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SIGN CONVENTION FOR A.-OPERATIONS IN BOTT-MORSE CASE

KAORU ONO

We give a definition of A-operations in Bott-Morse case (see Definition 2). Let L; be a relatively
spin collection of Lagrangian submanifolds, which intersects cleanly in (X,w). (The argument
presented here is also valid for immersed Lagrangian submanifolds.) Denote by R, a connected
component of L; and L;. (We also consider the case that ¢ = j.)

We use the convention on orientation on the fiber product (in the sense of Kuranishi structure)
as in Section 8.2 in [1]. In this note, the dimension of moduli spaces means their virtual dimension.
Let p: M — N be a fiber bundle with oriented relative tangent bundle. Rstrict the fiber bundle
to an open subset, we may assume that N is oriented. Then we give an orientation on M using
the isomorphism TM = p*T'N & Tgper M, where Thper M is the relative tangent bundle. Then our
convention of the integration along fibers of p: M — N is

/Nomplﬁ= /Mp*omﬁ,

where a € Q*(N) and S € Q*(M), We have the following properties.
o pi((p*0) A B) = O A (mB), where § € Q*(N) and 3 € Q*(M).
elet p: M — N and q : N — B be fiber bundles with oriented relative tangent bundles. For
B € Q*(M), we have
(gophB=qop(B).
Using them, we find that
(qoph(p™0 A B) = aq(0 App). (1)

We also have
e (base change) Let f: S — N be a smooth map (or a strongly smooth map between spaces with
Kuranishi structure). Denote by p : f*M — S the pull-back of the fiber bundle p : M — N and
fv: f*M — M the bundle map covering f. Then we have

f* opr =D Of*.
For the definition of the integration along fibers of weakly submersive strongly smoooth map in the
case of Kuranishi structure is given in Section 9.2 in [2]. We will use the Stokes type formula in
Theorem 9.28 in [2], the composition formula in Theorem 10.21 in [2]. See Chapter 27 in [2] in the
case with coefficients in local systems. In fact, the composition formula is a consequence of these
properties.

Let (¥, 0%) be a bordered Riemann surface ¥ of genus 0 and with connected boundary and z =
(20, ..., 2x) boundary marked points respecting the cyclic order on 9%. Let u : (X,0%) — (X,UL;)
be a smooth map such that u(z;z;41) C Li;, j mod k+ 1, u(z;) € Ry, where R, is a connected
component of L;,_, N L;,. For such u and v/, we introduce the equivalence relation ~ so that
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u ~u' when [w = [, wand (2) the Maslov indices of u and u’ are the same. Denote by B the
equivalence class.
Consider the moduli space

Mk+1(B;L1'O,...,Lik;Ram...Rak)

of bordered stable maps of genus 0, with connected boundary and (k+ 1) boundary marked points,
representing the class B.
Set L = (Ljy,...,L; ) and R = (Ra,, - - - Ra,,) and write

Mk+1(B9£7R) = Mk+1(B;Lio7"'7Lik;Ra07"'Rak)'

Denote by evf : My11(B; £;R) = Ra, the evaluation map at z;.

For a pair of Lagrangian submanifolds L, L’ which intersect cleanly, we constructed the O(1)-
local system ©p on R, in Proposition 8.1.1 in [1]. Here R, is a connected component of L N L',
In this note, we simply write it as Og,,.

We recall the construction of © g briefly. We assume that L, L’ are equipped with spin structures.
In the case of a relative spin pair, we take TX @ (W ® C) (on the 3-skeleton of X) instead of TX
and TL @ W, (resp. TL' & W) (on the 2-skeleton of L, (resp. L') instead of T'L, (resp. TL').
Then the argument goes in the same way. As written in Section 8.8 in [1], we consider the space
Pr,(TL,TL") of paths of oriented Lagrangian subspaces in T,X, p € R,, of the form A(¢) & R,
such that A\(0) & R = T,L and A(1) & Ry = T,L’. Here X is regarded as a path of Lagrangian
subspaces in Vg, = (T,L+T,L")/(T,L+T,L')*+ = (T,L+T,L")/(T,LNT,L"), which is a symplectic
vector space. Pick a compatible complex struture on it and consider the Dolbeault operator 9y on
Z_ = (D?N{Re 2z <0})U([0,00) x [0,1]).

We set u(Rq;A) = Index 5. The parity of p(Ra; ) is independent of the choice of A above,
since A ® T, R,, is a path of oriented subspaces with fixed end points, T,,L, T,L’, p € R, which are
oriented. Denote by p(Ra) = p(Ra; A) mod 2. Then we have

k
dim Myy1(B; £,R) = dim R, + p(Rag) = Y p(Ra,) +k =2 mod 2.
1=1

We have the determinant line bundle of {Index 0y} AePr, (TL,rL)- Pick a hermitian metric on
X. Denote by Pso(A @ T,R,) is the associated oriented orthogonal frame bundle of A & T}, R,.
Note that Pso(A @ TpRa)|t=0 and Pso(A & TR, )|i=1 are canonically identified with Pgo(L)|p
and Pso(L')|,, respectively. We glue the principal spin bundle Pgpin(A & TpR,) at t = 0,1 with
Pspin(L)|p, and Pspin(L')|,. There are two isomorphic classes of resulting spin structure on the
bundle TLU (A & T,R,) UTL on LU [0,1] U L', where p € L and p € L’ are identified with
0,1 € [0,1], respectively. This gives an O(1)-local system Ogpn on Pr, (T'L,TL"). Proposition
8.1.1 in [1] states that the tensor product det 9y ® Ogpin descends to an O(1)-local system Og_ on
R..

Then the relative spin structure for {L;}, namely relative spin structures for each L; with a
common oriented vector bundle W — X1 determines an isomorphism ®Z below.

(i) Case that k = 0. (L is an immersed Lagrangian submanifold with clean self intersection or
Ry, =1L)

P ev{f*@R% — evf*ORao ® O, (B;L)

(ii) Case that k = 1.

B . B Bx Bx
D7 1 evy *GRao — evy ORao ® OMQ(B;L;R) & evy ®Ra1'
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(iii) Case that k > 2.
b . evég*@Rao — evég*ORaU ® O,y (BiosR) @ forget™Opg,,, ® e”lB*GRal R ® evf*@R%.

Here M1 is the moduli space of bordered Riemann surfaces of genus 0, connected boundary and
(k+1) marked points on the boundary and forget : My1(B; L; R) — My sends [(Z, 0%, 2), u] to
[(2,0%,2)]. Here Or,, , Oam, ., (B:c;r) and O, ,, are orientation bundles of Ra,, Myt1(B; L;R)
and M1, respectively. We consider evjOr,,, ® O, (B;c;r) the orientation bundle of the relative
tangent bundle of evy : My41(B; L;R) — Ra,. In the notation in [1], we write

Mip1(B; LiR) = Ray X M1 (B; L5 R)
and
M1 (B LsR) = Myp1(B; L3R)° X Mg

These descriptions are considered as the splitting of tangent spaces. Using these notations, we have
€V00Ruy ® OMyir (BiLiR) = O o Myir (BiLiR)-

OMysr(B;ioiR) @ Forget Oy, = Opnyy, (BiLiR)o-

We give an orientation of My, = (9D?)*+1/Aut(D?,0D?) as the orientation of the quotient
space following the convention (8.2.1.2) in [1]. Then the orientation bundle of My11(B;L;R)
is canonically isomorphic to the one of My41(B;£L;R)°. Hence, for u = [u : (3,0%,2) —
(X,UrerL,Ug, crRa)], the relative spin structure of £, local sections o, of O(1)-local systems
O, around u(z;), i = 0,1,...,k, determines a local orientation of the relative tangent bundle of
evf + Myy1(B;L;R) — Rq, at u, ie., the kernel of TyuMyy1(B; L;R) — Ty(zg)Ray, which is
denoted by 0(0ag;Tays---s0ay)-

Remark 1. When k£ = 0 and R,, = L, the orientation on M (B; L) is given in Section 8.4.1 in [1]
When k = 1, the orientation bundle of Mz (B; L;R) is given in Proposition 8.8.6 in [1]. Note that
@EQ ® OR,, ® Of_ is canonically trivialized. We write Or, = ©F in this note.

Hence Theorem 27.1 in [2] gives
(evg)ro (ev™ x -+ x ™) : Q' (Ray; O, ) @+ ® O (Rayi: O, ) = ' (Ragi O, )

Namely, for §; = (; ® 04, € X (Ra,;04,), i =1,...,k, we define

(evB)o(evP* x - x e )G ®0ay,. G @ 0a,)
= (eUOB;0(0-060;0-0417'--7Uak)>g(ele*C1 /\"'/\eka*Ck) ®UU(¥0- (2)
Here (ev(’f; 0(Cay; Tayy-- - ,aak))! is the integration along fibers with respect to the relative ori-

entation 0(0ay;0ay,---50q;) Of Mpit1(B;L;R) — Ry, Note that the right hand side of (2) does
not depends on o,,, since o,, appears twice in the right hand side of (2), and gives a differential
form on R,, with coefficients in O,,. For general &; € Q*(R,,;©,,), we use partitions of unity on
R, and extend the definition of m; multi-linearly.

For £ € Q*(R4; 0 ), we define the shifted degree

[€" = deg & + p(Ra) — 1.
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Definition 2. We set mg o = 0, m(; 0)¢ = d§ on @ Q*(Rq4; Or,,), i.e., the de Rham differential on

differential forms with coefficients in the local system ©g_. For (k, B) # (1,0),

me s ) = (1) 8 (evg o (eof x - x enf) (6 ® L., ®E),

where &; € Q" (R,,; 04,) and

6(51,---7§k)={z<2+2u ) degfi—l)}+1_

=1

In the rest of this note, we show the filtered A-relations. Denote by ty, g the extension of my g
as a coderivation with respect to the shifted degree | e |". We compute mys g o iy gr. Clearly,,
myoomyo = 0. We consider the case that (k’,B’) = (1,0) or (¥”,B"”) = (1,0). Namely, for

(k,B) # (1,0), we have

. <. —~
M- 1 ]
[ -

myoompp(ér,. .., &) D)€ 8d(evg )i (evf €1 A A evid ")

mg B © ﬁ1170(£1, A 7§k) = (71)22{7;i ‘5P|/mk73(§1, ey dfj, . ;gk)

(_1)2;1 1€l Fe(Erse.,dEy, ék)(eu ) (ewl €A evf*dfj A

= (1 C 8t o yd(eof A - Ao Er)

Here we note that

j—1

Sl +e, .. dg. . )
p=1

Zdeg§p+§j (Ra,) = 1) + €61, &) + ]+ZI~L

Zdeg &, +e(€,..., &) + 1 mod 2.

A ev,f*fk)

(4)

O‘p

In order to compute my g/ o Wy~ pr, we discuss the relation between the orientation bun-
dle of My (B L R),, 5 X B M1 (B"; L7, R") and the orientation bundle of the bound-
J

ary of OMyy1(B;L;R). The codimension 1 boundary of the moduli space Myy1(B;L;R) is

the union of the fiber products of My 1(B'; L;R') and Myy1(B”; L7 R"”) with respect
evB : My 1 (B L;R') = Ry and evl” : My 1 (B, L";R") — R,, where

L= (Ligse s Liy s Ly s L) £ = (Liy_ysee L))
R/ = (Ra07 R Raj_lvRa, Rozj+k// 9ty Rak)aR” = (ROH ROéj" o Raij+k//71)
over j =1,...,k, k', k" such that &' +- k" = k + 1, R, a connected component of L;;, , N L;

all possible decomposition of B into B’ and B”.

to

-1,
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Denote by Sw the exchange of Or, ®---® 93%—1 and Or, ® OMk,,H(Bu;U;Ru)o with the sign
(—1)%, where

j—1

(51 = (Z ,u(Rap))(dim Mk//+1(BI/; ,CN;'RN) — dim Ra — dim Mk//+1)
p=1
i—1 j+k"—1
= (Z 11(Ra,)) (1(Ra) — Z #1(Rq,)) mod 2.
p=1 p=J

Comparing &8 and Swo (id® - ®id @ ®8" @id @ --- ® id) o ®B', we find that
OMyi1(BieR)ye = OmMya(Brizrrye @ ORy, @ Opny,y (B7:L5R7)0

is (—1)%-orientation preserving!. Here My 1(B’;£';R’)° is the moduli space of bordered stable
maps with a fixed domain bordered Riemann surface with fixed boundary marked points. The
O(1)-local system O uy, , , (B/;27:R")° @OR, @O, ,(B7;c;Re 1S the orientation bundle of the fiber
product My41(B"s L' R')? X gy M1 (B"; L7, R")°, which is the moduli space of bordered
stable maps with a fixed botindary nodal Riemann surface wth fixed boundary marked points.

Now we compare M 41(B; L;R) = O(Myy1(B; L;R)° x Myq1) and My 11 (B3 L5 R) 5 X 5"
Mk'/+1(B”§ E”;RH) = (Mk’+1(BI; E/;R/)O X Mkurl)evB/ Xev[})g// (Mk:”Jrl(B//; E//; R”)O « Mk”Jrl)-

J
We note that On, ., (Bicir) = Rout @ Ogamy,,(Bic;r)- Here Ry is the normal bundle of the
boundary oriented by the outer normal vector.

We pick local flat sections o4y, .., 00,04 of O(1)-local systems O, ,...,Or,, ,Or, and a
local orientation og, —of Rq, around u(zp). Then we can equip My11(B; L;R), Myry1(B's L R')
and the relative tangent bundle of ev®” : M w1 (B L7 R") — R, with local orientations induced
by them. Then a local orientation of My11(B;L;R) = Ray X° My41(B; L£;R) is given by og,, X
0(Fag; Tays- -+ 0ay)- As the fiber product of spaces with Kuranishi structures equipped with local
orieentations,

Mk’+1(B/; El, R/)SUB’ XSU(})B” Mk;”+1(B//; £Il; R/l) — Mk/+1(B/; El, R/) X OM](;”+1(B//; £II; R//)
J
is locally oriented by

).
NWe fix zop = +1ﬁj = —1 and consider the spaces of J-holomorphic maps /,qu(B;E,R),
M1 (B LR, M1 (B”; L R”) such that
Mis1(Bi L R) = My (B £/, R') /R,
Mys1 (B L5 R) = My ia (B3 £/ R') /Ry,

ORpy X O(OR, 5 ORG s+ ORa, ,+ORa:OR . ,JR%) X O(JRQ;URQJ_ ,...,OR

Gkt k! -1

and
Mk”—H (B//; ,C”; RH) _ Mk”+1 (BH; ﬁ,// R//)/RBH.
We may also write
M1 (B; £;R) = Myy1(B; L, R) x R, etc.,
as oriented spaces.

1(—1)—0rientation preserving means orientation reversing.
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The case that zg = +1, 21 = —1 is discussed in page 699 of [1]. The case that zp = +1, zj=—1

differs from the case that zp = +1,2; = —1 by an additional factor (—1)7~! as below.
Note that
. _ j—1 jH+k"—1 k
Mini(BiLiR) = (<17 Mt (Bi i R)” x [[(0D)z < [ (0D): x [T (0D)..
i=1 i=j+1 i=j+k"
where zp = +1,2; = —1,
- _ j—1 k
M1 (B LR = (1) My (B LR x [[(0D)., x [ (0D)-,,
i=1 i=j 4k
where 2 = +1,2} = —1, and
. j+k2”71
Mk//+1(BH;£N;RN) _ Mk”+1(BN;£;H R//)o % H (5D)21,
i=j+1
where 2z = +1,2{ = —1.

Remark 3. We have

j—1 Jj+k"—1 k
(=1 [I@D). x I ©@D).; x [ (@D).; = Mey1 x Rg
=1 i=j+1 i=j+k"’
ol k
(=1 ' [[@D):, x [] (9D)z, = Mys1 x R
i=1 i=j+k"
and
j-‘y—k”—l
H (8D)zl = Mk“+1 X RBN.
i=j+1

Marked points of My 41(B’; £L';R') and Myv41(B”; L;”" R") are related to marked points of
M 41(B; L;R) in the following way.

(26,...,212,) = (Zo,...,Zj,1,2§72j+ku,...,Zk)7
(2021 s zpn) = (20 %y« + v s Zjphrr—1)-

Here z§ and z{ are identified, i.e., the boundary node of the domain curve of an element in
Mi1(B; L;R).
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Then we find that

M1 (BiLR) = (1) (M1 (B L5R)° X gy x M1 (B"; L7 R")°) x
j-‘rk”—l

i-1 k
(-1t [I@p). < I @p)x I @D,

i=j+1 i=j k"

j—1 k
= (=122 (M1 (B LR x (1) [ (0D)-, x [ (9D)-,)
i=1 i=j+k
j-‘rk”—l
XRa (Mk//+1(B//; LH;RH)O X H ((‘3D)ZZ)
i=j+1
— (71)51+52 (Mk’—}-l(BI;E/,RI) X RB/) XRD{ X(Mk//+1(B//;£//;R,/) X RB”)
— (_1)61+52+63RB’—B” % (Mk’-i-l(B/;[:/;R/) X R., XMk"+1(B//;£;// R//))

XRB/+B//
— (_1)61+52+53R0ut x (Mk/.,.l(B/;ﬁ/;R/) XR., XMk//+1(B//;£;// R//))
XRB; (5)
where
8 = (K" —1)(K —j)+ (K — 1) (dim Myr11(B"; £ R")° — dim R,),

53 dim My 41(B'; L' R).

Rp_p» and Rp/yp» are the oriented lines spanned by (1,—1),(1,1) € Rp, & Rpr, respectively.
Note that the ordered bases (1,0),(0,1) and (1, —1),(1,1) give the same orientation of Rg ® Rp,
Rp/_p» and Rp 4 g~ are identified with R,,; and Rp, respectively.

Here is an explanation of the second equality, i.e., the appearance of (—1)%. By the convention
in Section 8.2 in [1], we have

M1 (B LR X g, x My (B"; L5 R")°
M]g’Jr]_(B/;EI;R/)OO X Ra X OM’C”+1(B//;£;// 7?,//)07
— Mk/+1(B/;£/;R/)O X oMk”+1(B/l;£;// RH)O
where
M1 (B L R)® = My (B L5 R')°° X Ra,
and

M1 (B L' R")° = Ro X °Mynya(B"; L' R")°.
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Using these notations, we have

j—1 k J+k -1
(Mi41(B5 LR x g, x My (B £ R")°) x [[0D)., x [] ©@D)., x ] (0D).,
i=1 i=j+k! i=j+1
j—1 jE—1 k
= ()" (M (B L5R)° X, xMypraa (B L' R")°) x [[(0D)=, x [ (@D)., x [] (0D,
i=1 i=j+1 i=j+k"
j—1 J+k”—1 k
= (1) (Mp1(B5 LR x My (B L' R")°) x < [ @D).,x [ (@D)-,
=1 i=j+1 i=j+k"
j—1 jH+E" -1 k
= ()" M (B LR x [[0D)., x [[ (0D)., x *Myrga (B L R")° x [[ (0D)-,
i=1 i=j+1 i= k!
i—1 k j+k"—1
= ()" (M (B5L5R)° x [[0D). x [] (0D)2) xr, (Mrraa (B £75R")° < [ (9D)-),
i=1 1=j+k" 1=j+1
where y; = (K" —1)(k'—j), i.e., (1) is the sign of exchange of (zj &7, ..., 2k) and (2j41,. .., Zjykr—1)s

and v = dim ( My (B L5 T\’,”)o) (dim M1 + 1). Then d = v1 + V2.
Now we return to the discussion on local orientations of the orientation bundle of
M1 (B LR, 6 X ey B M1 (B L7 R”) and OMg41(B; L;R). Recall that

M1 (B L5R) = Myyo1(B's £, R') x Rp. (6)

Set k = 01 + 02 + 03. Comparing (5) and (6), we have

(1) M1 (B LR o X e Mira (B L7 R") C OMiqa (B L R). (7)
We have
gk -1 j—1 GE—1
po= (K =D =D+ E =D (R = D nBa,)) + QO n(Ra,)) (1(Ra) = Y #(Re,)
p=j p=1 p=j
j—1 k
+dim Rq, + p(Ra,) — (Z 1(Ra,) + p(Ra) + Z N(Rap)) + K.
p:l p:j+k)//

From (1) in the setting of Kuranishi structures, (7), (1) and the base change formula for inte-
gration along fibers, we find that

j—1 k j+k"—1
(ev(?|8Mk+1(B;£;R); 80(0040;0041 IR UOZk))[(H eUiB* X H eUiB* X H e'UiB*)
= i=j4k! i=j
’
= (—1)“(61}5 10(0agiOayy s 0a; 15 0a; Ty s Uak))!

-1 X k'
B'x B'x B’* B" . "%
o Hevi X H evy * X <evj o (evy ;0(0a;0a;,---, 1) Hev >
i=1

i=j+1
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as operations applied to (S121¢;) ® (@K, pns) ® (@K' 71¢,), where & = ¢ ® 0ayi = 1,...k.
Here 90(0ay; 0ays - - - > Oy )? is the orientation of the relative tangent bundle My, 41 (B; L;R) — Ra,
induced from 0(0ag; Tays---sTay)-
Namely, for u € OM1(B; L;R), 0(Cag; Tays- -+ 0ay) Of Miy1(B; L;R) and 00(04;0ays - -+ 0ay)
of the relative tangent bundle of OMy41(B; L;R) — Ry, are related as follows: we write
TuMk-i-l(B; E; R) = Rout X TuaMk-l-l (B; [,; R)
TuMp41(B; L;R) = Ty(z0) Ray X Tu *Mpi11(B; L;R)
Then, under the following identification
Rout X TuaMk-&-l(B; ‘Cv R) = Rout ¥ Tu(zg)Rao X Ty oaMk-i-l(B; £7 R)a
we define IMy.11(B; L;R) — Ry, by

OR,, X 0(0ag; Tays -3 0a;) = Rout X 0R, X 00(0agi0ay,-- -, 0ay).
Note that
evB orB,, i=1,...,5—1,
eUiB|6Mk+1(B;L‘;R) =< ev fﬁlowgm i=J,...,J+k" =1
k,,+1o7rg,, 1=3+k", ...k,

where Wg/ and Wg,, are projections from the ﬁber product My y1(B’; L'; R/)evB' X cup” My 1 (B"; L7 R
vB' e
to Myp11(B; LR and My (B”; L7, R"), respectively. Note that o, appears twice and the
right hand side of (8) does not depends on the choice of local section o, of the O(1)-local system
O4.
Next, we compute my g o Wy gr with (', B') # (1,0), (k”,B”) # (1,0). Armed with (8), we
regard &, ¢ =1,...,k as differential forms on R,, in the computation below.

M=

A i—1 ¢ |7
My B Omk”,B”(&la"-agk) = (_1)25:1 1€l mk'7B'(£17"'7mk//,B”(§ja-~-a§j+k”—1),--.7§]§)
j=1
k
= Z( 1)% (ev® ) (evl ELA A evafigj,l
j=1
/\evf *((evd ) (evP " & N A evd, “Cianr—1) A Aevp *€k>
= (0P e T e A AT )
= (=% (ol o (Bioir) 1 (€T EL A L v &) (9)
where

j-1
0g = Z &l + (€, mpn B (&G Ejrr—1), o &) F (€ k1)

i=1
Jj+k -1
1"
05 = (W(Ra) = Y p(Ra,) +E" - Z deg &),
=7 i=j+k"
280(aa0;aa1,...,aak) is not the boundary orientation of 9 °Myy1(B;L;R) induced from the orientation

0(0ag;0ary---s0ay) of °Mpi1(B; L;R). They differ by (—1)dim Rag
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and evj(B, B s My (B LR ev X gy M1 (B L7 R") = Ry, is the evaluation map at
the j-th marked point on the fiber product My 1(B’; L'; Rl)evﬁ’ X o My (B"; L7, R"). Here

the numbering of the marked points is the same as that on My41(B;L;R). The appearance of
(—1)% above is due to (1) and the composition formula (Theorem 10.21 in [2]). Namely, we have

(evég) <ev1 ELN- /\ev 161 /\ev ((ev(?”) (evP” €N .Aev,ﬁ,”*gj+k,/_1)

’ !
NevP & gk Ao N evp *fk>

= (=)™ (evd)y ((6"01’3'*51 NP re A evBlig o A ev )
NevP o (evf " Vi(evf & A Aevf € 1)

= ()™ (exd )y (( FrE A A e”JB—/%igj—l NevPliE i pr - N evfl "&)
A )y o whn(evB ™ &5 A A evB) €5 1)

= (=™ (ev(?) o (mp) (TrB,(evl E A A evBiE 1 N evBliE e A evE e
/\7"3”(@”1 & A -/\evk,, §j+k,/ 1))

= (="t (el onp), (7TB/ (evP & A A ev] 1§J 1) A (ev?” EA A 67};57*53‘%//,1)
T (VP - Aevf &)

= (=1 ey el e A e,

where 71 = ((( f+]k “deg &) + (ug, — f:jk (R, + K — ))(z:iC e deg &) and ny =

(Zﬁ‘k ! deg fl)(Zi:jJrk“ deg &). Then 65 = g + 2 = (w(Ra) — Zj+k ! u(Ra W)+ K —

2)(2‘—3‘ L deg &:). The second equality is a consequence of the base change formula for inte-

gration along fibers, i.e., evB o (evf" ) = (np/)y 0 7. The third equality follows from (1). Note

that
ev? onB, i=0,1,...,5—1,
evZ(B’B)z evf_l;ﬂowg,,, i=7...,5+k"—1
e’Ui,k/q,lB/ Oﬁg/, 7 :]+ k/’/l,. . .7]€.
We find that
k k
04 +05+Kk = 6(517...7§k)+1+k+2degfl—l—dlmRom—&—p o) Z,u
i=1 p=1
k
= €&, &) + L+ dim My (B LR) + ) deg & mod 2
i=1

Using Theorem 27.2 in [2], we have
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d(e’ug)g(ele*fl Ao A evf*fk)
= (evgg)gd(ele*fl Ao A evf*fk)
+(71)dim Mig1(BLR)+30F | deg & (ev(l)g|6Mk+1(B;L;R))!(eU{3*§1 A A evf*ﬁk). (10)

Combining (3), (4), (9), (10), we have

mygomg g(&,..., &) +mg g omo(&,. .., &)
+ Z:(lc’,B'),(lc”,B”)aé(l,o) My g 0 Wy g (€1, -, k) = 0.
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