z)2
+
z2 + 4

24

∇′′
K(z)

∇K(z)2
− z2 + 4

12

∇′
K(z)

2

∇K(z)3
,

where z = t1/2 − t−1/2.

Proof. For z = t1/2 − t−1/2, we get

2t
dz

dt
= t1/2 + t−1/2, D = 2t

d

dt
= (t1/2 + t−1/2)

d

dz
,
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D
(
t1/2 − t−1/2

∆K(t)

)
= 2t

d

dt

t1/2 − t−1/2

∆K(t)
= (t1/2 + t−1/2)

d

dz

z

∇K(z)
,

D2

(
t1/2 − t−1/2

∆K(t)

)
= 2t

d

dt

(
(t1/2 + t−1/2)

d

dz

z

∇K(z)

)
= (t1/2 − t−1/2)

d

dz

z

∇K(z)
+ (t1/2 + t−1/2)2(

d

dz
)2

z

∇K(z)

= (t1/2 − t−1/2)
d

dz

z

∇K(z)
+ (z2 + 4)

(
d

dz

)2
z

∇K(z)
.

Thus, we obtain

1

t1/2 − t−1/2
D2

(
t1/2 − t−1/2

∆K(t)

)
=

d

dz

z

∇K(z)
+
z2 + 4

z

(
d

dz

)2
z

∇K(z)

=
1

∇K(z)
− 3z2 + 8

z

∇′
K(z)

∇K(z)2
− (z2 + 4)

∇′′
K(z)

∇K(z)2
+ 2(z2 + 4)

∇′
K(z)

2

∇K(z)3
.

Therefore, the formula (34) can be rewritten as

1

t1/2 − t−1/2
(1−D2)

(
t1/2 − t−1/2

∆K(t)

)
=

3z2 + 8

z

∇′
K(z)

∇K(z)2
+ (z2 + 4)

∇′′
K(z)

∇K(z)2
− 2(z2 + 4)

∇′
K(z)

2

∇K(z)3
.

By applying this to (33), we obtain the required formula. Hence, the formula of Proposi-
tion 7.2 is rewritten as the formula of the remark.

We prove the lemma used in the proof of Proposition 7.2.

Lemma 7.4.

≡sl2 4h
2


f3(0)f6(0) + f2(0)f5(0)

+f1(0)f4(0)


,

where fi(h) is a power series in h.
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Proof. By using (31), we get the following equivalences,

≡sl2 0, (35)

≡sl2 2h


−



≡sl2 2h

f3(0) +

 . (36)

Further, it is shown by the formula after Lemma 6.2 in [16] that

≡sl2 2h

f3(0) + f2(0) + f1(0)

 .

(37)

We put f̂i(h) = fi(h)− fi(0). Then, by (35),

= + f6(0)

= + f5(0) + f6(0)
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≡sl2 f4(0) + f5(0) + f6(0) .

(38)

By (36),(37), the first term of the right-hand side of (38) is calculated as follows,

f4(0) ≡sl2 2hf4(0)

f1(0) +



≡sl2 2hf4(0)

2hf1(0)
(

−
)

+2hf1(0)
( )

≡sl2 4h
2f1(0)f4(0) . (39)

By (36),(37), the second term of the right-hand side of (38) is calculated as follows,

f5(0) ≡sl2 2hf5(0)

f2(0) +


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≡sl2 2hf5(0)

2hf2(0)
(

−
)

+2h
(
f2(0) + f1(0)f4(0)

)

≡sl2 4h
2

f2(0)f5(0) + f1(0)f4(0)f5(0)

 . (40)

By (36),(37), the third term of the right-hand side of (38) is calculated as follows,

f6(0) ≡sl2 2hf6(0)

f3(0) +



≡sl2 2hf6(0)

2hf3(0)
(

−
)

+2h
(
f3(0) + f2(0)f5(0) + f1(0)f4(0)

)

≡sl2 4h
2

f3(0)f6(0) + f2(0)f5(0)f6(0)

+f1(0)f4(0)f6(0)

 . (41)
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Thus, by applying (39), (40), (41) to (38), we obtain

≡sl2 4h
2

f1(0)f4(0) + f2(0)f5(0)

+f1(0)f4(0)f5(0) + f3(0)f6(0)

+f2(0)f5(0)f6(0) + f1(0)f4(0)f6(0)



≡sl2 4h
2

f3(0)f6(0) + f2(0)f5(0)

+f1(0)f4(0)

 .

Therefore, we obtain the lemma.

Appendix

A The Duflo isomorphism and the proof of the connected sum
formula for the 3-loop polynomial

In this section, we review the Duflo isomorphism ([4], [5]), and we prove Proposition 4.1
(the connected sum formula for the 3-loop polynomial) in Section 4.2. For the notation,
see Section 4.2.

Let D′ be a diagram which have at least one trivalent vertex on each component. Then
we define ∂D′ : B → B by

∂D′(D) =


0 if D′ has more legs than D,
the sum of all ways of gluing
all the legs of D′ to some otherwise
(or all) legs of D

42



Duflo isomorphism Υ : B → B is defined by

Υ = χ ◦ ∂Ω,

where we denote Ω = χ−1ν. It is known [5] that Υ is an algebra isomorphism. Note that
Υ−1Z(K) is group-like.

Then, we prove Proposition 4.1.

Proof of Proposition 4.1.

Υ−1Z(K1) = ∂Ω−1χ−1Z(K1)

≡ exp

 + γ
(2)
1 + γ

(3)
1

−∂C
( )

− 1

48

 ,

Υ−1Z(K2) = ∂Ω−1χ−1Z(K2)

≡ exp

 + γ
(2)
2 + γ

(3)
2

−∂C
( )

− 1

48

 ,

where C =
1

48
∈ B. Since Υ is an algebra map,

Υ−1Z(K1#K2) = Υ−1
(
Z(K1)#Z(K2)#ν

−1
)
= Υ−1Z(K1) ⊔Υ−1Z(K2) ⊔Υ−1ν−1.

Here, as in [8],

Υ−1ν = ⟨Ω,Ω⟩−1Ω, so Υ−1ν−1 = ⟨Ω,Ω⟩Ω−1 ≡

(
1 +

1

1152

)
⊔ Ω−1.
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Thus, we get

Υ−1Z(K1#K2) ≡

(
1 +

1

1152

)
⊔ exp


+ + + γ

(2)
1 + γ

(2)
2 + γ

(3)
1 + γ

(3)
2

−∂C
( )

− ∂C

( )

− 1

48
− 1

48

)

≡

(
1 +

1

1152

)
⊔ exp


+γ

(2)
1 + γ

(2)
2 + γ

(3)
1 + γ

(3)
2 − ∂C

( )

− 1

48
− 1

48

)
.

Therefore,

χ−1Z(K1#K2) = ∂ΩΥ
−1Z(K1#K2)

≡

(
1 +

1

1152

)
⊔ exp

 + γ
(2)
1 + γ

(2)
2 + γ

(3)
1 + γ

(3)
2

− ∂C

( )
− 1

48

− 1

48
+ ∂C exp

 
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≡

(
1 +

1

1152

)
⊔ exp

 + γ
(2)
1 + γ

(2)
2 + γ

(3)
1 + γ

(3)
2

+∂C

( )
+

1

48

− 1

24
− 1

24

+
1

24

)
.

Here, as in [4], [5], ∂Ω(Ω) = ⟨Ω,Ω⟩Ω, so we get

−∂C
( )

+
1

48
=

1

1152
.

This implies that

exp

∂C( ) ≡

(
1− 1

1152

)
exp

(
1

48

)
.

Therefore,

χ−1Z(K1#K2) ≡ exp

 + γ
(2)
1 + γ

(2)
2 + γ

(3)
1 + γ

(3)
2

+
1

24
− 1

24

− 1

24
+

1

24

)

= exp

 + γ
(2)
1 + γ

(2)
2 + γ

(3)
1 + γ

(3)
2

+
1

24

)
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= exp

 + γ
(2)
1 + γ

(2)
2 + γ

(3)
1 + γ

(3)
2

+
1

6
+

1

6

 .

Hence, we obtain the proposition.

B A Vassiliev invariant of degree 4 of the untwisted Whitehead
double of the trefoil knot

In this section, we calculate a Vassiliev invariant of degree 4 of the untwisted Whitehead
double of the trefoil knot concretely We calculate it in two ways; one is by using a
calculator and the other is by using our main theorem. Thereby, we verify the result of
the main theorem.

The trefoil knot is T (2, 3) = , and we give it 0-framing.

By using a calculator, we can get its degree 4 part of the Kontsevich invariant,

log
(
Z
(
Wh±(T (2, 3))

)
#ν−1

)(degree 4)

=
(1
8
∓ 1

4

)
. (42)

On the other hand, a straightforward calculation shows that (see Example 3.6)

Z
(
T (2, 3)

)
#ν−1 ≡ exp

−1

2
+

1

4
+

5

24

 .
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Note that ∆
Wh±

(
T (2,3)

)(t) = 1. So by Theorem 3.1, we get

log
(
χ−1
(
Z(Wh±(T (2, 3)))#ν−1

))(degree 4)

=
(
− 4 · (−1

2
) · 0− (±1)2 · (−1/2)

4
− 2 · (±1) · 1

4

)
− (±1)2 · (−1/2)

8
· 2 · 2

=
(1
8
∓ 1

4

)
.

This matches to (42).
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rational homology 3-spheres II: Invariance and universality, Selecta Math. (N.S.) 8
(2002) 341–371.

[3] D. Bar-Natan, S. Garoufalidis, L. Rozansky, D. P. Thurston, The Århus integral of
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