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Abstract

We give a restriction of the set of possible values of the 3-loop polynomials of genus 1 knots with
trivial Alexander polynomial. As its special case, we present the 3-loop polynomial of any genus 1
knot with (< 2)-loop polynomials by using five Vassiliev invariants of the knot. Further, we give a
new example of the calculation of the 3-loop polynomial.

1 Introduction

The Kontsevich invariant of knots is an universal invariant among all quantum invariants
and all Vassiliev invariants. It takes its values in a space of Jacobi diagrams, which
are some kinds of uni-trivalent graphs and have universal properties among simple Lie
algebras and their representations. Also, each coefficient of the Kontsevich invariant is a
Vassiliev invariant, so we can calculate it theoretically. The Kontsevich invariant has all
information of quantum invariants and Vassiliev invariants, and is a very strong invariant,
so it is desirable to determine the image of it as precisely as possible. However, the value
of the Kontsevich invariant is expressed as an infinite sum of Jacobi diagrams, and in
general it is so hard to determine all terms of its value at the same time concretely. In
other words, even though we can obtain the information of each term (of small degree)
of its value one by one, it is difficult to detect the information of the infinite sum of its
value.

One approach to restrict the image of the Kontsevich invariant is the loop expansion.
It is conjectured in [19] that the Kontsevich invariant of a knot is expanded in the form of
the loop expansion, and it is shown in [11] that the Kontsevich invariant of a knot can be
expanded in this form, and it is shown in [7] that the loop expansion is a knot invariant.
The loop expansion of the Kontsevich invariant is calculated by using the rational version
of the Aarhus integral [7, 11]. By the loop expansion, we can see that when we fix a loop
number, each loop part is presented by some finite number of polynomials, where “loop
number” means the first Betti number of graphs. In particular, up to 3-loop part, it is
known that each loop part can be presented by a single polynomial (or rational form).
The 1-loop part is presented by the Alexander polynomial, the 2-loop part is presented
by the 2-loop polynomial, and the 3-loop part is presented by the 3-loop polynomial
(the 3-loop invariant). Thus n-loop part (n-loop polynomial) in the loop expansion has
all information of the infinite sum of n-loop diagrams in the image of the Kontsevich
invariant.



The 2-loop polynomial is calculated in many cases. For example, the 2-loop polynomial
for knots with up to 7 crossings is calculated in [19], for torus knots in [12, 13, 16], for
untwisted Whitehead doubles in [10], and for genus 1 knots in [17]. Further, in [9], it is
shown that the 2-loop polynomial of knots with minimal Seifert rank can be computed in
terms of a few Vassiliev invariants of degree 3, 5. As its special case, we can present the
2-loop polynomial of genus 1 knots with trivial Alexander polynomial, see also [17]. This
fact indicates that the information of the infinite sum of 2-loop part (hence, it contains
all 2-loop diagrams of all degrees in the image of the Kontsevich invariant) of those knots
are determined and presented by only the information of a few 2-loop diagrams of degree
3, 5 of those knots. On the other hand, the 3-loop polynomial is calculated in a few cases,
for example, the 3-loop polynomial of some class of genus 1 knots is calculated in [21].

In this paper, we consider the 3-loop polynomial of genus 1 knots with trivial Alexander
polynomial. More concretely, in Theorem 3.1, we give a restriction of the set of possible
values of the 3-loop polynomials of genus 1 knots with trivial Alexander polynomial. In
general, the values of the 3-loop polynomial of knots with trivial Alexander polynomial
belong to (the Q-vector space) Q[ti!, t3, 131 1] /(Sy, tytatsty = 1), but we show that the
values of the 3-loop polynomial of genus 1 knots with trivial Alexander polynomial belong
to a rather narrow (finitely generated) subspace, and we give its generators concretely.
Further, in Theorem 3.3, we present the 3-loop polynomial of any genus 1 knot with
trivial (< 2)-loop polynomials (namely, trivial Alexander polynomial and trivial 2-loop
polynomial) by using five Vassiliev invariants of the knot. This result indicates that the
information of the infinite sum of 3-loop part (hence, it contains all 3-loop diagrams of
all degrees in the image of the Kontsevich invariant) of those knots are determined and
presented by only the information of several 3-loop diagrams of those knots. Moreover,
in Section 6, we give a new example of the calculation of the 3-loop polynomial. By
this example, we may distinguish two knots in this class which cannot be distinguished
by the (< 2)-loop polynomials. In general, it is so complicated to calculate the 3-loop
polynomial. Thus, in order to calculate as easily as possible, we take a Seifert surface
with minimal Seifert rank for a genus 1 knot with trivial Alexander polynomial. Then, we
perform the rational version of the Aarhus integral, and present the 3-loop polynomial by
using the Vassiliev invariants of a representing tangle of the Seifert surface. After that,
we obtain the results.

This paper is organized as follows. In Section 2, we review the Kontsevich invariant,
its loop expansion, the 2-loop polynomial and the 3-loop polynomial. In Section 3, we
state the main theorems of this paper; we give a restriction of the set of possible values
of the 3-loop polynomials of genus 1 knots with trivial Alexander polynomial, and we
present the 3-loop polynomials of genus 1 knots with trivial (< 2)-loop polynomials. In
Section 4, we review the rational version of the Aarhus integral and how to compute the
loop expansion of the Kontsevich invariant. In Section 5, we prove the main theorems. In
Section 6, we give a new example of calculation of the 3-loop polynomial. In Appendix,
we prove several lemmas for some calculations in the proof of the main Theorems.

This work was supported by JST SPRING, Grant Number JPMJSP2110. The au-
thor would like to thank Advisor Tomotada Ohtsuki for encouragement and valuable
comments, and Professor Stavros Garoufalidis for helpful comments.



2 The Kontsevich invariant and its loop expansion

In this section, we review the Kontsevich invariant and the 3-loop invariant of knots.
In this paper, all the knots are oriented and framed, unless otherwise noted. For the
definition of the Kontsevich invariant, see for example [14, 15].

2.1 Jacobi diagrams and the Kontsevich invariant

In this section, we review Jacobi diagrams and the Kontsevich invariant.

A Jacobi diagram on an oriented compact l-manifold X is an uni-trivalent graph
such that univalent vertices are distinct points of X, and each trivalent vertex is vertex-
oriented, namely, a cyclic order of the three edges around each trivalent vertex is fixed.
When drawing a Jacobi diagram on X, we often draw X by thick lines and uni-trivalent
graphs by thin lines, and each trivalent vertex is vertex-oriented in the counterclockwise
order. Further, we define the degree of a Jacobi diagram to be half the number of all
vertices of the graph of the diagram. We define A(X) to be the quotient Q-vector space
spanned by Jacobi diagrams on X subject to the AS, IHX, and STU relations.

AS relation : >O* = - }

IHX relation : I— >—< X
STU relation : Y = ) ‘ -

We note that the following equations are obtained by the above relations;

1
- i O,

and

o<l -G

It can be shown (see for example [14, 15]) that A(S') forms a commutative algebra
whose product is given by connected sum of copies of S'. We can also show that A({)
forms a commutative algebra whose product is given by vertical concatenation of two



copies of |. We can see that A(S') and A(]) are naturally isomorphic as commutative
algebras by the isomorphism given by connecting two end points of |.

An open Jacobi diagram is a vertex-oriented uni-trivalent graph. We sometimes call an
edge containing a univalent vertex a leg. We define B to be the quotient Q-vector space
spanned by open Jacobi diagrams subject to the AS, IHX relations. It can be shown that
B forms a commutative algebra whose product is given by disjoint union. For an open
Jacobi diagram, we call it a n-loop diagram if the first Betti number of the diagram is n.
We denote B.,,, by the subspace of B spanned by connected diagrams, and Bliloop) by
the subspace of B, spanned by n-loop open Jacobi diagrams.

The PBW isomorphism x : B — A(]) is defined by

ROLO

for any diagram D € B, where the box means the symmetrizer,

-, =, > )

n lines

We note that the PBW map is a vector space isomorphism but not an algebra isomor-
phism.

For a (oriented and framed) knot K, the Kontsevich invariant Z(K) is an invariant
defined to be in A(S')(= A(])), formally speaking is in the completion by degree of
A(SH (=2 A(L)), for its concrete definition, see for example [14, 15]. It is known that
Z(K) and x~'Z(K) can be presented as exponentials of series of connected diagrams.

2.2 The loop expansion of the Kontsevich invariant

In this section, we review the loop expansion of the Kontsevich invariant.

For the description about the loop expansion of the Kontsevich invariant, we introduce
the labeling of an edge of an open Jacobi diagram by a formal power series, as follows.
Let f(h) = co + c1h + coh® 4+ c3h® + - -+ be a power series on the variable h. Then, we
define a labeling on one side of an edge of a Jacobi diagram by f(h) by

)f(h) = < ) + a )7 + ): + o E o
f(h) — ) f(=h)
Y

by the AS relation. The loop expansion of the Kontsevich invariant of knot K is a
presentation of the following form [7, 11],

Note that



Theorem 2.1. [7, 11] Let K be a 0-framed knot. Then, log(x ' Z(K)) is presented as
follows,

sinh(h./2)) _ llog AK(eh) p¢,1(€h)/AK(eh)

3 log( h2

log(x " Z(K) piale')/ ()

+ (terms of (> 3)-loop parts),

where Ak (t) denotes the Alezander polynomial, and p; ;(e"), g ;(e"),r; ;(e") are polyno-

mials in e,

For the 3-loop part of the Kontsevich invariant, see [18, 21]. Further, it is known [4]
that

sinh(h
$log(2/2)

™ '

where we denote v = Z(unknot) € A(S1).

2.3 The 3-loop invariant of knots

In this section, we define the 3-loop invariant (3-loop polynomial) of knots.

Definition 2.2. Let K be a 0-framed knot. The 3-loop invariant of K is the rational



form defined by

A (th t27 t37 t4)

B Z (Qz 1 sgn‘rt S4g)n7')ql 9 (tsg(n;tT(szlg)n‘qu,g (tj.g(g;t;(sf)nT)
AK (it ) Ag (taty ) Ag (tsty )

7'664

qi4 (tj_gég;—t;ég)nT ) Qs (tsg(n; tT (SSDT ) 6 (tig(T;t;(Sgnr) )

Ag(tats Ak (tsty DA g (tity 1)

thnTt sgnT thnTt sgnT thnTt sgnT thnTt sgnT tsgm'tfsgm-

Z“l( ) by T2 (8o Ly )“3( 7(3) T(4> )ris(ts) T<1) )ity )
A gty () Dk (@)t ) A (bt ) Ak (tr@) 1) Ar (b))

TEG,

1
S h Q" " 857 157/ (Ga, tatatsty = 1),

where we put

A = A (tit7 DA g (bt DA g (tst DAk (tats D Ak (tstT DAk (L85 1).
In particular, if Ag(t) = 1, then Ag(t1,1s,t3,14) is a polynomial, so in this case, we call
it the 3-loop polynomial.

For details about the 3-loop part of the Kontsevich invariant, see [18, 21].

Remark 2.3. For a O-framed knot K, the 2-loop polynomial of K is the polynomial
defined by

Or(ti,t2,t3) = Z Pin(tsy)Pi2(ts2))Dis(to) € QUL 157, 1571/ (S5 X Z/2Z, trtats = 1),

e= :I:l
ceBG3

see for example [14, 17]

3 The 3-loop polynomial of genus 1 knots with trivial Alexander
polynomial

In this section, we state the main theorems of this paper.
We consider genus 1 knots with trivial Alexander polynomial. We denote u,,, =
tmt -1, — 2, where m,n € {1,2,3,4}).



Theorem 3.1. The value of the 3-loop polynomial of any genus 1 knot with trivial Alexan-
der polynomial belongs to the Q-vector space generated by the set,

2
{ Z Ur(1)r(4) Z Ur(1)r(4) Ur(2)7(4) Z Ur(1)7r(4) Ur(2)7(3) Z (Ur(1yr(a))™

TEGY TEG, TEGY TEGY

2
Z Ur(1)7(4) Ur (2)( Z Ur(1)7r(4) Ur(2)7(4) Ur (2)7(3) Z (Ur(1)r(a)) “Ur(2)7 (1),
TEG, T7€6,4 TEGY

2

Z (UT(1)7(4)) Ur(2)7(3) Z Ur(1)7(4) Ur(2)r(4) Ur(2)7(3) Ur(3)7(1)> Z <u7(1)7(4)) Ur(2)7(4) Ur(3)r(4),
TEG, TES, TEGS,Y
D e @ye@) (Ur@yea) tr@yrs) (2)
7664

In particular, its 3-loop polynomial is determined by eleven Vassiliev invariants (hence,
Vassiliev invariants up to degree 12) of the knot.

Remark 3. 2 Each element in (2) can be written by using the basis vectors in
Qtih, t5t, 131, 15 /(Sy, titatsty = 1). For example, we put
Ty 3 = tity + tity + tots + tots + 3t + tats
ity g gty T 1
Too = 155 + tots + 1517 + 172152 + 157152 + 157472
Ti1o = titats + totst] + tatats + 1ty 52 + 1y g 12 + 151t 1y
ity bty bttt taty sty sty
Tooa = t3tats + tatats + t3t5ty + 172t 2t + to 2t 2t + 132 %t
+ 8t 7 R oty + 15 + 5t 7,
Tosz = titats + tatat] + tatits + titats? + totst) > + tatity >
TR R N P PR P P P P PR P S PR PR

then, the first four elements in (2) are written as (these equations in [21] are written a
little mistakenly)

Z Ur(1yr(a) = 4(U12 4 U1 + Uiy + Uz + Uy + uzy) = 47715 — 48,
T7€6,
Z Ur(1yr(4)Ur(2)r(a) = 2(UraUos + Ur4Uss + UpaUss + Ur3los + UrsUag + Ugslys
TEG,
+ U12Us2 + U2z + Usplgg + Up1Usy + U Usr + U31U41)

Z Ur(1)r(a)Ur(2)r(3) = S(U12Uzs + U13Ua + Urglinz) = 8T o — 1677 1 2 + 96,
T7€S6,



Z (UT(1)7(4))2 = 4(uf, + U%s + Uiy + U%:s + Uy + u§4) = dT504 — 161715 + 144,
T7€G,

In Section 6, we give a new example of calculation of the 3-loop polynomial of genus 1
knots with trivial Alexander polynomial.

As its special case, we consider genus 1 knots with trivial (< 2)-loop polynomials
(namely, trivial Alexander polynomial and trivial 2-loop polynomial) K. We denote

X 'Z(K) = exp Zal)\ + (terms of (>3)-loop parts)

1>1

@ % and A;’s (i > 6) are basis vectors of Biam™ of

degree>8. Tt is known [6] that \;’s (1 < i < 6) are basis vectors of BEooP) of degree<8.

Theorem 3.3. Let K be a genus 1 knot with trivial (< 2)-loop polynomials. Then, its
3-loop polynomial Ak (t1,ts,t3,1t4) is determined by five Vassiliev invariants of K. More
concretely, we can present N (t1,to,t3,t4) by

AK(th t27 t37 t4)
= 4day(uia + U1z + Urg + Us 3 + Uy + Usg)
3]
+ <—§ + 4ag + 2CL3) (U14Ugq + U14U34 + UoaUss + Ur3Us3 + U13Us3 + Uo3las

+ Up2Usa + Urolas + Ugalgg + Ui Uy + U1 Uay + Uz Uay)

— dag(uiousg + Uiztog + Urglag)

+ (10 + az — 36ay — 6a5> (U14U24U34 + UI3U3U43 + U 2U32UL2 + U1 Uz1 U1 )

+ <30 + 3CL3 - 12&4 4&5) <u13U43U42 + U3 UazUa] + UiaUs2Ua3 + UsoUsoUay

+ U1 U41Ug3 + U1 U4 Ug2 + U12U32U34 T UgoUz2U3T + U1 U1 U34

+ Uq1Us1 Uz + Us1 U1 Ug + Ug1 U1 Us3).



Corollary 3.4. For ¢« > 5, each coefficient a; can be presented by a linear sum of

1 1
ai,--- ,as. In particular, we have ag = —@al + gag + gag — 8ay — 2as.

In general, it is very hard to detect the information of the infinite sum of the image of
the Kontsevich invariant. On the other hand, thanks to the existence of the form of the
loop expansion, we can say that the 3-loop polynomial contains all the information of the
infinite sum of 3-loop part of the Kontsevich invariant. Thus, Theorem 3.1 implies that
the information of the infinite sum of 3-loop part of genus 1 knots with trivial Alexander
polynomial is determined by only eleven (primitive) Vassiliev invariants of them, and we
obtain a strong restriction of the set of possible values of the 3-loop polynomials of them.
Further, Theorem 3.3 and Corollary 3.4 imply that the information of the infinite sum of
3-loop part of genus 1 knots with trivial (< 2)-loop polynomials is determined by only
five (primitive) Vassiliev invariants of them, and we obtain the concrete presentation of
the 3-loop polynomial of them.

Remark 3.5. It is shown in [21] that for two knots K, Ky with trivial Alexander poly-
nomial, we have AKl#Kg (tl, tg, tg, t4) = AK1 (tl, t2, tg, t4) + AK2 (tl, tg, tg, t4), where K]_#K2
is the connected sum of K; and K5. Thus Theorems 3.1, 3.3 and Corollary 3.4 hold for
knots with trivial Alexander polynomial (or, with trivial (< 2)-loop polynomials) which
are obtained from connected sums of genus 1 knots.

Remark 3.6. A similar (and more sophisticated) result for the 2-loop polynomial of
knots with trivial Alexander polynomial is already known, see [9, 17] and Section 5.3.

4 The rational version of the Aarhus integral and a computation
of the loop expansion

In this section, we review how to compute the loop expansion of the Kontsevich invariant.
Along this, we calculate the 3-loop invariant. For details, see for example, [7, 11].

From now on, we represent “exponential” by , for example;
C C C C C
= exp( )y = 0+ + 5 +eeey
c c c 1 ¢
....... — exp( ) — + + 5 C 4.




For Jacobi diagrams « and [, we write « ( = : b if @ — B can be expressed as a
m—+1

linear sum of Jacobi diagrams with more than m trivalent vertices, noting that we do
not count trivalent vertices generated by attached power series. In this paper, we use

“(—?)” many times, so for simplicity, we write . If the underlying uni-

trivalent graph of a Jacobi diagram on a 1-manifold X has m trivalent vertices, then their

univalent vertices can be placed anywhere in X modulo “( = )”. Thus, we can write them
m+1

[ —t (—"

instead of “=
5

separately, for example,

( )K ( ) 2
z w 1
(

\ o E)) 24 VAR

o) (® )

Further, we sometimes use link relation “~" (see ), which is defined by
and we use the equivalent relation “ ~ 7 which is generated by = and ~. It is known
(m+1) (m+1)

that under the link relation, the result of the Aarhus integral does not change (see [5]).

Let K be a 0-framed knot in S®. It is known that K has a surgery presentation KoUL,
such that Ky is the unknot with 0 framing and L is a (l-components) framed link, and the
linking number of K and each component of L is equal to 0, further, the pair obtained
from the pair (52, K) by surgery along L is homeomorphic to (S3, K). We can obtain the
loop expansion of the Kontsevich invariant of K from the Kontsevich invariant of KqU L,
in the following way (see [11]). Let X be a finite set. We define A(*x) to be the space of
open Jacobi diagrams whose legs are labeled by elements of X.

First, we compute x;, ' Z(KyU L). We label the component corresponding to K, by h,
and label the components corresponding to L by the set X = {x1, x5, - ,2;}. Then, we
compute x; ' Z (Ko U L), where x5 : A(x, U | ]y SY) = A(ln ULl SY) =2 ASLU ]y SY)
is defined as the PBW isomorphism. It is known that

— e e
Xn' Z Q = Ux ',
h
i

see [4, Theorem 4], [11, Corollary 5.0.8]. We put ¢ = e", and we write it again (omitting

10



X 'v for simplicity, since it does not contribute to the 3-loop part),

Second, we compute x ' Z(KoUL). The value ;' Z(KUL) is obtained from ;' Z(K,U
L) by connected-summing by v to each component labeled by an element of X, where we

t ¢!

denote v = Z(unknot) € A(]). By (1), we can show that v (:;) . Then, we

s

compute X; X}:lZv (Ko U L), where we choose a disjoint union of the unknot and a string
link K, U L whose closure is isotopic to Ko U L, and xx : A(xx) = A( ]y J) is the map
defined by the composition of all PBW isomorphisms for all elements in X. We denote
XXy Z(KoUL) by x ' Z(KyUL).

Third, we compute the rational version of the Aarhus integral (see [1, 2, 3, 11]). The
Kontsevich invariant of K is computed by the rational version of the Aarhus integral as
follows,

X*lz(K) — X*lzLMO(SZS’K)

Tlog(S32) — Llog A (")

. L M2su L)
D22 )

where Uy denotes the unknot with +1 framing, and o, and o_ are the number of the
positive and negative eigenvalues of the linking matrix of L. The operation “(( )" which
is known as the Aarhus integral is defined as follows. It is known that y~'Z(K, U L) is
presented by

§ 1 lij(t) §
X LZ(KyU L) = exp (5 S ) UP(x ' Z(KyU L)), (3)
Zi,:BjEX o i
where (1;;(t)) is an equivariant linking matrix of L C S*\ K, which satisfies that [;;(t) =
l;;(t71), and P(x~*Z(KoUL)) is a sum of diagrams which have at least one trivalent vertex
on each component. For details about an equivariant linking matrix, see for example [8].
Then, we define

zj

113 () )’P(X_IZ(KO U L)>>> (4)

20 n) = (e (-5 3

.Ti,l‘jEX

11



where (1% (t)) = (lij(t))fl, and ( , ) is defined by

(Ch, Cy) = sum of all ways gluing the x-marked legs of C}
L2277\ to the z-marked legs of C; for all z € X ’

(5)

For details, see [1]. Note ([5, equation (21)]) that

2L = (v ") exp <¢% @ ) = exp (xl—lﬁ @ ) ()

By this procedure, we can compute the loop expansion of the Kontsevich invariant of K,
and in particular, we can get its 3-loop part as follows,

-1 (3—loop) _ Ix'"Z(Kou L)) (3—loop)
A <<<><‘1Z(U+)>>”+ (<X‘1Z(U_)>>a> ' (7)

Finally, we obtain the 3-loop invariant Ag(t1, to, t3,t4).

5 Proofs of main theorems
In this section, we prove Theorems 3.1 , 3.3, and Corollary 3.4.

5.1 Representing tangles of knots

In general, for a knot K and its Seifert surface > with genus g, there exists a 2¢g-component
framed tangle T" such that

where dotted lines in the picture of T" imply strands knotted or linked in some fashion,
and T® denotes the double of T. From now on, we call T a representing tangle of K.
Note that a representing tangle is not unique for a knot K.

5.2 Proof of Theorem 3.1

In this section, we prove Theorem 3.1. Let K be a genus 1 knot with trivial Alexander
polynomial.

12



Lemma 5.1. [9] There exists a 2-component representing tangle T' of K such that each
strand in T has 0-framing and the linking number of the two strands in T is equal to 0.

This Lemma immediately follows from [9, Lemma 4.2, Corollary 4.3]. For K, we choose
such a representing tangle 7',

e T@

Then, we get the following surgery presentation of K,

X

1 :

W
KyUL= \\/ ,

where K is depicted by a thick line and L is depicted by thin lines. Namely, K is obtained
from Ky U L by surgery along L. Further, we put

Lemma 5.2. We have

<<X_1Z(K0 U L) - X 1Z(KO U LO)>>) (8-loop)

-1 (8-loop) __ _ i}
xTEE) ( 20 (2O

Proof. By (7), we have

(2K U L)) )“”‘k’“") |
)

-1 (3-loop) _
x 2K (<<x12(U+)>>"+ (20

13



On the other hand, we can see that Ky U Lg is a surgery presentation of the unknot, so
its 3-loop part equals to 0. Hence, we get

X—IZ<K) (3-loop)
(X2 (Ko U L)) (X" Z(Ko U L))

(3-loop)
- (<<><-1Z<U+>>> 02U (2T T Z U)o )
- ({2t ) — o 205 Lo>>>)(3'l°°p) |
(12U )+ (1 Z(U-))e-
Since T satisfies the condition of Lemma 5.1, L C S3\ Ky and Ly C S\ K; have the same
equivariant linking matrix. Thus, we obtain

(X Z(KoU L)) — (x'Z(Ko U L)) = (x'Z(KoU L) = x""Z(Ko U Lo))).

Therefore, we obtain the required equation. Il

We can denote

where the product of two elements in A [\ [\ ) is defined by

/ﬁ\/ﬁ\/ﬂ\

14



Moreover, the coproduct is defined as follows. For any D & A( [\m ), we define

A(D) to be the sum of D' ® D" where D' runs over all diagrams obtained as a subset
of D by removing some of the thin connected components and D" is the diagram con-

sisting of m [\ and the other components of thin components. It can be shown that

A ( mm ) forms a bialgebra. Since it is known that Z(7') is a group-like element, it

is presented as an exponential of a primitive elements. Thus, we can denote Z(T') like

(8).

Remark 5.3. There are other connected diagrams up to degree 5 which are not depicted
in (8), but each of those diagrams is equivalent to a sum of the diagrams depicted in (8)

[ —t

or is equivalent to 0 modulo “=". For example, we can show that

Let U C A(*{nzy,-w)) be the subspace spanned by diagrams which have 4 trivalent
vertices (we do not count trivalent vertices generated by ¢ = e") and satisfies |z| < |z|
or ly| < |w| or |x| — |z| # |y| — |w|, where |z|, |y|, |2], |w| implies the number of univalent
vertices labeled by z,y, z, w, respectively. (As shown later in Lemma 5.6, we note that
any element in I does not contribute the 3-loop part of K.) We recall that t = ¢ and h
is the label associated to K.

e |

Lemma 5.4. We have

Xy ' Z(KgUL) — x; ' Z(Ko U Lg) = ¢ + X (71 + 01),

where

15
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1

X y z w
+v2<> x +i<3 L +i¢ +i —LH
’ 32 7 32 ] 24T 24 ] 24 24

_|_
1
—w

H (800

32 32

y y

y y X X y X xXx Xx x X X X

1 1

+v§ >:< —i—vg‘ >::< -Hﬁ >:< +vi’ yﬁ ( +v§’ >W< —I—(i(vf)?—k%vf) C? C?

A i) P y yyyy x x
y y x X

1 1 1 1

+ (5(1}%)2%—%1)%) qy) CP + (va%%—%vg) CP qy) + (v%v?—l—%v?) %) y>—<
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(e ) © e (st ) © H eu oy

Proof. First, we calculate x, ' Z(KoUL)—x; ' Z(KoULg) by decomposing into the following
parts. We note that each term of the right-hand side of the formula of (12) below has at

least 2 trivalent vertices, so it is sufficient to calculate other parts modulo “(E)”.
3

Z(T) — Z(Tp) = (the right hand side of (8

A Aen A
w\ (s )

}O{ g)mx 1+—¢ 6{)—59—@ ) (13)
IRt

Then, by (12), (13), (14), and (15), we get

<l
—_—
-
X
7N
=
—~
—_
W~
~—

<l
.
.

)

Xi' Z(KoU L) — x; ' Z(Ky U Lo) =

17



Y X x x y y X x y y x X
+v§$+vi’$+vf§§+v§ +U§;§+vi§§+v§;§
¥ y X X y y x y y X y y
4 5 5 5 1 2\2 ]‘ 2
y y y y yyyy yy y 96 X X
y y X X y

(o) S aaed) D (paedd)
+(v2v1 —vl) é H + vav? éD H (v?)? ﬂy ﬂy : (16)

where ( is given by (9). Now, recall that v (:—)
3

XhIZ(K()UL) Xhlz(K()ULo)
= (X3 'Z(Ko U L) — x;,' Z(Ko U Lo)) #v**

y z w

1 1
AZ(KgUL) — ;' Z(KoU L) 1 —dP ﬁ) _dP —dp
(X2 'Z(KoU L) — ;" Z(KoU L)) x [ 1+ 8y+482+48W

= (the right-hand side of (16))

18



X y X X X X y V4 w
(20 vadeng i ) (B b9 b ke
P ! 7 1yy 8 7 "48 [ 48 [ 48 ]
(17)

We put 7 as in (10) and §; as in (11), noting that d; € Y. Thus, we obtain the required
formula. O

“—» «—m» (R, Wy,

From now on, we use the notation “=" as meaning “=" or “~7".
(5) ()

Lemma 5.5. We have

X_IZ(KO U L) — X_IZ(KO U Lo) =al (ﬁ +’Yl +/72 + 51 +62) s
where

X X z z X z y y z z y z
1 ¢ 1 1 ¢ 1
.2 = _ = 2 _ _ -
f=u é 2¢\7/ 2¢%\ T é zé\/ 2¢%\
x x w x w w y y w y w w
X X z z X z z X w y
S SR LA L
2 2 ‘ 2 1 2
y y w y w w Y X
X X x x z z X X z z X x w Yoy
et HaH Y aH A
' 2 2 ‘ ’
y y y y w y Yo oow w y y x X
Y2 = Vi + U3 + U35 + Ui,
g = V7 0y + V505 + V305 + vidy €U,

w N

+v

where v (j =1,2,3,4) and 6, (j =1,2,3,4) are given in Proof below.
Proof. By Lemma 5.4, we have

X1 Z(KoUL) = x ' Z(KoU Lo) = Xz (Xi 12 (Ko U L) = x;, Z(Ko U Ly))

19



= X;,;,z,w C+ X (’}/1 + 61) = X;,gl,/,z,w(C) +all (71 + 51)

Xxyzw

[\)

¥ ¥ x y X y y
o] ugado b K
1 6 8 T 1T 127 /)
-3 30 Lapb ogd
B X 2 X W 2 X Wt W 8 X z 12 x z z
X X X ¥ v x y y X z z z z
Holiga oo Heg Yy
12 6 8 X w 12 X w w X 8 w w
A A A bt H a1
s e e e .
A ANRATY M7 bR ) (18)

20



We put
1x | 1x 11 N7
1
_ - il 1
7 12~—©_~+6$+24?f12>—<w’ (19)
X X x X y y oy z z z z z z
a- b b-sH s Y Y A A
> T |8 12 8 12WW 8 | | 8 [N [
4 At H s H
4 w lzwtfv 4WW 4WtW
e H
12t T

noting that 6 € U. Thus, the formula (18) is rewritten,

-1 @ Q — 1 { 1 1 1
=al ?—5? \\/_5 T wt W+’72+62

Xxyzw

(20)

NN [l 4D s
=al — = - = +’72+62,
i y 2)/ w 2y wtw

Xxyzw

(21)

Y Y ' y x X
1 1 1¢
2
_ Z = 292
2T Ty C +6%+24 ] > <§vl’ (22)

y y y oy X X X z z z z z z
=S (1o -aHaaHaY YA A
2_)/ 8W 12WW 82 1222 8 w w 8wtwwt w

21



g /\+1§i>,l+iz Z_!HZAH WL
O T T 12 )\ 12t 4y 4 )\
z z w w y y

1 1 1 t+1 1
ST T ZH;; 3 tlZHW>’

noting that 62 € U.
By Lemmas A.3, A4, A.9, A.11, and A.12, we have

X:v,y,z,w

= nyza'w

—i—l_llij% 1#)(1
& f— —_— — —_
8 12 4
y oz y oz oz z ¥

22



x y ¥ v x vy y y y x x y
L1 +1¢¢ 1<>H 1 ] 1
12 8 12 4 12 2
. . y w y wow w X w w z w
X x Z z X z z X woy X X
PP Y I AP P DT
2 2 ' 2 2 8
y y w y w w y X y z
X X X X Y X y X y oy " i * ¥
wmwl 49 59 Hea o]
2 12 | 8 12 12 | 2 |
y z z y w yooow o w w
(Y YA LY AndsH
y
H H H“ ““H H H
_Et;__ 124\ 3 24t1

1 “5 V A “Y
IS S U A A R
3 2 w w w z
We put

10 b Lo Had bt b H o
¢@wm+m+$vuar

X y y X
shofafol (Y YA A
o 2 12 v 8 W w 8 wt w Wt w
2 A s s H e

4 w Wt w 12 w w 12 Wt 1t41 4 w w 4 Wt w 12 :
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"5 ”H e
24

noting that 65 € U. Thus, the formula (23) is rewritten,

Xxyzw

ol

A -

4f1Hy>+
)

4

X X z z X z z X woy

QY a0 AN D 4O s

— = — - - )

é 2 2 N T ts t T+ 0
y y w y w w y X

(26)

By Lemmas A.5, A.6, A.7, A.8, A.9, A.11, and A.12, we have

Xﬂcyzw

24

3 aH -4 HH
8 8 12 6
y y oy oz y oy z oz

L

y z

X y x X X X
_'_ 1 >—F; 1 zj‘tz
6 4
z ¥ y y y y



¥ X x  x X x x x x oy X x x x
i3 & sl HeaH bbb
“T s 8 12 6 6 1
I y oy oz y oy oz oz A y oy vy
x x xox x x y oy XX y oy yoy
s Ho-sH Has Q-1 H
2 8 12 6 6 4 -
y oz y oy w y oy o w o ow w X X X X X
y
U - HE AT
2xxw
X X X X oz z X X z z X x w Yoy T
H-sH Y-t H A e H -+
2 2 t 8
y oy y oy w yo oy o w ow y oy x X ¥
X x X X x x x X x X x X ox oy
sH¢1HH~ A aH
8 12 6 6 4 8
y oy oz y Yy z z ¥ y oy y oy y oy w
HH e
6
VV/MRVA i
A H s H e H s Ho e H
_Et;__ T M7 24f1
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y vy z z X x z z z w X y z y y =z
1 1 \§4< ¢ t—1 o1 1 )_Htl
3 W T3 - TN T * 3
x X w y y w w w z w x X w
w Yoy z z z w X y z
1 t t—1 t—1
+§H ‘V‘/R‘Y‘Y ‘ 27)

We put

X X X  x X X Xx Xx X ox oy X x y y X X
18 H o-sH HuH o-sH H -k
-8 8 12 8 12 2 w

¥ y oy oz y oy z oz y oy w y oy o w o w y oy
e S A AR
2 8 12 )\ 4wtw
y z w X Yy v =z

L H (A Y )

+2 _wtw+ +2HW

t t—1
SV
7 ¥y y oy
1 1= 1 1 1w v

L ) A !
2 ﬂ 6 4 +6 +6 \ 4 \
A A Y A
8 4 12,
+1mHW+1 L1 H +1X{ \/ \(
12 /& 24 ) -1 T g0 2

w Yoy z w X

1 t—1
+§H ‘/R‘ Y

noting that 63 € U. Thus, the formula (27) is rewritten,

%E

T

Xa:,y Z,W
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X x X x oz z X x z z Y ox w Y
coo HH - H A o
=all —§ _5 A + + +’}/2+2
y oy y oy w yory o ow ow y oy X x

(29)
Then, we put
Yo = Viny V3] VRS + Ui,
Sy = v}0y + V303 + V36 4+ V5.
Thus, by (20), (21), (26), and (29), we obtain the required formula. O
Lemma 5.6. We have
X_IZ(K) (3-loop) — <d, (’71 + 72))(0077,77,)7
where we denote the connected part of (. ) by ( , )(conn), and & is given by
y Xz v w y
R i
o = ) o Z ’ v . (30)
Y v vy

by

0 0 1 0
0 0 0 1
GO)=11 0 0 -1
01 tt—1 0
Hence,
0 t—1 -1 0
. Lt t—=1 0 0 -1
_ (]9 B

(l (t)) 2 —1 0 0 0
0 -1 0 0

Thus, by (4) and Lemma 5.5, we obtain
(X 'Z(KgUL) = x " Z(KyU L)) = (&, B+ 71 + 72 + 61 + 62),

noting that the right-hand side contains only diagrams with at least 2 trivalent vertices.
Let o, and o_ be the number of the positive and negative eigenvalues of the linking
matrix of L (and Lg), and we have 0, = 0_ = 2. Then, by (6), we get

T 2NN 2N = 20N (T Z(U-))?
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e (3t o

('Z(KoUL) — x'Z (Ko U Lo))
(12U Z(U-))-

However, since § contains only diagrams with at most 3 trivalent vertices, this does not
contribute the 3-loop part. Moreover, by considering the value of &, we have (&,d) = 0
for any element § € U, so we have (&, d; + d9) = 0 since d1, 9y € U. Therefore, we obtain
the required equation. Il

Thus, by Lemma 5.2, we have

X 'Z(K)=

E<d,ﬂ—|—’}/1+’}/2+(51+52>.

Lemma 5.7. We have

t\lﬁz—t&lf—ﬁ%+ﬁf. (31)

Proof. This formula immediately follows from the THX relation. O
We denote u =t +t' —2and v =1t —tL.
Lemma 5.8. For 3-loop graphs, we have

R

where these five diagrams are identical except at those local sites in the pictures and have
even number of legs (when we substitute t = e" =1+ h+h%2/2 +---).

Proof. By Lemma 5.7 and the ITHX relation and the assumption that they have even
number of legs, we have

voow u u voow u u u u Lu+w)
Y:Y_FY_Y:Y_ZL \(Z(/U_H))

28



Remark 5.9. We note that the formulas in Theorem 3.2 and Corollary 3.5 in [21] can
be rewritten more simply by the above formula.

Lemma 5.10. For 3-loop graphs, we have

R L

where these five diagrams are identical except at those local sites in the pictures and have
even number of legs (when we substitute t = e" =1+ h+h?/2+---).

Proof. We can show this in a same way of the proof of Lemma 5.8. m

1
For example, by using the formula t*! — 1 = §(u +v), v2 = u? + 4u and by Lemmas
5.7, 5.8, and 5.10, we have

t—1 t—1 t—1 t—1 (t—1)2
= -9 —+ ,
@
v u u v v
v v )
@ | |

Proof of Theorem 3.1. By Lemma 5.6, we have

u

+2 ;

XM Z(E) ) = (@, (11 + 92)) conn) = (@ (11 + 0175 + 0393 + 0373 + 079 (conn), (32)
recalling that 7, is given by (10) and 7§ (j = 1,2,3,4) are given by (19), (22), (24),

and (28). By a straightforward calculation, we can see that each term of (32) has at least
three edges such that no power series on h are labeled (in other words, the power series

: :
“1” is labeled) on them, except the term <éz, 5(@?)2 >—< >—< > ((#)) Moreover,
y y oy y

power series which appear in each diagram in &, 7; and 'yg are only ¢t and t*' — 1, and
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other power series will not appear immediately after performing the Aarhus integral.
Therefore, the value of ((32)—(#)) belongs to the Q-vector space generated by 3-loop
graphs, at least three edges of which are labeled by 1 and others by t*! — 1. However, by

q(t) a(t)

the THX relation, it is sufficient to consider the following two types, ﬁ

as(t)
r1(t)

and rsM{ ) 7s(0) () | where at least three of ¢;(¢)’s are 1 and others are t*! — 1

ra(t)
(+-- (), and the condition (*) also holds for r;(¢)’s. For details, see [21]. If ri(t) =
ra(t) =1, 0orr(t) =t —1,m4(t) =t =1, or r(t) =t~ —1,r4(t) =t — 1, the second one
can be deformed into a sum of the first ones with the condition (%) by the IHX relation.
Otherwise, it can be deformed into a sum of the first ones with the condition that at
least four of ¢;(t)’s are 1, one is (t*! — 1)* and others are t*' — 1. Thus, ((32)—(#))

ai(t) a(t)

belongs to the Q-vector space generated by 3-loop graphs ﬁ such that

q3(t)
¢:(t) = (7 —1)% where ¢ = 0,1,2 and 1 < 3°° ¢ < 3. On the other hand, by the
straightforward calculation and by using Lemma 5.7 (and the examples below it), we can
ai(t) a(t)

see that (#) belongs to the Q-vector space generated by 3-loop graphs ﬁ

qs(t)
such that either one of the following conditions holds,
o ¢;(t) = (' — 1)% where ¢ = 0,1,2 and 1 < 30 ¢; < 3,
e q(t)=t—1,q{t)=t—1,q(t)=t—1¢gs5(t) =t — 1, and others are equal to 1,
o 1(t) = (t*1 — 1)2, qu(t) = t*1 — 1, g3(t) = t*1 — 1, and others are equal to 1,
o u(t) =t — 1, gu(t) = (tF1 — 1)2, qu4(t) = t*1 — 1 and others are equal to 1.

1
Thus, by the formula t*! — 1 = §(u +v), v* = u? 4+ 4u and by Lemmas 5.7, 5.8, and 5.10

(and also see the examples below them), we can see that x~1Z(K)31°°P belongs to the
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Q-vector space generated by the set

u U u u u u

{

Therefore, by the definition of the 3-loop polynomial, we obtain the required statement.
[

5.3 The 2-loop polynomial of genus 1 knots with trivial Alexander polynomial
In this section, we consider the 2-loop polynomial of genus 1 knots with trivial Alexander

polynomial, see [9, 17]. We denote u =t +t~1 — 2.

Lemma 5.11. Let K be a genus 1 knot with trivial Alexander polynomial and T its
representing tangle as in Lemma 5.1. Then, the 2-loop polynomial of K is 0 if and only
if v2 = v} =0, where v3 and v} are defined in (8).

Proof. By (8), we have

, 1
wa(it) (Y NN

By the same argument in Subsection 5.2, we obtain

XL Z(F)@loop) — («XlZ({(o UL)—xZ(K, U Lo _loop)
(T Z(U )+ (! v(U

)2
:<@,vf¢ + vj C? +v§ + v H >
y y

u
2 3

where & is defined by (30). Since we can see that two 2-loop graphs in the right-hand side
of (33) are linearly independent, we have O (t1,t2,t3) = 0 if and only if v3 = v? =0. [

=W
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Let K be a genus 1 knot with trivial Alexander polynomial. We denote

X 'Z(K) = exp (Z b;0; + (terms of (>2)-loop parts)) :

i>1

where 0; = @ , 0y = @ , and 6;’s (i > 2) are basis vectors of BZloop) op

degree>5. We can see that 6, and 6, are basis vectors of BZoor) of degree<5. The 2-loop

polynomial Ok (t1,ts,t3) is determined by two Vassiliev invariant of K, more concretely,
we can present O (ty,ts,t3) by

Ok (t1,1a,t3)
1
=201 (ty + 1ty F ity ts gt —6) + (Qb2 — gbl> (4t =2)(t+ 13" —2)

+ (ot =2t + 15" —2)+ (L5 + 15" = 2)(t + 17" —2)),

see [9, 17]. As this corollary, we can see that for i > 2, each coefficient b; can be presented
by a linear sum of by and bs.

5.4 Proof of Theorem 3.3 and Corollary 3.4

In this section, we prove Theorem 3.3 and Corollary 3.4.
Let K be a genus 1 knot with trivial (< 2)-loop polynomials.

Proposition 5.12. We have
4

15
X TZ(K)(5loor) — (vi’ — %5 — 3vg — 41)%1}%) + (—2v§ + ?v?,)

U?I 5 5 5 5
+ E + Z’U?’ "‘ 2U3 + 3U3 .

Proof. By Lemmas 5.6 and 5.11, we obtain
X Z(K) ) = (&, (7] + viy3 + 1375)-) tcomn)s (34)

where

X y z y X w i
—vzdp iCb +i¢ +v2¢ ié) +i¢ + v}
e AR T T 2 \s2 T T g .
y

X X X X X x x x v
1 1
—l—vé }:{ +U§ M —H}g >%< +<va§+%vf+%v§) Cb ﬁ)
yy y x y
Y y y y
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In the following caluculation, we use Lemmas 5.8 and 5.10.
We calculate (&, 1) (conn), as follows,

x y — Y
(P D= ([ =1
o, — = — = — s
32 L » (conn) 16 -1 8
650 D= n L) -%
24 L ! (conn) 12 6 7
y X F— Y
LR DL
32 ! L (conn) 1 t—1 8 '
2 1 T 2 2
03b )3T D -2
24 ¥ i} (conn) 1 6 7
t—1 Y
(o0} $ e CjD = |

(conn)

t—1 u
4
— ot t—1 4 __% 5
o jD 0 @ > @ 3
<OA(7Uél >(conn)

y

/\
(o)
<

oU

\/
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t—1 t—1 t—1
+,U§ th:Dtl +U§ 6 +U§) thtl

15 )
= 71}3 + ng @ + 203 + 30 :

+ 305 . (35)

We calculate (d, 173 ) (conn), as follows,

’12 (conn) 12 6 ’
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Hence, we have

R v? v?
<047U%'Y21>(c0nn) = _gl + El . (36>

We calculate (&, v393) (conn), @s follows,

y y
2 2 2
@i O et (LD =R
12 (conn) 12 6

Hence, we have

A2 2 v3 v3
<CY, UZVQ)(Conn) = _E + g . (37)

Therefore, by applying (35), (36), (37) to (34), we obtain the required formula O

For Jacobi diagrams o and 3, we write o =4<g [ if @ — 3 is a linear sum of Jacobi
diagrams with degree>8.

Lemma 5.13. We have

U

1 1 1 1
=g A —\ —\ = -\ —A
d<8 1+12 2+36O 45 d§822+667
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1 1 1 2
» Sa<s A2 — 23 — g)‘5 + 5/\6> =<8 —§A4 + A5 + g)\ﬁ,

1 2
=4<s =M — A5+ =A
d<s g 5+36,

where \;’s are defined in Section 3.

Proof. We can show these formula by the straightforward calculations, see Appendix
B. O

Proof of Theorem 3.3. By Proposition 5.12 and Lemma 5.13, we can denote

+ 24 + x5
xq ) X1 Xy Ty
= s TIA (— T2 ))\—2 A (——— —))\
d<s T1A1 + 12+2+373 2 — 2T3A3 + 360 3+6 4
T3 ) To Tz 2 2
—— — A — 4+ =+ = 6. 38
+< 3+$U4 Ts 5+<6+3+3x4+3x5> 6 ( )
Since we denote x 1 Z (K )®1°°P) = exp (2221 a;\i), we have
I ) I Ty Ty T3
aq Xy, a9 12 + 9 +I3, as xs, ay 360 3 + 6 > as 3 +IL’4 Ty
By solving this simultaneous equation, we get
aq as
I = ag, I2:_€+2a2+a3, x3:_§a
aq as aq as
Ty 50 + 5 as — as, Ts 50 + 5 ay as (39)
By applying (39) to (38) and by the definition of the 3-loop polynomial, we obtain the
required formula. O

Proof of Corollary 3.4. Theorem 3.3 immediately implies the first statement. Further, by
2 2
(38), we have ag = % + % + 374 + 375 and by substituting (39) to this, we obtain the

second statement. O
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6 An example of calculation

In this section, we give a new example of calculation of the 3-loop polynomial.
Let D(Ky, K, K3) be a knot defined as follows,

where K, Ky, and K3 are 0-framed long knots (1-tangles), and K fQ), KéQ) are the doubles

of K1, K>, respectively and K§4) is the double of double of K3. Note that D(Ky, Ky, K3)
is a genus 1 knot with trivial Alexander polynomial. We denote the Kontsevich invariant
of K; (i =1,2,3) as follows,

Z(K;) = exp a,l}} qu)ZIE> + ¢ @

Remark 6.1. It is shown (see [20]) that Z(K;) is presented by

Z(K;)=exp | — l} 24j3 IE (=12} +6(cy)* — cb) ,

where ¢!, are coefficients of the Conway polynomial V (2) = > ¢ 2" and j, are coeffi-
cients of the Jones polynomial J (') = 3 jnt” where Kz is the closure of K;. Note that
the Conway polynomial is defined by V. (¢ 2 — t’i) = A (t). Therefore we can get
—12¢} + 6(ch)* — cb).

(li:——z

2627 bz = 24]3a Ci =

1
21

Proposition 6.2. The 3-loop polynomial of D(K1, Ko, K3) is presented by

Ap(K, K0, 55) (t1, o, B3, ta)
= (—ag — 16a1ay — 16a1a3 — 16asas — 8bs — 12¢3) (w12 + w1z + urg + Uz 3 + sy + Uss)
+ 24c3(u1pusg + Urztiog + UigUo3z)

2/, 2 2 2 2 2 2
+ 8az(uyy + uys +ujy + Up g + Upy + u3y).-
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Proof. Since a representing tangle of D(K;, Ks, K3) is given by T = ,

we have

Z(T) = exp <a1—1—a3+9—16> ﬁ [\ +(a2+a3+%) [\
_gagm +(b1+b3)</>\05 m +(bz+53)m
(VN im0

e TaNARTANA

For a calculation of the Kontsevich invariant of the double of a tangle, see for example
[14, 15]. Thus, we have

X y z y X w
R L Re ) Iy (e
TG 3 T T2d LTl s T T ]
X x x y ¥ x x X N .
1 1 9
— 2as Y ~ o1 — 2bs —|—603 + 2a3
y z z w w y y y
+<a1a2~|—a1a3+a2a3+a3+9 +—+ é) éD
X y y y y
1
Yo = (a1+a3 —_— 4 T t_lz ¥ +(a2+a3) —E
X X X X y
nE w10 D5 Hlo o
6 24 H “ 12 8
i} y z w y z z y w
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x oy oy i ¥ x z
Lo H %@{Hé@lﬁ“@{ M
2 2 8
y wow 2 W y
z X w X W y y z
3 %Y
"1 T
y z x w
Therefore, by Lemma 5.6, we have x ™' Z(D(K7, K, K3))(3_100p) = (&, (71 + 72)) (conn)-

In a similar way of the calculation of Proposition 5.12, we calculate <d,71>(conn) as
follows,

X y -1 u
<d CL1+CL3€P <>> _ap+as _ i tag
032 [ ] Jom) 16 -1 8 ’
pagnd by, g (D)o
24 T T Jeomy) 12 -6 ’
y X t—1 ;
<d a2+a3¢ ¢> axtag _ ayfag
7 32 ! A (conn)_ 16 t—1 B 8 ’
y w
(opm o o) - (] ) -
’ 24 (conn)_ 12 N 6 ’
y w
-1 u
50 H) =2 (17D -2
COHH N N 6 ’
t—1 Y
B8P H -
COIIII a a 6 ’

1 t—1 y
<d,—2b3 $ > — 90, C — _op, @ ,
1 (conn)
(a6 )
(conn)
vy




(o245 Cb ¢ ) oy = 2% Cj} = 2a3 +4a2
¥ 3 (conn)
<d, <a1a2 + aias —+ ao0s3 =+ a% —|— + _“ + ﬁ) ﬁ)
96 conn)

= (2@1@2 + 2a1a3 + 2&2&3 —+ 20,3 + @ + 4_8 + 24) C |

u

= (—4a1a2 4&1(1,3 — 4(12@3 — 4a3 — ;_jl — g_i _ ?Z)

Hence, we have

ai as a3 @1 a2
<Oé 71>(C0nn) = <_ )

By (36) and (37) in Proposition 5.12, we have

ol _E (conn)
< : 95 A

_ _ﬂ_@ aq as
Y 4 7 y X X
. 1 1 1
<a7 (a2 - a3) _E * 6 + ﬂ Pl >(conn)
_ (%2 4 az  as
B ( 6 6) +<6 6>

40

+ e T e §Cl3 —dayay — daraz — 4agag

(40)



Further,

t—1
200, :
O[ _— = = —
COl’ll’l 4 4
020 H ) -2 -
COl'lIl - 3 -
20 D), i
a —_——_— = = —
COIlIl 4 4

X y y
56 H)r-3
&, — =—— =
6 Yo (conn) 3

X

y
<OA[7a3 M > :()7
(conn)

V4

5D o3
a —_—— —_——
’ 4 COHH 4

<A az -1 > as
a, —— ==
2 (conn) 2

z ¥

R
o, —— =
’ 2 (conn) 2
wo oy Y z
NCES é Yl > as
a, — =——
2 i (conn) 2

Hence, we have

(&, 72) (conn) = (_E N 3)

u

T R
6 6 127



Thus, by (40) and (41), we get

X Z(D(Ky, Ky, K3)) &P

1
= (—Zag — 4&1@2 — 4@1&3 — 4@2@3 — 2[)3 — 3C3)
+ 3¢ + 2a;3

Therefore, by the definition of the 3-loop polynomial, we obtain the required formula. [

Remark 6.3. By Lemma 5.11, we have © p(k, k, ky)(t1, t2, t3) = —2as(ts it gty
t3 +t;' — 6), which indicates that the 2-loop polynomial of D(K;, Ky, K3) depends only
on the Vassiliev invariants of K3. Thus, if K3 = K}, we cannot distinguish D(K7, K, K3)
and D(K7, K}, K}) for any Ky, Ky, K{, K} by (< 2)-loop polynomials. On the other
hand, even if K3 = K}, we may distinguish D(K;, Ky, K3) and D(K{, K}, K}) by the
3-loop polynomial.

Example 6.4. Let T, be the long knot such that its closure is (2,2n + 1) torus knot. It
can be shown that (see [21, Example 3.8])

n(n+1) N n(n+1)(2n+ 1) N n(n+1)(2n* +2n + 1)

2(T,) = _
(Tn) = exp A 24 A8

Thus, by Proposition 6.2, the 3-loop polynomial of D(7,,,,T,,,T,,) is given by

Ap(t,, Ty Ty (1, T2, 3, 1)
nz(ng + 1)
_ (—4
n3(nz + 1)(6n3 + 14ns + 7)

a 12
n3(ns + 1)(2n3 + 2n3 + 1)

+ 2

— nl(nl + 1)%2(7),2 + 1) — nl(nl + 1)%3(7),3 + 1) — ng(ng + 1)%3(72,3 + 1)

) (w12 + u1g + U1 + Uz 3 + U + Uss)

(U123 + Ur3U2g + UssUo3)

n2(ns + 1)*

2 2 2 2 2 2
9 (ufy + Ujz + Uy + Uy g + Uy + u34).

Thus, for example, for all n, m, k, I such that n # m, we have Apr, 1, 1)(t) = Apz,,1,1, (1)
and O p(r, 1. 1)(t1, L2, t3) = Op(z, 1.1 (t1, L2, t3), but Aper, 1.1) (t1, t2, 3, ta) #
Apr,, 1) (t, ta, ts, ta).
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Appendix

A Calculations of Jacobi diagrams with symmetrizer

In this Section, we prove several lemmas for the calculations of the inverse image by the
PBW isomorphism.

Lemma A.1. (see also [21, Lemma 6.3])

n(n —1)(n —2) Ly
12 nS{ X CP z>—<z
+% H{ A M —% n_,{ | x % (42)

We show this. It is shown in [17, Lemma 5.1] that

11111
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By applying (43) (replacing n with n + 2) to the left-hand side of (42), we get

(44)

The first term of the right-hand side of (44) is calculated by applying (43) (replacing n
with n 4 1) as follows,

44



(47)
The second term of the right-hand side of (44) is calculated as follows,
_n
= -2 {
_ n(n —1) ,
_ : { 4
—1 I
= X % _n(n4 ) nZ{ | x M . (48
The third term of the right-hand side of (44) is calculated as follows,
—1
+% ”_2{ ] x M (49)

Thus, by applying (47), (48), (49) to (44), we obtain (42). Therefore, we obtain the
required formula. O

Lemma A.2. [17, Lemma 5.2]
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Lemma A.3.

Y

Y

y

y

46

X X y
1
12
- <9 H
. ¥y z z
z ¥ y
(50)
(51)




n(n—1)(n —2)

n-3{ é
X

z
X x X

<O H.
Yy oz oz

(52)

By (43) and (46), the second term of the right-hand side of (51) is calculated as follows,

|

By applying this to (53), we obtain

Il
|
ESTIS

Il
|
|3

X

47

z X x
x M
z y




(54)

Thus, by applying (52), (54), (55) to (51), we get (50). Therefore, we obtain the required

formula. [
Lemma A.4.
w N y
1 M
[ S % .
2
y z w
Proof. We can show this in a same way of the proof of Lemma A.3. O

Lemma A.5.
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Lemma A.6.

X

-
4 2
y y y oy z
Proof. 1t is sufficient to show the formula,
yy yy

=2

x Y
n
—aw{ | Xﬂ‘
X z

49



We show this. By (43), we get

i

yy yy

yy yy
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Il
|
|3

1

X

Moreover, by (43) and (46), we get

Il
3
~
——
|
NN
3
~
——
=

o1




By applying this to (60), we obtain

13

52



(63)

By (43) and (46), the second term of the right-hand side of (57) is calculated as follows,

yy
1
2
n(n —1)
4
yy
_on i n(n—1)
-2 { S * 4
n-1 .
yy
_on i n(n —1)
n-1

yy

yy

53

Yy yy
ﬂ nn— 1) 7@
; ; + 4 { ; ;

n-1
) jf
y y




yy yy
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|3

Thus, by applying (63), (65), (66) to (57), we get (56). Therefore, we obtain the required

formula. -
Lemma A.7.
= o % 1 1 z ]_ Hz
B 4 2 w 2 w
y y z
Lemma A.S8.
= T < 1 1 z 1 Hz
N 4 2 w 2 w
y z y y
y

we can show Lemmas A.7 and A.8 in a same way of the proof of Lemma A.6

Lemma A.9. [17, Lemma 5.17]

T |w
x IEER
I R A== o éD“ L >_<
e @ [ 8 | 12 )
b -

z z z  z y
L e e e o
4 )\ T4\ Y 24 -1 '

Lemma A.10. [17, Lemma 5.2, Lemma 5.7]

z z
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Proof. By [17, Lemma 5.2], we have

.............. _ (67)

f " ¥4 g z z
.[} ........ iy 1 / 1 //L\
= IR x |1 - - 68
.[}ﬂm. (2) +_2 \T// %_2 § N ’ ( )

z z

where f and g are power series. By (67) and (68), we obtain the required formula. ]

Lemma A.11. We have

z z z z w x y z
1 ¢ t—1 t—1
—1—5 — - + + ,
where D is a diagram with 3 trivalent vertices.

Proof. By Lemma A.10, we have

x%% \/+/\ . (69)
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In a similar way of the proof of the Lemma A.4, we can get

where we obtain the last equivalence by (67). Thus, by applying (70) and (71) to (69),
we obtain the required formula. Il

Lemma A.12.

where D is a diagram with 3 trivalent vertices.

Proof. We can show this in a same way of the proof of Lemma A.11. O
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B Proof of Lemma 5.13

1 1
Proof. We note that u = e" + e " —2 = h? + —2h4 + ﬁh‘a + (higher terms). In the

following calculations, we use the AS and IHX relations. The first, second and third
diagrams are calculated as follows,

=, <8 A A —)\
d<8 1+1 2+3604
1
@ o @ +6)\6: @ ) @ i
1 1 1 1
= Ay — X = = —Xg.
2)\2 —|—6)\6 2)\2+66

1 1 1
@ =d<s @ +6® :)\2_2/\3_5)\5"‘5/\6-

The forth diagram is calculated as follows,

DI

At first, we calculate the second term of the right-hand side of (72). We have

Thus, we get @ @ @
@;@;@
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By applying this to (72), we have

+3 +1 Ly
2 9 90"

Thus, we obtain

We calculate the first term of the right-hand side of (73).

Thus, we get

1 1
=—=M\+ A5+ =X 4
44+ 5+26 (74)

We calculate the second term of the right-hand side of (73).

Thus, we get
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By applying (74), (75) to (73) and by (72), we obtain

u u

1 2
=g —=A+ A5+ = A
d<s ~3 4+ 5+3 6

u

. The fifth diagram is calculated as follows,

1 2
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