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ON GENERALIZATIONS OF ANABELIAN GROUP-THEORETIC

PROPERTIES

ARATA MINAMIDE, KOICHIRO SAWADA, AND SHOTA TSUJIMURA

Abstract. In the present paper, we discuss certain generalizations on two
anabelian group-theoretic properties — strong internal indecomposability and

elasticity. More concretely, by replacing the normality conditions appearing
in characterizations of strong internal indecomposability and elasticity by the
subnormality conditions, we introduce the notions of strong sn-internal inde-

composability and sn-elasticity and prove that various profinite groups appear-
ing in anabelian geometry satisfy these properties.
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Introduction

For any connected Noetherian scheme S, we shall write π1(S) for the étale fun-
damental group of S, relative to a suitable choice of basepoint. For any field K, we
shall write GK for the absolute Galois group of K, relative to a suitable choice of
separable closure. Let p be a prime number.

Roughly speaking, one of the main motivations of anabelian geometry is

to specify the class of anabelian varieties, i.e., algebraic varieties
X which may be “reconstructed” from π1(X).

For instance, ifX is a hyperbolic curve over a p-adic local field [i.e., a finite extension
field of the field of p-adic numbers] or a number field [i.e., a finite extension field
of the field of rational numbers], then Mochizuki and Tamagawa proved that X
may be “reconstructed” from π1(X) [cf. [16], Theorem A; [20], Introduction; [29],
Theorem 0.4]. However, in the case of higher-dimensional algebraic varieties, it
seems far-reaching to solve this problem.
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With regard to this problem, since we need to “reconstruct” X from only the
profinite group π1(X), it is natural to expect that π1(X) has nice/special group-
theoretic properties. Thus, in this context, it would be natural to study anabelian
group-theoretic properties, i.e.,

(I) distinctive group-theoretic properties which should be satisfied by the geo-
metric fundamental group of every anabelian variety X [i.e., the étale fun-
damental group of the algebraic variety obtained by base-changing X to an
algebraic closure of the base field of X], or

(II) distinctive group-theoretic properties which need not to be satisfied by the
geometric fundamental group of every anabelian variety X, but play im-
portant roles in anabelian geometry.

One (and perhaps the only one) widely-accepted example of anabelian group-
theoretic properties of type (I) is

• slimness — i.e., the property that the center of every open subgroup is
trivial.

Note that [as is well-known] the geometric fundamental group of any hyperbolic
curve over a number field or a p-adic local field satisfies slimness. On the other
hand, examples of anabelian group-theoretic properties of type (II) are

• strong internal indecomposability — i.e., the property that for every open
subgroupH, the centralizer inH of every nontrivial normal closed subgroup
N of H is trivial, and
• elasticity — i.e., the property that every nontrivial topologically finitely
generated normal closed subgroup of an open subgroup is open.

Indeed, the strong internal indecomposabilities of certain profinite groups — which,
in fact, will be proved later [cf. Theorem C, (i), below] — may be regarded as
generalizations of famous injectivity results [cf. [2], Theorem 1; [6], Theorem C, (ii)]
in anabelian geometry by the following [easily verified] fact:

Fact. Let G be a strongly internally indecomposable profinite group; N ⊆ G a
nontrivial normal closed subgroup. Then the natural outer representation G/N →
Out(N) is injective. [Here, we use the notation “Out((−))” to denote the group of
outer continuous automorphisms of (−).]

Moreover, since various highly nontrivial outer representations [cf., e.g., the outer
representations appearing in [2], Theorem 1; [6], Theorem C, (ii)] play central
roles and pose various important questions in anabelian geometry, it appears to
the authors that this property could be used to pose new interesting questions in
anabelian geometry. On the other hand, the elasticities of “pro-C surface groups”
[cf. Definition 3.12; [21], Theorem 1.5] play essential roles in the study of higher-
dimensional anabelian varieties [cf., e.g., [4], Theorem B; [5], Theorem A; [21],
Corollary 6.3; [26], Theorem 1.2; [27], Theorem C].

Note that the geometric fundamental group of any affine hyperbolic curve over
a number field or a p-adic local field satisfies strong internal indecomposability
and elasticity [cf. Theorem 1, below]. Also, note that [as is easily verified] the
geometric fundamental group of the fiber product [over the base field] of two copies
of any hyperbolic curve over a number field or a p-adic local field — which may be
regarded as an example of two-dimensional anabelian varieties — does not satisfy
strong internal indecomposability and elasticity.
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In the present paper, we focus on anabelian group-theoretic properties of type
(II), especially, strong internal indecomposability and elasticity. With regard to
these two properties, for instance, the following results are known:

Theorem 1 ([23], Theorem 8.6.6; [23], Proposition 8.7.8). Let C be a nontrivial
full-formation [i.e., a family of finite groups which contains the trivial group, and
which is closed under taking quotients, subgroups, and extensions]; F a free pro-C
group of [possibly infinite] rank ≥ 2. Then F is strongly internally indecomposable
and elastic.

Theorem 2 ([12], Theorem 2.1; [13], Theorem C; [14], Theorems A, B). Suppose
that the field K satisfies one of the following conditions:

• K is a Henselian discrete valuation field of residue characteristic p;
• K is a Hilbertian field [i.e., a field for which Hilbert’s irreducibility theorem
holds].

Then GK is strongly internally indecomposable and elastic.

Considering these two results, it is natural to pose the following question:

Question 1: We continue to use the notation of Theorems 1, 2.
(i) Can one find new examples of profinite groups Γ appearing

in anabelian geometry which satisfy strong internal indecom-
posability (respectively, elasticity)?

(ii) Do F , GK , and Γ satisfy stronger properties than strong in-
ternal indecomposability (respectively, elasticity)?

Let us give an explicit version of Question 1, (ii). Let G be a profinite group;

P(G)

a group-theoretic condition concerning closed subgroups of G [i.e., such as “normal
in G” or “not procyclic”]. In this Introduction, we shall say that G is

• strongly P-internally indecomposable if for every open subgroup H, the
centralizer in H of every nontrivial P(H)-closed subgroup N of H is trivial;
• P-elastic if every nontrivial topologically finitely generated P(G)-closed
subgroup of an open subgroup is open.

[Here, observe that, in the case where

P(G) = {equal to G},
the notion of strong P-internal indecomposability coincides with the notion of slim-
ness. Moreover, note that, in the case where

P(G) = {normal in G},
the notion of strong P-internal indecomposability (respectively, P-elasticity) coin-
cides with the notion of strong internal indecomposability (respectively, elasticity).]
Then one of the explicit versions of Question 1, (ii), is as follows:

Question 2: In the notation of Question 1, can one find a weakest
condition P(G) such that F , GK , and Γ satisfy strong P-internal
indecomposablity (respectively, P-elasticity)?

In the present paper, as a first step toward answering these questions, we treat the
case where

P(G) = {subnormal in G}.
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[We shall say that a closed subgroup H ⊆ G is subnormal in G if there exist a
nonnegative integer m and [not necessarily distinct] closed subgroups H0 = G, H1,
. . . , Hm−1, Hm = H of G such that Hi is normal in Hi−1 for each i ∈ {1, . . . ,m}.]

Our main results are the following:

Theorem A (Theorems 3.3, 3.7, 3.13). Let C be a nontrivial full-formation. Sup-
pose that a profinite group F satisfying one of the following conditions:

• F is an almost pro-C-maximal quotient [cf. Definition 2.7, (ii)] of a free
profinite group of [possibly infinite] rank ≥ 2;
• F is an almost pro-C-maximal quotient of the étale fundamental group of a
hyperbolic curve over an algebraically closed field of characteristic 0;
• F is a pro-p Demuškin group of rank ≥ 3 [cf. Definition 3.5].

Then F is strongly sn-internally indecomposable [cf. Definition 1.8, (iii)] and sn-
elastic [cf. Definition 2.1, (ii)].

Theorem B (Theorems 3.8, 3.10). Let C be a full-formation such that Z/pZ belongs
to C. Suppose that the field K satisfies one of the following conditions:

• K is a Henselian discrete valuation field of residue characteristic p;
• K is a Hilbertian field.

Then any almost pro-C-maximal quotient of GK is strongly sn-internally indecom-
posable and sn-elastic.

Theorem C (Theorems 3.16, 3.19; Theorem 3.20, (i), (iii)). Let n be a positive
integer; K a field; X a hyperbolic curve over K. Write K for the algebraic clo-
sure [determined up to isomorphisms] of K; Xn for the n-th configuration space
associated to X [cf. Definition 3.15, (i)]. Then the following hold:

(i) Suppose that the field K satisfies one of the following conditions:
• K is an algebraically closed field of characteristic 0;
• K is a number field;
• K is a p-adic local field.

Then π1(Xn) is strongly sn-internally indecomposable.
(ii) Let Σ be a set of prime numbers which is either equal to the set of all prime

numbers or equal to the set of all prime numbers ̸= p. Suppose that the
field K satisfies one of the following conditions:
• K is an algebraically closed field of characteristic p;
• K is a finite field of characteristic p.

Then the geometrically pro-Σ fundamental group

π1(X)[Σ] def
= π1(X)/ ker(π1(X ×K K) ↠ π1(X ×K K)Σ)

— where we use the notation “(−)Σ” to denote the maximal pro-Σ quotient
of (−) — of X is strongly sn-internally indecomposable.

Theorem C, together with Theorem A; the “non-hyperbolic” cases of Theorem 3.19
and Theorem 3.20, (iii), may be regarded as partial generalizations of [12], Theorem
A; [12], Corollary D.

Here, note that the n-th configuration spaces associated to hyperbolic curves over
number fields or p-adic local fields may be regarded as examples of n-dimensional
anabelian varieties. Also, we remark that, in the notation of Theorem C, if n ≥ 1
is an arbitrary integer and K is the field of complex numbers (respectively, n = 1
and K is a p-adic local field), then a similar result to the result stated in Theorem
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C, (i), holds for the topological fundamental group of the complex analytic space
associated to Xn [cf. Corollary 3.17] (respectively, tempered fundamental group of
the Berkovich space associated to X [cf. Theorem 3.20, (ii)]).

The non-resp’d case of Question 2 is also interesting from the point of view of
the following natural question [in anabelian geometry], which concerns the “rela-
tive version of the Grothendieck Conjecture for hyperbolic curves over a field K of
characteristic 0” (RGCK) — i.e., a conjecture to the effect that for any hyperbolic
curves C1, C2 over K, the natural map from the set of K-isomorphisms between C1

and C2 to the set of GK-isomorphisms between π1(C1) and π1(C2), considered up to
composition with an inner automorphism arising from the geometric fundamental
group of C2, is bijective:

Question 3: Let K be a number field or a p-adic local field; K ⊆ L
an algebraic field extension. [In particular, (RGCK) holds — cf.
[16], Theorem A.] Then can one find a weakest condition on L such
that (RGCL) holds?

Indeed, suppose that (RGCL) holds. Then, by considering the case where “C1 =
C2 = the projective line [over K or L] minus 0, 1, ∞”, one verifies immediately
that the centralizer of GL in GK is trivial [cf. [6], Theorem C, (ii); [29], Lemma 7.1;
[29], Remark 7.3, (i)].

Finally, the authors hope to be able to propose

a new candidate for anabelian group-theoretic property of type (I)

in our subsequent paper.

Notations and conventions

Numbers: The notation Z will be used to denote the ring of integers. The

notation Ẑ will be used to denote the profinite completion of the underlying additive
group of Z. The notation C will be used to denote the field of complex numbers.

If p is a prime number, then the notation Zp will be used to denote the ring of
p-adic integers; the notation Fp will be used to denote the finite field of cardinality
p; the notation Cp will be used to denote the p-adic completion of an algebraic
closure of the field of fractions of Zp.

We shall refer to a finite extension field of the field of fractions of Z as a number
field. We shall refer to a finite extension field of the field of fractions of Zp as a
p-adic local field.

Fields: Let F be a field; F sep a separable closure of F . Then we shall write

GF
def
= Gal(F sep/F ). If F is perfect, then we shall also write F

def
= F sep.

Schemes: Let K be a field; L ⊇ K a field extension; X a scheme over K. Then

we shall write XL
def
= X ×K L.

Groups: Let G be a group; H ⊆ G a subgroup. Then we shall write [G : H]
for the index of H in G; ZG(H) for the centralizer of H in G, i.e., the subgroup

{g ∈ G | ghg−1 = h for any h ∈ H}; Z(G)
def
= ZG(G); NG(H) for the normalizer of

H in G, i.e., the subgroup {g ∈ G | gHg−1 = H}. We shall say that G is center-free
if Z(G) = {1}. We shall write Out(G) for the group of outer automorphisms of G,
i.e., the quotient of the group of automorphisms of G by the normal subgroup of
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inner automorphisms of G. [If G is profinite, then we consider automorphisms in
the category of profinite groups.]

For subgroups H1,H2 ⊆ G of G, we shall write [H1,H2] for the subgroup of G

generated by {[a, b] | a ∈ H1, b ∈ H2} ⊆ G, where [a, b]
def
= aba−1b−1.

If G is a topological group, then for a subset S ⊆ G of G, we shall write S for
the closure of S in G.

Suppose that G is a profinite group. Then we shall say that G is slim if
ZG(U) = {1} for every open subgroup U of G, or, equivalently, every open sub-
group of G is center-free [cf. [20], Notations and Conventions]. If G is a topologically
finitely generated, then we shall write r(G) for the minimum number of topological

generators of G. If G is not topologically finitely generated, then r(G)
def
= ∞. We

shall refer to r(G) as the rank of G.

Fundamental groups: Let S be a connected locally Noetherian scheme. Then
we shall write π1(S) for the étale fundamental group of S, relative to a suitable
choice of basepoint. [Note that, for any field F , π1(SpecF ) ∼= GF .] If X is an alge-
braic variety [i.e., a separated, of finite type, and geometrically connected scheme]

over C, then we shall write πtop
1 (X) for the topological fundamental group of the

complex analytic space associated to X, relative to a suitable choice of [C-rational]
basepoint. If K is a complete subfield of Cp and X is a smooth variety over K,

then we shall write πtemp
1 (X) for the tempered fundamental group of the Berkovich

space associated to X, relative to a suitable choice of basepoint [cf. [1]].

1. Internal indecomposability of subnormal subgroups

In the present section, we discuss generalities on internal indecomposability [cf.
Definition 1.5] of subnormal subgroups [cf. Definition 1.1] of [not necessarily profi-
nite] groups. In particular, we obtain generalizations of almost all of the results of
[14], §1 [cf. Propositions 1.7, 1.11, 1.12, 1.13, 1.15, 1.16; Lemma 1.14].

Definition 1.1. Let G be a group; H ⊆ G a subgroup; n a nonnegative integer.
Then we shall say that H is n-subnormal in G if there exist [not necessarily distinct]
subgroups H0 = G,H1, . . . , Hn−1,Hn = H of G such that Hi is normal in Hi−1

for each i ∈ {1, . . . , n}. We shall say that H is subnormal in G if there exists a
nonnegative integer m such that H is m-subnormal in G.

Remark 1.1.1. If G is a topological group and H,H ′ ⊆ G are subgroups such that
H is normal in H ′, then H is normal in H ′. In particular, if H is an n-subnormal
closed subgroup of a topological group G, then we may choose Hi in Definition 1.1
to be closed.

Remark 1.1.2. If H ⊆ G is a normal subgroup, then it is clear that ZG(H) ⊆ G is
normal in G. However, if H ⊆ G is a subnormal subgroup of G, then ZG(H) is not
necessarily subnormal in G. For instance, the symmetric group S4 on 4 letters has
subgroups

V
def
= {id, (12)(34), (13)(24), (14)(23)} ⊆ S4, H

def
= {id, (12)(34)} ⊆ V.

[V is known as the Klein four-group.] Since H is normal in V and V is normal in
S4, H is a subnormal subgroup of S4. On the other hand, one may easily confirm
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that

ZS4
(H) = NS4

(H) = {id, (12)(34), (13)(24), (14)(23), (12), (34), (1324), (1423)}
is not a subnormal subgroup of S4.

Proposition 1.2 ([3], Lemma 1.2.5, (b)). Let G be a profinite group; H ⊆ G a
closed subgroup; V ⊆ H an open subgroup of H. Then there exists an open subgroup
U ⊆ G such that U ∩H = V .

Corollary 1.3. Let G be a profinite group; H ⊆ G a closed subgroup; n a nonneg-
ative integer. Consider the following conditions:

(1) H is an open subgroup of a subnormal closed subgroup of G.
(2) There exist nonnegative integer m and closed subgroups H0 = G,H1, . . . ,

Hm−1,Hm = H of G such that for each i ∈ {1, . . . ,m}, Hi is a subgroup
of Hi−1 which is open or normal.

(3) H is a subnormal closed subgroup of an open subgroup of G.

Then we have an implication (1) ⇒ (2) and an equivalence (2) ⇔ (3). Moreover,
if H is an open subgroup of an n-subnormal closed subgroup of G, then H is an
n-subnormal closed subgroup of an open subgroup of G.

Proof. This follows immediately from Proposition 1.2. □

Proposition 1.4. Let G be a group; n a positive integer; H0 = G,H1, . . . , Hn−1,Hn

subgroups of G such that Hi is normal in Hi−1 for each i ∈ {1, . . . , n}. Then the
equality ZG(Hn) = {1} holds if and only if for each i ∈ {1, . . . , n}, it holds that
ZHi−1

(Hi) = {1}.

Proof. Necessity is immediate. Sufficiency is [a special case of] [24], 13.5.3. □

Definition 1.5 (cf. [14], Definition 1.1, (iv), (v), (vi)). Let G be a group.

(i) Let H ⊆ G be a subgroup. We shall say that H is normally decomposable
in G if there exist nontrivial normal subgroups H1,H2 ⊆ G of G such that
H = H1 ×H2. We shall say that H is normally indecomposable in G if H
is not normally decomposable in G. We shall say that G is decomposable
(respectively, indecomposable) if G is normally decomposable (respectively,
normally indecomposable) in G.

(ii) We shall say that G is internally indecomposable if every normal subgroup
of G is center-free and normally indecomposable in G. If G is a profinite
group, then we shall say that G is strongly internally indecomposable if
every open subgroup of G is internally indecomposable.

Remark 1.5.1. [14], Definition 1.1 deals with the case where G is profinite. Since
the various subgroups of G are assumed to be closed in [14], Definition 1.1, the
definitions here are a priori different from the definitions in [14], Definition 1.1. Note
that a profinite group is internally indecomposable (respectively, strongly internally
indecomposable) in the sense of Definition 1.5, (ii), if and only if the profinite group
is internally indecomposable (respectively, strongly internally indecomposable) in
the sense of [14], Definition 1.1, (vi) [cf. Proposition 1.7 below; [14], Proposition
1.2].

Lemma 1.6. Let G be a Hausdorff topological group; S ⊆ G a nonempty subset.
Then the following hold:
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(i) ZG(S) ⊆ G is closed.
(ii) ZG(S) = ZG(S).

Proof. First, we verify assertion (i). For any h ∈ G, ZG({h}) is the inverse image
of the closed subset {1} ⊆ G via the continuous map G → G determined by
g 7→ ghg−1h−1. Thus, ZG({h}), hence also ZG(S) =

∩
h∈S ZG({h}), is closed.

This completes the proof of assertion (i).
Next, we verify assertion (ii). Since S ⊆ S, the inclusion ZG(S) ⊇ ZG(S) is

clear. We verify the inclusion ZG(S) ⊆ ZG(S). Let us observe that S is contained
in ZG(ZG(S)). Now it follows from assertion (i) that S ⊆ ZG(ZG(S)). Thus, it
holds that ZG(S) ⊆ ZG(S). This completes the proof of assertion (ii), hence also
of Lemma 1.6. □

Proposition 1.7. Let G be a group; n a positive integer. Then the following
conditions are equivalent:

(1) Every (n− 1)-subnormal subgroup of G is internally indecomposable.
(2) ZG(H) = {1} for every nontrivial n-subnormal subgroup H ⊆ G.

Moreover, if G is a Hausdorff topological group, then the above conditions and the
following conditions are all equivalent:

(3) Every (n−1)-subnormal closed subgroup of G is internally indecomposable.
(4) ZG(H) = {1} for every nontrivial n-subnormal closed subgroup H ⊆ G.

Proof. First, we verify the implication (1) ⇒ (2). Suppose that condition (1) is
satisfied. Let H ⊆ G be a nontrivial n-subnormal subgroup. Then there exist
subgroups H0 = G,H1, . . . , Hn−1,Hn = H of G such that Hi is normal in Hi−1 for
each i ∈ {1, . . . , n}. Now for each i ∈ {1, . . . , n}, since Hi−1 is internally indecom-
posable, it follows from [the proof of] [14], Proposition 1.2, that ZHi−1

(Hi) = {1}.
[Note that the proof of [14], Proposition 1.2, is also valid in the case of general
groups.] Now it follows from Proposition 1.4 that ZG(H) = {1}. This completes
the proof of the implication (1)⇒ (2).

Next, we verify the implication (2)⇒ (1). Suppose that condition (2) is satisfied.
Let H ⊆ G be an (n − 1)-subnormal subgroup. Then, for every nontrivial normal
subgroup of N ⊆ H of H, it holds that ZH(N) ⊆ ZG(N) = {1}. Thus, it follows
from [the proof of] [14], Proposition 1.2, that H is internally indecomposable. This
completes the proof of the implication (2)⇒ (1).

Finally, we verify the equivalences (2) ⇔ (3) ⇔ (4) when G is a Hausdorff
topological group. The equivalence (3) ⇔ (4) follows from an argument similar to
the above argument. Moreover, the equivalence (2) ⇔ (4) follows from Remark
1.1.1; Lemma 1.6. This completes the proof of Proposition 1.7. □

Definition 1.8. Let G be a group; n a positive integer.

(i) We shall say that G is n-sn-internally indecomposable if G satisfies the
equivalent conditions (1), (2) of Proposition 1.7. [Note that a 1-sn-internally
indecomposable group is nothing but an internally indecomposable group.]

(ii) If G is a profinite group, then we shall say that G is strongly n-sn-internally
indecomposable if every open subgroup of G is n-sn-internally indecompos-
able.
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(iii) We shall say that G is sn-internally indecomposable (respectively, strongly
sn-internally indecomposable) if G is m-sn-internally indecomposable (re-
spectively, strongly m-sn-internally indecomposable) for any positive inte-
ger m.

Remark 1.8.1.

(i) Let m,n be integers such that n ≥ m ≥ 0. If a group (respectively, a
profinite group) G is n-sn-internally indecomposable (respectively, strongly
n-sn-internally indecomposable), then any m-subnormal subgroup (respec-
tively, m-subnormal closed subgroup) of G is (n − m)-sn-internally inde-
composable (respectively, strongly (n − m)-sn-internally indecomposable)
[cf. Corollary 1.3].

(ii) A group (respectively, a profinite group) is sn-internally indecomposable
if and only if every subnormal subgroup (respectively, subnormal closed
subgroup) is center-free and indecomposable.

Proposition 1.9. Let G be a Hausdorff topological group; H ⊆ G a subgroup; n a
nonnegative integer. If H ⊆ G is n-sn-internally indecomposable, then so is H.

Proof. Suppose that H is n-sn-internally indecomposable. Let S ⊆ H be a non-
trivial n-subnormal subgroup of H. Then it follows from Remark 1.1.1 that S is
n-subnormal in H, which implies that ZH(S) = {1}. Now it follows from Lemma

1.6, (ii), that ZH(S) = ZH(S) ∩H = ZH(S) ∩H = {1}. This completes the proof
of Proposition 1.9. □

Proposition 1.10. Let G be a group; n a positive integer; {Hλ}λ∈Λ a set of n-
subnormal subgroups of G. Then the following hold:

(i)
∩

λ∈Λ Hλ is n-subnormal in G.
(ii) Suppose that G is n-sn-internally indecomposable, that Λ is finite, and that

for each λ ∈ Λ, Hλ is nontrivial. Then
∩

λ∈Λ Hλ is nontrivial.

Proof. For each λ ∈ Λ, there exist subgroups Hλ,0 = G,Hλ,1, . . . , Hλ,n−1,Hλ,n =
Hλ of G such that Hλ,i is normal in Hλ,i−1 for each i ∈ {1, . . . , n}. Then, since∩

λ∈Λ Hλ,i is a normal subgroup of
∩

λ∈Λ Hλ,i−1, assertion (i) is clear. Next, we
verify assertion (ii). By assertion (i), we may assume that Λ consists of two elements

λ, µ. For each i ∈ {0, . . . , n}, write Hi
def
= Hλ,i; Si

def
= Hµ,i. We prove that for

i, j ∈ {0, . . . , n}, it holds that Hi ∩Sj ̸= {1} by induction on i+ j. The case where
i+ j ≤ 1 is clear.

Now suppose that i + j ≥ 2, and that the induction hypothesis is in force.
We may assume that i, j ̸= 0. Then it follows from the induction hypothesis
that Hi−1 ∩ Sj and Hi ∩ Sj−1 are nontrivial. Moreover, since Hi−1 ∩ Sj and
Hi∩Sj−1 are normal subgroups of Hi−1∩Sj−1, it holds that [Hi−1∩Sj ,Hi∩Sj−1] ⊆
(Hi−1 ∩ Sj) ∩ (Hi ∩ Sj−1) = Hi ∩ Sj . Thus, if Hi ∩ Sj = {1}, then we obtain a
normally decomposable subgroup (Hi−1 ∩ Sj)× (Hi ∩ Sj−1) of Hi−1 ∩ Sj−1.

On the other hand, it follows from assertion (i) that Hi−1 ∩ Sj−1 is max{i −
1, j − 1}-subnormal in G, hence (n − 1)-subnormal in G. Thus, since G is n-sn-
internally indecomposable, we obtain a contradiction. Therefore, we conclude that
Hi ∩Sj ̸= {1}. This completes the proof of assertion (ii), hence also of Proposition
1.10. □



10 ARATA MINAMIDE, KOICHIRO SAWADA, AND SHOTA TSUJIMURA

Proposition 1.11. Let G be a profinite group; H ⊆ G an open subgroup; n a
positive integer. Suppose that any open subgroup of G has no nontrivial finite
normal subgroup [e.g. the case where G is slim [cf. [13], Lemma 1.3]] and that
H is strongly n-sn-internally indecomposable. Then G is strongly n-sn-internally
indecomposable.

Proof. We prove Proposition 1.11 by induction on n. The case where n = 1 fol-
lows from the proof of [14], Proposition 1.6. Now suppose that n ≥ 2, and that
the induction hypothesis is in force. It suffices to prove that G is n-sn-internally
indecomposable. Let S ⊆ G be an (n − 1)-subnormal closed subgroup of G. Note
that, since H is strongly n-sn-internally indecomposable, hence strongly (n − 1)-
sn-internally indecomposable, it follows from the induction hypothesis that G is
strongly (n− 1)-sn-internally indecomposable. In particular, it follows from Corol-
lary 1.3 that S is slim. Moreover, since S ∩H is (n− 1)-subnormal in H, it holds
that S∩H is strongly internally indecomposable. Thus, it follows from [14], Propo-
sition 1.6, that S is [strongly] internally indecomposable, which implies that G is
n-sn-internally indecomposable. This completes the proof of Proposition 1.11. □

Proposition 1.12. Let G be a group (respectively, a profinite group); n a posi-
tive integer; {Gi}i∈I a directed subset of the set of subgroups (respectively, closed
subgroups) of G [where j ≥ i ⇔ Gi ⊆ Gj] such that G =

∪
i∈I Gi. If for each

i ∈ I, Gi is n-sn-internally indecomposable (respectively, strongly n-sn-internally
indecomposable), then so is G.

Proof. The resp’d case follows immediately from the non-resp’d case. We verify the
non-resp’d case. Suppose that Gi is n-sn-internally indecomposable for each i ∈ I.
Let H ⊆ G be an (n − 1)-subnormal subgroup. Then for each i ∈ I, H ∩ Gi is
(n−1)-subnormal in Gi, hence internally indecomposable. Thus, it follows from [the
proof of] [14], Proposition 1.7, that H =

∪
i∈I(H∩Gi) is internally indecomposable,

which implies that G is n-sn-internally indecomposable. This completes the proof
of Proposition 1.12. □

Proposition 1.13. Let G be a group (respectively, a profinite group); n a posi-
tive integer; {Gi}i∈I a directed subset of the set of normal subgroups (respectively,
normal closed subgroups) of G [where j ≥ i ⇔ Gj ⊆ Gi] such that the natural
homomorphism G → lim←−i∈I

G/Gi is an isomorphism. If for each i ∈ I, G/Gi is

n-sn-internally indecomposable (respectively, strongly n-sn-internally indecompos-
able), then so is G.

Proof. The resp’d case follows immediately from the non-resp’d case. We verify
the non-resp’d case. Suppose that G/Gi is n-sn-internally indecomposable for each
i ∈ I. Write ϕi : G ↠ G/Gi for the natural surjection. Let H ⊆ G be a nontrivial
n-subnormal subgroup. Fix an element i ∈ I such that ϕi(H) ̸= {1} and write

Ii
def
= {j ∈ I | j ≥ i}. Then for each j ∈ Ii, since ϕj(H) is a nontrivial n-subnormal

subgroup of G/Gj , it holds that ϕj(ZG(H)) ⊆ ZG/Gj
(ϕj(H)) = {1}. Thus, we

conclude that ZG(H) ⊆
∩

j∈Ii
Gj = {1}. This completes the proof of Proposition

1.13. □

Lemma 1.14. Let n be a positive integer; G an n-sn-internally indecomposable
group; S ⊆ G a nontrivial n-subnormal subgroup; H ⊆ G a subgroup containing S;
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α : H → G a homomorphism. Suppose that for any h ∈ S, it holds that α(h) = h.
Then for any g ∈ H, it holds that α(g) = g.

Proof. There exist subgroups S0 = G,S1, . . . , Sn−1, Sn = S of G such that Si is
normal in Si−1 for each i ∈ {1, . . . , n}. It suffices to prove that for i ∈ {1, . . . , n},
if α(h) = h for any h ∈ Si ∩H, then for any g ∈ Si−1 ∩H, it holds that α(g) = g.

Suppose that for any h ∈ Si ∩ H, it holds that α(h) = h. Let g ∈ Si−1 ∩ H.
Then since Si is normal in Si−1, for any h ∈ Si ∩ H, it holds that g−1hg ∈
Si ∩ H, hence α(g−1hg) = g−1hg. Thus, we obtain that α(g)g−1h(α(g)g−1)−1 =
α(g)α(g−1hg)α(g)−1 = α(h) = h. This implies that α(g)g−1 ∈ ZG(Si ∩ H) ⊆
ZG(S) = {1}. This completes the proof of Lemma 1.14. □

Proposition 1.15. Let 1 → G1 → G → G2 → 1 be an exact sequence of groups
(respectively, profinite groups); n a positive integer. Write ρ : G2 → Out(G1) for
the outer representation associated to this exact sequence. Suppose that

• G1 is n-sn-internally indecomposable (respectively, strongly n-sn-internally
indecomposable);
• G2 is n-sn-internally indecomposable (respectively, strongly n-sn-internally
indecomposable);
• ρ is injective.

Then G is n-sn-internally indecomposable (respectively, strongly n-sn-internally in-
decomposable).

Proof. Write φ for the surjective homomorphism G ↠ G2 appearing in the state-
ment. It follows from [12], Lemma 1.7, (i), that it suffices to prove the non-resp’d
case. Let H ⊆ G be an (n − 1)-subnormal subgroup. If H ∩ G1 = {1}, then,

since H
∼→ φ(H) ⊆ G2 is (n − 1)-subnormal in G2, it holds that H is internally

indecomposable.
If H ∩ G1 ̸= {1}, then let h ∈ H be an element such that φ(h) is in the kernel

of the natural outer representation φ(H) → Out(H ∩ G1). Then there exists an
element k ∈ H ∩G1 such that for any g ∈ H ∩G1, it holds that (kh)g(kh)

−1 = g.
Thus, sinceH∩G1 ⊆ G1 is (n−1)-subnormal inG1, it follows from Lemma 1.14 that
(kh)g(kh)−1 = g for any g ∈ G1. This implies that φ(h) = φ(kh) ∈ ker ρ = {1}.
Thus, the outer representation φ(H)→ Out(H ∩G1) is injective. Moreover, since
H ∩ G1 ⊆ G1 and φ(H) ⊆ G2 are (n − 1)-subnormal in G1, G2, respectively, it
holds that H ∩G1 and φ(H) are internally indecomposable. Thus, it follows from
[the proof of] [14], Proposition 1.11, (i), that H is internally indecomposable. This
completes the proof of Proposition 1.15. □

Proposition 1.16. Let 1 → G1 → G → G2 → 1 be an exact sequence of groups
(respectively, profinite groups); n a positive integer. Suppose that

• G1 is n-sn-internally indecomposable (respectively, strongly n-sn-internally
indecomposable);
• G2 is abelian;
• G is center-free (respectively, slim).

Then G is n-sn-internally indecomposable (respectively, strongly n-sn-internally in-
decomposable).

Proof. To verify Proposition 1.16, it suffices to prove the non-resp’d case. Let
H ⊆ G be an (n − 1)-subnormal subgroup. Then there exist subgroups H0 =
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G,H1, . . . , Hn−2,Hn−1 = H of G such that Hi is normal in Hi−1 for each i ∈
{1, . . . , n−1}. We prove that for i ∈ {0, . . . , n−1}, Hi is internally indecomposable
by induction on n. If i = 0, then this follows from [the proof of] [14], Proposition
1.11, (ii).

Now suppose that i ≥ 1, and that the induction hypothesis is in force. Then
Hi−1 is internally indecomposable by the induction hypothesis, which implies that
Hi is center-free. Moreover, since G1 is n-sn-internally indecomposable, Hi ∩G1 is
internally indecomposable. Furthermore, Hi/(Hi∩G1) is isomorphic to a subgroup
of G2, hence is abelian. Thus, it follows from [the proof of] [14], Proposition 1.11,
(ii), that Hi is internally indecomposable. This completes the proof of Proposition
1.16. □

Remark 1.16.1. Let 1 → G1 → G → G2 → 1 be an exact sequence of groups
(respectively, profinite groups); n a positive integer. Suppose that G1 is n-sn-
internally indecomposable (respectively, strongly n-sn-internally indecomposable).
Then G is center-free (respectively, slim) if the outer representation G2 → Out(G1)
is injective.

Corollary 1.17. Let G be a group; m,n positive integers; H0 = G,H1, . . . , Hm

closed subgroups of G such that Hi is normal in Hi−1 for each i ∈ {1, . . . ,m}.
Suppose that

• Hm is nontrivial and n-sn-internally indecomposable;
• for each i ∈ {1, . . . ,m}, Hi−1/Hi is n-sn-internally indecomposable or
abelian;
• Hm is n-subnormal in G [e.g. the case where m ≤ n].

Then the following conditions are equivalent:

(1) G is n-sn-internally indecomposable.
(2) It holds that ZG(Hm) = {1}.
(3) For each i ∈ {1, . . . ,m}, it holds that ZHi−1

(Hi) = {1}.
(4) For each i ∈ {1, . . . ,m}, the natural outer representation Hi−1/Hi →

Out(Hi) is injective.

Moreover, if further suppose that G,H1, . . . , Hm are profinite, that Hm is strongly n-
sn-internally indecomposable, and that for each i ∈ {1, . . . ,m}, Hi−1/Hi is strongly
n-sn-internally indecomposable or abelian, then the above conditions are equivalent
to the following condition:

(5) G is strongly n-sn-internally indecomposable.

Proof. The second assertion follows from the first assertion and Propositions 1.15,
1.16; Remark 1.16.1. We verify the first assertion. The implications (1) ⇒ (2) ⇒
(3)⇒ (4) are immediate. The implication (4)⇒ (1) follows from Propositions 1.15,
1.16; Remark 1.16.1. This completes the proof of Corollary 1.17. □

2. Elasticity of subnormal subgroups

In the present section, we discuss generalities on elasticity of subnormal sub-
groups of profinite groups [cf. Definition 2.1].

Definition 2.1. Let G be a profinite group; n a positive integer.
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(i) We shall say that G is n-sn-quasielastic (respectively, n-sn-elastic) if every
topologically finitely generated n-subnormal closed subgroup of G (respec-
tively, of an open subgroup of G) is trivial or open. We shall say that G
is quasielastic (respectively, elastic) if G is 1-sn-quasielastic (respectively,
1-sn-elastic).

(ii) We shall say that G is sn-quasielastic (respectively, sn-elastic) if G is m-
sn-quasielastic (respectively, m-sn-elastic) for any positive integer m.

(iii) We shall say that G is very quasielastic (respectively, very n-sn-quasielastic;
very n-sn-elastic; very sn-quasielastic; very sn-elastic) if G is quasielastic
(respectively, n-sn-quasielastic; n-sn-elastic; sn-quasielastic; sn-elastic), but
not topologically finitely generated.

Remark 2.1.1. Although we define “elasticity” here as a special case of n-sn-elasticity,
the definition of “elasticity” is exactly the same as in common use [cf. [20], Defini-
tion 1.1, (ii)].

Lemma 2.2. Let G be a profinite group; n a positive integer. Then the following
hold:

(i) The following conditions are equivalent:
(1) G is n-sn-quasielastic.
(2) Every (n− 1)-subnormal closed subgroup of G is quasielastic.

(ii) Suppose that G is nontrivial. Then the following conditions are equivalent:
(1) G is very n-sn-quasielastic.
(2) Every nontrivial (n−1)-subnormal closed subgroup of G is very quasielas-

tic.
(3) Every topologically finitely generated n-subnormal closed subgroup of

G is trivial.

Proof. First, we verify assertion (i). The implication (1) ⇒ (2) is clear. We verify
the implication (2) ⇒ (1). Suppose that condition (2) is satisfied. Let H ⊆ G be
a nontrivial topologically finitely generated n-subnormal closed subgroup. Then
there exist closed subgroups H0 = G,H1, . . . , Hn−1,Hn = H of G such that Hi is
normal in Hi−1 for each i ∈ {1, . . . , n}. Now since Hn−1 is quasielastic, Hn ⊆ Hn−1

is open in Hn−1. In particular, Hn−1 is topologically finitely generated. Thus, by
applying the above argument inductively, we observe that for each i ∈ {1, . . . , n},
Hi is open in Hi−1. Therefore, we conclude that H is open in G. This completes
the proof of assertion (i).

Next, we verify assertion (ii). The implications (1) ⇒ (3) ⇒ (2) are clear.
The implication (2) ⇒ (1) follows from assertion (i). This completes the proof of
assertion (ii), hence also of Lemma 2.2. □

Lemma 2.3. Let G be a profinite group; H ⊆ G an open subgroup; n a positive
integer. Suppose that G has no nontrivial finite n-subnormal subgroup [e.g. the case
where every (n− 1)-subnormal closed subgroup of G is slim [cf. [13], Lemma 1.3]].
Then if H is n-sn-quasielastic (respectively, very n-sn-quasielastic), then so is G.

Proof. If S ⊆ G is a nontrivial topologically finitely generated n-subnormal closed
subgroup, then H ∩ S is a nontrivial topologically finitely generated n-subnormal
closed subgroup of H. This implies that H∩S is open in H, hence also in G. Thus,
we conclude that S is open in G. This completes the proof of Lemma 2.3. □
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Lemma 2.4. Let G be a profinite group; n a positive integer; {Gi}i∈I a directed
subset of the set of closed subgroups of G [where j ≥ i ⇔ Gj ⊆ Gi] such that the
natural homomorphism G → lim←−i∈I

G/Gi is an isomorphism. If for each i ∈ I,

G/Gi is very n-sn-quasielastic (respectively, very n-sn-elastic), then so is G.

Proof. To verify Lemma 2.4, it suffices to prove the non-resp’d case. For each i ∈ I,
write ϕi : G ↠ G/Gi for the natural surjection. Let H ⊆ G be a topologically
finitely generated n-subnormal closed subgroup. Then it follows from Lemma 2.2,
(ii), that for each i ∈ I, ϕi(H) = {1}. Thus, it holds that H ⊆

∩
i∈I Gi = {1}.

This implies that G is very n-sn-quasielastic [cf. Lemma 2.2, (ii)]. This completes
the proof of Lemma 2.4. □

Lemma 2.5. Let p be a prime number; G a pro-p group such that every nontrivial
abelian closed subgroup of G is isomorphic to Zp. Then the following hold:

(i) Let H ⊆ G be a nontrivial closed subgroup such that Z(H) = {1}. Then
ZG(H) = {1}.

(ii) Let n be a positive integer. Suppose that
• every open subgroup of G is not isomorphic to Zp;
• G is n-sn-quasielastic (respectively, n-sn-elastic).

Then G is n-sn-internally indecomposable (respectively, strongly n-sn-internally
indecomposable).

Proof. First, we verify assertion (i). Let us observe that H ∩ ZG(H) = Z(H) =
{1}. Let x ∈ H \ {1} and y ∈ ZG(H). Then the [abelian] closed subgroup of G
topologically generated by x, y ∈ G is isomorphic to Zp. Since Zp is indecomposable,
we obtain that y = 1. Thus, it holds that ZG(H) = {1}. This completes the proof
of assertion (i).

Next, we verify assertion (ii). It suffices to prove the non-resp’d case. Let
H ⊆ G be a nontrivial n-subnormal closed subgroup of G. Then, since Z(H) ⊆ H
is characteristic in H, Z(H) is an abelian n-subnormal closed subgroup of G. In
particular, Z(H) is isomorphic to Zp. Thus, we conclude from the assumptions
on G in the statement of assertion (ii) that Z(H) = {1}, hence from assertion (i)
that ZG(H) = {1}. This completes the proof of assertion (ii), hence also of Lemma
2.5. □

Definition 2.6 (cf. [3], §17.3; [21], Definition 1.1, (i), (ii)). Let C be a family of
finite groups containing the trivial group; Σ a set of prime numbers.

(i) We shall refer to a [finite] group belonging to C as a C-group. We shall refer
to a finite group as a Σ-group if every prime factor of its order belongs to
Σ.

(ii) We shall refer to C as a full-formation if C is closed under taking quotients,
subgroups, and extensions.

(iii) We shall write ΣC for the set of prime numbers l such that Z/lZ is a C-group.

Definition 2.7 (cf. [3], Definition 17.3.2; [21], Definition 1.1, (iii)). Let G be a
profinite group; C a full-formation; Σ a nonempty set of prime numbers; l a prime
number.

(i) We shall write GC for the maximal pro-C quotient of G. If C is the family

of all Σ-groups, then we shall also write GΣ def
= GC . Moreover, we shall also

write Gl def
= G{l}.
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(ii) Let Q be a quotient of G [in the category of profinite groups]. If there
exists a normal open subgroup N ⊆ G such that the kernel of the surjec-
tion G ↠ Q coincides with the kernel of the natural surjection N ↠ NC

(respectively, N ↠ NΣ; N ↠ N l), then we shall say that Q is an almost
pro-C-maximal quotient (respectively, almost pro-Σ-maximal quotient ; al-
most pro-l-maximal quotient) of G [associated to N ].

Lemma 2.8. Let G be a profinite group; p a prime number; n a positive integer.
Suppose that for any positive integer m, there exists a positive integer dm such that
any open subgroup U of G of index ≥ dm satisfies the following conditions:

• any almost pro-p-maximal quotient of U is n-sn-quasielastic;
• there is no open subgroup of Up topologically generated by m elements.

Then G is n-sn-elastic.

Proof. Let V ⊆ G be an open subgroup of G; H ⊆ V a topologically finitely

generated n-subnormal closed subgroup of V of infinite index. Write m
def
= r(H).

Let U ⊆ V be an open subgroup of V of index ≥ dm containing H. Then it follows
from the second assumption on dm that the image of H in Up is not open, which
implies that the image of H in any almost pro-p-maximal quotient of U is not
open. Thus, we conclude from the first assumption on dm that the image of H in
any almost pro-p-maximal quotient of U is trivial. Therefore, we conclude that H
is trivial. This completes the proof of Lemma 2.8. □

3. Subnormal subgroups of groups in anabelian geometry

In the present section, we apply the generalities discussed in the previous sections
to prove the sn-internal indecomposability and the sn-elasticity of various groups
appearing in anabelian geometry.

In the present section, let p be a prime number. First, we consider properties of
free pro-C groups and Demuškin groups.

Lemma 3.1. Let G be a profinite group; C a full-formation; N ⊆ G a normal open
subgroup; {Gi}i∈I a directed subset of the set of normal subgroups (respectively,
normal closed subgroups) of G [where j ≥ i ⇔ Gj ⊆ Gi] such that the natural
homomorphism G→ lim←−i∈I

G/Gi is an isomorphism. Write Q for the almost pro-

C-maximal quotient of G associated to N . Moreover, for each i ∈ I, write Qi for
the almost pro-C-maximal quotient of G/Gi associated to the image of N in G/Gi.
Then the natural homomorphism Q→ lim←−i∈I

Qi is an isomorphism.

Proof. Write K
def
= ker(G ↠ Q) = ker(N ↠ NC); Ki

def
= ker(G/Gi ↠ Qi). Then

for each i ∈ I, we obtain a commutative diagram

1 // K //

��

G //

��

Q //

��

1

1 // Ki
// G/Gi

// Qi
// 1,

where the horizontal sequences are exact and the vertical arrows are surjective [cf.
[23], Lemma 3.4.1, (b)]. By taking the inverse limit, we obtain a commutative
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diagram

1 // K //

��

G //

��

Q //

��

1

1 // lim←−
i∈I

Ki
// lim←−
i∈I

G/Gi
// lim←−
i∈I

Qi
// 1,

where the horizontal sequences are exact [cf. [23], Proposition 2.2.4] and the vertical
arrows are surjective [cf. [23], Lemma 1.1.5]. Thus, since G → lim←−i∈I

G/Gi is an

isomorphism, we conclude that the natural homomorphism Q → lim←−i∈I
Qi is an

isomorphism. This completes the proof of Lemma 3.1. □

Lemma 3.2. Let C be a nontrivial full-formation. Then any almost pro-C-maximal
quotient of a free profinite group of [possibly infinite] rank ≥ 2 is slim.

Proof. This follows from Lemma 3.1; [23], Corollary 3.3.10, (b); [21], Proposition
1.4. □

Theorem 3.3. Let C be a nontrivial full-formation. Then any almost pro-C-
maximal quotient of a free profinite group of [possibly infinite] rank ≥ 2 is strongly
sn-internally indecomposable and sn-elastic.

Proof. First, we claim the following:

Claim 3.3.A: Every free pro-p group of rank ≥ 2 is strongly sn-
internally indecomposable and sn-elastic.

Indeed, let F be a free pro-p group of rank ≥ 2. Then it follows from [23], Theorem
3.6.2, (b); [23], Corollary 7.7.5; [23], Theorem 8.6.6, that every nontrivial normal
closed subgroup of an open subgroup of F , hence also every nontrivial subnormal
closed subgroup of an open subgroup of F , is a free pro-p group of rank ≥ 2. Thus,
it follows from Lemma 2.2, (i); [14], Proposition 1.5; [23], Theorem 8.6.6, that F is
strongly sn-internally indecomposable and sn-elastic. This completes the proof of
Claim 3.3.A.

Now let G be an almost pro-C-maximal quotient of a free profinite group of rank
≥ 2. We may assume that p ∈ ΣC . Next, we claim the following:

Claim 3.3.B: G is strongly sn-internally indecomposable.

Indeed, in light of Proposition 1.13, we may assume that G is an almost pro-p-
maximal quotient of a free profinite group of rank ≥ 2. Then Claim 3.3.B follows
from Proposition 1.11; Lemma 3.2; Claim 3.3.A.

To complete the proof of Theorem 3.3, it suffices to prove that G is sn-elastic. In
light of Claim 3.3.B; Lemmas 2.3, we may assume that G is a free pro-C group of
rank ≥ 2. Then it follows from Claims 3.3.A, 3.3.B; Lemmas 2.3, 2.8; [23], Theorem
3.6.2, that G is sn-elastic. This completes the proof of Theorem 3.3. □

Remark 3.3.1. Theorem 3.3 may be regarded as a generalization of [14], Proposition
1.5 [which is a consequence of [23], Proposition 8.7.8]. Note that by applying Lemma
2.5, (ii), instead of [14], Proposition 1.5, in the proof above, we obtain an alternative
proof of [14], Proposition 1.5.

Corollary 3.4. Every free pro-p group is sn-elastic.
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Proof. Since any nontrivial closed subgroup of Zp is isomorphic to Zp, Corollary
3.4 follows immediately from Theorem 3.3. □
Definition 3.5 ([22], Definition 3.9.9). Let G be a pro-p group. Then we shall say
that G is a Demuškin group if the following conditions are satisfied:

• dimFp H
1(G,Fp) <∞;

• dimFp
H2(G,Fp) = 1;

• the cup product H1(G,Fp)×H1(G,Fp)→ H2(G,Fp) is nondegenerate.

Proposition 3.6. Let n be an integer such that n ≥ 2; G an infinite pro-p
Demuškin group of rank n. Then the following hold:

(i) Every open subgroup U ⊆ G is a pro-p Demuškin group of rank 2 + [G :
U ](n− 2).

(ii) Every nontrivial closed subgroup of infinite index of G is a free pro-p group.
(iii) Suppose that G is not isomorphic to Z2

p. Then G is slim and strongly
indecomposable.

Proof. Assertion (i) follows from [22], Theorem 3.9.15. Assertion (ii) follows from
[22], Chapter III, §7, Exercise 3, (ii).

We verify assertion (iii). First, we verify that G is slim. In light of assertion
(i) and [11], Lemma 2.2, (i), it suffices to prove that Z(G) = {1}. Suppose that
Z(G) ̸= {1}. Let us observe that any nontrivial abelian closed subgroup of G is
isomorphic to Zp [cf. assertions (i), (ii); [11], Lemma 2.2, (i)]. In particular, it
holds that Z(G) ∼= Zp. Thus, it follows from [22], Theorem 3.3.9, that G/Z(G)
is of virtual p-cohomological dimension 1, which implies that G/Z(G) has a free
pro-p open subgroup V ⊆ G/Z(G). Then the closed subgroup of G topologically
generated by Z(G) and a lifting of a nontrivial element of V in G is isomorphic
to Z2

p, which contradicts the observation above. This completes the proof of the
slimness of G.

Next, we verify that G is strongly indecomposable. In light of assertion (i) and
[11], Lemma 2.2, (i), it suffices to prove that G is indecomposable. Suppose that
G = H1 × H2 and H1 ̸= {1}. Then, since Z(H1) × Z(H2) = Z(G) = {1}, we
obtain that Z(H1) = {1}. Thus, it follows from Lemma 2.5, (i), together with the
observation above, that ZG(H1) = {1}. Since H2 ⊆ ZG(H1), we conclude that
H2 = {1}. This completes the proof of assertion (iii), hence also of Proposition
3.6. □
Theorem 3.7. Every pro-p Demuškin group of rank ≥ 3 is strongly sn-internally
indecomposable and sn-elastic.

Proof. Let G be a pro-p Demuškin group of rank ≥ 3. Note that G is infinite [cf.
[22], Proposition 3.9.10]. In light of Lemma 2.5, (ii); Proposition 3.6, (i), (ii), it
suffices to prove that G is sn-quasielastic. Let H ⊆ G be a topologically finitely
generated subnormal closed subgroup of infinite index. Take an open subgroup
U ⊆ G of G containing H such that [G : U ] ≥ r(H) + 1. Then it follows from
Proposition 3.6, (i), that the inequality r(U) ≥ r(H)+3 holds. Since Uab contains a

subgroup isomorphic to Zr(U)−1
p [cf. the discussion preceding [22], Theorem 3.9.11],

there exists a closed subgroup F ⊆ U of U of infinite index such that H is a closed
subgroup of F of infinite index. Now it follows from Corollary 3.4; Proposition 3.6,
(ii), that H is trivial. Thus, we conclude that G is sn-quasielastic. This completes
the proof of Theorem 3.7. □
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Next, we prove the sn-internal indecomposability and the sn-elasticity of [almost
pro-C-maximal quotients of] the absolute Galois groups of various fields.

Theorem 3.8. Let K be a Henselian discrete valuation field [cf. [3], §11.5] of
residue characteristic p; C a full-formation such that p ∈ ΣC. Then any almost pro-
C-maximal quotient of GK is strongly sn-internally indecomposable and sn-elastic.

Proof. If K is of characteristic p, then it follows from the proof of [14], Theorem 2.1,
that any almost pro-p-maximal quotient of GK is slim and has an open subgroup
which is a free pro-p group of infinite rank. Thus, it follows from Propositions 1.11,
1.13; Theorem 3.3, that any almost pro-C-maximal quotient of GK is strongly sn-
internally indecomposable. Moreover, it follows from Lemmas 2.3, 2.4; Theorem 3.3,
that any almost pro-C-maximal quotient of GK is very sn-elastic. This completes
the proof of Theorem 3.8 in the case where K is of characteristic p.

In the remainder of the proof of Theorem 3.8, we assume that K is a mixed
characteristic Henselian discrete valuation field [of residue characteristic p]. First,
we claim the following:

Claim 3.8.A: Suppose that the residue field of K is infinite. Then
Gp

K is very sn-elastic.

Indeed, it suffices to prove that Gp
K is very sn-quasielastic. Let H ⊆ Gp

K be a
topologically finitely generated subnormal closed subgroup. Then it follows from
[15], Proposition 3.3, that there exists a closed subgroup Q ⊆ Gp

K of infinite index
such that H is a closed subgroup of Q of infinite index, and that Q is a free pro-p
group. Then it follows from Corollary 3.4 that H is trivial. Thus, it follows from
Lemma 2.2, (ii), that Gp

K is very sn-quasielastic. This completes the proof of Claim
3.8.A.

Next, we claim the following:

Claim 3.8.B: Suppose that the residue field of K is infinite. Then
any almost pro-C-maximal quotient of GK is strongly sn-internally
indecomposable.

Indeed, it follows from Lemma 2.5, (ii); Claim 3.8.A; [15], Corollary 3.6, that Gp
K

is sn-internally indecomposable. Thus, Claim 3.8.B follows from Propositions 1.11,
1.13; [15], Theorem 4.3.

In light of Claim 3.8.B, to prove Theorem 3.8 in the case where the residue field
of K is infinite, it suffices to prove that any almost pro-C-maximal quotient of GK

is [very] sn-elastic. Moreover, in light of Claim 3.8.B; Lemmas 2.3, 2.4, it suffices to
prove that Gp

K is very sn-elastic. This is nothing but Claim 3.8.A. This completes
the proof of Theorem 3.8 in the case where the residue field of K is infinite.

To complete the proof of Theorem 3.8, we may assume that the residue field
of K is finite. Moreover, by [13], Lemma 3.1, we may assume that K is a p-adic
local field. Then it follows from Theorems 3.3, 3.7; [22], Theorem 7.5.11, that Gp

K is
sn-internally indecomposable and sn-elastic. Moreover, it follows from Propositions
1.11, 1.13; [20], Theorem 1.6, (i), that any almost pro-C-maximal quotient of GK is
strongly sn-internally indecomposable. In particular, by Lemma 2.3, we conclude
that any almost pro-p-maximal quotient of GK is sn-elastic.

Finally, we verify that any almost pro-C-maximal quotient of GK is sn-elastic.
In light of Lemma 2.3, it suffices to prove that GC

K is sn-elastic. Then it follows
from Lemma 2.8, together with local class field theory, that GC

K is sn-elastic. This
completes the proof of Theorem 3.8. □
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Lemma 3.9. Let K be a Hilbertian field [cf. [3], §12.1]; H ⊆ GK a nontrivial
subnormal closed subgroup; U ⊆ H a proper open subgroup of H. Write L for the
separable extension of K associated to U ⊆ GK . Then L is Hilbertian.

Proof. There exist nonnegative integer n and distinct closed subgroups H0 =
G,H1, . . . , Hn−1,Hn = H of G such that Hi is normal in Hi−1 for each i ∈
{1, . . . , n}. For each i ∈ {1, . . . , n}, take a proper open subgroup Ui−1 ⊆ Hi−1

of Hi−1 containing Hi, and write Li−1 for the separable extension of K associated

to Ui−1 ⊆ GK . Moreover, write Ln
def
= L. Then, by applying [3], Theorem 13.9.1,

(b), inductively, we observe that Li is Hilbertian for each i ∈ {0, . . . , n}. This
completes the proof of Lemma 3.9. □

Theorem 3.10. Let K be a Hilbertian field; C a nontrivial full-formation. Then
any almost pro-C-maximal quotient of GK is strongly sn-internally indecomposable
and very sn-elastic.

Proof. We may assume that p ∈ ΣC . First, we claim the following:

Claim 3.10.A: Gp
K is very sn-elastic.

Indeed, let U ⊆ Gp
K be an open subgroup; H ⊆ U a nontrivial subnormal closed

subgroup of U . Take a proper open subgroup V ⊆ H of H. Then it follows from
Lemma 3.9; [3], Corollary 16.3.6, that U , hence also H, is not topologically finitely
generated. This completes the proof of Claim 3.10.A.

Next, we claim the following:

Claim 3.10.B: Any almost pro-p-maximal quotient ofGK is strongly
internally indecomposable.

Indeed, let Q be an almost pro-p-maximal quotient of GK . In light of [3], Corol-
lary 12.2.3, it suffices to prove that Q is internally indecomposable.

Write KQ for the Galois extension of K associated to the kernel of the quotient
map toQ [i.e., Gal(KQ/K) = Q]. SinceKQ has no nontrivial p-extension, KQ is not
Hilbertian. Thus, we observe that Q has no nontrivial finite normal subgroup [cf.
[3], Theorem 13.9.1, (b)]. In particular, it follows from the proof of [14], Proposition
1.6, that we may assume that Q = Gp

K .
Now let N ⊆ Q = Gp

K be a nontrivial normal closed subgroup. Then it fol-
lows from Claim 3.10.A; [15], Proposition 1.2, that N is slim. In particular,
Z(N) = ZQ(N) ∩ N is trivial. Thus, since KQ is not Hilbertian, we conclude
from [3], Theorem 13.8.3, that ZQ(N) is trivial, which implies that Q is internally
indecomposable [cf. Proposition 1.7]. This completes the proof of Claim 3.10.B.

Next, we claim the following:

Claim 3.10.C: Any almost pro-C-maximal quotient ofGK is strongly
sn-internally indecomposable.

Indeed, in light of Claim 3.10.B; Propositions 1.11, 1.13; [3], Corollary 12.2.3,
it suffices to prove that Gp

K is sn-internally indecomposable. Let H ⊆ Gp
K be a

nontrivial subnormal closed subgroup of Gp
K . Take a proper open subgroup U ⊆ H

of H. Observe that it follows from Claim 3.10.A; [15], Proposition 1.2, that H
is slim. Moreover, it follows from Claim 3.10.B; Lemma 3.9, that U is strongly
internally indecomposable. In particular, it follows from Proposition 1.11 that H is
[strongly] internally indecomposable. Thus, we conclude that Gp

K is sn-internally
indecomposable. This completes the proof of Claim 3.10.C.
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To complete the proof of Theorem 3.10, it suffices to prove that any almost
pro-C-maximal quotient of GK is very sn-elastic. This follows from Claims 3.10.A,
3.10.C; Lemmas 2.3, 2.4. This completes the proof of Theorem 3.10. □

Next, we discuss the sn-internal indecomposability and the sn-elasticity of various
groups appearing in anabelian geometry of hyperbolic curves.

Definition 3.11. Let K be a field; K an algebraic closure of K; X a smooth
curve [i.e., a one-dimensional, smooth, separated, of finite type, and geometrically
connected scheme] over K. Write XK for the smooth compactification of XK over

K. Then we shall say that X is a smooth curve of type (g, r) over K if the genus
of XK is g, and the cardinality of the underlying set of XK \ XK is r. If X is a
smooth curve of type (g, r) over K, and 2g − 2 + r > 0, then we shall say that X
is a hyperbolic curve over K.

Definition 3.12 ([21], Definition 1.2). Let C be a full-formation; Π a profinite
group; Σ a nonempty set of prime numbers; l a prime number. Then we shall say
that Π is a pro-C surface group (respectively, an almost pro-C surface group) if Π is
isomorphic to the maximal pro-C quotient (respectively, an almost pro-C-maximal
quotient) of the étale fundamental group of a hyperbolic curve over an algebraically
closed field of characteristic 0. If C is the family of all Σ-groups (respectively, all
l-groups), then we shall also refer to a pro-C surface group as a pro-Σ surface group
(respectively, a pro-l surface group).

Theorem 3.13. Let C be a nontrivial full-formation; Π an almost pro-C surface
group. Then Π is strongly sn-internally indecomposable and sn-elastic.

Proof. Note that a pro-p surface group is a free pro-p group of rank ≥ 2 or a
Demuškin group of rank ≥ 4. Thus, it follows from Propositions 1.11, 1.13; Theo-
rems 3.3, 3.7; [21], Proposition 1.4, that Π is strongly sn-internally indecomposable.
Moreover, it follows from Lemma 2.8; Theorems 3.3, 3.7; Proposition 3.6, (i), that
Π is sn-elastic. This completes the proof of Theorem 3.13. □
Corollary 3.14. Let X be a hyperbolic curve over Cp. Then πtemp

1 (X) is sn-
internally indecomposable.

Proof. This follows from Proposition 1.9; Theorem 3.13; [1], Proposition 4.4.1; [1],
§4.5. □

Now we recall the definition of a configuration space group which plays a central
role in combinatorial anabelian geometry [cf. [17], [18], [19], [6], [7], [8], [9], [10]].

Definition 3.15.

(i) Let K be a field; X a hyperbolic curve over K; n a positive integer. Write

Xn
def
= X×n \

( ∪
1≤i<j≤n

∆i,j

)
,

where X×n denotes the fiber product of n copies of X over K; ∆i,j denotes
the diagonal divisor of X×n associated to the i-th and j-th components.
We shall refer to Xn as the n-th configuration space associated to X.

(ii) Let C be a full-formation; Π a profinite group. Then we shall say that Π is
a pro-C configuration space group if Π is isomorphic to the maximal pro-C
quotient of the étale fundamental group of a configuration space associated
to a hyperbolic curve over an algebraically closed field of characteristic 0.
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Theorem 3.16. Let C be a full-formation; Π a pro-C configuration space group.
Suppose that either C is the family of all finite groups or ΣC consists of a single
element. Then Π is strongly sn-internally indecomposable.

Proof. This follows from Proposition 1.15; Theorem 3.13; [2], Theorem 1; [2], Re-
mark following the proof of Theorem 1. □

Remark 3.16.1. In the notation of Theorem 3.16, suppose that Π ∼= π1(Xn)
C , where

n is a positive integer andX is a hyperbolic curve over an algebraically closed field of
characteristic 0. Then, since the kernel of the [outer] homomorphism Π→ π1(X)C

determined by a projection Xn → X is topologically finitely generated [cf. [21],
Remark 2.4.1], Π is not quasielastic whenever n ≥ 2. In particular, the condition
n = 1 is equivalent to the condition that Π is quasielastic, which is also equivalent
to the condition that Π is sn-elastic [cf. Theorem 3.13].

In fact, it is known that n can precisely be reconstructed from Π [cf. [5], Theorem
2.5, (i); [25], Theorem A].

Corollary 3.17. Let X be a hyperbolic curve over C; n a positive integer. Then
πtop
1 (Xn) is sn-internally indecomposable.

Proof. This follows from Proposition 1.9; Theorem 3.16; [21], Proposition 7.1, (ii).
□

Lemma 3.18 (cf. [29], Lemma 1.10, (i); [12], Lemma 3.3). Let X be a smooth
curve of type (g, r) over an algebraically closed field of characteristic p; l a prime
number such that l ̸= p. Suppose that g ≤ 1 and (g, r) ̸= (0, 0), (1, 0) (respectively,
2g − 2 + r > 0). Then there exists a normal open subgroup N ⊆ π1(X) such that
N ⊆ π1(X) is of index p (respectively, of index a power of l), and that [the smooth
compactification of] the domain curve of the covering associated to N ⊆ π1(X) has
genus ≥ 2.

Proof. The non-resp’d case follows immediately from the proof of [12], Lemma 3.3.
The resp’d case follows easily from the Hurwitz formula. □

Theorem 3.19. Let Σ be a set of prime numbers such that p ∈ Σ; X a smooth
curve of type (g, r) over an algebraically closed field of characteristic p. Suppose
that (g, r) ̸= (0, 0), (1, 0). If r = 0 and Σ = {p}, then suppose that the p-rank
σ(X) of [the Jacobian variety of] X is not equal to 1. Then π1(X)Σ is strongly
sn-internally indecomposable and sn-elastic.

Proof. If Σ = {p}, then it follows from [28], Theorem 4.9.4, that π1(X)Σ is a free
pro-p group of infinite rank (respectively, of rank σ(X)) if r ̸= 0 (respectively,
r = 0), which is strongly sn-internally indecomposable and sn-elastic [cf. Theorem
3.3]. Thus, to verify Theorem 3.19, we may assume that Σ ⊋ {p}. First, we verify
that π1(X)Σ is strongly sn-internally indecomposable. It follows from the proof of
[12], Theorem 3.6, that π1(X)Σ is slim. In particular, in light of Proposition 1.11;
Lemma 3.18, we may assume that g ≥ 2.

Let l ∈ Σ \ {p}; Q an almost pro-l-maximal quotient of π1(X)Σ. Then it suffices
to prove that Q is strongly sn-internally indecomposable [cf. Proposition 1.13]. Now
there exists a finite Galois covering Y → X that determines an exact sequence of
profinite groups

1→ π1(Y )l → Q→ Gal(Y/X)→ 1.
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Then it follows from [28], Theorem 4.9.1 that π1(Y )l is a pro-l surface group, which
is strongly sn-internally indecomposable [cf. Theorem 3.13]. Moreover, it follows
from [12], Lemma 3.4, that the outer representation Gal(Y/X)→ Out(π1(Y )l) as-
sociated to the above exact sequence is injective, which implies that Q is slim. Thus,
we conclude from Proposition 1.11 that Q is strongly sn-internally indecomposable.

Next, we verify that π1(X)Σ is sn-elastic [under the assumption Σ ⊋ {p}]. Since
π1(X)Σ is strongly sn-internally indecomposable, in light of Lemmas 2.3, 3.18, we
may assume that g ≥ 2. Take l, Q, Y as above. Then it follows from Theorem 3.13
that π1(Y )l is sn-elastic. Thus, since [we have already verified that] Q is strongly sn-
internally indecomposable, it follows from Lemma 2.3 that Q is sn-elastic. Finally,
it follows from Lemma 2.8; [28], Theorem 4.9.1, that π1(X)Σ is sn-elastic. This
completes the proof of Theorem 3.19. □

Remark 3.19.1. In the notation of Theorem 3.19, if r = 0 and σ(X) = 1, then
π1(X)p ∼= Zp, which is not [strongly sn-]internally indecomposable.

Theorem 3.20. Let K be a field; X a smooth curve of type (g, r) over K; n a
positive integer. Then the following hold:

(i) Suppose that X is a hyperbolic curve over K, and that K is a number field or
a p-adic local field. Then π1(Xn) is strongly sn-internally indecomposable.

(ii) Suppose that X is a hyperbolic curve over K, and that K is a p-adic local

field. Then πtemp
1 (X) is sn-internally indecomposable.

(iii) Suppose that (g, r) ̸= (0, 0), (1, 0), and that K is a finite field of charac-
teristic p. Then π1(X) is strongly sn-internally indecomposable. If further
suppose that 2g−2+r > 0, then π1(X)/ ker(π1(XK) ↠ π1(XK)Σ), where Σ
denotes the set of all prime numbers not equal to p, is strongly sn-internally
indecomposable.

Proof. Assertion (i) follows immediately from Proposition 1.15; Theorems 3.8, 3.10,
3.16; [6], Theorem C, (ii). Assertion (ii) follows from assertion (i); Proposition 1.9;
[1], Proposition 4.4.1; [1], §4.5. Next, we verify assertion (iii). Let Σ be as in

assertion (iii). Write Π[Σ] def
= π1(X)/ ker(π1(XK) ↠ π1(XK)Σ). It follows from

Theorems 3.13, 3.19, that π1(XK), π1(XK)Σ is strongly sn-internally indecompos-

able. Thus, since GK
∼= Ẑ is abelian, in light of Proposition 1.16, it suffices to prove

that the outer representations ρ : GK → Out(π1(XK)), ρΣ : GK → Out(π1(XK)Σ)
determined by the exact sequences

1→ π1(XK)→ π1(X)→ GK → 1, 1→ π1(XK)Σ → Π[Σ] → GK → 1

are injective. Since GK is torsion-free, by applying Lemma 3.18; [12], Lemma 1.7,
(i), we may assume that g ≥ 2. Note that it suffices to prove that ρΣ is injective.

Write X for the smooth compactification of X over K. Then since

Hom(H2(π1(XK)Σ, ẐΣ), ẐΣ)
∼→ ẐΣ(1)

asGK-modules, where “(1)” denotes the Tate twist, we conclude that ρΣ is injective.
This completes the proof of assertion (iii), hence also of Theorem 3.20. □

Remark 3.20.1. In the notation of Theorem 3.20, (i) (respectively, (iii)), the nor-
mal closed subgroup π1((Xn)K) (respectively, π1(XK)Σ)) of π1(Xn) (respectively,
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π1(X)/ ker(π1(XK) ↠ π1(XK)Σ)) is topologically finitely generated [cf. [21], Propo-
sition 2.2, (ii); [28], Theorem 4.9.1] and of infinite index. In particular, π1(Xn)
(respectively, π1(X)/ ker(π1(XK) ↠ π1(XK)Σ)) is not quasielastic.

Remark 3.20.2. In the present remark, we shall use the language of combinatorial
anabelian geometry [cf. [17], [18], [19], [6], [7], [8], [9], [10]]. Recall that the notion
of an outer representation of NN-type plays a central role. Let Σ be a nonempty
set of prime numbers; G a semi-graph of anabelioids of pro-Σ PSC-type such that
Node(G) ̸= ∅. Write ΠG for the fundamental group of G. Note that ΠG may be
identified with a pro-Σ surface group. Let

ρ : I → Out(ΠG)

be an outer representation of pro-Σ PSC-type. Then ρ determines an exact sequence
of profinite groups

1→ ΠG → ΠI
def
= ΠG

out
⋊ I → I → 1.

Suppose that ρ is of NN-type. Then it holds that I ∼= ẐΣ, and ρ is injective [cf. our
assumption that Node(G) ̸= ∅]. Thus, it follows immediately from Theorem 3.13,
together with Proposition 1.16, that ΠI is strongly sn-internally indecomposable.
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