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ON ODA’S PROBLEM AND SPECIAL LOCI

BENJAMIN COLLAS, SÉVERIN PHILIP

Abstract. Oda’s problem, which deals with the fixed field of the universal monodromy repre-
sentation of moduli spaces of curves and its independence with respect to the topological data, is
a central question of anabelian arithmetic geometry. This paper emphasizes the stack nature of
this problem by establishing the independence of monodromy fields with respect to finer special
loci data of curves with symmetries, which we show provides a new proof of Oda’s prediction.
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On Oda’s problem and special loci

1. Introduction
Let ℳ𝑔,𝑚 be the moduli stack of smooth projective curves of genus 𝑔 with 𝑚 (disjoint ordered)
sections satisfying the hyperbolicity condition 2𝑔 − 2 +𝑚 ≥ 1, which is a smooth geometrically
connected Deligne-Mumford stack over Q, and is endowed with a universal punctured curve
𝒞𝑔,𝑚 → ℳ𝑔,𝑚. For 𝑋 a punctured curve over Q of topological type (𝑔,𝑚), associated to a
morphism 𝑥 : SpecQ → ℳ𝑔,𝑚, one obtains two short exact sequences of étale fundamental
groups

1 → 𝜋𝑒𝑡1 (𝑋⊗Q) → 𝜋𝑒𝑡1 (𝒞𝑔,𝑚) → 𝜋𝑒𝑡1 (ℳ𝑔,𝑚) → 1 and 1 → 𝜋𝑒𝑡1 (ℳ𝑔,𝑚⊗Q) → 𝜋𝑒𝑡1 (ℳ𝑔,𝑚) 𝑝→ 𝐺Q → 1
where the fundamental groups are given with respect to a choice of compatible base points that
we omit. Denoting 𝑋 ⊗ Q by 𝑋Q, the left-hand one gives rise to the universal ℓ-monodromy
representation

Φℓ
𝑔,𝑚 : 𝜋𝑒𝑡1 (ℳ𝑔,𝑚) → Out𝜋𝑒𝑡1 (𝑋Q) → Out𝜋ℓ1(𝑋Q)

where the right-hand side morphism comes, for ℓ a fixed prime, from the surjective map 𝜋𝑒𝑡1 (𝑋Q) →
𝜋ℓ1(𝑋Q) to the pro-ℓ geometric fundamental group of 𝑋 (also the maximal pro-ℓ quotient of the
geometric one). Composing with the section induced by 𝑥 between Galois and étale fundamental
groups, one furthermore recovers the ℓ-adic representation associated to 𝑋

𝜙ℓ𝑋 : 𝐺Q → Out𝜋ℓ1(𝑋Q).

which, contrary to the classical profinite geometric Galois action, has a non-trivial kernel whose
corresponding fixed field contains Qℓ

𝑔,𝑚 = Q𝑝(Ker Φℓ𝑔,𝑚).

The following prediction, as formulated in [IN97] § 1.4, stems from Takayuki Oda’s original
conjecture formulated in [Oda93].

Oda’s prediction. For 𝑔, 𝑚 ∈ N such that 2𝑔 − 2 +𝑚 > 0, the ℓ-monodromy fixed
field Qℓ

𝑔,𝑚 associated to Φℓ
𝑔,𝑚 is independent of (𝑔,𝑚).

As noted in [Oda93], the group Out𝜋ℓ1(𝑋Q) is “almost intractable”, which motivates Oda to
formulate his conjecture in terms of a seemingly more reachable but stronger weight-filtration
version of the above prediction, and for fixed 𝑔 ≥ 0, see ibid. § 2. Theorem and conjectures. Oda’s
prediction is finally settled1 for every (𝑔,𝑚) by Takao in [Tak12] following successive advances
on the independence in 𝑔 or 𝑚 in terms of arithmetic-geometry – see Ihara and Nakamura in
[IN97], of group theoretic and Lie algebra computations – see Nakamura-Takao-Ueno [NTU95]
and Matsumoto [Mat96] – and by the use of the (divisorial) Knudsen-Mumford stratification of
ℳ𝑔,𝑚, see [Nak96]. An independant proof was later given in terms of combinatorial anabelian
geometry by Hoshi and Mochizuki in [HM11]. We also refer to [Tak14] for a recent panorama.
Oda’s problem – that is, to which extent canonical arithmetic and geometric data such as 𝑔 and
𝑚, produces independent ℓ-monodromy fixed fields – is a central question of anabelian arithmetic
geometry: it allows the study of the Deligne-Ihara Lie algebra [Iha89] related to motivic multiple
zeta values, since for (𝑔,𝑚) = (0, 3) the morphism Φℓ

0,3 is the one of Ihara’s 山 =天 question on
P1
Q ∖{0, 1,∞} [Iha86], which in turn, is related to the Rasmussen-Tamagawa conjecture [RT17]. It

also has application in low-dimensional topology via the Johnson homomorphism and the Morita

1Publication of the proof, established in 1995, was indeed postponed to 2012 for unfortunate non-mathematical
ground.
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obstructions [Mor93]. This conjecture has since motivated the anabelian notion of monodromic
fullness [Hos13].
We remark that, as presented in [Mat96] Remark 3.3, while Oda’s problem is essentially of stack-
theoretic nature – by ℳ𝑔,𝑚 as a solution to a fine moduli problem and the very existence of the
universal punctured curve 𝒞𝑔,𝑚 – the field Qℓ

𝑔,𝑚 was expressed and dealt with in a scheme-theoretic
way. This paper develops a setup and techniques that allow to exploit the stack-theoretic aspects
of Oda’s problem.

Oda’s problem for 𝐺-special loci
Let ℳ𝑔,[𝑚] denote the moduli stack of curves of genus 𝑔 with 𝑚 (unordered) marked points (in
particular, ℳ𝑔,[𝑚] is not represented by a scheme), which is naturally endowed with a stack
inertia stratification, i.e., by the automorphism group of objects. Each strata corresponds to a
𝐺-special locus ℳ𝑔,[𝑚](𝐺) of curves whose automorphism group contains a given finite group 𝐺.
It is shown that the geometric irreducible components ℳ𝑔,[𝑚](𝐺)𝑘𝑟 for 𝐺 cyclic automorphism
group, that are among the biggest non-trivial strata, are Q-rational and can be described by
combinatorial Hurwitz data 𝑘𝑟, see [CM15].
This context also provides an ℓ-universal 𝐺-monodromy representation, see Theorem 2.3.

There exists a universal monodromy representation
Φℓ
𝑔,[𝑚](𝐺)𝑘𝑟 : 𝜋1(ℳ𝑔,[𝑚](𝐺)𝑘𝑟) −→ Out𝜋ℓ1(𝑋)

for 𝑋 a smooth curve with compactification 𝑋 represented by a Q-point on ℳ𝑔,[𝑚](𝐺)𝑘𝑟
and 𝑋 ∖𝑋 is a divisor of degree 𝑚 on 𝑋.

In particular, this setup provides an ℓ-monodromy fixed field Qℓ
𝑔,[𝑚](𝐺)𝑘𝑟 = Q𝑝(Ker Φℓ

𝑔,[𝑚](𝐺)𝑘𝑟)

where 𝑝 denotes the usual projection to 𝐺Q. In this paper, we deal with the following Z/ℓ𝑛Z-special
loci version of Oda’s problem.

Oda’s problem for cyclic special loci. For 𝑔, 𝑚 ∈ N such that 2𝑔 − 2 + 𝑚 > 0
and 𝐺 cyclic group of order ℓ𝑛, is the ℓ-monodromy fixed field Qℓ

𝑔,[𝑚](𝐺)𝑘𝑟 independent
of all the special loci data (𝑔,𝑚), 𝑛 and 𝑘𝑟?

While a positive answer to this problem may at first seems “unreasonable” – Oda’s problem for
cyclic special loci is finer and implies Oda’s prediction – it is supported by a series of indirect
results that exhibit similar arithmetic properties of the stack inertia stratification to the classical
divisorial one: the Galois actions have the same type [CM23], and the related Grothendieck-
Teichmüller groups are isomorphic [Col12]. More concretely, one notices that the curves used
in [Mat96] § 4 to establish Oda’s prediction for 2𝑔 = 0 mod (ℓ − 1) live in ℳ𝑔,[𝑚](𝐺)𝑘𝑟 with
𝐺 = Z/ℓZ, quotient genus 𝑔′ = 0 and some 𝑘𝑟 data with 𝑘 = (1, . . . , 1, 𝑗,−(1 + 1 · · · + 1 + 𝑗)) for
𝑗 = 1 or 2, see Section 2.1.1 for notations.
Indeed, the main results of this paper can be summarized as follows, see Section 2.2 for the
compatibility of the various ℓ-universal monodromy fields and morphisms and Theorem 5.3.

Theorem. Let ℓ be a fixed prime. Let 𝑔,𝑚 ∈ N be such that 2𝑔− 2 +𝑚 > 0 and 𝑘𝑟 an associated
abstract Hurwitz data such that ℳ𝑔,[𝑚](Z/ℓZ)𝑘𝑟 is non-empty. The map Φℓ

𝑔,[𝑚](Z/ℓZ)𝑘𝑟 is
compatible with the map Φℓ

𝑔,𝑚 and the ℓ-monodromy fixed field Qℓ
𝑔,[𝑚](Z/ℓZ)𝑘𝑟 is constant equal

to Qℓ
0,3.
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As a corollary, see Corollary 5.4, we recover the containment Qℓ
𝑔,𝑚 ⊂ Qℓ

0,3 and thus the classical
version of Oda’s prediction, that is for all 𝑔, 𝑚 ∈ N such that 2𝑔−2+𝑚 > 0 we have Qℓ

𝑔,𝑚 = Qℓ
0,3,

see also [IN97] Theorem 3 B. Both proofs of Oda’s problem for special loci and classical settings
still rely on the previously established Qℓ

0,3 ⊂ Qℓ
𝑔,𝑚, see [Nak96; Mat96; Tak12].

The organization of the paper is as follows. In Section 2 we recall the 𝑘𝑟 combinatorial description
of irreducible components of cyclic special loci of [CM15] and introduce the ℓ-universal 𝐺-
monodromy representation, whose fixed field we relate within a lattice of other ℓ-monodromy
fixed fields, which in particular includes the more traceable Hurwitz spaces ℳ𝑔,[𝑚][𝐺]𝑘𝑟

Qℓ
𝑔,𝑚 Qℓ

𝑔,[𝑚](Z/ℓ
𝑛Z)𝑘𝑟 Qℓ

𝑔,[𝑚](Z/ℓ
𝑛Z)𝜈𝑘𝑟

Qℓ
0,3 Qℓ

𝑔′,𝑚′ Qℓ
𝑔′,[𝑚′](𝛿Z/ℓ

𝑛Z)𝜈

where (𝑔′,𝑚′), resp.Qℓ
𝑔′,[𝑚′](𝛿Z/ℓ

𝑛Z)𝜈 , denotes the topological data, resp. a certain monodromy
fixed field, obtained by 𝐺-quotient. At this stage, establishing the 𝐺-special version of Oda’s
prediction relies on showing that Qℓ

𝑔,𝑚(Z/ℓ𝑛Z)𝜈𝑘𝑟 ⊂ Qℓ
0,3; our proof adapts Ihara-Nakamura’s

[IN97]. Section 3 deals with the construction of tangential base points, or one-parameter families,
on the 𝐺-stable compactification of Hurwitz spaces in terms of formal patching of certain
Matsumoto-Seyama Z/ℓZ-stable curves, whose Galois action properties are established in Section
4 via Grothendieck-Murre theory and by comparison with Deligne’s original tangential base point.
This results in the inclusion of the ℓ-monodromy fixed field of the generic fiber of the constructed
one-parameter families into Qℓ

0,3. We conclude with a general Theorem 4.15 that can be applied
to multiple geometric situations. Section 5 ties everything together for Z/ℓZ, starting with the
case of proper loci for which the deformation method does not apply. In the diagram above,
Oda’s classical prediction then follows the bottom row reading.

Notations and conventions. For 𝐺 a finite group, we write ℳ𝑔,[𝑚][𝐺] for the Hurwitz space of 𝐺-
covers and ℳ𝑔,[𝑚](𝐺)𝜈 for the quotient ℳ𝑔,[𝑚][𝐺]/Aut𝐺. We denote by ℳ𝑔,[𝑚](𝐺) the 𝐺-stable
compactification of the 𝐺-special locus ℳ𝑔,[𝑚](𝐺), and by ℳ𝑔,[𝑚](𝐺)𝜈 the stable compactification
of ℳ𝑔,[𝑚](𝐺)𝜈 . The topological data (𝑔,𝑚) of a curve are said to be of hyperbolic type if they
satisfy 2𝑔 − 2 +𝑚 > 0.

2. Oda’s conjecture for 𝐺-special loci
After some brief reminders on the description of irreducible components ℳ𝑔,[𝑚](𝐺)𝑘𝑟 of cyclic
𝐺-special loci in terms of combinatorial Hurwitz data 𝑘𝑟, we define the ℓ-universal 𝐺-monodromy
representation Φℓ

𝑔,𝑚(𝐺)𝑘𝑟 : 𝜋1(ℳ𝑔,[𝑚](𝐺)𝑘𝑟) −→ Out𝜋ℓ1(𝑋) – for 𝐺 any finite group – where 𝑋
is a hyperbolic curve of type (𝑔,𝑚). Relying on the forgetful functor and the quotient functor

ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 → ℳ𝑔,[𝑚](𝐺)𝑘𝑟 → ℳ𝑔,[𝑚], and ℳ𝑔,[𝑚][𝐺]𝑘𝑟
𝛿→ ℳ𝑔′,[𝑚′]

and some properties of the stack inertia ℐℳ, we build step-by-step a lattice of relations between the
various ℓ-monodromy fixed fields arising from this context – that is between Qℓ

𝑔,𝑚, Qℓ
𝑔,[𝑚](Z/ℓ

𝑛Z)𝑘𝑟,
Qℓ
𝑔,[𝑚](Z/ℓ

𝑛Z)𝜈𝑘𝑟, and Qℓ
𝑔′,[𝑚′](𝛿Z/ℓ

𝑛Z)𝜈𝑘𝑟.
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2.1. Universal monodromy representations and Oda’s fields for 𝐺-special loci

2.1.1. Let ℳ𝑔,[𝑚][𝐺] be the moduli stack of curves of genus 𝑔 with 𝑚 marked points endowed
with a faithful 𝐺-action, or Hurwitz stack, whose 𝑆-sections for a Q-scheme 𝑆 are defined as
follows:

ℳ𝑔,[𝑚][𝐺](𝑆) are the triplets (𝐶,𝐷, 𝜄) where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐶 is a smooth projective curve of genus 𝑔 over 𝑆,
𝜄 : 𝐺 → Aut𝑆 𝐶 an injective homomorphism,
𝐷 an étale Cartier divisor of degree 𝑚

stabilized by the 𝐺-action induced by 𝜄,

see [CM15] § 2.1 as well as for the rest of this section. The 𝐺-special locus ℳ𝑔,[𝑚](𝐺) of ℳ𝑔,[𝑚]
is obtained as the image of ℳ𝑔,[𝑚][𝐺] in ℳ𝑔,[𝑚] under the forgetful functor defined by

ℳ𝑔,[𝑚][𝐺](𝑆) −→ ℳ𝑔,[𝑚](𝑆)
(𝐶,𝐷, 𝜄) ↦−→ (𝐶,𝐷)

In particular, the 𝑆-sections of ℳ𝑔,[𝑚](𝐺) are curves over 𝑆 whose geometric fibers admits a
faithful 𝐺-action. The stack ℳ𝑔,[𝑚][𝐺] having a canonical right-action of Aut𝐺 via 𝜄, we can
form the quotient stack ℳ𝑔,[𝑚][𝐺]/Aut𝐺 that we denote by ℳ𝑔,[𝑚](𝐺)𝜈 since, apart from a
few exceptional cases2 see [Mag+02] Theorem 5.1 and section 4 for an account with 𝑔 ≥ 2 and
also Remark 2.2 (ii), it identifies with the normalization of ℳ𝑔,[𝑚](𝐺) by the proof of [Rom11]
Proposition 3.4.1. All the stacks ℳ𝑔,[𝑚][𝐺], ℳ𝑔,[𝑚](𝐺) and ℳ𝑔,[𝑚](𝐺)𝜈 are Deligne-Mumford
stacks over SpecQ – with ℳ𝑔,[𝑚][𝐺] and ℳ𝑔,[𝑚](𝐺)𝜈 moreover smooth over SpecQ.

From now on, we assume that 𝐺 ≃ Z/𝑛Z is cyclic, so that following [CM15], we can investigate
the subloci ℳ𝑔,[𝑚](𝐺)𝑘𝑟 of ℳ𝑔,[𝑚](𝐺) of 𝑆-curves whose 𝐺-action ramification data correspond
to certain Hurwitz data 𝑘𝑟 = (𝑘, 𝑟) modulo the diagonal (Z/𝑛Z)×-action, which are abstractly
defined as follows:

∙ The part 𝑘 corresponds to an 𝑁 -tuple in (Z/𝑛Z)𝑁 , where 𝑁 is the degree of the branch
divisor, whose terms sum to 0, and which is taken up to permutation. Each component of 𝑘
corresponds to a generator of one of the 𝐺-isotropy groups.

∙ The second part 𝑟 is an element of N𝑛, whose 𝑖-th component, in the case of a quotient map
𝜓 : 𝐶 → 𝐶/𝐺, corresponds to

𝑟(𝑖) = Card{𝑦 ∈ 𝐷/𝐺 | 𝑏𝑟(𝑦) = 𝑖 mod 𝑛}

where 𝑏𝑟(𝑦) is the branching order at 𝑦, that is the ramification index of any point in the
fiber 𝜓−1(𝑦).

Note that the (Z/𝑛Z)×-quotient in 𝑘𝑟 should be seen as the (Aut𝐺)-quotient previously intro-
duced. We refer to ibid. Definitions 3.5 and 3.9, and Example 3.11 for further details.

The construction of abstract Hurwitz data from 𝐺-curves defines a map

𝑘𝑟 : ℳ𝑔,[𝑚][𝐺]𝑁 −→ ((Z/𝑛Z)𝑁/S𝑁 × N𝑛)/(Z/𝑛Z)×

where ℳ𝑔,[𝑚][𝐺]𝑁 denotes the substack of ℳ𝑔,[𝑚][𝐺] of curves whose branch divisor is of degree
𝑁 , which is locally constant – see [CM15] Lemma 3.13. For a fixed value of 𝑘𝑟, one thus obtains

2Erratum: Proposition 2.4 and Corollaire 2.5 of [CM15] are subject to the same exceptions.
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a substack ℳ𝑔,[𝑚][𝐺]𝑘𝑟 of ℳ𝑔,[𝑚][𝐺] of 𝐺-curves with abstract Hurwitz data 𝑘𝑟 so that one can
define:
Definition 2.1. For𝐺 cyclic and given abstract Hurwitz data 𝑘𝑟 the special sublocus ℳ𝑔,[𝑚](𝐺)𝑘𝑟
is the image of ℳ𝑔,[𝑚][𝐺]𝑘𝑟 under the forgetful functor ℳ𝑔,[𝑚][𝐺] → ℳ𝑔,[𝑚](𝐺).
Also, since the action of Aut𝐺 stabilizes ℳ𝑔,[𝑚][𝐺]𝑘𝑟 by definition, we have substacks ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟
of ℳ𝑔,[𝑚](𝐺)𝜈 . The stacks ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 and ℳ𝑔,[𝑚](𝐺)𝑘𝑟 are defined over Q by construction and
are geometrically irreducible by Proposition 3.12 and Theorem 4.3 of [CM15].
One particular case of interest is when the ramification divisor is contained in the marked divisor
𝐷. In this case, we can recover 𝑟 by the data of 𝐷 and 𝑘. Indeed, we have{︃

𝑟(𝑖) = Card{𝑗 | 𝑘(𝑗) = 𝑖}/ gcd(𝑖, 𝑛) for 𝑖 ̸= 0
𝑟(0) = deg𝐷 −

∑︀
𝑖∈Z/𝑛Z∖{0} Card{𝑗 | 𝑘(𝑗) = 𝑖}.

Similarly to the moduli stacks of curves, the stacks ℳ𝑔,[𝑚](𝐺), resp. ℳ𝑔,[𝑚](𝐺)𝜈 , are not
necessarily proper. We denote by ℳ𝑔,[𝑚](𝐺)𝑘𝑟 the 𝐺-stable compactification of the 𝐺-special
locus ℳ𝑔,[𝑚](𝐺)𝑘𝑟, and by ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 the 𝐺-stable compactification of ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟. These are
obtained from the original stacks by adding stable curves endowed with a stable 𝐺-action. We
refer to [Eke95] and [BR11] § 4 and 6 for details.
Remark 2.2.

(i) The correspondence between the abstract Hurwitz data 𝑘𝑟 and the Hurwitz data 𝜉 of
[BR11] § 2.2 in terms of equivalence classes [𝐻𝑖, 𝜒𝑖] of characters 𝜒𝑖 at 𝐺-inertia group
𝐻𝑖 is straightforward by considering generators of the 𝐺-isotropy groups.

(ii) The difference between ℳ𝑔,[𝑚](𝐺) and ℳ𝑔,[𝑚](𝐺)𝜈 comes from the potential existence of
a curve whose geometric fiber has an automorphism group that contains 2 topologically
but not holomorphically conjugate subgroups. We refer to [GH97] for examples.

2.1.2. We now consider 𝒞𝑔,[𝑚](𝐺)𝑘𝑟 the universal 𝐺-curve of genus 𝑔 with 𝑚 punctures and
abstract Hurwitz data 𝑘𝑟. We denote by ℳ𝑔,[𝑚]+1 the stack of smooth projective curves with
a degree 𝑚 divisor and an additional marked point. We have an identification 𝒞𝑔,[𝑚](𝐺)𝑘𝑟 ≃
ℳ𝑔,[𝑚](𝐺)𝑘𝑟 ×ℳ𝑔,[𝑚] ℳ𝑔,[𝑚]+1. The 𝑆-sections of 𝒞𝑔,[𝑚](𝐺)𝑘𝑟 are the elements of ℳ𝑔,[𝑚](𝐺)𝑘𝑟(𝑆)
with the additional data of a section outside the marked points 𝐷; similarly, the universal
punctured curve over ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 is given by the stack 𝒞𝑔,[𝑚](𝐺)𝜈𝑘𝑟 = ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 ×ℳ𝑔,[𝑚]
ℳ𝑔,[𝑚]+1.
One obtains the ℓ-universal 𝐺-monodromy representation.
Theorem 2.3. Let 𝑔, 𝑚 ∈ N such that 2𝑔− 2 +𝑚 > 0, 𝐺 a finite cyclic group and 𝑘𝑟 a Hurwitz
data with respect to 𝑔, 𝑚 and 𝐺, then there is an exact sequence

1 ̂︀𝐹2𝑔+𝑚−1 𝜋1(𝒞𝑔,[𝑚](𝐺)𝑘𝑟) 𝜋1(ℳ𝑔,[𝑚](𝐺)𝑘𝑟) 1.

The ℓ-universal 𝐺-monodromy representation is the induced monodromy map
(2.1.1) Φℓ

𝑔,𝑚(𝐺)𝑘𝑟 : 𝜋1(ℳ𝑔,[𝑚](𝐺)𝑘𝑟) −→ Out ̂︀𝐹 ℓ2𝑔+𝑚−1

which is universal in the following sense: for any curve 𝐶 over a connected Q-scheme 𝑆 in
ℳ𝑔,[𝑚](𝐺)𝑘𝑟(𝑆) and Q-point 𝑠 of 𝑆 the natural representation 𝜋1(𝑆) → Out𝜋ℓ1(𝐶𝑠) factors
through Φℓ

𝑔,𝑚(𝐺)𝑘𝑟. A similar result holds for ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟.
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In the exact sequence above one has identified the fundamental group of the fiber of the map
𝒞𝑔,[𝑚](𝐺)𝑘𝑟 → ℳ𝑔,[𝑚](𝐺)𝑘𝑟 at the geometric base point with ̂︀𝐹2𝑔+𝑚−1. In the same way, the
factorization of the representation to Out𝜋ℓ1(𝐶𝑠) through Φℓ

𝑔,𝑚(𝐺)𝑘𝑟 is made via the identification
𝜋ℓ1(𝐶𝑠) ≃ ̂︀𝐹 ℓ2𝑔+𝑚−1.

Proof. Let 𝑥 : SpecQ → ℳ𝑔,[𝑚](𝐺)𝑘𝑟 be a geometric point representing a curve 𝑋 over Q. By
taking the rigidification given by a Jacobi structure of level 𝑁 ≥ 3 we obtain étale Galois covers
ℳ𝑔,[𝑚](𝐺)𝑁𝑘𝑟 and 𝒞𝑔,[𝑚](𝐺)𝑁𝑘𝑟 of ℳ𝑔,[𝑚](𝐺)𝑘𝑟 and 𝒞𝑔,[𝑚][𝐺]𝑘𝑟, respectively, which are schemes and
sit in a similar sequence, compare with [DM69] § 5.4 and § 5.14. The induced maps from this
new sequence to the old one make the following commutative diagram, with exact columns and
bottom row,

1 𝜋1(𝑋) 𝜋1(𝒞𝑔,[𝑚](𝐺)𝑁𝑘𝑟) 𝜋1(ℳ𝑔,[𝑚](𝐺)𝑁𝑘𝑟) 1

1 𝜋1(𝑋) 𝜋1(𝒞𝑔,[𝑚](𝐺)𝑘𝑟) 𝜋1(ℳ𝑔,[𝑚](𝐺)𝑘𝑟) 1

1 Aut(Z/𝑁Z)2𝑔 Aut(Z/𝑁Z)2𝑔 1

By a diagram chase the exactness of the upper sequence implies that of the middle one. The
right exactness of the upper sequence is given by [SGA1] Exposé IX Corollaire 6.11. The left
exactness then follows from the hyperbolicity condition and the identification with the profinite
completion of the Birman exact sequence.
A similar argument provides the result for ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 with ad hoc substitutions. □

For a curve 𝐶 over 𝑆 as in Theorem 2.3 the ℓ-monodromy representation of 𝐶
𝜙ℓ𝐶 : 𝜋1(𝑆) → Out𝜋ℓ1(𝐶𝑠)

is obtained from the relative homotopy exact sequence as usual. Notice that the Q-scheme 𝑆
also sits in a classical arithmetic-geometric homotopy exact sequence, so that 𝜋1(𝑆) is naturally
equipped with a projection map 𝑝𝑆 : 𝜋1(𝑆) → 𝐺Q. We recall that, similarly, we have a canonical
homomorphism 𝑝 : 𝜋1(ℳ𝑔,[𝑚](𝐺)𝑘𝑟) → 𝐺Q.

Definition 2.4. The field Qℓ
𝑔,[𝑚](𝐺)𝑘𝑟, resp. Qℓ

𝑔,[𝑚](𝐺)𝜈𝑘𝑟, is the fixed field of 𝑝(Ker Φℓ
𝑔,[𝑚](𝐺)𝑘𝑟),

resp. of 𝑝(Ker Φℓ
𝑔,[𝑚](𝐺)𝜈𝑘𝑟). For a curve 𝐶 over a connected Q-scheme 𝑆, the field Qℓ

𝐶 is the
fixed field of 𝑝𝑆(Ker𝜙ℓ𝐶).

Lemma 2.5. For 𝐶 a curve over a connected Q-scheme 𝑆 represented by an 𝑆-point on
ℳ𝑔,[𝑚](𝐺)𝑘𝑟, resp. on ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟, we have the inclusion

Qℓ
𝑔,[𝑚](𝐺)𝑘𝑟 ⊂ Qℓ

𝐶 , resp. Qℓ
𝑔,[𝑚](𝐺)𝜈𝑘𝑟 ⊂ Qℓ

𝐶 .

The ℓ-monodromy fixed field Qℓ
𝑔,[𝑚](𝐺)𝑘𝑟 is furthermore obtained as the intersection of all the Qℓ

𝐶

for such 𝐶/𝑆 where 𝑆 varies in the category of connected Q-schemes.

The field Qℓ
𝑔,[𝑚](𝐺)𝑘𝑟 can also be obtained as Qℓ

𝐶0
where 𝐶0 = 𝒞𝑔,[𝑚](𝐺)𝑘𝑟×ℳ𝑔,[𝑚](𝐺)𝑘𝑟ℳ𝑔,[𝑚]+𝑚′(𝐺)𝑘𝑟

is a curve over 𝑆 = ℳ𝑔,[𝑚]+𝑚′(𝐺)𝑘𝑟 with 𝑚′ large enough for 𝑆 to be a scheme.
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Proof. By the universality of the map Φℓ
𝑔,[𝑚](𝐺)𝑘𝑟 we have a commutative diagram

𝜋1(𝑆) 𝜋1(ℳ𝑔,[𝑚](𝐺)𝑘𝑟) Out ̂︀𝐹 ℓ2𝑔+𝑚−1

𝐺Q 𝐺Q

𝑝𝑆 𝑝

where 𝜙ℓ𝐶 appears as the composition 𝜋1(𝑆) → 𝜋1(ℳ𝑔,[𝑚](𝐺)𝑘𝑟) → Out ̂︀𝐹 ℓ2𝑔+𝑚−1. The compati-
bility with the projections to 𝐺Q ensures that we have 𝑝𝑆(Ker𝜙ℓ𝐶) ⊂ 𝑝(Ker Φℓ

𝑔,[𝑚](𝐺)𝑘𝑟) and thus
the inclusion. To prove the last point, by commutativity of the diagram, it suffices to show the
existence of a curve 𝐶 in ℳ𝑔,[𝑚](𝐺)𝑘𝑟(𝑆) such that the induced map 𝜋1(𝑆) → 𝜋1(ℳ𝑔,[𝑚](𝐺)𝑘𝑟)
is surjective. This is done by taking 𝐶0 = 𝒞𝑔,[𝑚](𝐺)𝑘𝑟 ×ℳ𝑔,[𝑚](𝐺)𝑘𝑟 ℳ𝑔,[𝑚]+𝑚′(𝐺)𝑘𝑟 over 𝑆 =
ℳ𝑔,[𝑚]+𝑚′(𝐺)𝑘𝑟 with 𝑚′ large enough for 𝑆 to be a scheme.

The case of Qℓ
𝑔,[𝑚](𝐺)𝜈𝑘𝑟 is similar after replacing ℳ𝑔,[𝑚](𝐺)𝑘𝑟 by ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟. □

2.1.3. Let us now relate the general situation to the one where the divisor of marked points
𝐷 contains the ramification divisor 𝑅 of the 𝐺-action, a property that we recall, can be seen
directly on the abstract Hurwitz data.
By base change to an algebraically closed field and reading of the 𝑘𝑟 data one notices that the
divisor 𝑅 ∪𝐷 is finite étale over 𝑆 for a curve 𝐶/𝑆 as before.

Lemma 2.6. Let (𝐶,𝐷) be a curve represented by an 𝑆-point on ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 as before. Then
the degree of the ramification divisor 𝑅 of 𝐶 and of the divisor 𝑅 ∪ 𝐷 are determined by the
abstract Hurwitz data 𝑘𝑟.

Proof. As everything is locally constant on the base, it is enough to treat the case where 𝑆
is the spectrum of an algebraically closed field. By definition of 𝑘𝑟 the degree deg𝑅 = 𝑁 of
the ramification divisor is the length of 𝑘. Furthermore, since the degree of 𝑅 ∩𝐷 is given by∑︀𝑛−1
𝑖=1 gcd(𝑖, 𝑛) · 𝑟(𝑖), we have the formula

deg𝑅 ∪𝐷 = 𝑚+𝑁 −
𝑛−1∑︁
𝑖=1

gcd(𝑖, 𝑛) · 𝑟(𝑖)

which is entirely determined by 𝑚, 𝑘𝑟 and 𝐺 = Z/𝑛Z. □

For an abstract Hurwitz data 𝑘𝑟, we introduce 𝑘𝑟𝑒𝑡 as the minimal associated Hurwitz data such
that the ramified points are contained in the marked divisor – i.e. minimal in the sense that the
new marked divisor is the smallest one containing 𝐷 and 𝑅 – and which is thus defined by{︃

𝑟𝑒𝑡(0) = 𝑟(0)
𝑟𝑒𝑡(𝑖) = Card{𝑗 ∈ {1, . . . , 𝑁} | 𝑘(𝑗) = 𝑖}, 𝑖 ≥ 1.

Proposition 2.7. There is a natural map of stacks
ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 −→ ℳ𝑔,[𝑚+𝑠](𝐺)𝜈𝑘𝑟𝑒𝑡

where 𝑟𝑒𝑡 and 𝑠 = deg𝑅− deg𝑅 ∩𝐷 can be explicitly determined as above.
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Proof. By the previous lemma we have that if (𝐶,𝐷) is in ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟(𝑆) then (𝐶,𝑅 ∪𝐷) is an
element of ℳ𝑔,[𝑚+𝑠](𝐺)𝜈

𝑘𝑟𝑒𝑡
(𝑆). This association defines a map of groupoids as any isomorphism

preserving the 𝐺-action must also preserve the ramification divisor. □

Theorem 2.8. We have the following inclusion of ℓ-monodromy fixed fields
(2.1.2) Qℓ

𝑔,[𝑚](𝐺)𝜈𝑘𝑟 ⊂ Qℓ
𝑔,[𝑚+𝑠](𝐺)𝜈𝑘𝑟𝑒𝑡 .

Proof. Let 𝜎 ∈ 𝑝(Ker Φℓ
𝑔,[𝑚+𝑠](𝐺)𝑘𝑟𝑒𝑡) ⊂ 𝐺Q. By Lemma 2.5 there is a connected Q-scheme 𝑆

and a curve (𝐶,𝐷) over 𝑆 represented by an 𝑆-point on ℳ𝑔,[𝑚+𝑠](𝐺)𝑘𝑟𝑒𝑡 such that 𝜎 has a lift 𝜏
in the kernel of the map

𝜋1(𝑆) 𝜋1(ℳ𝑔,[𝑚+𝑠](𝐺)𝑘𝑟𝑒𝑡) Out( ̂︀𝐹 ℓ2𝑔+𝑚+𝑠−1).𝑠𝐶
Φℓ
𝑔,[𝑚+𝑠](𝐺)𝑘𝑟𝑒𝑡

The divisor 𝐷 admits a decomposition 𝐷 = 𝐷𝑢𝑛 ∪𝐷𝑟𝑎𝑚 where 𝐷𝑢𝑛 is given by the unramified
marked points and 𝐷𝑟𝑎𝑚 by the ramified marked points. By definition of the component 𝑟𝑒𝑡
of 𝑘𝑟𝑒𝑡, the divisor 𝐷𝑟𝑎𝑚 corresponds to all the ramified points. The divisor 𝐷𝑟𝑎𝑚 splits into
a disjoint union of geometrically irreducible divisors over a finite étale extension 𝑆′ = 𝑆𝐾 of
𝑆 where 𝐾 is defined by the property that 𝐺𝐾 stabilizes each geometric component of 𝐷𝑟𝑎𝑚.
In particular, 𝜋1(𝑆′) contains the subgroup {𝛼 ∈ 𝜋1(𝑆) | 𝑝𝑆(𝛼) ∈ 𝐺𝐾}, which contains 𝜏 by
construction. We can thus assume that 𝑆 = 𝑆′.
By removing some chosen orbits of ramified points in 𝐷𝑟𝑎𝑚 according to the data given by 𝑟
we can form a divisor 𝐷′ = 𝐷𝑢𝑛 ∪ 𝐷𝑟𝑎𝑚′ such that (𝐶,𝐷′) gives an 𝑆-point of ℳ𝑔,[𝑚](𝐺)𝑘𝑟.
Hence, it is sufficient to show that 𝜎 is the image of an element of 𝜋1(𝑆) that acts trivially on
the pro-ℓ-fundamental group of a geometric fiber 𝐶𝑠 ∖𝐷′

𝑠 of 𝐶 ∖𝐷′. This now comes from the
fact that the outer actions of 𝜋1(𝑆) on 𝜋ℓ1(𝐶𝑠 ∖ 𝐷𝑠) and 𝜋ℓ1(𝐶𝑠 ∖ 𝐷′

𝑠) are compatible with the
canonical surjection 𝜋ℓ1(𝐶𝑠 ∖𝐷𝑠) → 𝜋ℓ1(𝐶𝑠 ∖𝐷′

𝑠). □

2.2. From the classical to the special loci settings

In order to relate the ℓ-monodromy fixed fields Qℓ
𝑔,𝑚 and Qℓ

𝑔,𝑚(𝐺)𝑘𝑟 let us start by showing that
we can move from ℳ𝑔,𝑚 to ℳ𝑔,[𝑚] without harm. Let Qℓ

𝑔,[𝑚] be the fixed field of 𝑝(Ker Φℓ
𝑔,[𝑚])

where 𝑝 : ℳ𝑔,[𝑚] → SpecQ is the structure map and Φℓ
𝑔,[𝑚] : 𝜋1(ℳ𝑔,[𝑚]) → Out𝜋ℓ1(𝐶) the outer

Galois action coming from the exact sequence

1 𝜋1(𝐶) 𝜋1(ℳ𝑔,[𝑚]+1) 𝜋1(ℳ𝑔,[𝑚]) 1

where 𝐶 is a geometric fiber of ℳ𝑔,[𝑚]+1 → ℳ𝑔,[𝑚] . The following can also be seen as a special
case of [Hos11] Lemma 1.4 (ii).

Lemma 2.9. We have Qℓ
𝑔,𝑚 = Qℓ

𝑔,[𝑚].

Proof. It suffices to see that the equality Ker Φℓ
𝑔,𝑚 = Ker Φℓ

𝑔,[𝑚] holds in 𝜋1(ℳ𝑔,[𝑚]) as we have
𝜋1(ℳ𝑔,𝑚) ⊂ 𝜋1(ℳ𝑔,[𝑚]) with cokernel S𝑚. For a presentation of 𝜋ℓ1(𝐶) given by

⟨𝑦1, . . . , 𝑦2𝑔, 𝑥1, . . . , 𝑥𝑚 | [𝑦1, 𝑦2] · · · [𝑦2𝑔−1, 𝑦2𝑔]𝑥1 · · ·𝑥𝑚 = 1⟩
it is clear that an element 𝜏 ∈ 𝜋1(ℳ𝑔,[𝑚]) has image 𝜎 ∈ S𝑚 if and only if the permutation
induced by 𝜏 on the set of conjugacy classes of cuspidal inertia subgroups of 𝜋ℓ1(𝐶Q), which is in
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bijection with the set {𝑥1, . . . , 𝑥𝑚}, is the one given by 𝜎. Such an element 𝜏 thus has trivial
outer action on 𝜋ℓ1(𝐶) only if it has trivial image in S𝑚 and thus belongs to 𝜋1(ℳ𝑔,𝑚). □

2.2.1. The comparison via the forgetful functor ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 → ℳ𝑔,[𝑚](𝐺)𝑘𝑟 → ℳ𝑔,[𝑚] is now
straightforward.

Proposition 2.10. For all (𝑔,𝑚) of hyperbolic type and compatible Hurwitz data 𝑘𝑟 we have
Qℓ
𝑔,𝑚 ⊂ Qℓ

𝑔,[𝑚](𝐺)𝑘𝑟 ⊂ Qℓ
𝑔,[𝑚](𝐺)𝜈𝑘𝑟.

Proof. Let 𝐶 be a curve over Q represented on ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟. First see that the sequence of maps

𝜋1(ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟) → 𝜋1(ℳ𝑔,[𝑚](𝐺)𝑘𝑟) → 𝜋1(ℳ𝑔,[𝑚]) → Out𝜋ℓ1(𝐶)

induces a sequence
Ker Φℓ

𝑔,[𝑚](𝐺)𝜈𝑘𝑟 → Ker Φℓ
𝑔,[𝑚](𝐺)𝑘𝑟 → Ker Φℓ

𝑔,[𝑚]

where the second map is obtained by considering the following commutative diagram with exact
rows

1 𝜋1(𝐶) 𝜋1(𝒞𝑔,[𝑚](𝐺)𝑘𝑟) 𝜋1(ℳ𝑔,[𝑚](𝐺)𝑘𝑟) 1

1 𝜋1(𝐶) 𝜋1(ℳ𝑔,[𝑚]+1) 𝜋1(ℳ𝑔,[𝑚]) 1

1 Inn 𝜋ℓ1(𝐶) Aut𝜋ℓ1(𝐶) Out𝜋ℓ1(𝐶) 1

and the first map is obtained in a similar way.
By applying the canonical projections to 𝐺Q, and Lemma 2.9 for Qℓ

𝑔,𝑚 = Qℓ
𝑔,[𝑚], one obtains the

desired sequence of inclusions. □

Corollary 2.11. With the notations of Theorem 2.8 we have

Qℓ
0,3 ⊂ Qℓ

𝑔,[𝑚](𝐺)𝑘𝑟 ⊂ Qℓ
𝑔,[𝑚](𝐺)𝜈𝑘𝑟 ⊂ Qℓ

𝑔,[𝑚+𝑠](𝐺)𝜈𝑘𝑟𝑒𝑡 .

Proof. The inclusion Qℓ
0,3 ⊂ Qℓ

𝑔,𝑚 for all hyperbolic (𝑔,𝑚) is essentially Theorem 3.6 of [Tak12].
The rest of the inclusions follow from Proposition 2.10 and Theorem 2.8. □

Remark 2.12. In Proposition 2.10 there is no difficulty to move to the weight version of Oda’s
conjecture, and we get, for all (𝑔,𝑚) of hyperbolic type, any compatible Hurwitz data 𝑘𝑟, and
all weight 𝑤

Qℓ
𝑔,𝑚(𝑤) ⊂ Qℓ

𝑔,[𝑚](𝐺)𝑘𝑟(𝑤) ⊂ Qℓ
𝑔,[𝑚](𝐺)𝜈𝑘𝑟(𝑤).

In contrast see Remark 2.15 (ii).

2.2.2. The quotient map 𝛿 : ℳ𝑔,[𝑚][𝐺]𝑘𝑟 → ℳ𝑔′,[𝑚′] defined by (𝐶,𝐷, 𝜄) ↦→ (𝐶/𝜄(𝐺), 𝐷/𝜄(𝐺))
allows the comparison of ℓ-monodromy fixed fields. We first remark that the map 𝛿 is well-defined
at the level of the stack ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟, since 𝛿 is equivariant under the action of Aut𝐺.
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Therefore we have a map 𝛿 : ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 → ℳ𝑔′,[𝑚′] that fits in a commutative square

𝒞𝑔,[𝑚](𝐺)𝜈𝑘𝑟 ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟

ℳ𝑔′,[𝑚′]+1 ℳ𝑔′,[𝑚′]

𝛿

where the map on the left is induced by the quotient in the same way. For a curve 𝑋 over Q
represented on ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 let us denote 𝑌 the quotient proper curve, and 𝑋, 𝑌 their open
counterparts. This leads to a commutative diagram with exact rows

1 𝜋1(𝑋) 𝜋1(𝒞𝑔,[𝑚](𝐺)𝜈𝑘𝑟) 𝜋1(ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟) 1

1 𝜋1(𝑌 ) 𝜋1(ℳ𝑔′,[𝑚′]+1) 𝜋1(ℳ𝑔′,[𝑚′]) 1

which in turn provides an ℓ-monodromy representation

Φℓ
𝑔′,[𝑚′](𝛿𝐺)𝜈𝑘𝑟 : 𝜋1(ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟) → Out𝜋ℓ1(𝑌 )

in the quotient curve, so that one obtains

(2.2.1) 𝑝(Ker Φℓ
𝑔′,[𝑚′](𝛿𝐺)𝜈𝑘𝑟) ⊂ 𝑝(Ker Φℓ

𝑔′,[𝑚′]) or equivalently Qℓ
𝑔′,[𝑚′] ⊂ Qℓ

𝑔′,[𝑚′](𝛿𝐺)𝜈𝑘𝑟

where Qℓ
𝑔′,[𝑚′](𝛿𝐺)𝜈𝑘𝑟 denotes the fixed field of the subgroup 𝑝(Ker Φℓ

𝑔′,[𝑚′](𝛿𝐺)𝜈𝑘𝑟) as usual.
Lemma 2.9 then gives Qℓ

𝑔′,𝑚′ ⊂ Qℓ
𝑔′,𝑚′(𝛿𝐺)𝜈𝑘𝑟.

2.2.3. In the rest of this section, we finally establish that Qℓ
𝑔′,[𝑚′](𝛿𝐺)𝜈𝑘𝑟 = Qℓ

𝑔,𝑚(𝐺)𝜈𝑘𝑟 in the case
where 𝑋 → 𝑌 is a finite étale3 geometric cover and where 𝐺 ≃ Z/ℓ𝑛Z. The finite étale condition
guarantees that the inclusion 𝜄 : 𝜋1(𝑋) → 𝜋1(𝑌 ) induces an inclusion at the pro-ℓ completion
level 𝜄ℓ : 𝜋ℓ1(𝑋) → 𝜋ℓ1(𝑌 ).

3I.e. 𝑘𝑟 is of étale type, that is 𝑘𝑟𝑒𝑡 = 𝑘𝑟, see Section 2.1.3 for definition.
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Denoting by Aut𝜋ℓ1(𝑌 )𝑋 the subgroup of the automorphisms of 𝜋ℓ1(𝑌 ) that stabilizes 𝜋ℓ1(𝑋), we
thus obtain a big commutative diagram

𝜋1(𝑋) 𝜋1(𝒞𝑔,[𝑚](Z/ℓ𝑛Z)𝜈𝑘𝑟) 𝜋1(ℳ𝑔,[𝑚](Z/ℓ𝑛Z)𝜈𝑘𝑟)

Inn 𝜋ℓ1(𝑋) Aut𝜋ℓ1(𝑋) Out𝜋ℓ1(𝑋)

Aut𝜋ℓ1(𝑌 )𝑋 Aut𝜋ℓ1(𝑌 )𝑋/𝜄ℓ(Inn 𝜋ℓ1(𝑋))

𝜋1(𝑌 ) 𝜋1(ℳ𝑔′,[𝑚′]+1) 𝜋1(ℳ𝑔′,[𝑚′])

Inn 𝜋ℓ1(𝑌 ) Aut𝜋ℓ1(𝑌 ) Out𝜋ℓ1(𝑌 )

By tracking the conjugation action of 𝜋1(𝒞𝑔,[𝑚](Z/ℓ𝑛Z)𝜈𝑘𝑟) on 𝜋ℓ1(𝑋) on the first square of the
back face, we see that the dashed arrow 𝜋1(𝒞𝑔,[𝑚](Z/ℓ𝑛Z)𝜈𝑘𝑟) → Aut𝜋ℓ1(𝑋) factors by Aut𝜋ℓ1(𝑌 )𝑋

through its conjugation action on 𝜋ℓ1(𝑌 ) and the restriction map.

Theorem 2.13. For (𝑔,𝑚) of hyperbolic type, and 𝑘𝑟 an abstract Hurwitz data of étale type
associated to Z/ℓ𝑛Z with quotient topological data (𝑔′,𝑚′), we have the following inclusions of
ℓ-monodromy fixed fields

Qℓ
𝑔′,[𝑚′] ⊂ Qℓ

𝑔,[𝑚](Z/ℓ
𝑛Z)𝜈𝑘𝑟.

Proof. Since Qℓ
𝑔′,[𝑚′] ⊂ Qℓ

𝑔′,[𝑚′](𝛿𝐺)𝜈𝑘𝑟 by Eq. (2.2.1) it suffices to show the equality Qℓ
𝑔′,[𝑚′](𝛿Z/ℓ

𝑛Z)𝜈𝑘𝑟 =
Qℓ
𝑔,[𝑚](Z/ℓ

𝑛Z)𝜈𝑘𝑟. We do so by introducing some intermediate fields as can be seen in Diag. (2.2.2).

We first have a map

Ψ: 𝜋ℓ1(𝒞𝑔,[𝑚](Z/ℓ𝑛Z)𝜈𝑘𝑟) −→ Aut𝜋ℓ1(𝑋) × Aut𝜋ℓ1(𝑌 )𝑋

such that Φℓ
𝑔′,[𝑚′](𝛿Z/ℓ

𝑛Z)𝜈𝑘𝑟 and Φℓ
𝑔,[𝑚](Z/ℓ

𝑛Z)𝜈𝑘𝑟 are obtained by composing Ψ with the pro-
jections and quotients by the inner automorphisms. One checks directly that Inn 𝜄ℓ𝜋ℓ1(𝑋) is a
normal subgroup of Aut𝜋ℓ1(𝑌 )𝑋 . We thus have a quotient map

Aut𝜋ℓ1(𝑋) × Aut𝜋ℓ1(𝑌 )𝑋 −→ Out𝜋ℓ1(𝑋) × Aut𝜋ℓ1(𝑌 )𝑋/ Inn 𝜄ℓ(𝜋ℓ1(𝑋))

which by composition with Ψ results in a map

𝑆ℓ : 𝜋1(ℳ𝑔,[𝑚](Z/ℓ𝑛Z)𝜈𝑘𝑟) −→ Out𝜋ℓ1(𝑋) × Aut𝜋ℓ1(𝑌 )𝑋/ Inn 𝜄ℓ(𝜋ℓ1(𝑋)).

Considering the quotient map 𝑝𝑌 : Aut𝜋ℓ1(𝑌 )𝑋/ Inn 𝜄ℓ(𝜋ℓ1(𝑋)) → Out𝜋ℓ1(𝑌 ) and the canonical
projections 𝑝𝑖, 𝑖 = 1, 2, of the product Out𝜋ℓ1(𝑋) × Aut𝜋ℓ1(𝑌 )𝑋/ Inn 𝜄ℓ(𝜋ℓ1(𝑋)), one observes
that by construction

Φℓ
𝑔,[𝑚](Z/ℓ

𝑛Z)𝜈𝑘𝑟 = 𝑝1 ∘ 𝑆ℓ and Φℓ
𝑔′,[𝑚′](𝛿Z/ℓ

𝑛Z)𝜈𝑘𝑟 = 𝑝𝑌 ∘ 𝑝2 ∘ 𝑆ℓ.
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By setting Qℓ
𝑆 to be the fixed field of 𝑝(Ker𝑆ℓ) and Qℓ

𝑆𝑌
to be the fixed field of 𝑝(Ker 𝑝2 ∘ 𝑆ℓ),

we obtain the following diagram of inclusions of ℓ-monodromy fixed fields

(2.2.2)

Qℓ
𝑔,𝑚 Qℓ

𝑔,[𝑚](Z/ℓ
𝑛Z)𝜈𝑘𝑟

Qℓ
𝑆

Qℓ
𝑔′,[𝑚′] Qℓ

𝑔′,[𝑚′](𝛿Z/ℓ
𝑛Z)𝜈𝑘𝑟 Qℓ

𝑆𝑌

It remains to show some equalities. First, Qℓ
𝑆𝑌

= Qℓ
𝑆 = Qℓ

𝑔,[𝑚](Z/ℓ
𝑛Z)𝜈𝑘𝑟 since by the inclusion

𝜄ℓ we have that 𝑝2 restricted to the image of 𝑆ℓ is injective, and by slimness of 𝜋ℓ1(𝑋), see
Section 3.1.2 for a definition, we have that 𝑝1 restricted to the image of 𝑆ℓ is also injective.

For the remaining equality Qℓ
𝑆𝑌

= Qℓ
𝑔′,[𝑚′](𝛿Z/ℓ

𝑛Z)𝜈𝑘𝑟, we consider the stack inertia injection
𝐺 ⊂ ℐℳ,𝑥 →˓ 𝜋1(ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟) as in [Noo04], where 𝑥 ∈ ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟(𝐾) corresponds to the
curve 𝑋, and where the injectivity follows from ibid. Theorem 6.2 with the arguments of
Remark 4.4 of [CM23]. The injection 𝐺 →˓ 𝜋1(ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟) can be shown to be independent
of the choice of point 𝑥 and maps, through our construction, 𝐺 = Z/ℓ𝑛Z isomorphically to the
quotient Inn 𝜋ℓ1(𝑌 )/ Inn 𝜄ℓ(𝜋ℓ1(𝑋). Let 𝜎 ∈ 𝑝(Ker 𝑝𝑌 ∘ 𝑝2 ∘𝑆ℓ), which lifts to 𝜏 ∈ 𝜋1(ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟)
by definition which in turn maps to ℎ ∈ Inn 𝜋ℓ1(𝑌 )/ Inn 𝜄ℓ(𝜋ℓ1(𝑋)) ≃ 𝐺. The element ℎ−1𝜏 ∈
𝜋1(ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟) is in Ker 𝑝2 ∘ 𝑆ℓ and verifies 𝑝(ℎ−1𝜏) = 𝑝(𝜏). Thus, we have proven that
𝑝(Ker Φℓ

𝑔′,[𝑚′](𝛿Z/ℓ
𝑛Z)𝜈) ⊂ 𝑝(Ker𝑆ℓ𝑌 ), and the reverse inclusion is given by Diag. 2.2.2. □

By Theorem A of [Nak96], Theorem 4.3 of [Mat96] and Theorem 3.6 [Tak12] there is an inclusion
Qℓ

0,3 ⊂ Qℓ
𝑔,𝑚 for all (𝑔,𝑚) of hyperbolic type. Thus we can complete the diagram Diag. (2.2.2)

of field inclusions as follows.

Corollary 2.14. For (𝑔,𝑚) of hyperbolic type and 𝑘𝑟 compatible Hurwitz data, we have a diagram
of inclusions of fields

Qℓ
𝑔,𝑚 Qℓ

𝑔,[𝑚](Z/ℓ
𝑛Z)𝑘𝑟 Qℓ

𝑔,[𝑚](Z/ℓ
𝑛Z)𝜈𝑘𝑟

Qℓ
0,3 Qℓ

𝑔′,𝑚′

Remark 2.15.
(i) While for some well-chosen Hurwitz data 𝑘𝑟 we have (𝑔′,𝑚′) = (0, 3) in the diagram above,

the above references [Nak96; Mat96; Tak12] are still required for the final comparison of
monodromy fields.

(ii) In the setting of Oda’s weight conjecture, where the pro-ℓ-fundamental groups are replaced
by quotients 𝜋ℓ1(−)[𝑤] with respect to a certain weight filtration 𝜋ℓ1(−)(𝑤), the map
𝜋ℓ1(𝑋)[𝑤] → 𝜋ℓ1(𝑌 )[𝑤] fails to be injective. Thus the end of the proof of Theorem 2.13
does not adapt well, since we can not recover the equality Qℓ

𝑆𝑌
(𝑤) = Qℓ

𝑆(𝑤), where
Qℓ
𝑆𝑌

(𝑤) and Qℓ
𝑆(𝑤) are defined in the obvious manner. See also Remark 2.12
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Establishing the 𝐺-special loci Oda’s conjecture in the case of 𝐺 = Z/ℓZ – that is that
Qℓ
𝑔,𝑚(Z/ℓZ)𝑘𝑟 is independent of the topological and Hurwitz data and indeed equal to Qℓ

0,3
– is thus reduced to establishing the last inclusion Qℓ

𝑔,[𝑚](Z/ℓZ)𝜈𝑘𝑟 ⊂ Qℓ
0,3. We proceed to do

so in the rest of this paper by developing for 𝐺-special loci a refinement of Ihara-Nakamura’s
degeneration method used in their original proof of the containment Qℓ

𝑔,𝑚 ⊂ Qℓ
0,3 in [IN97].

3. Maximal degeneration families for 𝐺-stable compactification
After some brief reminder on Deligne’s tangential base point on ℳ0,4, we construct, following
[IN97] for generic curves, some tangential base points on ℳ𝑔,[𝑚](𝐺) as 1-parameter deformation
families 𝑋/ Spf 𝐾[[𝑞]] of some maximally degenerated 𝐺-stable curves in some well-chosen strata
of ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟. These curves are defined as certain Z/ℓZ-stable 𝐶𝑟-diagrams 𝑋0 that are
obtained, via Grothendieck’s formal patching technique, from well-chosen arrangements of so-
called Matsumoto-Seyama curves 𝐶𝑟. In particular, the associated Z/ℓZ-quotient curves and their
deformation will be the P1 ∖ {0, 1,∞}-diagrams and their canonical 1-dimensional deformation
constructed by Ihara and Nakamura in [IN97] 2.1.3.

We enunciate, under the anabelian slimness hypothesis, some immediate results for the kernel of
universal monodromy representations, and for Qℓ

𝐶′
𝑟
. Consequences for the ℓ-monodromy fixed

fields Qℓ
𝑔,𝑚, Qℓ

𝑔,[𝑚](Z/ℓZ)𝑘𝑟 and Qℓ
0,3, and for Oda’s conjecture are exploited in Section 5.

3.1. Tangential Galois actions and universal monodromy properties

3.1.1. We follow the elementary definition of tangential base point of the survey [Nak99] Section I,
that is, for X connected smooth curve over a field 𝐾 a 𝐾-tangential base point 𝑣 on 𝑋 is a
morphism 𝑣 : Spec𝐾((𝑡)) → 𝑋 (see ibid. Definition 1.1).

The key feature of such a choice of a 𝐾-rational tangential base point is, via the field of Puiseux
series 𝐾{{𝑡}}, to provide at once a geometric base point for the étale fundamental group of 𝑋
and a section to the related homotopy exact sequence:

(3.1.1)
1 𝜋1(𝑋𝐾 , 𝑣⃗) 𝜋1(𝑋, 𝑣⃗) 𝐺𝐾 1

𝑠𝑣

In other words, one obtains a specific 𝐺𝐾-action 𝜙𝑣⃗ on 𝜋1(𝑋𝐾 , 𝑣) given by conjugation which
lifts the canonical outer Galois action

(3.1.2)
𝐺𝐾 Aut𝜋1(𝑋𝐾 , 𝑣)

Out𝜋1(𝑋𝐾 , 𝑣)

𝜙𝑣

𝜙𝑋

and can be chosen to reflect some good arithmetic properties of 𝑋. More explicitly, the 𝐺𝐾
action 𝜙𝑣 is given, via the function fields of 𝑋, by the action on the coefficients of the formal
series in 𝐾{{𝑡}}, see also Eq. (3.1.3) below.
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Remark 3.1.
(i) By the valuative criterion of properness this is equivalent to giving a map 𝑣 : Spec𝐾[[𝑡]] →

𝑋 where 𝑋 is the compactification of 𝑋 (i.e., 𝑋 ⊂ 𝑋 is a Zariski open given by finitely
many punctures of the proper curve 𝑋).

(ii) By Grothendieck-Murre theory, the category Rev𝐷(𝑋) of finite étale coverings of 𝑋
tamely ramified along the divisor 𝐷 = 𝑋 ∖𝑋 is equivalent to the category of finite étale
coverings of 𝑋. The choice of a tangential base point gives a fiber functor of this Galois
category in the following way. Let 𝑌 ∈ Rev𝐷(𝑋) and 𝐵 the 𝐾[[𝑡]]-algebra obtained
by the pullback of 𝑌 along our tangential base point 𝑣. With this formalism, the fiber
functor 𝑣⃗ is defined by

(3.1.3) 𝑣⃗ : Rev𝐷(𝑋) −→ Set
𝑌 ↦−→ Hom𝐾[[𝑇 ]](𝐵,𝐾{{𝑡}}).

(iii) The above formalism provides a fundamental group 𝜋𝐷1 (𝑋, 𝑣) which is canonically iso-
morphic to 𝜋1(𝑋, 𝑣) and carries the same tangential Galois action.

For 𝑋 = P1
Q ∖ {0, 1,∞} let us denote the set of fiber functor associated, as in (ii) above, to

Deligne-Ihara’s original Q-tangential base points by

B = {0⃗1, 0⃗∞, 1⃗0, 1⃗∞, ∞⃗1, ∞⃗0}

where for example 0⃗1 : SpecQ((𝑡)) → P1
Q ∖ {0, 1,∞} and 0⃗∞ : SpecQ((−𝑡)) → P1

Q ∖ {0, 1,∞},
and refer to the Appendix of [Iha94] for further details on the associated 𝐺Q-action. For our
study, the main property of these tangential base points is that

(3.1.4) Ker𝜙ℓ
𝑖𝑗

= Ker𝜙ℓP1∖{0,1,∞} for every 𝑖𝑗 ∈ B.

While even the simplest rational scaling of the parameter, see for example 0⃗1 vs 0⃗∞ above or
[Tsu06] Section 1.5, changes the tangential Galois action, we have the following Galois invariance
property.

Lemma 3.2. The 𝐺𝐾-action induced by a 𝐾-rational tangential base point 𝑣 : Spec𝐾((𝑡)) → 𝑋
depends only on the closed point 𝑥 ∈ 𝑋(𝐾) in the closure of the image of 𝑣 and the class of the
image of 𝑡 in the cotangent space m𝑥/m

2
𝑥.

Proof. Let 𝑥 ∈ 𝑋 be a closed 𝐾-rational point. It suffices to show that if 𝑡 and 𝑡′ are both
uniformizers at 𝑥 (i.e., we have ̂︀𝒪𝑋,𝑥 ≃ 𝐾[[𝑡]] ≃ 𝐾[[𝑡′]] and 𝑡′ = 𝑡(1+𝑡𝐹 ) in 𝐾[[𝑡]] with 𝐹 ∈ 𝐾[[𝑡]])
then the isomorphism 𝛿𝑡′,𝑡 : 𝐾{{𝑡′}} → 𝐾{{𝑡}} is 𝐺𝐾-equivariant. But as 𝛿𝑡′,𝑡 is defined by
𝑡′

1
𝑁 ↦→ 𝑡

1
𝑁 (1 + 𝑡𝐹 )

1
𝑁 for 𝑁 ≥ 0 this comes from the fact that (1 + 𝑡𝐹 )

1
𝑁 = 𝐺𝑁 with 𝐺𝑁 ∈ 𝐾[[𝑡]]

by the series expansion of (1 + 𝑡𝐹 )
1
𝑁 .

Indeed, let 𝑣𝑡 (resp. 𝑣′
𝑡) be the tangential base points given by 𝑡 (resp. 𝑡′) and denote by 𝜙𝑣𝑡

(resp. 𝜙𝑣′
𝑡
) the associated tangential 𝐺𝐾-action. Let 𝜎 ∈ 𝐺𝐾 and 𝑓 =

∑︀
𝑘
𝑎𝑘𝑡

′ 𝑘𝑁 ∈ ℳ𝑣𝑡′ ⊂ 𝐾{{𝑡′}}.
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Then we have

𝜎−1
𝑣𝑡 ∘ 𝛿𝑡′,𝑡 ∘ 𝜎𝑣𝑡′ (𝑓) = 𝜎−1

𝑣𝑡 ∘ 𝛿𝑡′,𝑡(
∑︁
𝑘

𝜎(𝑎𝑘)𝑡′
𝑘
𝑁 )

= 𝜎−1
𝑣𝑡 (

∑︁
𝑘

𝜎(𝑎𝑘)𝑡
𝑘
𝑁𝐺𝑁 )

=
∑︁
𝑘

𝑎𝑘𝑡
𝑘
𝑁𝐺𝑁

that is
𝜎−1
𝑣𝑡 ∘ 𝛿𝑡′,𝑡 ∘ 𝜎𝑣𝑡′ (𝑓) = 𝛿𝑡′,𝑡(𝑓)

which shows that 𝜎−1
𝑣𝑡 ∘ 𝛿𝑡′,𝑡 ∘ 𝜎𝑣𝑡′ = 𝛿𝑡′,𝑡 and thus 𝜙𝑣′

𝑡
= 𝜙𝑣𝑡 ∘ 𝛿𝑡′,𝑡 as intended. □

3.1.2. We recall that a profinite group is said to be slim if any of its open subgroup has trivial
centralizer. Examples of slim groups include the absolute Galois group of rational numbers and
the pro-ℓ fundamental group of hyperbolic curves, see [MT08] Proposition 1.4.

We record the following inclusions between the ℓ-monodromy fixed fields of the various tangential
and non-tangential Galois actions in the case of étale coverings.

Lemma 3.3. Let 𝜓 : 𝑋 → 𝑌 be a finite étale covering of geometrically irreducible curves over a
field 𝐾 of degree a power of ℓ. Let 𝑣 : Spec𝐾((𝑡)) → 𝑋 be a tangential base point on 𝑋 and 𝜓(𝑣)
the induced tangential base point on 𝑌 . We have the following inclusions of subgroups of 𝐺𝐾 :

(i) Ker𝜙ℓ ⃗𝜓(𝑣)
⊂ Ker𝜙ℓ𝑣⃗

(ii) Ker𝜙ℓ𝑣⃗ ⊂ Ker𝜙ℓ𝑋 and Ker𝜙ℓ ⃗𝜓(𝑣)
⊂ Ker𝜙ℓ𝑌 .

Furthermore, when 𝜋ℓ1(𝑌, ⃗𝜓(𝑣)) is slim we have Ker𝜙𝑣⃗ = Ker𝜙 ⃗𝜓(𝑣) and Ker𝜙ℓ𝑋 ⊂ Ker𝜙ℓ𝑌 .

Proof. The homotopy exact sequence for 𝑋 and 𝑌 and the covering map 𝜓 gives the diagram

1 𝜋1(𝑋𝐾 , 𝑣⃗) 𝜋1(𝑋, 𝑣⃗) 𝐺𝐾 1

1 𝜋1(𝑌𝐾 , ⃗𝜓(𝑣)) 𝜋1(𝑌, ⃗𝜓(𝑣)) 𝐺𝐾 1

𝑠𝑣

𝑠𝜓(𝑣)

that is commutative by definition of 𝜓(𝑣) and the étaleness of 𝜓. One thus recovers, via
𝜋1(𝑌, ⃗𝜓(𝑣)) → Aut𝜋ℓ1(𝑌𝐾 , ⃗𝜓(𝑣)) whose image stabilizes 𝜋ℓ1(𝑋𝐾 , 𝑣⃗), the monodromy action 𝜙ℓ𝑣⃗ as
the composition

𝐺𝐾 → Aut𝜋ℓ1(𝑌𝐾 , ⃗𝜓(𝑣))𝑋𝐾 → Aut𝜋ℓ1(𝑋𝐾 , 𝑣⃗)

which leads to the inclusion given in (i). In the case of slimness the right restriction map is
injective, which yields the equality.
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The remaining inclusions are obtained by adding the following commutative diagram

Aut𝜋ℓ1(𝑋𝐾 , 𝑣⃗) Aut𝜋ℓ1(𝑌𝐾 , ⃗𝜓(𝑣))𝑋𝐾

Out𝜋ℓ1(𝑋𝐾 , 𝑣⃗) Aut𝜋ℓ1(𝑌𝐾 , ⃗𝜓(𝑣))𝑋𝐾/ Inn 𝜋ℓ1(𝑋𝐾 , 𝑣⃗)

Out𝜋ℓ1(𝑌𝐾 , ⃗𝜓(𝑣))

𝑑𝑋

𝑑𝑌

The inclusions of (ii) are thus direct by the diagram and the definitions of the maps involved.
To see the remaining inclusion, we remark that by slimness Ker𝜙ℓ𝑋 = Ker 𝑑𝑋 ∘ 𝜙ℓ ⃗𝜓(𝑣)

, and the
inclusion follows as 𝜙ℓ𝑌 = 𝑑𝑌 ∘ 𝑑𝑋 ∘ 𝜙ℓ ⃗𝜓(𝑣)

. □

3.2. The Matsumoto-Seyama curves
We now introduce the Matsumoto-Seyama curves 𝐶𝑟, for 𝑟 ∈ {0, 1, . . . , ℓ− 2}, that live in certain
special loci ℳ𝑔,[𝑚](Z/ℓZ)𝑘𝑟 and that have P1

𝐾 as Z/ℓZ-quotient, where 𝐾 denotes Q(𝜇ℓ).

For 𝑟 ∈ {1, . . . , ℓ− 2}, the curves 𝐶𝑟 are those of [Sey82], that is, some smooth projective curves
of genus 𝑔 = ℓ− 1/2 that are birationally equivalent to the affine curve

(3.2.1) 𝑦𝑟(𝑦 − 1) = 𝑥ℓ with Z/ℓZ-action
{︃

given by 𝑥 ↦→ 𝜁ℓ𝑥

ramified at 𝑃𝑟,0, 𝑃𝑟,1, 𝑃𝑟,∞ over 0, 1,∞.

The quotient 𝜓 : 𝐶𝑟 ∖ {𝑃𝑟,0, 𝑃𝑟,1, 𝑃𝑟,∞} → P1
𝐾 ∖ {0, 1,∞} is finite étale and Galois of group Z/ℓZ.

The abstract Hurwitz data of 𝐶𝑟 is 𝑘 = (𝑟, 1,−(𝑟 + 1)) which, when 𝑟 varies, is seen to represent
every possible abstract Hurwitz data of a Z/ℓZ-curve with three ramified points.

3.2.1. The set of curves {𝐶𝑟 | 𝑟 = 1, . . . , ℓ− 2} admits an S3-action that is compatible with the
Z/ℓZ-action and, in particular, with the S3-action on P1

𝐾 ∖ {0, 1,∞} through the quotient map,
see [Sey82] Corollary 2.5. This allows us to define, for every 𝑟, the tangential base points on
𝐶 ′
𝑟 = 𝐶𝑟 ∖ {𝑃𝑟,0, 𝑃𝑟,1, 𝑃𝑟,∞} at the punctures by doing so at 𝑃𝑟,1 .

Indeed, for 𝜎 ∈ S3 we have 𝜎(𝑃𝑟,1) = 𝑃𝜎(𝑟),𝜎(1) so that, for every 𝑟 ∈ {1, . . . , ℓ − 1} and every
𝑃 ∈ {𝑃𝑟,0, 𝑃𝑟,1, 𝑃𝑟,∞}, there is an element 𝜎 ∈ S3 such that 𝑃 is the image of 𝑃𝑟,1 for some
𝑟. Now, the smooth affine open 𝑈 = 𝐶𝑟 ∖ {𝑃𝑟,0, 𝑃𝑟,∞} is given by 𝑈 = Spec𝐾[𝑥, 𝑦, 1

𝑦 ] where
𝑥ℓ = 𝑦𝑟(𝑦 − 1). Looking at the equation we see that 𝑥 is a uniformizer at 𝑃𝑟,1 and we have
𝜓(𝑥) = 𝑥ℓ = 𝑦𝑟(𝑦 − 1) where 𝜓 is the quotient map to P1

𝐾 .

Lemma 3.4. The tangential base point 𝑇 𝑟10 : Spec𝐾((𝑡)) → 𝐶 ′
𝑟 defined by 𝑡 ↦→ 𝜁2ℓ𝑥 induces

a tangential base point 𝜓(𝑇 𝑟10) on P1
𝐾 ∖ {0, 1,∞} that defines the same 𝐺𝐾-action on 𝜋1(P1

𝐾
∖

{0, 1,∞}, 1⃗0) as −→10.

Proof. By Lemma 3.2 it suffices to check that 𝜓(𝑇 𝑟10) and −→10 have, after taking the closure, the
same closed points in P1

𝐾 and the same class in m1/m
2
1. The first part is obvious. For the second
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one, by definition, we have that 𝜓(𝑇 𝑟10) is −𝑦𝑟(𝑦 − 1) ∈ 𝐾[[𝑦 − 1]] ≃ ̂︀𝒪P1
𝐾 ,1

so that its class
modulo m2

1 is equal to −1 as required. □

As stated before, by using the S3-action on the previous subset of Matsumoto-Seyama curves,
we obtain tangential base points 𝑇 𝑟𝑖𝑗 for 𝑖, 𝑗 ∈ {0, 1,∞}, whose set of associated fiber functors on
the categories of finite étale covers Et(𝐶 ′

𝑟) we denote by

B𝑟 = {
−→
𝑇 𝑟𝑖𝑗 | 𝑖, 𝑗 ∈ {0, 1,∞}}, for 𝑟 ∈ {1, . . . , ℓ− 2}.

These tangential base points induces same tangential 𝐺𝐾-actions on the fundamental group of
P1
𝐾

∖ {0, 1,∞} given by Deligne-Ihara as in Lemma 3.4.

Theorem 3.5. The 𝐺𝐾-action defined by the −→
𝑇 𝑟𝑖𝑗s on the groupoid Π1(𝐶 ′

𝑟,𝐾 ,B
𝑟) induces a

𝐺𝐾-action on the groupoid Π1(P1
𝐾

∖ {0, 1,∞},B) that is compatible with the Deligne-Ihara one.
Furthermore, an element of 𝐺𝐾 acts trivially on Πℓ

1(𝐶 ′
𝑟,𝐾 ,B

𝑟) if and only if it acts trivially on
Πℓ

1(P1
𝐾

∖ {0, 1,∞},B).

Proof. The first part of the statement is the result of the previous paragraph. For the second part,
let 𝜎 ∈ 𝐺𝐾 . As the tangential base points of B𝑟 are 𝐾-rational, the action of 𝜎 on Π1(𝐶 ′

𝑟𝐾 ,B
𝑟)

stabilizes each fundamental group or set of étale paths. Now as this action is compatible with
the one on Π1(P1

𝐾
∖ {0, 1,∞},B) and each of the inclusions maps between Π1(𝐶 ′

𝑟,𝐾 ,
−→
𝑇𝑖𝑗 ,

−→
𝑇𝑗𝑘)

and Π1(P1
𝐾

∖ {0, 1,∞}, 𝑖𝑗, 𝑗𝑘) remains injective after passing to the pro-ℓ-completion for all
𝑖, 𝑗, 𝑘 ∈ {0, 1,∞}, it follows that the reverse implication holds. By Lemma 3.3, it also holds
that Ker𝜙ℓ−→

𝑇𝑖𝑗
= Ker𝜙ℓ

𝑖𝑗
for all 𝑖, 𝑗 ∈ {0, 1,∞}. Thus, if 𝜎 acts trivially on Π1(P1

𝐾
∖ {0, 1,∞},B),

it acts trivially on each of the fundamental groups appearing in Π1(𝐶 ′
𝑟𝐾 ,B

𝑟), and thus on the
whole groupoid. □

In what follows 𝑟 will be omitted from notations when clear from context.

3.2.2. For 𝑟 = 0, we consider the covering of P1
𝐾 given by

𝐶0 : 𝑥 = 𝑦ℓ with usual Z/ℓZ-action having two ramified points 0 and ∞

with abstract Hurwitz data 𝑘 = (1,−1). The ℓ+ 2-marking is given by the two ramified points
and by the unramified points 𝑃1, . . . , 𝑃ℓ of the fiber at 1. We further set

B0 = {
−−→
𝑇 0

0∞,
−−→
𝑇 0

∞0} and 𝐶 ′
0 = 𝐶0 ∖ {0,∞, 𝑃1, . . . , 𝑃ℓ},

where the fiber functors
−−→
𝑇 0

0∞ and
−−→
𝑇 0

∞0 are induced by the tangential base points associated to the
parameter 𝑥 and −1

𝑥 , and which are direct lifts of the Deligne tangential base points −→0∞ and −→∞0.

Proposition 3.6. The action of 𝐺𝐾 on Π1(𝐶 ′
0𝐾 ,B

0) is compatible with its action on Π1(P1
𝐾

∖
{0, 1,∞},B). Furthermore, an element of 𝐺𝐾 acts trivially on Πℓ

1(𝐶 ′
0𝐾 ,B

0) if and only if it acts
trivially on Πℓ

1(P1
𝐾

∖ {0, 1,∞},B).

Proof. The only part of the statement that is not already proven is a direct consequence of [IN97]
Corollary 4.1.4 (ii). □
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3.2.3. We finish this section by showing that the ℓ-monodromy fixed field of the Matsumoto-
Seyama curves is Qℓ

0,3.

Corollary 3.7. We have Qℓ
𝐶′
𝑟

= Qℓ
0,3 for all 𝑟 ∈ {0, . . . , ℓ− 2}.

Proof. For 𝑟 ∈ {0, . . . , ℓ − 2} given, it follows from Lemma 3.3 that Ker𝜙ℓ−−→
𝑇0∞

= Ker𝜙ℓ0⃗1 as
𝜋1(P1

𝐾 ∖ {0, 1,∞}, 0⃗∞) is slim. From the same lemma, we also get the inclusions

Ker𝜙ℓ−−→
𝑇0∞

⊂ Ker𝜙ℓ𝐶′
𝑟

⊂ Ker𝜙ℓP1∖{0,1,∞}.

Since the two outmost terms are equal as in Eq. (3.1.4), it follows that Ker𝜙ℓ𝐶′
𝑟

= Ker𝜙ℓP1∖{0,1,∞},
thus the desired equality. □

Remark 3.8.
(i) At this stage, one can already obtain, by following Matsumoto’s approach as in [Mat96],

that Qℓ
𝑔,𝑚 = Qℓ

0,3 for the specific values of (𝑔,𝑚) = ((ℓ− 1)/2), 3) and (𝑔,𝑚) = (0, ℓ+ 2).
(ii) The curves introduced in this section are chosen so that the corresponding stacks

ℳ𝑔,[𝑚](Z/ℓZ)𝑘𝑟 have only one geometric point.

3.3. Diagrams in the Z/ℓZ-stable compactification

Similarly to the P1
𝐾 ∖ {0, 1,∞}-diagrams construction of [IN97] 1.2, we construct some Z/ℓZ-

stable 𝐶𝑟-diagram 𝑋0 over a field 𝐾, here as gluing the previously defined Matsumoto-Seyama
Z/ℓZ-curves.

3.3.1. While the gluing, or clutching, of marked points for stable curves can be found in details in
[Knu83], the similar gluing for curves with 𝐺-action requires an additional constraint as follows.
Consider two curves 𝐶𝑟 and 𝐶𝑟′ with 𝑟, 𝑟′ ∈ {1, . . . , ℓ − 2}. The gluing of both curves at the
points 𝑃𝑟,1 and 𝑃𝑟′,1 can be constructed as the union

𝐶1,1
𝑟,𝑟′ = 𝐶𝑟 × {𝑃𝑟′,1} ∪ 𝐶𝑟′ × {𝑃𝑟,1} in the fiber product 𝐶𝑟 ×Spec𝐾 𝐶𝑟′ .

The result of the gluing is a curve 𝑋0 of genus ℓ− 1 with 2 irreducible components and 4 marked
points given by {𝑃𝑟,0, 𝑃𝑟,∞, 𝑃𝑟′,0, 𝑃𝑟′,∞}, that is equipped with a Z/ℓZ-action by pullback of the
action on the product.
For 𝑋0 to be a 𝐺-stable curve, the 𝐺-actions must be chosen such that Hurwitz data at the
points 𝑃𝑟,1 and 𝑃𝑟′,1 have opposite characters, see [BR11] Section 4.1, which is easily done by
choosing that 𝐺 = Z/ℓZ acts by 𝑥 ↦→ 𝜁ℓ𝑥 on 𝐶𝑟′ and by 𝑥 ↦→ 𝜁ℓ𝑥 on 𝐶𝑟. The same construction
can be made by gluing together any two ramified points 𝑃𝑟,𝑖 and 𝑃𝑟′,𝑗 into a curve 𝐶𝑖,𝑗𝑟,𝑟′ , where
𝑖, 𝑗 ∈ {0, 1,∞} denotes which points are glued.
Note that the S3-action on the curves (𝐶𝑟)𝑟∈{1,...,ℓ−2} extends naturally to a S3 × S3-action
on the fiber products (𝐶𝑟 ×Spec𝐾 𝐶𝑟′)𝑟,𝑟′∈{1,...,ℓ−2} of such curves. One checks that this action
stabilizes the closed subsets (𝐶𝑖,𝑗𝑟,𝑟′)𝑟,𝑟′∈{1,...ℓ−2}, 𝑖,𝑗∈{0,1,∞} globally, that is for 𝜎, 𝜏 ∈ S3 × S3 we
have (𝜎, 𝜏) · 𝐶𝑖,𝑗𝑟,𝑟′ = 𝐶

𝜎(𝑖),𝜏(𝑗)
𝜎(𝑟),𝜏(𝑟′). It results that the affine neighborhood of 𝐶𝑖,𝑗𝑟,𝑟′ with the 4 marked

points removed is, for some 𝑟, always isomorphic to

𝐶1,1
𝑟,𝑟′ ∖ {𝑃𝑟,0, 𝑃𝑟,∞, 𝑃𝑟′,0, 𝑃𝑟′,∞} = Spec𝐾[𝑥, 𝑦, 𝑥′, 𝑦′][ 1

𝑦
,

1
𝑦′ ]/(𝑥𝑥

′)
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(a) Seyama curve (b) 𝐺-curve of genus 0 (c) 2-Seyama curve

Fig. 1. Elementary building blocks of Z/ℓZ-stable 𝐶𝑟-diagrams

which serves as a model for the construction of the 𝑈𝜇s as in Section 3.4.1.

3.3.2. We will build our Z/ℓZ-stable 𝐶𝑟-diagrams from the two types of Matsumoto-Seyama
curves 𝐶𝑟 of Section 3.2. Recall that the genus 0 curves have two distinguished rational sections
given by the ramified points, and that the genus (ℓ− 1)/2 ones have three.

Definition 3.9. A Z/ℓZ-stable 𝐶𝑟-diagram is a connected curve 𝑋0 over 𝐾 that is defined by
the following data:

(i) A finite collection of curves 𝑋0
𝜆 (𝜆 ∈ Λ ⊔ Λ′) where 𝑋0

𝜆 is either isomorphic to 𝐶𝑟 with
𝑟 ≥ 1 if 𝜆 ∈ Λ or to 𝐶0 if 𝜆 ∈ Λ′.

(ii) A finite collection of pairs of distinguished section 𝑃 0
𝜇 (𝜇 ∈ 𝑀) of the 𝑋0

𝜆, 𝜆 ∈ Λ ⊔ Λ′.
The pairs 𝑃 0

𝜇 are such that the Hurwitz data at those sections are opposite and such that
two distinct pairs 𝑃 0

𝜇 and 𝑃 0
𝜇′ (𝜇 ̸= 𝜇′) have no common element. Let 𝜇 ∈ 𝑀 and set

𝜆(𝜇) = (𝜆, 𝜆′) where the sections of 𝑃 0
𝜇 land in 𝑋0

𝜆 and 𝑋0
𝜆′ .

The curve 𝑋0 is obtained from the disjoint union
⨆︀
𝜆∈Λ𝑋

0
𝜆 by identifying the pair of points given

by the 𝑃 0
𝜇 . Given a Z/ℓZ-stable 𝐶𝑟-diagram 𝑋0 we shall denote by 𝑄0

𝑣, 𝑣 ∈ 𝑁 , the distinguished
sections of 𝑋0 coming from the 𝑋0

𝜆 that do not appear in the pairs 𝑃 0
𝜇 , 𝜇 ∈ 𝑀 .

The isomorphisms of (i) come with choices of variables 𝑥𝜆, 𝑦𝜆 and choices of tangential base points
𝑇 𝜆𝑖𝑗 : Spec𝐾((𝑡)) → 𝑋0

𝜆 with the properties of the ones defined in Section 3.2. The corresponding
set of fiber functors will be denoted by B𝑟𝜆. We will omit 𝜆 and 𝑟 from the notations when it is
clear from context.

3.3.3. The following three kinds of Z/ℓZ-stable 𝐶𝑟-diagrams will be used as basic building blocks
for the special fiber of our 1-parameter deformation families.

∙ Seyama curve (Fig. 1a): a curve of genus 𝑔 = (ℓ− 1)/2 with 𝜈 = 3 ramified points and 𝑘
free;

∙ A Z/ℓZ-curve of genus 0 (Fig. 1b): a curve of genus 𝑔 = 0 with 𝜈 = 2 ramified points, ℓ
unramified points and 𝑘 = (1,−1);

∙ A 2-Seyama curve (Fig. 1c): a curve of genus 𝑔 = ℓ with 𝜈 = 2 ramified points and
𝑘 = (1,−1). These curves are obtained by gluing two Seyama curves twice. The correspond
data of the Z/ℓZ-stable 𝐶𝑟-diagram is Λ = {1, 2} where 𝑋0

1 , 𝑋0
2 are Matsumoto-Seyama

curves isomorphic to 𝐶𝑟 with 𝑟 ∈ {1, . . . , ℓ− 2} and Hurwitz data 𝑘 = (1, 𝑎,−(1 + 𝑎)) with
ramified points {𝜈1, 𝜈2, 𝜈3} and 𝑘′ = (−1,−𝑎, 1 + 𝑎) with ramified points {𝜈 ′

1, 𝜈
′
2, 𝜈

′
3}. We

have 𝑀 = {1, 2} and the pairs 𝑃 0
1 , 𝑃

0
2 are respectively (𝜈1, 𝜈

′
1) and (𝜈2, 𝜈

′
2). The remaining

set of distinguished sections is {𝜈3, 𝜈
′
3} = {𝑄0

𝑣}𝑣∈𝑁 .

In Fig. 1 above, the bold points represent ramified points under the 𝐺-action, the lined markings
represent the unramified points (ℓ = 3 here), and the dashed lines represent the glued points.
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The hook at the end of the genus 𝑔 = (ℓ− 1)/2 curves is to differentiate them from the genus 0
ones, which are represented by straight lines.
Recall that we denote by ℳ𝑔,[𝑚](𝐺)𝜈 the stable compactification of ℳ𝑔,[𝑚](𝐺)𝜈 , and accordingly
ℳ𝑔,[𝑚](𝐺)𝑘𝑟 the closure of ℳ𝑔,[𝑚](𝐺)𝑘𝑟 in ℳ𝑔,[𝑚](𝐺)𝜈 .
Proposition 3.10. Let 𝑔,𝑚 and 𝑘𝑟 be given as below, such that ℳ𝑔,[𝑚](Z/ℓZ)𝜈𝑘𝑟 is non-empty,
then there exists a Z/ℓZ-stable 𝐶𝑟-diagram in the boundary of ℳ𝑔,[𝑚](Z/ℓZ)𝜈𝑘𝑟.

Let us first recall that, by [CM15] Proposition 3.7, the locus ℳ𝑔,[𝑚](Z/ℓZ)𝑘𝑟 is non-empty as
soon as 𝑔 can be obtained by the Hurwitz formula

𝑔 = (𝑁 − 2)ℓ− 1
2 + 𝑔′ℓ with 𝑔′ ≥ 0 and 𝑁 ≥ 0, 1

where 𝑁 is the number of ramified points in the cover. This is a particular instance of the
Frobenius coin problem and it is thus known that all 𝑔 ≥ ( ℓ−1

2 )( ℓ−3
2 ) are attainable with 𝑁−2 ≥ 0,

as well as one element of each pair (𝑘, ℓ ℓ−1
2 − ℓ − ℓ−1

2 − 𝑘) for 𝑘 ∈ {0, . . . , ℓ−1
2

ℓ−3
2 − 1}. When

𝑔 ∈ {0, . . . , ℓ−1
2

ℓ−3
2 − 1} is attainable only by the choice 𝑁 = 0 we say that 𝑔 is an unramified

case. For example, this is the case for 𝑔 = 1 by considering the translation action by a choice of
order ℓ point on an elliptic curve.

Proof. First, suppose 𝑔 is not unramified. Then by gluing along the dotted lines as in the Fig. 2a,
we obtain the desired Z/ℓZ-stable 𝐶𝑟-diagram 𝑋0 as follows. The first part is made by gluing
𝑝 copies of Z/ℓZ-curves of genus 0, which contributes to the 𝑝ℓ unramified marked points that
are permuted by Z/ℓZ, to 1 marked ramified point with Hurwitz data 𝑘 = (1) and does not
contribute to the genus. The second portion is composed of 𝑁 − 2 Seyama curves of genus
(ℓ− 1)/2 glued in a chain, which contributes to (𝑁 − 2)(ℓ− 1)/2 to the genus and to 𝑁 − 2 to
the marked ramified points with free Hurwitz data. The last part is made by gluing 𝑔′ copies of
2-Seyama curves. It contributes to 𝑔′ℓ to the genus and to 1 ramified marked point with imposed
Hurwitz data.
To achieve the unramified 𝑔 we remove the middle section made of Seyama curves in the previous
construction and glue the remaining parts on the added dotted line as in Fig. 2b. One can easily
check in the same way that it gives a desired curve. □

(a) General case

(b) Unramified case

Fig. 2. The Z/ℓZ-stable curve 𝑋0

Remark 3.11. It is readily seen that the 𝐺-quotient of the 𝐺-stable diagrams that we constructed
is a P1 ∖ {0, 1,∞}-diagram as in [IN97] 2.1.3.
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3.4. The deformation family of Z/ℓZ-stable diagrams

We now start with a Z/ℓZ-stable 𝐶𝑟-diagram 𝑋0 with Card Λ ⊔ Λ′ ≥ 2 which is in the boundary
of ℳ𝑔,[𝑚](Z/ℓZ)𝜈𝑘𝑟 and build, by patching local formal schemes 𝒲∙, 𝒱∙ and 𝒰∙ into a 𝒮-scheme
X over an affine cover of 𝑋0, a family of deformations 𝑋/ Spf 𝐾[[𝑞]] of 𝑋0.

3.4.1. Consider the following kind of families 𝑊 0
𝜆 , 𝑈0

𝜇, and 𝑉 0
𝑣 of affine open of 𝑋0.

A) The family (𝑊 0
𝜆 )𝜆∈Λ, resp. (𝑊 0

𝜆 )𝜆′∈Λ′ , given for each 𝜆 ∈ Λ, resp. 𝜆′ ∈ Λ′, by the open
complement in 𝑋0

𝜆 of the three ramified points, resp. of the two ramified points, and
represented as below:

𝑊 0
𝜆 = Spec𝐾[𝑦, 𝑥, 1

𝑦 ,
1

1−𝑦 ] 𝑊 0
𝜆′ = Spec𝐾[𝑦, 1

𝑦 ]

B) The family (𝑈0
𝜇)𝜇∈𝑀 , that we will specify as three subfamilies 𝑈0

𝜇,0,0, 𝑈0
𝜇,0,1, and 𝑈0

𝜇,1,1,
which for 𝜇 ∈ 𝑀 are defined such that 𝑃 0

𝜇 consists of a pair of distinguished sections over
𝑋0
𝜆 and 𝑋0

𝜆′ with 𝜆, 𝜆′ ∈ Λ ⊔ Λ′, and are respectively given as below (see also Fig. 4):

𝑈0
𝜇,0,0 = Spec𝐾[𝑦, 𝑥, 𝑦′, 𝑥′][ 1

𝑦
,

1
𝑦′ ]/(𝑇

𝜆
𝑖𝑗𝑇

𝜆′
𝑖𝑗 ), 𝑈0

𝜇,0,1 = Spec𝐾[𝑥, 𝑦, 𝑦′,
1
𝑦

]/(𝑇 𝜆𝑖𝑗𝑇 𝜆
′

𝑘𝑙 ),

𝑈0
𝜇,1,1 = Spec𝐾[𝑦, 𝑦′]/(𝑇 𝜆𝑖𝑗𝑇 𝜆

′
𝑘𝑙 ).

𝑈0
𝜇,0,0 𝑈0

𝜇,0,1 𝑈0
𝜇,1,1

Fig. 4. The three subfamilies of 𝑈0
𝜇

C) The family (𝑉 0
𝑣 )𝑣∈𝑁 given for each 𝑣 ∈ 𝑁 by taking the component 𝑋0

𝜆 that supports
the section 𝑄0

𝑣 and removing all the other distinguished sections, to obtain

(3.4.1) 𝑉 0
𝑣 = Spec𝐾[𝑦, 𝑥, 1

1 − 𝑦
], resp. 𝑉 0

𝑣 = Spec𝐾[𝑦].

for 𝜆 ∈ Λ, resp. 𝜆 ∈ Λ′.

22/36 Version of November 22, 2023



On Oda’s problem and special loci

We thus obtain an affine cover of the Z/ℓZ-stable curve 𝑋0

𝑋0 =
⋃︁

𝜆∈Λ⊔Λ′

𝑊 0
𝜆

⋃︁
𝜇∈𝑀

𝑈0
𝜇

⋃︁
𝑣∈𝑁

𝑉 0
𝑣

where each open is Z/ℓZ-stable by construction, and such that:
(i) For 𝜇 ∈ 𝑀 such that 𝑃 0

𝜇 contains a distinguished section of 𝑋0
𝜆 and 𝑋0

𝜆′ we have 𝑊 0
𝜆 and

𝑊 0
𝜆′ as open subsets of 𝑈0

𝜇 and 𝑊 0
𝜆 ∩𝑊 0

𝜆′ = ∅.
(ii) For 𝑣 ∈ 𝑁 such that 𝑄0

𝑣 is a distinguished section of 𝑋0
𝜆 we have 𝑊 0

𝜆 as an open subset
of 𝑉 0

𝑣 .
(iii) The intersection of 𝑈0

𝜇 or 𝑉 0
𝑣 with any other member of the affine cover is either empty,

𝑊 0
𝜆 or 𝑊 0

𝜆 ⊔𝑊 0
𝜆′ .

These properties ensure, in the next section, the possibility of patching local formal schemes over
the affine cover that we just defined.

3.4.2. Consider the affine formal scheme 𝒮 = Spf 𝐾[[𝑞]] with ideal of definition q = (𝑞) equipped
with the 𝐺-action 𝑞 ↦→ 𝜁ℓ𝑞 by our choice of isomorphism 𝐺 ≃ 𝜇ℓ. In order to construct a formal
scheme X with base 𝑋0 over 𝒮 with a compatible 𝐺-action we shall define affine formal 𝒮-schemes
𝒲𝜆, 𝒰𝜇 and 𝒱𝑣 with bases 𝑊 0

𝜆 , 𝑈0
𝜇 and 𝑉 0

𝑣 with ideal of definition the pullbacks of q denoted q
again.
For 𝜆, 𝑣 we set

𝒲𝜆 = Spf Γ(𝑊 0
𝜆 ,𝒪𝑋0)[[𝑞]] and 𝒱𝑣 = Spf Γ(𝑉 0

𝑣 ,𝒪𝑋0)[[𝑞]],
where the 𝐾-algebras of sections Γ(−,𝒪𝑋0) are given by one of the explicit 𝐾-algebra of the
affine schemes of 3.4.1 A) and C) above.
Whenever 𝜆 and 𝑣 are such that 𝑊 0

𝜆 is an open subset of 𝑉 0
𝑣 the open immersion 𝑗𝑣/𝜆 : 𝒲𝜆 →

𝒱𝑣 over it is obtained without effort. For instance, let us assume 𝑊 0
𝜆 = Spec𝐾[𝑦, 𝑥, 1

𝑦 ,
1

1−𝑦 ]
and 𝑉 0

𝑣 = Spec𝐾[𝑦, 𝑥, 1
1−𝑦 ]. By [EGAI] Proposition 10.1.4 it suffices to check that the map

𝐾[𝑦, 𝑥, 1
1−𝑦 ][ 1

𝑦 ][[𝑞]]∧ → Γ(𝒲𝜆), where ∧ denotes the q-adic completion, is an isomorphism. But
this is clear by construction. Note that 𝑗𝑣/𝜆 is an 𝒮-morphism.

Let us consider the case of 𝒰𝜇, whose base 𝑈0
𝜇 is obtained via 3 subfamilies 𝑈0

𝜇,0,0, 𝑈0
𝜇,0,1, and

𝑈0
𝜇,1,1 as in Section 3.4.1 B).

Proposition 3.12. For 𝜇 ∈ 𝑀 such that 𝑈0
𝜇 is of the form 𝑈0

𝜇,0,0. Let us define

𝒰𝜇,0,0 = Spf 𝐾[𝑇, 𝑇 ′, 𝑋,𝑋 ′][ 1
1−𝑇 ,

1
1−𝑇 ′ ][[𝑞]]/(𝑇𝑟𝑇 ′

𝑟′ − 𝑞) with
{︃
𝑋ℓ = 𝑇 𝑟(1 − 𝑇 ), 𝑇𝑟 = 𝜁2ℓ𝑋

𝑋 ′ℓ = 𝑇 ′𝑟′
(1 − 𝑇 ′), 𝑇 ′

𝑟′ = 𝜁2ℓ𝑋
′.

Then we can identify 𝒰𝜇,0,0 mod q with 𝑈0
𝜇,0,0 by (𝑇, 𝑇 ′) ↦→ (𝑦, 𝑦′) with the choices (𝑋,𝑋 ′) ↦→

(𝑥, 𝑥′). Furthermore, for 𝜆 ∈ Λ such that 𝑊 0
𝜆 = Spec𝐾[𝑦, 𝑥, 1

𝑦 ,
1

1−𝑦 ], the scheme 𝑊 0
𝜆 is an

open subset of 𝑈0
𝜇,0,0 given by inverting 𝑦, so that Γ(𝒰𝜇)[ 1

𝑇 ]∧ → Γ(𝒲𝜆), given by 𝑇 → 𝑦, is an
isomorphism, which induces an open immersion 𝑗𝜇/𝜆 : 𝒲𝜆 → 𝒰𝜇,0,0.

Proof. By assumption 𝑇𝑟𝑇
′
𝑟′ = 𝑞 so that for 𝑁 ≥ 1 we have

Γ(𝒰𝜇)[ 1
𝑇

]/q𝑁 = 𝐾[𝑇, 𝑇 ′, 𝑋,𝑋 ′][ 1
1 − 𝑇

,
1

1 − 𝑇
,

1
𝑇 ′ ]/(𝑇𝑟𝑇

′
𝑟 − 𝑞)𝑁 .
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As 𝑇 and 1 − 𝑇 are invertible, so is 𝑋ℓ = 𝑇 𝑟(𝑇 − 1), and thus so is 𝑋 and 𝑇𝑟 = 𝜁2ℓ𝑋. It
follows that (𝑇𝑟𝑇 ′

𝑟′)𝑁 = 0 if and only if 𝑇 ′
𝑟′
𝑁 = 0. Now as 𝑇 ′

𝑟′
ℓ𝑁 = −𝑇 ′𝑟′𝑁 (1 − 𝑇 ′)𝑁 we have

(1 − 𝑇 ′)𝑁 = 0, which gives that 𝑇 ′−1 can be written as
∑︀𝑁−1
𝑘=0 (1 − 𝑇 ′)𝑘. To recover 𝑇 ′ and 𝑋 ′

first as 𝑇 ′ℓ
𝑟′ = −𝑇 ′𝑟′

(𝑇 ′ − 1) we have 𝑇 ′ℓ
𝑟′ = 𝑃 (𝑇 ′) with 𝑃 invertible for the composition in

𝐾[[𝑇 ′ − 1]]. So there is 𝐹 ∈ 𝐾[[𝑇 ′ − 1]] such that 𝐹 (𝑇 ′ℓ
𝑟′) = 𝑇 ′. As 𝑇 ′ℓ

𝑟′ is nilpotent of order 𝑁
we can truncate 𝐹 to get a polynomial ̃︀𝐹 that verifies the equality ̃︀𝐹 (𝑇 ′ℓ

𝑟′) = 𝑇 ′ in Γ(𝒰𝜇)[ 1
𝑇 ]/q𝑁 .

Thus, as 𝑇 ′
𝑟′ = 𝑞

𝜁2ℓ𝑇
, we have

Γ(𝒰𝜇)[ 1
𝑇

]/q𝑁 = 𝐾[𝑋,𝑇, 1
𝑇
,

1
1 − 𝑇

][𝑞]/(𝑞𝑁 )

and the desired isomorphism by passing to the q-adic completion. It is clear that this isomorphism
is compatible with the Z/ℓZ-action on both sides. □

The other open immersions are proven in the same way.

3.4.3. One thus obtains a proper formal regular 𝒮-scheme X with a collection of sections (𝒬𝑣)𝑣∈𝑁
with base space 𝑋0 by gluing along the affine formal schemes 𝒰𝜇,𝒱𝑣 and 𝒲𝜆.

The formal scheme X has the property that, for each 𝜇, 𝜆 or 𝑣 we have 𝒮-isomorphisms

𝜙𝜇 : X|𝑈0
𝜇

→ 𝒰𝜇, 𝜙𝜆 : X|𝑊 0
𝜆

→ 𝒲𝜆, 𝜙𝑣 : X|𝑉 0
𝑣

→ 𝒱𝑣

extending the identity maps of 𝑈0
𝜇, 𝑊 0

𝜆 and 𝑉 0
𝑣 , respectively, such that

(a) for each 𝑣 ∈ 𝑁 , 𝒬𝑣 is induced from the canonical section 𝒮 → X|𝑉 0
𝑣

that lift the section
𝑄𝑣 of 𝑉 0

𝑣 ,
(b) the isomorphisms 𝜙𝜆, 𝜙𝜆 and 𝜙𝑣 are compatible with the open immersions 𝑗𝑣/𝜆 and 𝑗𝜇/𝜆.

A direct application of Grothendieck’s existence theorem [EGAIII] 5.4 as in [IN97] 2.4.1 and
3.1 provides the algebraization of the formal scheme X into a scheme 𝑋 over Spec𝐾[[𝑞]], whose
generic fiber 𝑋𝜂 is a smooth geometrically irreducible genus 𝑔 curve with 𝑚 marked points and a
Z/ℓZ-action, coming by pullback of the one on 𝑋, with Hurwitz data 𝑘𝑟, and whose special fiber
is 𝑋0.

The sets of divisors 𝐷 = ((𝑋0
𝜆)𝜆∈Λ⊔Λ′ , (𝑄𝑣)𝑣∈𝑁 ) and 𝒟 = ((𝑋0

𝜆)𝜆∈Λ⊔Λ′ , (𝒬𝑣)𝑣∈𝑁 ) are regular with
normal crossings on 𝑋 and X respectively in the sense of [GM71] Section 1.8.3, see [IN97] 3.2 for
details.

Remark 3.13. The generic fiber 𝑋𝜂 of the scheme 𝑋 should be interpreted as a tangential base
point 𝜂 : Spec𝐾((𝑞)) → ℳ𝑔,[𝑚](Z/ℓZ)𝜈𝑘𝑟 in the moduli space.

3.4.4. Another important output of our construction, that will be of interest in the next section,
is that we can explicitly track our tangential base points in the different formal completions of X
along chosen closed subsets of the special fiber.

Consider the completion X𝜇 of X along 𝑃 0
𝜇 . By construction X|𝑈0

𝜇
= Spf 𝐴/(𝑇𝑟,𝑠𝑇 ′

𝑟′,𝑠′ − 𝑞) for a
ring 𝐴 given in the construction of 𝑈0

𝜇 and 𝑃 0
𝜇 corresponds to the ideal (𝑇𝑟,𝑠, 𝑇 ′

𝑟′,𝑠′), so that

X𝜇 = Spf 𝐾[[𝑇𝑖𝑗 , 𝑇 ′
𝑘𝑙]] with 𝑇𝑖𝑗𝑇

′
𝑘𝑙 = 𝑞 as usual.
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Let 𝑇1, 𝑇2 be two indeterminacies. We have a commutative diagram

Spf 𝐾[[𝑇1, 𝑇2]] X𝜇

Spf 𝐾[[𝑞]] 𝒮

𝑞 ↦→𝑇1𝑇2

𝜇

𝑠

where 𝐾[[𝑇1, 𝑇2]] has ideal of definition (𝑇1𝑇2), and where the top horizontal map is an isomor-
phism. The formal scheme X𝜇 comes with a divisor 𝒟𝜇 given by the pullback of 𝒟 which has
two components corresponding to 𝑋0

𝜆 and 𝑋0
𝜆′ where 𝜆(𝜇) = (𝜆, 𝜆′). They are defined by 𝑇1 = 0

and 𝑇2 = 0 respectively, so that 𝒟𝜇 is a set of divisors with regular normal crossing on X𝜇.
We shall also consider the completion X𝜆 of X along 𝑋0

𝜆. It is also equipped with a divisor 𝒟𝜆 as
the pullback of 𝒟 to X𝜆 which consists of the union of two divisors:

(i) 𝒟0
𝜆 given by 𝑋0

𝜆

(ii) 𝒟′
𝜆 given by the distinguished sections of 𝑋0

𝜆.
It is again a set of divisors with regular normal crossings.
By arguing as in the proof of Proposition 3.12, one further obtain the following compatibility
result between tangential base points and formal completions.

Proposition 3.14. Let 𝜇 ∈ 𝑀 and 𝜆 ∈ 𝜆(𝜇). Then we have the following commutative diagram
in the category of formal schemes

X𝜇 Spf 𝐾[[𝑇1, 𝑇2]] Spf 𝐾((𝑇 ))[[𝑞]] Spf 𝐾((𝑇 ))

Spf 𝐾[[𝑇 ]]

𝒰𝜇 𝑊 0
𝜆

X X𝜆 𝑋0
𝜆

𝜇

𝑇𝜆𝑖𝑗

One remarks that the map 𝜄𝜆 : Spec𝐾[[𝑇 ]] → Spf 𝐾[[𝑇1, 𝑇2]] which is given by the quotient by
𝑇2 factors through the restriction to the special fiber Spec𝐾[[𝑇1, 𝑇2]]/(𝑇1𝑇2).

4. Galois actions by Grothendieck-Murre theory

Starting with a 𝐺-stable diagram 𝑋0 with Card Λ ⊔ Λ′ ≥ 2 the end result of the previous section
gives us a smooth curve 𝑋𝜂 represented by a 𝐾((𝑞))-point on ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 which comes with a
model 𝑋 over 𝒮 with special fiber 𝑋0.
We will now relate the Galois action on the fundamental groupoid Π1(𝑋𝜂 ∖ {(𝑄𝑣)𝑣∈𝑁}, (𝜇⃗)𝜇∈𝑀 )
of 𝑋𝜂 based at the punctures coming from the double points (𝑃𝜇)𝜇∈𝑀 of 𝑋 to the ones on the
curves (𝐶𝑟)𝑟∈{0,...,ℓ−2} obtained by the tangential base points 𝑇 𝑟𝑖𝑗 that we defined in Section 3.2.
To do so, we follow some equivalence between categories of covers as in [IN97]: the category
Rev𝐷(𝑋) of finite étale covers of 𝑋 tamely ramified along the divisor 𝐷, made of the union

Version of November 22, 2023 25/36



On Oda’s problem and special loci

𝑋0 ∪ {(𝑄𝑣)𝑣∈𝑁}, is canonically equivalent both to Rev𝒟(X) and Rev(𝑋𝜂 ∖ {(𝑄𝑣)𝑣∈𝑁}). For
𝜇 ∈ 𝑀 , we then define some fiber functors 𝜇⃗, so that, by the previous canonical equivalences of
categories, we have the isomorphism

𝜋𝒟
1 (X, 𝜇⃗) ≃ 𝜋𝐷1 (𝑋, 𝜇⃗) ≃ 𝜋1(𝑋𝜂 ∖ {(𝑄𝑣)𝑣∈𝑁}, 𝜇⃗).

Those equivalences are Galois equivariant so in order to determine whenever an element of 𝐺𝐾
acts trivially on the geometric part of 𝜋1(𝑋𝜂 ∖{(𝑄𝑣)𝑣∈𝑁}, 𝜇⃗) it is enough to do so on the left-hand
side.

4.1. Tamely ramified fundamental groups and fiber functors

4.1.1. We start by defining fiber functors on Rev𝒟(X) locally by fixing 𝜇 ∈ 𝑀 and considering
X𝜇. Recall that we have a commutative diagram

Spf 𝐾[[𝑇1, 𝑇2]] X𝜇

Spf 𝐾[[𝑞]] 𝒮

𝜇

𝑠

given by the map 𝑞 ↦→ 𝑇1𝑇2. Both maps 𝑠 and 𝜇 define fiber functors, 𝜇⃗ for Rev𝒟𝜇(X𝜇) and 𝑠⃗ for
Rev𝑆0(𝒮), see [IN97] 3.3.1 and 3.3.2.

To be explicit, consider a compatible choice of indeterminates {𝑇
1
𝑁

1 , 𝑇
1
𝑁

2 }𝑁∈N and {𝑞
1
𝑁 }𝑁∈N to

form the fields 𝐾{{𝑇1, 𝑇2}} and 𝐾{{𝑞}}. Then for B = Spf ℬ ∈ Rev𝒟(X𝜇), resp. A = Spf 𝒜 ∈
Rev𝑆0(𝒮), the value of the fiber functors are given by

𝜇⃗(B) = Hom𝐾[[𝑇1,𝑇2]](ℬ,𝐾{{𝑇1, 𝑇2}}), resp. 𝑠⃗(A) = Hom𝐾[[𝑞]](𝒜,𝐾{{𝑞}}).

4.1.2. By choosing geometric points such that 𝑞
1
𝑁 ↦→ (𝑇1𝑇2)

1
𝑁 , one obtains two compatible

homotopy exact sequences

(4.1.1)
1 ̂︀Z(1) × ̂︀Z(1) 𝜋

𝒟𝜇
1 (X𝜇, 𝜇⃗) 𝐺𝐾 1

1 ̂︀Z(1) 𝜋𝑆
0

1 (𝒮, 𝑠⃗) 𝐺𝐾 1

𝑗𝜇 𝑝𝜇

𝑝𝜇/𝒮

𝑠𝜇

𝑗𝜆 𝑗𝜆′

𝑗𝒮 𝑝𝒮

𝑠𝑠

where the geometric parts ̂︀Z(1) × ̂︀Z(1) and ̂︀Z(1) are equipped with the Galois actions coming
from the sections defined by the choices of tangential base points 𝜇 and 𝑠. We refer to [IN97]
3.3.1-3.3.4 for details.

4.1.3. We will now track explicitly the fiber functors defined by 𝜇⃗ on Rev𝒟𝜆(X𝜆) and Rev𝒟𝜆′ (X𝜆′)
for (𝜆, 𝜆′) = 𝜆(𝑃 0

𝜇) and compare them to the one given by the tangential base points 𝑇 𝜆𝑖𝑗 of
Definition 3.9. First of all, remark that the map X𝜇 → X𝜆 pulls back the divisor 𝒟𝜆 to 𝒟𝜇 so
that it induces a base change functor

Rev𝒟𝜆(X𝜆) −→ Rev𝒟𝜇(X𝜇),
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and thus we have a fiber functor on Rev𝒟𝜆(X𝜆) that is given by composition with 𝜇⃗, which we
also denote by 𝜇⃗. In particular this comes with a map on the étale fundamental groups

𝑝𝜇/𝜆 : 𝜋𝒟𝜇
1 (X𝜇, 𝜇⃗) −→ 𝜋𝒟𝜆

1 (X𝜆, 𝜇⃗).
In the same way, the morphism 𝑓𝜆 : X𝜆 → 𝒮 defines a map

𝑝𝜆/𝒮 : 𝜋𝒟𝜆
1 (X𝜆, 𝜇⃗) −→ 𝜋𝑆

0
1 (𝒮, 𝑠⃗)

by the fact that the pullback of 𝑆0 is the divisor 𝒟0
𝜆 ∪ 𝒟′′

𝜆 where 𝒟′′
𝜆 is given by 𝒟′

𝜆 restricted
to 𝑋0

𝜆. As the map X𝜇 → X𝜆 is a map of 𝒮-schemes we have the commutativity condition
𝑝𝜆/𝒮 ∘ 𝑝𝜇/𝜆 = 𝑝𝜇/𝒮

and compatibility with the previous homotopy exact sequences of Eq. (4.1.1).

4.1.4. By Theorem 4.3.2 of [GM71] the restriction map to 𝑋0
𝜆 gives a categorical equivalence

Rev𝒟′
𝜆(X𝜆) ≃ Rev𝐷𝜆(𝑋0

𝜆),
and the last one is canonically equivalent to Rev(𝑊 𝜆

0 ).

Proposition 4.1. The isomorphisms Rev𝒟′
𝜆(X𝜆) ≃ Rev𝒟𝜆(𝑋0

𝜆) ≃ Rev(𝑊 0
𝜆 ) transform the fiber

functor 𝜇⃗ in −→
𝑇𝑖𝑗 and thus yields a Galois compatible isomorphism

𝜋
𝒟′
𝜆

1 (X𝜆, 𝜇⃗) ≃ 𝜋1(𝑊 0
𝜆 ,

−→
𝑇 𝑖𝑗).

Proof. By Proposition 3.14, the following diagram commutes

Spf 𝐾[[𝑇1, 𝑇2]] Spf 𝐾[[𝑇 ]]

X𝜇 X𝜆 𝑋0
𝜆

𝜇

𝜄𝜆

𝑇𝑖𝑗

where we recall the map 𝜄𝜆 : Spec𝐾[[𝑇 ]] → Spf 𝐾[[𝑇1, 𝑇2]] is given by the quotient by 𝑇2.
It thus suffices to check that the fiber functors on Rev𝒟′

𝜆(X𝜆) given by 𝜇 and 𝜇∘ 𝜄𝜆 are canonically
equivalent and that they are also equivalent to the one given by composition of the pullback to
the special fiber and −→

𝑇 𝑖𝑗 .
Let B ∈ Rev𝒟′

𝜆(X𝜆) and consider 𝐴 ∈ Rev𝐷𝜆(𝑋0
𝜆) obtained from B by base change to the special

fiber. The pullback of B to X𝜇 is Spf ℬ ∈ Rev(𝑇1=0)(X𝜇) with ℬ a direct sum of subalgebras of
𝐾[[𝑇

1
𝑁

1 , 𝑇2]] for some 𝑁 ≥ 1. Then we have
𝜇⃗(B) = Hom𝐾[[𝑇1,𝑇2]](ℬ,𝐾{{𝑇1, 𝑇2}})

= Hom𝐾[[𝑇1,𝑇2]](ℬ,𝐾{{𝑇1}}[[𝑇2]])
= Hom𝐾[[𝑇 ]](ℬ/𝑇2,𝐾{{𝑇}})

𝜇⃗(B) = −−−→𝜇 ∘ 𝜄𝜆(B) = −→
𝑇𝑖𝑗(𝐴).

□

Remark 4.2. The map Spf 𝐾[[𝑇 ]] → Spf 𝐾[[𝑇1, 𝑇2]] does not define a base change Rev𝒟𝜇(X𝜇) →
Rev(𝑇=0)(Spf 𝐾[[𝑇 ]]) as the pullback of the divisor 𝒟𝜇 is Spf 𝐾[[𝑇 ]] and not (𝑇 = 0). Thus we
can not define a fiber functor for the first category in this way.
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4.1.5. We can now compare 𝜋𝒟′
𝜆

1 (X𝜆, 𝜇⃗) and 𝜋𝒟𝜆
1 (X𝜆, 𝜇⃗) by Grothendieck-Murre theory since

𝒟𝜆 and 𝒟′
𝜆, as defined in Section 3.4.4, are two divisors that differ by the special fiber, see

[GM71] Corollary 5.1.11.

Proposition 4.3. We have an exact sequence

1 ̂︀Z(1) 𝜋𝒟𝜆
1 (X𝜆, 𝜇⃗) 𝜋

𝒟′
𝜆

1 (X𝜆, 𝜇⃗) 1𝛼

where 𝛼 = 𝑝𝜇/𝜆 ∘ 𝑗𝜇 ∘ 𝑗𝜆 and where 𝛽 comes from the canonical projection induced by the inclusion
Rev𝒟′

𝜆(X𝜆) ⊂ Rev𝒟𝜆(X𝜆).

Proof. By [GM71] Theorem 7.3.1 we have the exactness of the sequence

̂︀Z(1) 𝜋𝒟𝜆
1 (X𝜆, 𝜇⃗) 𝜋

𝒟′
𝜆

1 (X𝜆, 𝜇⃗) 1.𝛼

The injectivity of 𝛼 can be deduced from the injectivity of 𝑝𝜆/𝒮 ∘ 𝛼 = 𝑗𝒮 . □

Remark 4.4. With the equality 𝑝𝜆/𝒮 ∘ 𝑝𝜇/𝜆 ∘ 𝑠𝜇 = 𝑠𝑠 we also have the surjectivity of 𝑝𝜆/𝒮 .

4.2. Geometric Galois actions and groupoids
For the fundamental group of a curve 𝑋 over𝐾 the geometric part is defined to be the fundamental
group of𝑋𝐾 and coincide with the kernel of the projection to 𝐺𝐾 given by the arithmetic geometric
fundamental homotopy exact sequence Eq. (3.1.1).

4.2.1. Following [IN97] 3.4.7 we define geometric parts of the fundamental groups 𝜋𝒟𝜆
1 (X𝜆, 𝜇⃗) as

the kernels of such projections to 𝐺𝐾 .

Definition 4.5. The geometric part 𝜋𝒟𝜆
1 (X𝜆𝐾 , 𝜇⃗) of 𝜋𝒟𝜆

1 (X𝜆, 𝜇⃗) is the kernel of 𝑝𝜆 = 𝑝𝒮 ∘ 𝑝𝜆/𝒮 .

Proposition 4.6. We have the following results on the structure of 𝜋𝒟𝜆
1 (X𝜆, 𝜇⃗).

(i) We have an exact sequence

1 ̂︀Z(1) 𝜋𝒟𝜆
1 (X𝜆𝐾 , 𝜇⃗) 𝜋𝐷𝜆1 (𝑋0

𝜆𝐾 ,
−→
𝑇𝑖𝑗) 1𝛼

and an isomorphism 𝜋𝒟𝜆
1 (X𝜆𝐾 , 𝜇⃗) ≃ ̂︀Z(1) × 𝜋𝐷𝜆1 (𝑋0

𝜆𝐾 ,
−→
𝑇𝑖𝑗).

(ii) The exact sequence

1 𝜋𝒟𝜆
1 (X𝜆𝐾 , 𝜇⃗) 𝜋𝒟𝜆

1 (X𝜆, 𝜇⃗) 𝐺𝐾 1

admits a splitting and we have an isomorphism 𝜋𝒟𝜆
1 (X𝜆, 𝜇⃗) ≃ 𝜋𝒟𝜆

1 (X𝜆𝐾 , 𝜇⃗) ⋊𝐺𝐾 .
Furthermore, the action of 𝐺𝐾 on 𝜋𝒟𝜆

1 (X𝜆𝐾 , 𝜇⃗) preserves the direct product decomposition of (i)
and induces the Galois action on 𝜋𝐷𝜆1 (𝑋0

𝜆𝐾 ,
−→
𝑇𝑖𝑗) given by the tangential base point 𝑇 𝜆𝑖𝑗.

Proof.
(i) We deduce the exact sequence from the one of Proposition 4.3, where we replaced the

last term via the equivalence of categories Rev𝒟′
𝜆(X𝜆) ≃ Rev𝐷𝜆(𝑋0

𝜆), see 4.1.4.
We know that ̂︀Z(1) is the kernel of 𝛽 so that its image lands in the geometric part is a

given. The short exact sequence follows.
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The projection 𝑝𝜆/𝒮 induces a geometric counterpart

𝑝𝜆/𝒮 : 𝜋𝒟𝜆
1 (X𝜆𝐾 , 𝜇⃗) −→ ̂︀Z(1)

which verifies 𝑝𝜆/𝒮 ∘𝛼 = id̂︀Z(1). It follows that Ker 𝑝𝜆/𝒮 ∩𝛼(̂︀Z(1)) = {1} so that Ker 𝑝𝜆/𝒮

is isomorphic to 𝜋𝐷𝜆1 (𝑋0
𝜆𝐾 ,

−→
𝑇𝑖𝑗) and we have the direct product decomposition.

(ii) The splitting is given by 𝑠𝜇 ∘ 𝑝𝜇/𝜆. The fact that the resulting 𝐺𝐾-action preserves the
direct product decomposition and induces the 𝐺𝐾-action on 𝜋𝐷𝜆1 (𝑋0

𝜆𝐾 ,
−→
𝑇𝑖𝑗) given by the

tangential base point 𝑇𝑖𝑗 , follows directly from the compatibility of the fiber functors 𝜇⃗,
𝑠⃗ and −→

𝑇𝑖𝑗 .
□

4.2.2. We can now state the basic result that determines when an element of 𝐺𝐾 acts trivially
on 𝜋𝒟𝜆

1 (X𝜆𝐾 , 𝜇⃗).

Proposition 4.7. An element of 𝐺𝐾 acts trivially on 𝜋ℓ,𝒟𝜆1 (X𝜆𝐾 , 𝜇⃗) if and only if it acts trivially
on 𝜋ℓ,𝐷𝜆1 (𝑋0

𝜆𝐾 ,
−→
𝑇𝑖𝑗).

Proof. The decomposition of 𝜋𝒟𝜆
1 (X𝜆𝐾 , 𝜇⃗) given by (i) of the previous result passes to the

pro-ℓ-completion, which gives

𝜋ℓ,𝒟𝜆1 (X𝜆𝐾 , 𝜇⃗) ≃ ̂︁Zℓ(1) × 𝜋ℓ,𝐷𝜆1 (𝑋0
𝜆𝐾 ,

−→
𝑇𝑖𝑗).

As the 𝐺𝐾-action preserves the product, the implication is straightforward. For the reciprocal, let
𝜎 ∈ 𝐺𝐾 that acts trivially on 𝜋ℓ,𝒟𝜆1 (X𝜆𝐾 , 𝜇⃗). Let us choose a representation (𝑦1, . . . , 𝑦2𝑔, 𝑥1, . . . 𝑥𝑛 |∏︀
𝑖[𝑦𝑖, 𝑦𝑖+1]𝑥1 · · ·𝑥𝑛) of 𝜋ℓ,𝐷𝜆1 (𝑋0

𝜆𝐾 ,
−→
𝑇𝑖𝑗) in the usual way, where 𝑥1 denotes the loop around the

closed point image of 𝑇𝑖𝑗 in 𝑋0
𝜆. We have 𝜎(𝑥1) = 𝑥

𝜒ℓ(𝜎)
1 = 𝑥1 by assumption. But 𝜎 also acts by

𝜒ℓ(𝜎) on the first factor ̂︁Zℓ(1) so the action of 𝜎 on 𝜋ℓ,𝒟𝜆1 (X𝜆𝐾 , 𝜇⃗) is trivial. □

Remark 4.8. More generally, the result also holds in the case of any almost full class of
finite groups 𝒞 and the maximal pro-𝒞-quotients of 𝜋𝒟𝜆

1 (X𝜆𝐾 , 𝜇⃗) and 𝜋𝐷𝜆1 (𝑋0
𝜆𝐾 ,

−→
𝑇𝑖𝑗), see [IN97]

Proposition 3.4.8.

4.2.3. In order to conclude, we first we need to explain how to move from fundamental groups
to fundamental groupoids. This is essentially formal and comes down to the fact that the set of
étale paths are principal homogeneous spaces under the translation actions of the fundamental
groups. As such, the technical details will mostly be avoided.
Let 𝑀𝜆 = {𝜇 ∈ 𝑀 | 𝜆 ∈ 𝜆(𝜇)} and fix 𝜆 ∈ Λ⊔Λ′. Let 𝜇1, 𝜇2 ∈ 𝑀𝜆. The set of étale paths between
the fiber functors 𝜇1 and 𝜇2 of the category Rev𝒟𝜆(X𝜆) is the profinite set 𝜋𝒟𝜆

1 (X𝜆, 𝜇1, 𝜇2) of
ismorphisms between these two functors. The fundamental groups 𝜋𝒟𝜆

1 (X𝜆, 𝜇1) and 𝜋𝒟𝜆
1 (X𝜆, 𝜇2)

acts by left and right translation canonically on 𝜋𝒟𝜆
1 (X𝜆, 𝜇1, 𝜇2) and these actions are simply

transitive. By construction, 𝜇1 and 𝜇2 are turned into the fiber functor 𝑠⃗ of Rev𝑆0(𝒮) through
the base change by the map 𝑓𝜆 : X𝜆 → 𝒮 so that we have a map

𝑝𝜆/𝒮 : 𝜋𝒟𝜆
1 (X𝜆, 𝜇1, 𝜇2) −→ 𝜋𝑆

0
1 (𝒮, 𝑠⃗).

By composition, we get a canonical map 𝑝𝜆 = 𝑝𝒮 ∘ 𝑝𝜆/𝒮 : 𝜋𝒟𝜆
1 (X𝜆, 𝜇1, 𝜇2) → 𝐺𝐾 .
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Definition 4.9. The geometric part 𝜋𝒟𝜆
1 (X𝜆𝐾 , 𝜇1, 𝜇2) of 𝜋𝒟𝜆

1 (X𝜆, 𝜇1, 𝜇2) is the set 𝑝−1
𝜆 ({1}).

The maps 𝑝𝜆 (for varying 𝜇 ∈ 𝑀𝜆) induce a groupoid homomorphism from Π𝒟𝜆
1 (X𝜆, (𝜇⃗)𝜇∈𝑀𝜆

) to
𝐺𝐾 . This groupoid compatibility ensures that the canonical actions of the groups 𝜋𝒟𝜆

1 (X𝜆, 𝜇1)
and 𝜋𝒟𝜆

1 (X𝜆, 𝜇2) on 𝜋𝒟𝜆
1 (X𝜆, 𝜇1, 𝜇2) induce by restriction simply transitive actions from their

geometric part to the geometric part of the latter.
This construction can be made when considering 𝜇1 and 𝜇2 as fiber functors with respect to the
category of étale covers of X𝜆 tamely ramified over 𝒟′

𝜆 instead of of 𝒟𝜆. As in Proposition 4.3
we have a natural map

𝛽𝜇1,𝜇2 : 𝜋𝒟𝜆
1 (X𝜆, 𝜇1, 𝜇2) −→ 𝜋

𝒟′
𝜆

1 (X𝜆, 𝜇1, 𝜇2)
which is compatible with the canonical actions on both sides with regards to the maps 𝛽𝜇1 and
𝛽𝜇2 . In particular, the map 𝛽𝜇1,𝜇2 is surjective and also induces a bijection from 𝑝𝜆/𝒮

−1({1}) to
𝜋

𝒟′
𝜆

1 (X𝜆𝐾 , 𝜇1, 𝜇2) as in Proposition 4.6. Moreover, the base change functor to the special fiber
induces again a canonical bijection

𝜋
𝒟′
𝜆

1 (X𝜆, 𝜇1, 𝜇2) ≃ 𝜋𝐷𝜆1 (𝑋0
𝜆,

−→
𝑇𝑖𝑗 , 𝑇𝑘𝑙).

Definition 4.10. We define an action of 𝐺𝐾 on 𝜋𝒟𝜆
1 (X𝜆, 𝜇1, 𝜇2) in the following way. For

𝛾 ∈ 𝜋𝒟𝜆
1 (X𝜆𝐾 , 𝜇1, 𝜇2) and 𝜎 ∈ 𝐺𝐾 , let

𝜎 · 𝛾 = 𝑠𝜆/𝜇1(𝜎) ∘ 𝛾 ∘ 𝑠𝜆/𝜇2(𝜎)−1

where 𝑠𝜆/𝜇 = 𝑝𝜇/𝜆 ∘ 𝑠𝜇 for 𝜇 ∈ 𝑀𝜆.

By the compatibility with 𝑝𝜆 this action induces an action of 𝐺𝐾 on the geometric part of
𝜋𝒟𝜆

1 (X𝜆, 𝜇1, 𝜇2). This action is compatible with the bijection 𝑝−1
𝜆/𝒮({1}) ≃ 𝜋𝐷𝜆1 (𝑋0

𝜆𝐾 ,
−→
𝑇𝑖𝑗 , 𝑇𝑘𝑙) and

we recover the 𝐺𝐾-action induced by our choice of tangential base points on the right-hand side.

4.2.4. We can now state the groupoid analog of Proposition 4.7 and establish the main result of
this section.

Proposition 4.11. Let 𝜇1, 𝜇2 ∈ 𝑀 . An element of 𝐺𝐾 acts trivially on 𝜋ℓ,𝒟𝜆1 (X𝜆𝐾 , 𝜇1, 𝜇2) if
and only if it acts trivially on 𝜋ℓ,𝐷𝜆1 (𝑋0

𝜆𝐾 ,
−→
𝑇𝑖𝑗 , 𝑇𝑘𝑙).

Proof. As the bijection 𝑝−1
𝜆/𝒮({1}) ≃ 𝜋𝐷𝜆1 (𝑋0

𝜆,
−→
𝑇𝑖𝑗 , 𝑇𝑘𝑙) is a 𝐺𝐾-isomorphism the implication is

straightforward again.
For the converse, let 𝜎 ∈ 𝐺𝐾 . We first remark that by the simple transitiveness of the action of
𝜋𝒟𝜆

1 (X𝜆𝐾 , 𝜇1) on 𝜋𝒟𝜆
1 (X𝜆, 𝜇1, 𝜇2) and its compatibility with the map 𝑝𝜆/𝒮 we have that for every

𝛾 ∈ 𝜋ℓ,𝒟𝜆1 (X𝜆𝐾 , 𝜇1, 𝜇2) there exists 𝛼 ∈ ̂︀Zℓ(1) such that 𝛼 · 𝛾 ∈ 𝑝−1
𝜆/𝒮({1}).

Now, by assumption, we have 𝜎(𝛼 · 𝛾) = 𝛼 · 𝛾 so that 𝜎(𝛾) = 𝜎(𝛼)−1 · (𝛼 · 𝛾) and thus it is enough
to see that 𝜎 acts trivially on ̂︀Zℓ(1). This follows as in the proof of Proposition 4.7, since 𝜎
acting trivially on 𝜋𝐷𝜆1 (𝑋0

𝜆𝐾 ,
−→
𝑇𝑖𝑗 , 𝑇𝑘𝑙) implies it acts trivially on 𝜋𝐷𝜆1 (𝑋0

𝜆𝐾 ,
−→
𝑇𝑖𝑗), again by simple

transitiveness and Galois compatibility. □

Remark 4.12. The result holds in more generality by using an almost full class of finite groups
instead of the pro-ℓ completion.
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Consider the formal scheme X. The maps X𝜆 → X for 𝜆 ∈ Λ⊔Λ′, which send 𝒟 to 𝒟𝜆 by pullback,
induce base change functors Rev𝒟(X) → Rev𝒟𝜆(X𝜆). Hence for 𝜇 ∈ 𝑀 we have fiber functors 𝜇⃗
for Rev𝒟(X) and a fundamental groupoid Π𝒟

1 (X, (𝜇⃗)𝜇∈𝑀 ) which comes with a geometric part
Π𝒟

1 (X𝐾 , (𝜇⃗)𝜇∈𝑀 ) equipped with a Galois action. For every 𝜆 ∈ Λ ⊔ Λ′ and 𝜇1, 𝜇2 ∈ 𝑀𝜆 the
induced canonical maps

𝑝𝜆/X,𝜇1,𝜇2 : 𝜋𝒟𝜆
1 (X𝜆, 𝜇1, 𝜇2) −→ 𝜋𝒟

1 (X, 𝜇1, 𝜇2)

are compatible with taking geometric parts and Galois actions on both sides.

Theorem 4.13. If an element of 𝐺𝐾 acts trivially on the groupoids Πℓ,𝐷𝜆
1 (𝑋0

𝜆𝐾 ,B
𝑟
𝜆) for every

𝜆 ∈ Λ ⊔ Λ′ then it acts trivially on the groupoid Πℓ,𝒟
1 (X𝐾 , (𝜇⃗)𝜇∈𝑀 ).

Proof. The main result of [GM71] paragraph 8.2.6 gives an equivalence of categories between
Rev𝒟(X) and a system of certain subcategories of the Rev𝒟𝜆(X𝜆) which yields that the funda-
mental groupoid Πℓ,𝒟

1 (X, (𝜇⃗)𝜇∈𝑀 ) is generated by the images of the 𝑝𝜆/X,𝜇1,𝜇2 for all 𝜆 ∈ Λ ⊔ Λ′

and 𝜇1, 𝜇2 ∈ 𝑀𝜆. This generation statement carries to the geometric parts by [IN97] Section 3.6.
The statement of the theorem now follows from Proposition 4.11. □

By Theorem 4.3.2 of [GM71] there is a canonical isomorphism

Πℓ,𝒟
1 (X, (𝜇⃗)𝜇∈𝑀 ) ≃ Πℓ,𝐷

1 (𝑋, (𝜇⃗)𝜇∈𝑀 )

where the right-hand side is isomorphic to Πℓ
1(𝑋𝜂 ∖ {(𝑄𝑣)𝑣∈𝑁}, (𝜇⃗)𝜇∈𝑀 ), and the choice of 𝜇⃗

defines compatible 𝐺𝐾-actions.

Corollary 4.14. We have the inclusion of ℓ-monodromy fixed fields 𝐾ℓ
𝑋𝜂

⊂ Qℓ
0,3.

Proof. For any 𝜇 ∈ 𝑀 and 𝜇⃗, coming from a tangential base point of 𝑋𝜂, and seen as a
fiber functor on Rev(𝑋𝜂 ∖ {(𝑄𝑣)𝑣∈𝑁}, we have the usual inclusion 𝐾ℓ

𝑋𝜂
⊂ 𝐾ℓ

𝜇⃗. The inclusion
𝐾ℓ
𝜇⃗ ⊂ Qℓ

0,3 follows by [IN97] Corollary 4.1.4 (ii). Indeed, by Theorem 3.5 an element of 𝐺𝐾
acts trivially on the groupoids Πℓ,𝐷𝜆

1 (𝑋0
𝜆𝐾 ,B

𝑟
𝜆), 𝜆 ∈ Λ ⊔ Λ′, if and only if it acts trivially on

the groupoid Π1(P1
Q ∖ {0, 1,∞},B). If so, it also acts trivially on Πℓ,𝒟

1 (X𝐾 , (𝜇⃗)𝜇∈𝑀 ) and thus on
Πℓ

1(𝑋𝜂 ∖ {(𝑄𝑣)𝑣∈𝑁}, (𝜇⃗)𝜇∈𝑀 ) by Theorem 4.13. □

For future use let us summarize the results of Section 4 in a statement that can be applied for
various well-chosen geometric constructions as in Section 3 of this paper.

Theorem 4.15. Let 𝑋/𝑆 be a stable curve with 𝑆 the spectrum of a discrete valuation ring with
residue field 𝐾 of characteristic 0. Let 𝐷 ⊂ 𝑋 be a normal crossing divisor containing 𝑋0 the
special fiber of 𝑋. Let us denote by 𝑋𝜂 the generic fiber of 𝑋 such that 𝑋𝜂, equipped with 𝐷𝜂,
is a proper smooth marked curve. Let (𝑋𝜆)𝜆∈Λ be the irreducible components of 𝑋0, which are
equipped with a divisor 𝐷𝜆 by pullback from 𝐷, and 𝑀 the set of double points of 𝑋0. Suppose
given for each 𝜇 ∈ 𝑀 a morphism

𝜇 : Spf 𝐾[[𝑇1, 𝑇2]] ≃ X𝜇 → X.

If 𝜎 ∈ 𝐺𝐾 acts trivially on Π𝐷𝜆
1 (𝑋𝜆, {𝜇⃗𝜆}{𝜇|𝜇∋𝜆}) for every 𝜆 ∈ Λ, then it acts trivially on

Π𝐷𝜂
1 (𝑋𝜂, {𝜇⃗}𝜇∈𝑀 ), where {𝜇⃗𝜆}{𝜇|𝜇∋𝜆} are the associated fiber functors of Rev𝐷𝜆 𝑋𝜆.
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5. Oda’s problem for Z/ℓZ-special loci
In the rest of this section, we fix a prime ℓ and specialize the previous study of this paper to the
case 𝐺 = Z/ℓZ to establish Oda’s prediction for Z/ℓZ-special loci – that is the ℓ-monodromy
fixed field Qℓ

𝑔,𝑚(Z/ℓZ)𝑘𝑟 is constant independent of the topological 𝑔, 𝑚 and Hurwitz 𝑘𝑟 data
and equal to Qℓ

0,3 – which provides a new proof of Oda’s original prediction, that is Qℓ
𝑔,𝑚 = Qℓ

0,3.

We proceed by considering two types of irreducible components ℳ𝑔,[𝑚](Z/ℓZ)𝑘𝑟, whose associated
monodromy fixed fields Qℓ

𝑔,𝑚(Z/ℓZ)𝑘𝑟 is compared to those of other components by the 𝐺-quotient
of Section 2.1 and the 𝐺-deformation of Section 3.4.

5.1. The case of proper special loci
Let us consider the case where ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 is such that the quotient loci is ℳ0,3, that is when
the quotient loci is proper. As the quotient map is itself quasi-finite and proper, the stack
ℳ𝑔,[𝑚](𝐺)𝑘𝑟 is proper if and only if it is the case of the stack of the quotient curves. In this
case, both stacks ℳ𝑔,[𝑚](𝐺)𝑘𝑟 and ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 are geometrically given by a single point and are
equal.
The following lemma enumerates the possible values of 𝑔, 𝑚 and 𝑘𝑟 that make this possible for a
Z/ℓZ-special loci in the étale quotient case.

Lemma 5.1. Assuming the ramified points are marked, the moduli space ℳ𝑔,[𝑚](Z/ℓZ)𝑘𝑟 is
proper in the following cases:

(i) 𝑔 = 0, 𝑚 = 2 + ℓ, 𝑘 = (1,−1);
(ii) 𝑔 = ℓ−1

2 , 𝑚 = 3, and the abstract Hurwitz data 𝑘 is free.

Proof. In the case of a quotient by Z/ℓZ the Hurwitz formula is
2𝑔 − 2 = (2𝑔′ − 2)ℓ+𝑁(ℓ− 1)

where 𝑁 is the number of ramified points, and setting 𝑔′ = 0 yields

𝑔 = (𝑁 − 2)(ℓ− 1
2 ).

Since the ramified points are assumed to be marked, we have 𝑁 ∈ {2, 3}, since the cases 𝑁 = 0
or 1 are not possible.
For 𝑁 = 2 we have 𝑔 = 0 and 𝑘 = (1,−1). The 𝑚 = 2 + ℓ marked points are given by two
ramified points and ℓ points permuted under the action of Z/ℓZ.
For 𝑁 = 3 we have 𝑔 = (ℓ− 1)/2 and the marked points are the ramified points. In this case,
there is no condition on the abstract Hurwitz data. □

Let us remark that the case 𝑁 = 3 (resp. 𝑁 = 2) is given by the Seyama curves (resp. the
𝐺-curves of genus 0) discussed in Section 3.2.

Theorem 5.2. For 𝑔,𝑚 ∈ N and compatible abstract Hurwitz data 𝑘𝑟 such that the stack
ℳ𝑔,[𝑚](Z/ℓZ)𝑘𝑟 is proper and non-empty, we have the equality

Qℓ
𝑔,[𝑚](Z/ℓZ)𝑘𝑟 = Qℓ

0,3.

Note that following our assumptions one as also Qℓ
𝑔,[𝑚](𝐺)𝑘𝑟 = Qℓ

𝑔,[𝑚](𝐺)𝜈𝑘𝑟.
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Proof. Corollary 2.14, see diagram below, gives the inclusions Qℓ
0,3 ⊂ Qℓ

𝑔,[𝑚](Z/ℓZ)𝑘𝑟 ⊂ Qℓ
𝑔,[𝑚](Z/ℓZ)𝜈𝑘𝑟.

Let us consider 𝑠 and the abstract Hurwitz data 𝑘𝑟𝑒𝑡, as defined in Proposition 2.7, and the
map ℳ𝑔,[𝑚](𝐺)𝑘𝑟 → ℳ𝑔,[𝑚+𝑠](𝐺)𝑘𝑟𝑒𝑡 which is finite. Thus ℳ𝑔,[𝑚](𝐺)𝑘𝑟 is proper if and only if
ℳ𝑔,[𝑚+𝑠](𝐺)𝑘𝑟𝑒𝑡 is, and it is sufficient to establish the reverse inclusion Qℓ

0,3 ⊃ Qℓ
𝑔,[𝑚](Z/ℓZ)𝑘𝑟 in

the étale quotient case, since Qℓ
𝑔,[𝑚](Z/ℓZ)𝑘𝑟 ⊂ Qℓ

𝑔,[𝑚+𝑠](Z/ℓZ)𝑘𝑟𝑒𝑡 by Theorem 2.8. In this case,
it follows from Lemma 5.1 that there is a 𝐾-point in the special loci that represents a curve 𝐶
isomorphic to either a Seyama curve or a 𝐺-curve of genus 0.
The result then follows from the inclusion Qℓ

𝑔,[𝑚](𝐺)𝑘𝑟 ⊂ Qℓ
𝐶 = Qℓ

0,3 obtained from Lemma 2.5
and Corollary 3.7. □

5.2. General conclusion
We can now establish the main result of this paper for prime cyclic special loci, which also
recovers Oda’s weak classical conjecture.

Theorem 5.3. For 𝑔,𝑚 ∈ N be such that 2𝑔 − 2 +𝑚 > 0 and compatible abstract Hurwitz data
𝑘𝑟 such that ℳ𝑔,[𝑚](Z/ℓZ)𝑘𝑟 is non-empty, we have Qℓ

𝑔,[𝑚](Z/ℓZ)𝑘𝑟 = Qℓ
0,3.

Proof. By Corollary 2.11 we can assume that the marked points contain the ramified points of
the 𝐺-action. Since Theorem 5.2 gives the equalities Qℓ

𝑔,[𝑚](Z/ℓZ)𝜈𝑘𝑟 = Qℓ
𝑔,[𝑚](Z/ℓZ)𝑘𝑟 = Qℓ

0,3 in
the case where ℳ𝑔,[𝑚](Z/ℓZ)𝑘𝑟 is proper, let us assume otherwise.

In this case, let us consider the 𝐺-stable diagram 𝑋0 over𝐾, with Card Λ⊔Λ′ ≥ 2, in the boundary
of ℳ𝑔,[𝑚](𝐺)𝜈𝑘𝑟 such as provided by Proposition 3.10. The stable curve 𝑋0 admits a formal defor-
mation X which is algebraizable into a scheme 𝑋 with generic fiber 𝑋𝜂 ∈ ℳ𝑔,[𝑚](Z/ℓZ)𝜈𝑘𝑟(𝐾((𝑇 )))
as given by Section 3.4.3. The groupoid Πℓ

1(𝑋𝜂 ∖ {(𝑄𝑣)𝑣∈𝑁}, (𝜇⃗)𝜇∈𝑀 ) is equipped with the tan-
gential Galois action of 𝐺𝐾 constructed in Section 4 coming from the choices of the fiber functors
(𝜇⃗)𝜇∈𝑀 . It results from Corollary 4.14 that 𝐾𝑋𝜂 ⊂ Qℓ

0,3.

It follows that Qℓ
𝑔,[𝑚](Z/ℓZ)𝜈𝑘𝑟 ⊂ Qℓ

0,3, since Qℓ
𝑔,[𝑚](Z/ℓZ)𝜈𝑘𝑟 ⊂ 𝐾𝑋𝜂 by Lemma 2.5, which concludes

the first statement by the diagram below Corollary 2.14. In short, we obtained

Qℓ
0,3 Qℓ

𝑔,𝑚 Qℓ
𝑔,[𝑚](Z/ℓZ)𝑘𝑟 Qℓ

𝑔,[𝑚](Z/ℓZ)𝜈𝑘𝑟 𝐾𝑋𝜂 Qℓ
0,3.

□
Recovering Oda’s weak conjecture relies on previous work of Nakamura and the consideration of
certain étale type loci in ℳ𝑔,[𝑚+𝑠](𝐺).

Corollary 5.4. For all 𝑔′,𝑚′ ∈ N such that 2𝑔′ − 2 +𝑚′ > 0 the equality Qℓ
𝑔′,𝑚′ = Qℓ

0,3 holds.

Proof. For every 𝑔′,𝑚′ ∈ N such that 2𝑔′ − 2 + 𝑚′ > 0, there are 𝑔,𝑚 ∈ N and a compatible
abstract Hurwitz data 𝑘𝑟 such that ℳ𝑔,[𝑚](Z/ℓZ)𝜈𝑘𝑟 is non-empty and (𝑔′,𝑚′) is the quotient
data. This non-emptiness assertion is obtained by Proposition 3.7 of [CM15].

(5.2.1)

Qℓ
𝑔,𝑚 Qℓ

𝑔,[𝑚](Z/ℓZ)𝑘𝑟 Qℓ
𝑔,[𝑚](Z/ℓZ)𝜈𝑘𝑟 Qℓ

𝑔,[𝑚+𝑠](Z/ℓZ)𝜈
𝑘𝑟et Qℓ

0,3

Qℓ
0,3 Qℓ

𝑔′,𝑚′ Qℓ
𝑔′,𝑚′+𝑠′
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From Proposition 2.7 there is a non-empty stack ℳ𝑔,[𝑚+𝑠](𝐺)𝑘𝑟et for some 𝑠 ≥ 0 with 𝑘𝑟et of
étale type by construction, and such that the quotient space is ℳ𝑔′,𝑚′+𝑠′ for some 𝑠′ ≥ 0. By
Theorem 2.13 we obtain the inclusion Qℓ

𝑔′,𝑚′+𝑠′ ⊂ Qℓ
𝑔,[𝑚+𝑠](𝐺)𝜈

𝑘𝑟et , then Qℓ
𝑔,[𝑚+𝑠](𝐺)𝜈

𝑘𝑟et ⊂ Qℓ
0,3

by Theorem 5.3. The conclusions follows by [Uen94] and [Tak12] which gives the inclusion
Qℓ
𝑔′,𝑚′ ⊂ Qℓ

𝑔′,𝑚′+𝑠′ with 𝑠′ ≥ 1, and finally by the inclusion Qℓ
0,3 ⊂ Qℓ

𝑔′,𝑚′ which is again
Theorem A of [Nak96], see Diag. 5.2.1 for a summary. □
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