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Abstract

Semi-graphs of anabelioids of PSC-type and their PSC-fundamental
groups (i.e., a combinatorial Galois-category-theoretic abstraction of
pointed stable curves over algebraically closed fields of characteristic
zero and their fundamental groups) are central objects in the study
of combinatorial anabelian geometry. In the present series of papers,
which consists of two successive works, we investigate combinatorial
anabelian geometry of (not necessarily bijective) continuous homomor-
phisms between PSC-fundamental groups. This contrasts with previ-
ous researches, which focused only on continuous isomorphisms. More
specifically, our main results of the present series of papers roughly
state that, if a continuous homomorphism between PSC-fundamental
groups is compatible with certain outer representations, then it satis-
fies a certain “group-theoretic compatibility property”, i.e., the prop-
erty that each of the images via the continuous homomorphism of
certain VCN-subgroups of the domain are included in certain VCN-
subgroups of the codomain. Such results may be considered as Hom-
versions of the combinatorial version of the Grothendieck conjecture
established in some previous works. As in the case of previous works
(i.e., the Isom-versions), the proof requires different techniques de-
pending on the types of outer representations under consideration.
In the present paper, we will treat the case where the outer repre-
sentations under consideration are assumed to be “l-graphically full”,
i.e., to satisfy a certain condition concerning “weights” considered
with respect to the “l-adic cyclotomic character”, where l is a certain
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prime number. In addition, to prepare for this purpose, we include
detailed expositions on “reduction techniques”, namely, techniques of
reduction to the maximal pro-Σ quotients and to the abelianizations
of (various open subgroups of) the PSC-fundamental groups under
consideration, where Σ is a certain set of prime numbers. Though
the discussions of these “reduction techniques” are all essentially well-
known to experts, we present the results in a highly unified/generalized
fashion.

Contents

0 Notations and Conventions 8

1 Preliminaries 9

2 Reduction to the Case of a Smaller Set of Prime Numbers 19

3 Filtration-preservation and Group-theoretic Compatibility 28

4 Hom-version of the Combinatorial Grothendieck Conjecture
for Graphically Full Outer Representations 34

Introduction

Semi-graphs of anabelioids of PSC-type and their PSC-fundamental groups
are central objects in the study of combinatorial anabelian geometry. In the
present series of papers, which consists of two successive works, we investi-
gate combinatorial anabelian geometry of (not necessarily bijective) continu-
ous homomorphisms between PSC-fundamental groups. This contrasts with
previous researches, which focused only on continuous isomorphisms. More
specifically, our main results (cf. Theorem B below, [HmCbGCII], Theo-
rem A, [HmCbGCII], Theorem B, and [HmCbGCII], Theorem C) roughly
state that, if a continuous homomorphism between PSC-fundamental groups
is compatible with certain outer representations, then it satisfies a certain
“group-theoretic compatibility property”. Such results may be considered
as Hom-versions of the combinatorial version of the Grothendieck conjecture
established in some previous works.

2



To begin with, we roughly explain our basic setting. The references
are [SemiAn] and [CbGC]. We shall refer to as a semi-graph a triple G =
(V,E, f), where V is a set, E is a set each of whose element is itself a set
consisting of precisely two elements, and f : qe∈E e −→ V q {undefined},
where {undefined} is a singleton whose unique element is a formal symbol
“undefined”. Here, we think of V (resp. E; an element b of an element e of E;
f) as the set of vertices of G (resp. the set of edges of G; a branch of the edge
e; determining the abutment relation). Note that it is allowed that a branch
of an edge abuts (not to a vertex but) to “undefined”, i.e., abuts nowhere.
The vertices and the edges of a semi-graph G are collectively referred to as
the components of G. An edge of a semi-graph is said to be closed if both of
the two branches abut to some vertex. An edge of a semi-graph is said to be
open if it is not closed. Then a semi-graph of anabelioids is, by definition,
a semi-graph equipped with a Galois category on each component, together
with “an exact functor from the vertex to the edge” on each branch that
abuts to a vertex (i.e., that does not abut to “undefined”).

Let X be a pointed stable curve over an algebraically closed field of char-
acteristic zero and Σ a non-empty set of prime numbers. Then X and Σ
determine a semi-graph of anabelioids GΣ

X , which we call “a semi-graph of
anabelioids of pro-Σ PSC-type associated to X”, roughly as follows. The un-
derlying semi-graph of GΣ

X is the dual semi-graph of X, i.e., the semi-graph
whose vertices (resp. closed edges; open edges) are the irreducible compo-
nents (resp. the nodes, i.e., the singular points; the cusps, i.e., the marked
points) of X, and the Galois category on each vertex v is the Galois cate-
gory of finite étale coverings of the complement of the cusps in the regular
locus of the irreducible component of X corresponding to v whose “Galois
closure” has degree a number the prime factors of which belong to Σ. We
omit the detail of the Galois categories on edges, but we mention that the
construction is similar to the construction in the case of vertices and that
their fundamental groups are all isomorphic to the maximal pro-Σ quotient
ẐΣ of Ẑ.

Next, let G be a semi-graph of anabelioids of pro-Σ PSC-type, i.e., a semi-
garph of anabelioids which is isomorphic, in the evident sense, to the “GΣ

X” for
someX and Σ introduced above. Then we define the PSC-fundamental group
ΠG of G as the profinite group Aut(G̃/G)op, where G̃ −→ G is a fixed “pro-Σ
universal covering”, which we omit the explanation here (cf. the discussion

preceding [NodNon], Definition 1.1). We shall write Vert(G̃) (resp. Edge(G̃);
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VCN(G̃)) for the set of vertices (resp. edges; components) of G̃. Then we

have a natural right action of ΠG on VCN(G̃). For every c̃ ∈ VCN(G̃), we
shall write Πc̃ ⊂ ΠG for the stabilizer subgroup of c̃. If c̃ is a vertex (resp.
a closed edge; an open edge; arbitrary), then Πc̃ is said to be a verticial
subgroup (resp. a nodal subgroup; a cuspidal subgroup; a VCN-subgroup)

of ΠG. An important fact is that the map from VCN(G̃) to the set of VCN-
subgroups of ΠG defined by c̃ 7−→ Πc̃ is bijective (cf. Lemma 1.3, (2)).

Primitively, an anabelian geometer is interested in the following naive
question.

Question: to what extent the geometric information of an ob-
ject may be recovered from the group-theoretic information of its
fundamental group?

In the context of combinatorial anabelian geometry, one sometimes takes
the “object” in the above question to be a semi-graph of anabelioids of pro-
Σ PSC-type. Among the various results obtained in the previous research
in this realm, the combinatorial version of the Grothendieck conjecture (or
“the combinatorial Grothendieck conjecture” for short), which is an analogue
of (a certain version of) the original arithmetic Grothendieck conjecture, is
of particular interest and importance. Indeed, it is, on the one hand, a cer-
tain Galois-category-theoretic unified abstraction of some techniques in arith-
metic anabelian geometry of hyperbolic curves (cf., e.g., the paragraph that
starts with “The original motivation for...” in [CbGC], Introduction) and,
on the other hand, a basic tool in the study of algebro-geometric anabelian
geometry of configuration spaces of hyperbolic curves (cf., e.g., the proof of
[NodNon], Theorem 6.1). The combinatorial Grothendieck conjecture states
roughly that, if a continuous isomorphism between PSC-fundamental groups
is compatible with certain outer representations, then the isomorphism under
consideration preserves certain VCN-subgroups. To be more brief, it states
that certain information of VCN-subgroups of a PSC-fundamental group is
recovered from a certain outer representation on the PSC-fundamental group.
Various versions of the combinatorial Grothendieck conjecture are obtained
in [CbGC], [NodNon], and [CbTpII].

Considering the intriguing nature and significance of the combinatorial
Grothendieck conjecture, it is natural to contemplate its new variants and
generalizations. This is precisely the aim of the present series of papers.
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More specifically, in the present series of papers, we will examine the extent to
which one may generalize the combinatorial Grothendieck conjecture to (pos-
sibly non-bijective) continuous homomorphisms between PSC-fundamental
groups, i.e., the extent to which one may establish certain “Hom-versions”
of the combinatorial Grothendieck conjecture. Here, we should mention the
general context that the anabelian geometers are interested also in Hom-
versions of the original arithmetic Grothendieck conjecture.

Let G and H be semi-graphs of anabelioids of PSC-type, α : ΠG −→ ΠH a
continuous homomorphism, S ⊂ Vert(G̃), and T ⊂ Vert(H̃). Then we shall
say that α is (S, T )-compatible if, for every c̃ ∈ S, either α(Πc̃) = 1 or there
exists d̃ ∈ T such that α(Πc̃) ⊂ Πd̃. The properties of being (S, T )-compatible
for some S, T are collectively referred to as the group-theoretic compatibility
properties. The Hom-versions of the combinatorial Grothendieck conjecture
established in the present series of papers provide us with various sufficient
conditions for certain group-theoretic compatibility properties of continuous
homomorphisms between PSC-fundamental groups.

In §1, we review some basic knowledge of semi-graphs of anabelioids of
PSC-type, and we define several new terminologies some of which play central
roles in the present series of papers. In particular, we define the notion of
group-theoretic compatibility properties introduced above.

In §2, we give a detailed exposition of a well-known “reduction tech-
nique”, namely, reduction to the maximal pro-Σ quotients of (various open
subgroups of) the PSC-fundamental groups under consideration, where Σ is
a certain set of prime numbers. We also examine the extent to which these
reduction techniques may be applied to our Hom-version situation. Though
the discussions in §2 are all essentially well-known to experts, the results are
formulated in a highly unified fashion.

In §3, we apply the technique established in §2 to verify another “re-
duction technique” which is also well-known to experts, namely, reduction
to the abelianizations of (various open subgroups of) the PSC-fundamental
groups under consideration. As a result, we verify the following highly unified
generalization of this technique to our Hom-version situation.

Theorem A (Theorem 3.2). Let G be a semi-graph of anabelioids of pro-ΣG
PSC-type, H a semi-graph of anabelioids of pro-ΣH PSC-type, α : ΠG −→ ΠH
a continuous homomorphism between their PSC-fundamental groups, S ⊂
VCN(G̃), and T ⊂ VCN(H̃). Let us consider the following three conditions,
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where the closures S and T are taken with respect to the natural profinite
topology of VCN(G̃) and VCN(H̃):

(i) α is (S, T )-compatible.

(ii) α is (S, T )-filtration-preserving (cf. Definition 1.7, (2)). That is to
say, roughly speaking, for every open subgroup U ⊂ ΠH, the image of
the “S-like” submodule of the abelianization α−1(U)ab via the induced
homomorphism α−1(U)ab −→ Uab is included in the “T -like” submodule
of the abelianization Uab.

(iii) α is (S, T )-compatible.

Then the implications (i) =⇒ (ii) =⇒ (iii) holds. In particular, if we
suppose further that S = S and T = T , then the conditions above are all
equivalent.

We observe that Theorem A may be considered as a unified generalized
Hom-version of [CbGC], Theorem 1.6, (ii).

Finally, in §4, we apply the techniques established in §2 and §3 to obtain
a Hom-version of the combinatorial version of the Grothendieck conjecture,
where the outer representations under consideration are assumed to be “l-
graphically full”, i.e., to satisfy a certain condition concerning “weights”
considered with respect to the “l-adic cyclotomic character”, where l is a
certain prime number (cf. [CbGC], Definition 2.3, (iii)). In general, an outer
representation of a profinite group I on another profinite group G is defined
to be a continuous homomorphism I −→ Out(G), where Out(G) denotes the
group of continuous outer automorphisms of G equipped with the topology
induced by the compact-open topology on Aut(G), the group of continuous
automorphisms of G. It is well-known (and not difficult to see) that, if G is
topologically finitely generated, then Aut(G), hence also Out(G), is profinite.
If ρ : I −→ Out(G) is an outer representation of a profinite group I on a
profinite topologically finitely generated group G which is center-free, then,
by pulling back the natural exact sequence of profinite groups and continuous
homomorphisms

1 // G // Aut(G) // Out(G) // 1,

where the injection G −→ Aut(G) is given by g 7−→ (h 7−→ ghg−1) (cf.
the assumption that G is center-free), via the continuous homomorphism
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ρ : I −→ Out(G), we obtain an exact sequence of profinite groups and con-
tinuous homomorphisms

1 // G // G
out
o I // I // 1.

In light of these observations, our main result is formulated as follows.

Theorem B (Theorem 4.4). Let I and J be profinite groups, G a semi-
graph of anabelioids of pro-ΣG PSC-type, H a semi-graph of anabelioids of
pro-ΣH PSC-type, and ρI : I −→ Out(ΠG) and ρJ : J −→ Out(ΠH) outer
representations such that the images of ρI and ρJ are respectively included
in Aut(G) ⊂ Out(ΠG) and Aut(H) ⊂ Out(ΠH), where the usage of the sym-
bol “⊂” is a slight abuse of notation (cf. the discussion preceding [CbGC],
Lemma 2.1). Let us consider the following commutative diagram of profinite
groups and continuous homomorphisms:

1 // ΠG //

α

��

ΠG
out
o I //

α̃
��

I //

β

��

1

1 // ΠH // ΠH
out
o J // J // 1,

where the two horizontal sequences are the respective exact sequences associ-
ated to ρI and to ρJ (cf. the discussion preceding the present theorem; also
[CbGC], Remark 1.1.3, for the fact that ΠG and ΠH are topologically finitely

generated and center-free). Let □ ∈ {Vert,Edge} and S ⊂ □(G̃). Suppose
further that there exists l ∈ ΣG ∩ ΣH for which the following four conditions
hold.

(i) For every c̃ ∈ S, there exists an open subgroup U ⊂ ΠH such that the
image of α(Πc̃) ∩ U via the natural surjection U −↠ U (l) ∼= Π(H′)(l)

is non-trivial, where the supersprict “(l)” denotes the maximal pro-l
quotient.

(ii) I is l-graphically full with respect to the outer representation ρI : I −→
Aut(G) (cf. [CbGC], Definition 2.3, (iii)).

(iii) I is l-graphically full with respect to the outer representation ρJ◦β : I −→
Aut(H) (cf. [CbGC], Definition 2.3, (iii)).
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(iv) If, moreover, □ = Edge, then the two cyclotomic characters I −→ Z×
l

associated to ρI : I −→ Aut(G) and to ρJ ◦ β : I −→ Aut(H) coincide.

Then α is
(
S,□(H̃)

)
-compatible.

Though the appearance of Theorem B is slightly different from that of
Theorem 4.4, it is immediate that the these are essentially the same. Theorem
B, along with its proof, can be considered as a Hom-version of [CbGC],
Corollary 2.7, (ii). Also, it is possible to verify [CbGC], Corollary 2.7, (ii),
utilizing Theorem B, albeit not straightforwardly (cf. the assumption (iv) of
Theorem B; Remark 4.4.1).

0 Notations and Conventions

Numbers

N>0 denotes the set or the (multiplicative) monoid of positive rational
integers. Z denotes the set or the (additive) group of rational integers. Q
denotes the set of rational numbers. Ẑ denotes the profinite completion of
the group Z.

Topological Groups

LetK be a topological group and G,H ⊂ K closed subgroups of K. Then
we shall write CG(H) for the commensurator subgroup of H in G, i.e.,

CG(H)
def
= {g ∈ G | H ∩ g−1Hg is of finte index in H and g−1Hg.}.

We shall say that the subgroup H is commensurably terminal in K if H =
CK(H).

Let Σ be a set of prime numbers, l a prime number, and G a profinite
group. Then we shall write GΣ for the maximal pro-Σ quotient of G and

G(l) def
= G{l}. We shall write Gab for the abelianization of the profinite group

G, i.e., the quotient of G by the closure of the commutator subgroup of G.
Moreover, if α : G −→ H is a continuous homomorphism of profinite groups,
then we shall write αΣ (resp. α(l); αab) for the homomorphism GΣ −→ HΣ

(resp. G(l) −→ H(l); Gab −→ Hab) induced by α. We shall write Aut(G)
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for the group of automorphisms of G (as a profinite group) and Inn(G) for
the group of inner automorphisms of G. Thus we have a homomorphism of
groups G −→ Aut(G) determind by conjugation whose image is Inn(G) ⊂ G.
We shall write Out(G) for the quotient of Aut(G) by the normal subgroup
Inn(G) ⊂ Aut(G). In particular, if G is center-free, then the natural homo-
morphism G −→ Inn(G) is an isomorphism; thus we have a natural exact
sequence of groups

1 −→ G −→ Aut(G) −→ Out(G) −→ 1.

If, moreover, G is topologically finitely generated, then one verifies easily that
the topology of G admits a basis of characteristic open subgroups, which thus
induces a profinite topology on the groups Aut(G) and Out(G), with respect
to which the above exact sequence forms an exact sequence of profinite groups
and continuous homomorphisms. In this situation, if, moreover, ρ : J −→
Out(G) is a continuous homomorphism, then we shall write G

out
o J for the

profinite group obtained by pulling back the above exact sequence of profinite
groups via ρ. Thus we have a natural exact sequence of profinite groups and
continuous homomorphisms

1 −→ G −→ G
out
o J −→ J −→ 1.

Group Actions

Let G be a group, X a set, and φ : X × G −→ X a right action of G
on X. Then we shall simply write “X x G” and omit “φ” to express this
situation. Also, for x ∈ X and g ∈ G, we shall simply write xg instead of
φ(x, g).

1 Preliminaries

In this section, we prepare some definitions, notational conventions, and
basic lemmas concerning the PSC-fundamental groups of semi-graphs of an-
abelioids of PSC-type and continuous homomorphisms between them (which
are not necessarily isomorphisms). In particular, we define the group-theoretic
compatibility properties of such homomorphisms (cf. Definition 1.7 and Re-
mark 1.7.4). The study of these properties is the central issue of the present
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series of papers.

A basic reference for the theory of semi-graphs of anabelioids of PSC-
type is [CbGC]. We shall use the terminologies “semi-graph of anabelioids
of PSC-type”, “PSC-fundamental group of a semi-graph of anabelioids of
PSC-type”, “finite étale covering of semi-graphs of anabelioids of PSC-type”,
“vertex”, “edge”, “node”, “cusp”, “verticial subgroup”, “edge-like subgroup”,
“nodal subgroup”, and “cuspidal subgroup”, as they are defined in [CbGC],
Definition 1.1. Moreover, if G is a semi-graph of anabelioids of PSC-type,
then we shall write ΣG for the (necessarily unique — cf. [CbGC], Remark
1.1.2) set of prime numbers such that G is a semi-graph of anabelioids of
pro-ΣG PSC-type. Also, we shall apply the various notational conventions
established in [NodNon], Definition 1.1; in particular, if G is a semi-graph of

anabelioids of PSC-type, then the pro-ΣG universal covering G̃ −→ G is fixed
throughout the discussion, and the PSC-fundamental group ΠG is always
considered to be associated to the fixed pro-ΣG universal covering G̃ −→ G.
Thus there is a natural action G̃ x ΠG, which induces a natural bijection

(
the set of open subgroups of ΠG

) ∼=−→

(the set of the isomorphism classes
of the connected finite étale

subcoverings of G̃ −→ G

)
;(

U ⊂ ΠG
)

7−→
(
G̃
/
U −→ G

)
.

If G ′ −→ G is a connected finite étale subcovering of the pro-ΣG universal
covering G̃ −→ G, then we always choose the implicit structure morphism
G̃ −→ G ′ as the pro-ΣG′ universal covering of G ′. (Here, we note that ΣG =
ΣG′ .) Under this convention, the inverse of the natural bijection above is
given by

(
G ′ −→ G

)
7−→

(
ΠG′ ⊂ ΠG

)
. Finally, we shall refer to the “PSC-

fundamental group of a semi-graph of anabelioids of PSC-type” simply as
the “fundamental group” (of the semi-graph of anabelioids of PSC-type).

In the following, the letters “G” and “H” always denote semi-graphs of
anabelioids of PSC-type. Note that we do not assume that ΣG = ΣH.

Definition 1.1. We shall refer to any element of VCN(G) (resp. VCN(G̃))
as a component of G (resp. G̃). Moreover, if c̃ ∈ VCN(G̃), then we shall write
Πc̃ for the VCN-subgroup of ΠG associated to c̃ (cf. also Remark 1.3.2 for
the notation “Πc” for c ∈ VCN(G)).

Let us recall here the following fundamental results, which will be of
frequent use in the present series of papers.
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Lemma 1.2. The following assertions hold.

(1) Let c̃, d̃ ∈ Edge(G̃). Then one of the following two (mutually exclusive)
conditions holds.

• It holds that c̃ = d̃. In particular, the equality Πc̃ = Πd̃ holds.

• It holds that c̃ 6= d̃, and the equality Πc̃ ∩ Πd̃ = 1 holds.

(2) Let c̃ ∈ Edge(G̃) and d̃ ∈ Vert(G̃). Then one of the following two
(mutually exclusive) conditions holds.

• c̃ abuts to d̃. In particular, the inclusion Πc̃ ( Πd̃ holds.

• c̃ does not abut to d̃, and the equality Πc̃ ∩ Πd̃ = 1 holds.

(3) Let c̃, d̃ ∈ Vert(G̃). Then one of the following three (mutually exclusive)
conditions holds.

• It holds that c̃ = d̃. In particular, the equality Πc̃ = Πd̃ holds.

• It holds that c̃ 6= d̃, and there exists a unique node ẽ ∈ Node(G̃)
which abuts both to c̃ and to d̃. Moreover, the equality Πc̃∩Πd̃ = Πẽ

holds.

• It holds that c̃ 6= d̃, and the equality Πc̃ ∩Πd̃ = 1 holds. In partic-
ular (cf. the assertion (2)), there exists no edge which abuts both
to c̃ and to d̃.

Proof. The assertion (1) follows immediately from [NodNon], Lemma 1.5.
The assertion (2) follows immediately from [NodNon], Lemma 1.7 (cf. also
[CbGC], Remark 1.1.3, for the “ 6=” of “(”). The assertion (3) follows, in light
of the assertion (1), immediately from [NodNon], Lemma 1.8 and Lemma 1.9.
This completes the proof of Lemma 1.2.

Remark 1.2.1. It is also well-known that, for every ẽ ∈ Node(G̃), there exist
precisely two vertices of G̃ to which ẽ abuts, i.e., the two branches of ẽ abut
to two distinct vertices (cf. [NodNon], Remark 1.2.1, (iii), or [HmCbGCII],
Remark 4.5.1). Combining this fact with Lemma 1.2, (3), we deduce that a
nodal subgroup of ΠG is uniquely presented as the intersection of two verticial
subgroups of ΠG.
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Lemma 1.3. Recall that we have a natural right action G̃ x ΠG which,
in particular, determines a natural action VCN(G̃) x ΠG. For a connected

finite étale Galois subcovering G ′ −→ G of G̃ −→ G, define a right action(
the set of VCN-subgroups of ΠG′

)
x ΠG by conjugation, i.e., by the formula

(Πc̃ ∩ΠG′) · γ def
= γ−1Πc̃γ ∩ΠG′ (cf. Remark 1.5.2). Relative to these actions,

the following assertions hold.

(1) For any c̃ ∈ VCN(G̃), the VCN-subgroup Πc̃ ⊂ ΠG coincides with the

stabilizer of c̃ ∈ VCN(G̃).

(2) For any connected finite étale Galois subcovering G ′ −→ G of G̃ −→ G,
we have a ΠG-equivariant bijection

VCN(G̃)
∼=−→
(
the set of VCN-subgroups of ΠG′

)
; c̃ 7−→ Πc̃ ∩ ΠG′ .

Proof. The assertion (1) follows immediately from the definitions (cf. [SemiAn],
Remark 2.2.1).

Let us verify the assertion (2). It follows immediately from the definitions
that the map under consideration is a ΠG-equivariant surjection. Moreover,
in light of Remark 1.5.2, it follows from Lemma 1.2, applied to “G” = G ′,
that the map under consideration is injective. This completes the proof of
the assertion (2), hence also the proof of Lemma 1.3.

Remark 1.3.1. It follows immediately from Lemma 1.3, (1), that, for every

c̃ ∈ VCN(G̃) and γ ∈ ΠG, it holds that Πc̃γ = γ−1Πc̃γ.

Remark 1.3.2. It also follows from Lemma 1.3, (1), that, for c ∈ VCN(G)
and c̃ ∈ VCN(G̃) such that c̃(G) = c, the ΠG-conjugacy class of Πc̃ is
completely determined by c. We shall write Πc for (some representative
of) this ΠG-conjugacy class. Note that (every representative of) Πc is pre-
cisely the image of (some representative of) the natural outer homomorphism
π1(Gc) −→ ΠG, where we write Gc for the consituent anabelioid of G at c.

Remark 1.3.3. Unfortunately, the equality Πc̃γ = γ−1Πc̃γ pointed out
in Remark 1.3.1 is inconsistent with the equality Πṽγ = γΠṽγ

−1 (where

ṽ ∈ Vert(G̃)) implicitly given in the proof of [NodNon], Lemma 3.6. This
inconsistency is not because of the logical flaw of either loc. cit. or the
present paper, but just because of the difference of the definitions. The au-
thor decided to adopt a different notation from that of loc. cit. in order to
avoid the confusing equality “c̃ab = (c̃b)a” caused by the notation of loc. cit.
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Lemma 1.4. Let c̃ ∈ VCN(G̃) and H a closed subgroup of ΠG. Then the
following assertions hold.

(1) If 1 6= H ⊂ Πc̃, then CΠG(H) ⊂ Πc̃ (cf. the discussion entitled “Topo-
logical Groups” in §0).

(2) If U is an open subgroup of H and U ⊂ Πc̃, then H ⊂ Πc̃.

Proof. First we verify the assertion (1). Note that any open subgroup of
H is non-trivial, since H is non-trivial, and ΠG is torsion-free (cf. [CbGC],
Remark 1.1.3).

Let γ ∈ CΠG(H). Then we have

1 6= H ∩ γ−1Hγ ⊂ Πc̃ ∩ γ−1Πc̃γ,

where the “ 6=” follows from the fact that H ∩ γ−1Hγ ⊂ H is open. In
particular, the two VCN-subgroups Πc̃, γ

−1Πc̃γ = Πc̃γ intersect non-trivially.
In light of Lemma 1.2, this non-triviality, in fact, implies either the equality
Πc̃ = γ−1Πc̃γ or the equality Πc̃ ∩ γ−1Πc̃γ = Πẽ, where in the latter case c̃ is
necessarily a vertex and ẽ ∈ Node(G̃) is the unique node which abuts both
to c̃ and to c̃γ.

Suppose that we are in the former case, i.e., that Πc̃ = γ−1Πc̃γ. (For

instance, this will be the case if c̃ ∈ Edge(G̃).) Then, by the commensurable
terminality of Πc̃ in ΠG (cf. [CbGC], Proposition 1.2, (ii)), we obtain the
desired relation γ ∈ CΠG(Πc̃) = Πc̃.

Next, suppose that we are in the latter case, i.e., that Πc̃ ∩ γ−1Πc̃γ = Πẽ.
Then we have the relations 1 6= H∩γ−1Hγ ⊂ Πc̃∩γ−1Πc̃γ = Πẽ. By applying
the already verified former case to “(c̃, H)” = (ẽ, H ∩γ−1Hγ), it follows that
CΠG(H ∩ γ−1Hγ) ⊂ Πẽ. Since Πẽ ⊂ Πc̃ and CΠG(H) = CΠG(H ∩ γ−1Hγ)
(where we note that H∩γ−1Hγ is open in H), we obtain the desired inclusion
CΠG(H) ⊂ Πc̃. This completes the proof of the assertion (1).

Next, we verify the assertion (2). If H is trivial, obviously we are done.
Thus we may assume that H is non-trivial. In this case U is also non-trivial,
since ΠG is torsion-free (cf. [CbGC], Remark 1.1.3). Thus the assertion (2)
follows immediately from the assertion (1) applied to “H” = U , in light of the
fact that H ⊂ CΠG(H) = CΠG(U). This completes the proof of the assertion
(2), hence also the proof of Lemma 1.4.

Now we proceed to give some definitions which play the most central roles
in the present series of papers.
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Definition 1.5. Let S ⊂ VCN(G̃) and G ′ −→ G a connected finite étale

subcovering of G̃ −→ G.

(1) We shall write S(G ′) for the image of S ⊂ VCN(G̃) via the natural

surjection VCN(G̃) −↠ VCN(G ′).

(2) An element of VCN(G ′) (resp. VCN(G̃)) is said to be S-like if it belongs
to S(G ′) (resp. S).

(3) A subgroup of ΠG′ is said to be S-like if it arises as the VCN-subgroup

associated to an S-like component of G̃.

(4) We shall writeMG′ for the abelianization Πab
G′ of ΠG′ . Moreover, we shall

write MS
G′ for the closed submodule of MG′ generated by the images of

the S-like subgroups of ΠG′ via the natural surjection ΠG′ −↠ MG′ .

(5) We shall write Mvert
G′

def
= M

Vert(G̃)
G′ and M edge

G′
def
= M

Edge(G̃)
G′ .

Remark 1.5.1. The definitions of the notations “Mvert
G′ ” and “M edge

G′ ” coin-
cide with those of [CbGC], Definition 1.1, (ii).

Remark 1.5.2. Suppose that we are in the situation of Definition 1.5. Then
it follows immediately from Lemma 1.3, (1), that the “Πc̃” of ΠG′ , i.e., the

VCN-subgroup of ΠG′ corresponding to c̃ ∈ VCN(G̃) = VCN(G̃ ′), is equal to
Πc̃ ∩ ΠG′ . In particular, it holds that a subgroup of ΠG′ is S-like if and only
if it can be written as the intersection of an S-like subgroup of ΠG with ΠG′ .

Remark 1.5.3. Suppose that we are in the situation of Definition 1.5. Then
it holds, as is sketched below, that MG/M

S
G is free over ẐΣG , hence torsion-

free. In particular, MS
G ⊂ MG coincides with the “saturation” of (i.e., the

inverse image via the natural surjection of the torsion part of the quotient
module of MG by) the image of MS

G′ via the natural homomorphism MG′ −→
MG induced by the inclusion homomorphism ΠG′ −→ ΠG.

One way to verify the freeness of MG/M
S
G over ẐΣG is as follows. Write

X for “the compact Riemann surface minus some points corresponding to
G”. Then it follows from basic algebraic topology, together with the link
between topological and algebraic fundamental groups, that MG is naturally
isomorphic to H1(X, ∅)⊗Z ẐΣG , where “H1” denotes the first relative singular
homology group. Then one constructs an appropriate subset Y ⊂ X such
that MG/M

S
G injects (over ẐΣG) to H1(X,Y ) ⊗Z ẐΣG . (For example, if S ⊂
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Vert(G), then one may take such a “Y ” to be the disjoint union inside X of
the various “sub Riemann surfaces” of X determined by various c ∈ S(G).)
Finally, one verifies (by excision isomorphism, for example) that H1(X,Y ) is
free over Z.

Remark 1.5.4. In the situation of Definition 1.5, we shall write S for the
projective limit of the projective system

(
S(G ′)

)
G′−→G , where G ′ −→ G runs

through the connected finite étale subcoverings of G̃ −→ G. Then it is
easily verified that S is naturally regarded as a subset of VCN(G̃) and in

fact coincides with the closure of S in VCN(G̃) with respect to the profinite

topology of VCN(G̃).

Remark 1.5.5. Let S ⊂ VCN(G̃) and G ′ −→ G a connected finite étale

subcovering of G̃ −→ G. Then another immediate consequence of the def-
inition of S (cf. Remark 1.5.4) is that S(G ′) = S(G ′). Put another way,
roughly speaking, the difference between S and S is “invisible” in any fi-
nite approximation level. It also follows formally from this observation that
MS

G′ = MS
G′ .

Remark 1.5.6. Let A be a subset of ΠG and S ⊂ VCN(G̃). Then it follows
from Lemma 1.3, (1), and Remark 1.5.5, together with the well-known fact
that the projective limit of a projective system consisting of non-empty finite
sets is non-empty, that A is included in an S-like subgroup of ΠG if and only
if there exists a cofinal subsystem (Gλ −→ G)λ∈Λ of (the projective system

which gives rises to) the pro-ΣG universal covering G̃ −→ G constituted by

finite étale Galois subcoverings of G̃ −→ G such that, for every λ ∈ Λ, there
exists cλ ∈ S(Gλ) stabilized by every element of A with respect to the natural
action VCN(Gλ) x ΠG ⊃ A.

Definition 1.6. Let S ⊂ VCN(G̃).

(1) We shall write

ES
def
= S ∪ {ẽ ∈ Edge(G̃) | ẽ abuts to a vertex in S.}.

(2) We shall say that S is edge-complete if it holds that S = ES.

Remark 1.6.1. Let S ⊂ VCN(G̃) and A a subset of ΠG. Then it follows
immediately from Lemma 1.2, (2), that A is included in an S-like subgroup
of ΠG if and only if it is included in an ES-like subgroup of ΠG.
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Remark 1.6.2. It follows immediately from the definitions (cf. Remark

1.5.4) that, for every S ⊂ VCN(G̃), ES = ES.

Definition 1.7. Let α : ΠG −→ ΠH be a continuous homomorphism, S ⊂
VCN(G̃), and T ⊂ VCN(H̃).

(1) We shall say that α is (S, T )-compatible if, for every c̃ ∈ S, α(Πc̃) = 1
or there exists d̃ ∈ T such that α(Πc̃) ⊂ Πd̃.

(2) We shall say that α is (S, T )-filtration-preserving if, for every con-

nected finite étale subcovering H′ −→ H of H̃ −→ H, it holds that
αab(MS

G′) ⊂ MT
H′ , where we write G ′ −→ G for the connected finite

étale subcovering of G̃ −→ G corresponding to the open subgroup
α−1(ΠH′) of ΠG (i.e., ΠG′ = α−1(ΠH′)) and αab for the homomorphism
MG′ −→ MH′ naturally induced by α.

Remark 1.7.1. Suppose that we are in the situation of Definition 1.7. Then
the part “α(Πc̃) = 1 or” in Definition 1.7, (1), is relevant only when T = ∅,
and we often omit the mention of this case. The reason we allowed such α
that α(Πc̃) = 1 for every c̃ ∈ S to be (S, ∅)-compatible (even when S 6= ∅) is
to simplify things. See Remark 3.2.2 for an example.

Example 1.7.2. Suppose that G is sturdy (cf. [CbGC], Definition 1.1, (ii),
and [CbGC], Remark 1.1.5). Write Gcpt for the compactification of G (cf.
[CbGC], Remark 1.1.6), which is again a semi-graph of anabelioids of pro-ΣG
PSC-type. Then it is immediate that the natural surjection α : ΠG −↠ ΠGcpt

is (Vert(G̃),Vert(G̃cpt))-compatible, (Node(G̃),Node(G̃cpt))-compatible, and

(Cusp(G̃),Cusp(G̃cpt))-compatible. Note, however, that if assuming the part

“α(Πc̃) = 1 or” in Definition 1.7, (1), is omitted, then (Cusp(G̃),Cusp(G̃cpt))-
compatibility of α is not satisfied unless Cusp(G) = ∅.

Remark 1.7.3. Suppose that we are in the situation of Definition 1.7. Then
it follows immediately from Remark 1.5.3 that, in order to verify that α
is (S, T )-filtration-preserving, it suffices to verify the following (apparently
weaker) condition: there exists a cofinal subsystem (Hλ −→ H)λ∈Λ of (the

projective system which gives rise to) the pro-ΣH universal covering H̃ −→ H
constituted by connected finite étale subcoverings of H̃ −→ H such that
αab(MS

Gλ
) ⊂ MT

Hλ
for every λ ∈ Λ, where we write Gλ −→ G for the connected

finite étale subcovering of G̃ −→ G corresponding to the open subgroup
α−1(ΠHλ

) of ΠG (i.e., ΠGλ
= α−1(ΠHλ

)).
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Remark 1.7.4. As is noted in Remark 1.7.5 below, the property of being
(S, T )-compatible, defined for arbitrary continuous homomorphisms α : ΠG −→
ΠH, can be considered as the unified generalized Hom-version of the proper-
ties of being “group-theoretically verticial”, “group-theoretically edge-like”,
“group-theoretically nodal”, and “group-theoretically cuspidal”, defined only

for isomorphisms α : ΠG
∼=−→ ΠH (cf. [CbGC], Definition 1.4, (iv), and

[NodNon], Definition 1.12). In light of this observation, we shall collec-
tively refer to the properties of being (S, T )-compatible for some S, T as the
group-theoretic compatibility properties.

Similarly, we shall refer to the properties of being (S, T )-filtration-preserving
for some S, T as the filtration-preservation properties.

Remark 1.7.5. Let α : ΠG
∼=−→ ΠH be an isomorphism of profinite groups.

Then it holds that, for α to be group-theoretically verticial in the sense of
[CbGC], Definition 1.4, (iv), it is necessary and sufficient that α is

(
Vert(G̃),Vert(H̃)

)
-

compatible and α−1 is
(
Vert(H̃),Vert(G̃)

)
-compatible. Similar remarks also

hold for the terms “group-theoretically edge-like”, “group-theoretically nodal”,
“group-theoretically cuspidal”, “verticially filtration-preserving”, and “edge-
wise filtration-preserving” (cf. [CbGC], Definition 1.4, (iii), (iv), and [NodNon],
Definition 1.12). Indeed, the equivalences on the filtration-preservation prop-
erties follow formally from the definitions. The equivalences on the group-
theoretic compatibility properties are also easy, though we include the proof
in Lemma 1.9 below.

Remark 1.7.6. Let α : ΠG −→ ΠH be a continuous homomorphism. Then it
follows from [NodNon], Proposition 1.13, that, if α is an isomorphism, then
the group-theoretic verticiality (cf. [CbGC], Definition 1.4, (iv)) of α implies
the group-theoretic nodality (cf. [NodNon], Definition 1.12) of α. However,

one may verify that the
(
Vert(G̃),Vert(H̃)

)
-compatibility of α does not imply

the
(
Node(G̃),Node(H̃)

)
-compatibility of α in general. A counter-example

is given in Example 1.7.7 below.
Here, we explain what a problem occurs when one tries to apply to our

situation a similar argument to the proof of [NodNon], Proposition 1.13.

Suppose that α is
(
Vert(G̃),Vert(H̃)

)
-compatible. Let ẽ ∈ Node(G̃) and ṽ1, ṽ2

the two distinct vertices to which ẽ abuts (cf. Remark 1.2.1). By assumption,

for each i ∈ {1, 2}, there exists w̃i ∈ Vert(H̃) such that α(Πṽi) ⊂ Πw̃i
. By

Lemma 1.2, (3), it holds that Πẽ = Πṽ1 ∩ Πṽ2 , hence α(Πẽ) ⊂ Πw̃1 ∩ Πw̃2 .
However, it is still possible that w̃1 = w̃2, which implies that Πw̃1 ∩ Πw̃2 is
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not a nodal subgroup (but a verticial subgroup) of ΠH. In particular, one
cannot conclude that α(Πẽ) is included in a nodal subgroup.

Example 1.7.7. Let G be a semi-graph of anabelioids of PSC-type such that
Node(G) 6= ∅, H its generization associated to the full subset Node(G) ⊂
Node(G) (cf. [CbTpI], Definition 2.8), and α : ΠG

∼=−→ ΠH the inverse of

(some representative of) the specialization outer isomorphism ΠH
∼=−→ ΠG

(cf. [CbTpI], Definition 2.10). Then it is clear that α is
(
Vert(G̃),Vert(H̃)

)
-

compatible while it is not
(
Node(G̃),Node(H̃)

)
-compatible.

Corollary 1.8. Let α : ΠG −→ ΠH be a continuous homomorphism, G ′ −→ G
(resp. H′ −→ H) a connected finite étale subcovering of G̃ −→ G (resp.

H̃ −→ H), S ⊂ VCN(G̃), and T ⊂ VCN(H̃). Suppose that α(ΠG′) ⊂ ΠH′.
Write α′ : ΠG′ −→ ΠH′ for the restriction of α. Then α is (S, T )-compatible
if and only if α′ is (S, T )-compatible.

Proof. This follows easily from Lemma 1.4, (2), and Remark 1.5.2.

Lemma 1.9. Let α : ΠG
∼=−→ ΠH be an isomorphism of profinite groups,

□ ∈ {Vert,Edge}, S ⊂ □(G̃), and T ⊂ □(H̃). Then the following two
conditions are equivalent.

(i) α maps each S-like subgroup of ΠG isomorphically onto a T -like sub-
group of ΠH, and, moreover, every T -like subgroup of ΠH arises in this
fashion.

(ii) α is (S, T )-compatible, and α−1 is (T, S)-compatible.

Proof. The implication (i) =⇒ (ii) is clear. To show the converse, suppose
that α is (S, T )-compatible and that α−1 is (T, S)-compatible. Let c̃ ∈ S.
The assumptions on α imply that there exists d̃ ∈ T such that α(Πc̃) ⊂
Πd̃. In a similar vein, we have a component c̃′ ∈ S satisfying the relation
α−1(Πd̃) ⊂ Πc̃′ , hence the relation Πc̃ ⊂ α−1(Πd̃) ⊂ Πc̃′ . Then, if □ = Edge
(resp. □ = Vert), then it follows from Lemma 1.2, (1) (resp. Lemma 1.2,
(2), (3)), that Πc̃ = α−1(Πd̃) = Πc̃′ . Thus α(Πc̃) is equal to Πd̃, hence a
T -like subgroup of ΠH. By switching the roles played by α and α−1 in the
above argument, it also follows that every T -like subgroup of ΠH arises in
this fashion. This completes the proof of the implication (ii) =⇒ (i), hence
also the proof of Lemma 1.9.
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Lemma 1.10. Let α : ΠG −→ ΠH be a continuous homomorphism, S ⊂
VCN(G̃), and T ⊂ VCN(H̃). We shall write SΠG def

= {c̃γ ∈ VCN(G̃) | c̃ ∈
S, γ ∈ ΠG} and we define TΠH ⊂ VCN(H̃) in a similar vein. Then, if α is
(S, T )-compatible, then α is (SΠG , TΠH)-compatible.

Proof. By Remark 1.3.1, the SΠG -like subgroups of ΠG are precisely the ΠG-
conjugates of the S-like subgroups of ΠG; a similar assertion holds also for
TΠH-subgroups of ΠH. Lemma 1.10 follows immediately from this observa-
tion.

2 Reduction to the Case of a Smaller Set of

Prime Numbers

In this section, we give a detailed exposition on the argument of “reduc-
tion to the case of a smaller set of prime numbers”, which is well-known
to experts. As a consequence, we prove that, in order to show a certain
group-theoretic compatibility property of a homomorphism between PSC-
fundamental groups, it suffices to verify certain group-theoretic compatibil-
ity properties of homomorphisms between the maximal pro-Σ quotients of
various open subgroups, where Σ is a certain “smaller” set of prime numbers
(cf. Lemma 2.5 below). Even though only the particular case where the
“smaller set of prime numbers” is given by “{l}”, a singleton, is applied in
the present series of papers, the author decided to include the general case
because the proof is entirely the same.

The notational and terminological conventions established in the discus-
sion preceding Definition 1.1 remains valid; in particular, the letters “G” and
“H” always denote semi-graphs of anabelioids of PSC-type; we do not as-
sume that ΣG = ΣH.

First, let us make it explicit how to consider the maximal pro-Σ quotient
ΠΣ

G (where ∅ 6= Σ ⊂ ΣG) itself as a PSC-fundamental group.

Lemma 2.1. Let Σ be a non-empty subset of ΣG and G ′ −→ G a connected
finite étale subcovering of G̃ −→ G. Write (G ′)Σ for the pro-Σ completion of
G ′, i.e., the semi-graph of anabelioids obtained by replacing the constituent
anabelioids of G ′ by their pro-Σ completions (cf. [SemiAn], Definition 2.9,
(ii)).
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(1) The semi-graph of anabelioids (G ′)Σ is of pro-Σ PSC-type. Moreover,

one can construct the pro-Σ universal covering (̃G ′)Σ −→ (G ′)Σ from

the pro-ΣG universal covering G̃ −→ G in a natural way.

(2) The fundamental group Π(G′)Σ of (G ′)Σ is naturally isomorphic to the

maximal pro-Σ quotient ΠΣ
G′ of ΠG′. Here, we choose the “(̃G ′)Σ −→

(G ′)Σ” constructed naturally from the pro-ΣG universal covering G̃ −→
G (cf. the assertion (1)) as the pro-Σ universal covering of (G ′)Σ, and
we think Π(G′)Σ as associated to that pro-Σ universal covering.

(3) Suppose that we are in the situation of the assertion (2). Write X for
the set of VCN-subgroups of ΠG′; write Y for the set of VCN-subgroups
of Π(G′)Σ. Then we have a natural commutative diagram

VCN(G̃)

����

∼= // X

����
VCN

(
(̃G ′)Σ

) ∼= // Y,

where the right-hand vertical arrow X −↠ Y maps a VCN-subgroup
of ΠG′ to its image via the natural surjection ΠG′ −↠ Π(G′)Σ (cf. the
assertion (2)).

(4) Suppose that we are in the situation of the assertion (3) and moreover
that the connected finite étale covering G ′ −→ G is Galois. Recall that
we have a natural right actions of ΠG on VCN(G̃) and on X (cf. Lemma

1.3). Then we have natural right actions of ΠG on VCN
(
(̃G ′)Σ

)
and on

Y with respect to which the four arrows in the diagram of the assertion
(3) are all ΠG-equivariant.

(5) By forming the quotients of (each vertex of) the diagram in the asser-
tion (3) by the actions of ΠG′ ⊂ ΠG (cf. the assertion (4)), one obtains
a commutative diagram of sets with right ΠG actions and ΠG-equivariant
maps

VCN(G ′)

∼=
��

∼= // X/ΠG′

∼=
��

VCN((G ′)Σ)
∼= // Y/ΠG′ .
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Moreover, the left-hand vertical arrow of this diagram coincides with

the “identity” map VCN(G ′)
∼=−→ VCN

(
(G ′)Σ

)
; c 7−→ c.

(6) Suppose that we are in the situation of the assertion (2); in particular,
by conjugation, we have a natural right action of ΠG on ΠG′, which
thus induces a right action of ΠG on ΠΣ

G′
∼= Π(G′)Σ. Then, for every

γ ∈ ΠG, the isomorphism Π(G′)Σ
∼=−→ Π(G′)Σ induced by γ is graphic in

the sense of [CbGC], Definition 1.4, (i). Moreover, the action Y x ΠG
in the assertion (4) coincides with the action induced by the action
Π(G′)Σ x ΠG.

Proof. First, we verify the assertion (1). The assertion that the semi-graph
of anabelioids (G ′)Σ is of pro-Σ PSC-type follows immediately from the
definitions. Thus we have only to construct the pro-Σ universal covering

(̃G ′)Σ −→ (G ′)Σ naturally from the pro-ΣG universal covering G̃ −→ G. Since
the implicit structure morphism G̃ −→ G ′ of the subcovering G ′ −→ G of
G̃ −→ G gives the pro-ΣG′ universal covering of G ′, we may assume that
G ′ = G. However, for the sake of the later use (cf. the proof of the assertion
(4)), we continue to use the notation “G ′”.

Suppose that the pro-ΣG′ universal covering G̃ −→ G ′ arises from a pro-
object P̃ = (Pλ)λ∈Λ of the Galois category B(G ′). Suppose moreover, for
simplicity, that Pλ is a connected object of B(G ′) for every λ ∈ Λ and that
every connected object of B(G ′) is isomorphic to Pλ for some λ ∈ Λ. Then we

define M
def
= {λ ∈ Λ | Pλ is Galois of degree ∈ N>0(Σ) in B(G ′).}, where we

write N>0(Σ) for the (multiplicative) submonoid of N>0 (freely) generated by
the elements of Σ. In light of Claim 2.1.A below, it follows immediately that
Pµ belongs to the full subcategory B((G ′)Σ) of B(G ′) for every µ ∈ M and
that the pro-object (Pµ)µ∈M of B((G ′)Σ) defines a pro-Σ universal covering
of (G ′)Σ. Thus it suffices to verify Claim 2.1.A below:

Claim 2.1.A: Let A be an object of B(G ′). Then A is a connected
Galois object of B(G ′) of degree in N>0(Σ) if and only if A belongs
to the full subcategory B((G ′)Σ) and is a connected Galois object
of B((G ′)Σ) of degree in N>0(Σ).

Recall that the finite direct sums in the Galois category B(G ′) (resp. B((G ′)Σ))
are constructed by taking the finite direct sums in (the underlying Galois cat-
egory of) each constituent anabelioid on each vertex and then gluing them
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together in an appropriate way; similar constructions are valid also for the
quotients by finite group actions. It follows immediately from this obser-
vation that the inclusion functor B((G ′)Σ) −→ B(G ′) preserves finite direct
sums and quotients by finite group actions. Thus we have only to show that,
if A is a connected Galois object of B(G ′) of degree in N>0(Σ), then A be-
longs to B((G ′)Σ). Let v ∈ Vert(G ′). Write G ′

v for (the underlying Galois
category of) the constituent anabelioid of G ′ at v; write φv for the natural
exact functor B(G ′) −→ G ′

v. Then, in light of the construction of the quo-
tients by a finite group actions in B(G ′), together with the assumption that
A is Galois in B(G ′), it follows that φv(A) is a direct sum of some mutu-
ally isomorphic connected Galois objects of G ′

v. If φv(A) is a direct sum of
m pieces of mutually isomorphic connected Galois objects of G ′

v of degree n
(where m,n ∈ N>0), then mn is in N>0(Σ) by assumption, hence n is also
in N>0(Σ). This completes the proof of Claim 2.1.A, hence also the proof of
the assertion (1).

Next, let us verify the assertion (2). We continue to use the notations
applied in the proof of the assertion (1). By definition, ΠG′ is the opposite

group of the (profinite) automorphism group of the pro-object P̃ = (Pλ)λ∈Λ
in B(G ′); hence, by definition ofM , ΠΣ

G′ is the opposite group of the (profinite)
automorphism group of the pro-object (Pµ)µ∈M in B(G ′). On the other hand,
as is stated essentially in the assertion (2), we think Π(G′)Σ as the opposite

group of the (profinite) automorphism group of the pro-object P̃ = (Pλ)λ∈M
in B((G ′)Σ) (cf. the proof of the assertion (1)). Since the inclusion func-
tor B((G ′)Σ) −→ B(G ′) is fully faithful, we obtain a canonical isomorphism

Π(G′)Σ
∼=−→ ΠΣ

G′ . This completes the proof of the assertion (2).
Let us explain the commutative diagram in the assertion (3). The hor-

izontal arrows are given in Lemma 1.3, (2). The left-hand vertical arrow
is just the natural projection (cf. the proof of the assertion (4) for more
detail). The right-hand vertical arrow is as in the statement. The only non-
trivial point is the well-definedness of the right-hand vertical arrow; this is
easily verified and left to the reader. Then the commutativity of the diagram
follows immediately.

Next, let us verify the assertion (4). It suffices to give a natural right

action of ΠG on VCN
(
(̃G ′)Σ

)
which is compatible with the natural projection

VCN(G̃) −↠ VCN
(
(̃G ′)Σ

)
. Suppose that the pro-ΣG universal covering G̃ −→

G arises from a pro-object Q̃ = (Qν)ν∈N of B(G) and that the factorization
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G̃ −→ G ′ −→ G under consideration corresponds to a factorization Q̃ −→
Q′ −→ (terminal object). Suppose moreover that Qν is a connected object of
B(G) for every ν ∈ N and that every connected object of B(G) is isomorphic
to Qν for some ν ∈ N . Recall that the Galois category B(G ′) is naturally

isomorphic to the slice category of B(G) over Q′. Then Q̃ −→ Q′ determines
a pro-object of B(G ′) (which corresponds to the pro-ΣG′ universal covering

G̃ −→ G ′); this is precisely the “P̃” in the proof of the assertion (1). Write

(̃Q′)Σ for the pro-object of B(G) corresponding to “(̃G ′)Σ”, i.e., the pro-object
of B(G) obtained as the image of “(Pµ)µ∈M” in the proof of the assertion (1)
via the forgetful functor B(G ′) −→ B(G). Then it follows from the various

definitions involved that we have a natural factorization Q̃ −→ (̃Q′)Σ −→ Q′.

Moreover, since Q′ is a connected Galois object of B(G), every γ ∈ Aut(Q̃) =
Πop

G induces a commutative diagram

Q̃

natural
��

γ

∼=
// Q̃

natural
��

Q′ induced by γ

∼=
// Q′,

hence, by the definition of (̃Q′)Σ, a commutative diagram

Q̃

natural
��

γ

∼=
// Q̃

natural
��

(̃Q′)Σ

natural

��

induced by γ

∼=
// (̃Q′)Σ

natural

��
Q′ induced by γ

∼=
// Q′.

Since, for every µ ∈ M in the proof of the assertion (1), the three semi-
graphs of anabelioids corresponding to Pµ in B((G ′)Σ), to Pµ in B(G ′), and to
the image of Pµ in B(G), respectively, have mutually canonically isomorphic

underlying semi-graphs, we obtain the desired action VCN
(
(̃G ′)Σ

)
x ΠG.

By the commutativity of the upper half square of the second diagram above,

it also follows that the natural projection VCN(G̃) −↠ VCN
(
(̃G ′)Σ

)
is ΠG-

equivariant with respect to this action. This completes the proof of the
assertion (4).
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The assertion (5) follows immediately from the various definitions in-
volved, in light of the assumption that the covering G ′ −→ G is Galois.

Finally, let us verify the assertion (6). The graphicity of the isomorphism

Π(G′)Σ
∼=−→ Π(G′)Σ induced by γ ∈ ΠG follows from the graphicity of the

conjugation action of ΠG on ΠG′ , together with the well-definedness of the
right-hand vertical arrow of the diagram in the assertion (3) (the proof of
which we left to the reader). To show that the action Y x ΠG in the assertion
(4) coincides with the action induced by the action Π(G′)Σ x ΠG, it suffices
to show that the right-hand vertical arrow X −↠ Y of the diagram in the
assertion (3) is ΠG-equivariant with respect to the natural action of X x ΠG
and the action of Y x ΠG induced by the action Π(G′)Σ x ΠG. On the other
hand, this is immediate from the definitions. This completes the proof of
Lemma 2.1.

Lemma 2.2. Let H ⊂ ΠG be a closed subgroup. Then the following assertions
hold.

(1) Suppose that H 6= 1. Then there exist l ∈ ΣG and a connected finite

étale subcovering G ′ −→ G of G̃ −→ G such that the image of H ∩ ΠG′

via the natural surjection ΠG′ −→ Π
(l)
G′ is non-trivial.

(2) Let Σ be a non-empty subset of ΣG such that the image of H via the
natural surjection ΠG −→ ΠΣ

G is non-trivial. Then, for every connected

finite étale subcovering G ′ −→ G of G̃ −→ G, the image of H ∩ ΠG′ via
the natural surjection ΠG′ −→ ΠΣ

G′ is non-trivial.

Proof. First, let us verify the assertion (1). We may assume that H is pro-
cyclic. Write J for the H assumed to be non-trivial and pro-cyclic. Since J is
non-trivial, there exists an open normal subgroup N of ΠG such that J∩N (
J . Write V = JN ; G ′ −→ G for the connected finite étale subcovering
G ′ −→ G of G̃ −→ G corresponding to V (i.e., V = ΠG′). Let l be a prime
number which divides the order of J/(J ∩N) = V/N (hence is contained in
ΣG). Then we obtain a natural commutative diagram

J � � //

����

V // //

����

V (l)

����
J/(J ∩N) V/N // // (V/N)(l) ̸= 1,
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where the “ 6=” follows from the choice of l, together with the cyclicity of
J/J ∩N . Then the desired non-triviality of J −→ V (l) follows formally from
the easily verified non-triviality of the composition J −↠ V/N −↠ (V/N)(l).
This completes the proof of the assertion (1).

The assertion (2) follows immediately from the natural commutative di-
agram

H � � // ΠG // // ΠΣ
G

H ∩ ΠG′
� � //

?�

OO

ΠG′ // //
?�

OO

ΠΣ
G′ ,

OO

together with the assumption that the image of H in ΠΣ
G is non-trivial and

the fact that ΠΣ
G is torsion-free (cf. Lemma 2.1, (2), and [CbGC], Remark

1.1.3). This completes the proof of the assertion (2), hence also the proof of
Lemma 2.2.

Definition 2.3. Let Σ be a non-empty subset of ΣG and S ⊂ VCN(G̃). Then,
for every connected finite étale subcovering G ′ −→ G of G̃ −→ G, we shall

write S̃(G ′,Σ) ⊂ VCN
(
(̃G ′)Σ

)
for the inverse image of S(G ′) ⊂ VCN(G ′) ∼=

VCN
(
(G ′)Σ

)
via the natural surjection VCN

(
(̃G ′)Σ

)
−↠ VCN

(
(G ′)Σ

)
.

Lemma 2.4. Let Σ be a non-empty subset of ΣG, S ⊂ VCN(G̃), and H ⊂ ΠG
a closed subgroup. For every connected finite étale subcovering G ′ −→ G
of G̃ −→ G, write Im(H ∩ ΠG′) for the image of H ∩ ΠG′ via the natural
surjection ΠG′ −↠ ΠΣ

G′
∼= Π(G′)Σ (cf. Lemma 2.1, (2)). Suppose that the

following condition holds:

there exists a connected finite étale subcovering G ′ −→ G of G̃ −→
G such that Im(H ∩ ΠG′) 6= 1.

Then the following conditions are equivalent.

(i) H is included in an S-like subgroup of ΠG.

(ii) There exists a cofinal subsystem (Gλ −→ G)λ∈Λ of (the projective system

which gives rise to) the pro-ΣG universal covering G̃ −→ G constituted

by connected finite étale subcoverings of G̃ −→ G such that, for every
λ ∈ Λ, Im(H ∩ΠGλ

) is included in an S̃(Gλ,Σ)-like subgroup of Π(Gλ)Σ.
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Proof. The implication (i) =⇒ (ii) is easy.
Let us verify the converse. We may assume that S is edge-complete (cf.

Remark 1.6.1 and Remark 1.6.2).
First, we claim that we may assume that Gλ −→ G is Galois for every

λ ∈ Λ. To verify this claim, it suffices to show that, for every connected
finite étale Galois subcovering G ′ −→ G of G̃ −→ G, Im(H ∩ ΠG′) ⊂ ΠΣ

G′ is

included in a S̃(G ′,Σ)-like subgroup of Π(G′)Σ . (In fact, as is evident from
the following proof, the Galois assumption on G ′ −→ G is even superfluous.)
By the cofinality assumption on (Gλ −→ G)λ∈Λ, there exists λ ∈ Λ such that
the morphism Gλ −→ G factors through G ′ −→ G. Then we form a natural
commutative diagram

H ∩ ΠG′
� � // ΠG′ // // ΠΣ

G′

H ∩ ΠGλ

� � //
?�

OO

ΠGλ
// //

?�

OO

ΠΣ
Gλ
,

OO

where we note that the image of the composite of the upper (resp. lower)
horizontal arrows is precisely Im(H∩ΠG′) ⊂ ΠΣ

G′ (resp. Im(H∩ΠGλ
) ⊂ ΠΣ

Gλ
).

Now it follows from the assumption that Im(H ∩ ΠGλ
) ⊂ ΠΣ

Gλ
is included

in a S̃(Gλ,Σ)-like subgroup of Π(Gλ)Σ , together with the commutativity of
the above diagram, that an open subgroup of Im(H ∩ ΠG′) ⊂ ΠΣ

G′ , hence

also Im(H ∩ ΠG′) itself (cf. Lemma 1.4, (2)), is included in a S̃(G ′,Σ)-like
subgroup of Π(G′)Σ . This competes the proof of the reduction to the case
where Gλ −→ G is Galois for every λ ∈ Λ.

Also, we observe that it follows from Lemma 2.2, (2), applied to “(G, H,Σ)” =
(G ′, H ∩ ΠG′ ,Σ), that there exists a cofinal subsystem (Gλ −→ G)λ∈Λ′ of
(Gλ −→ G)λ∈Λ (where Λ′ ⊂ Λ) such that, for every λ ∈ Λ′, Im(H ∩ΠGλ

) 6= 1.
By replacing (Gλ −→ G)λ∈Λ by (Gλ −→ G)λ∈Λ′ , we may assume that, for
every λ ∈ Λ, it holds that Im(H ∩ ΠGλ

) 6= 1.
Now we show the condition (i). Here, the readers are recommended to

recall the contents of Lemma 2.1, because the group actions, identifications,
and notational conventions given in Lemma 2.1 will be applied without fur-
ther mention below. It follows from Remark 1.5.6 that it suffices to show
that there exists an element of S(Gλ) stabilized by the action of H ⊂ ΠG.
For this, in light of Lemma 2.1, (3), (4), and (5), it suffices to verify the
following claim:
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Claim 2.4.A: For every λ ∈ Λ, there exists c̃λ ∈ S̃(Gλ,Σ) ⊂
VCN

(
(̃Gλ)Σ

)
such that the subgroup Πc̃λ ⊂ Π(Gλ)Σ is stabilized

by the action of H ⊂ ΠG.

To this end, take (by assumption) c̃ ∈ S̃(Gλ,Σ) such that Im(H ∩ΠGλ
) ⊂

Π(Gλ)Σ is included in Πc̃ ⊂ Π(Gλ)Σ . Since (it follows immediately from the
definition of the action of ΠG on Π(Gλ)Σ that) the equality Im(H ∩ ΠGλ

)γ =
Im(H∩ΠGλ

) holds for every γ ∈ H, the inclusion Im(H∩ΠGλ
) ⊂ Πc̃∩Πγ

c̃ holds
for every γ ∈ H. In light of Lemma 1.2, (1) and (3), together with our further
assumption that Im(H ∩ ΠGλ

) 6= 1 (cf. the sentence preceding the sentence
“Now we show the condition (i).”), the inclusion Im(H ∩ ΠGλ

) ⊂ Πc̃ ∩ Πγ
c̃

implies the following claim:

Claim 2.4.B: For every γ ∈ H, either the equality

Πc̃ = Πγ
c̃

or the equality
Πc̃ ∩ Πγ

c̃ = Πẽ

holds, where in the latter case c̃ is necessarily a vertex and ẽ ∈
Node

(
(̃Gλ)Σ

)
is the unique node which abuts both to c̃ and to c̃γ.

If, for every γ ∈ H, the former case of Claim 2.4.B holds, then c̃ ∈ S̃(Gλ,Σ)
gives the desired “c̃λ” of Claim 2.4.A. Thus we may assume that there exists

γ′ ∈ H for which the latter case of Claim 2.4.B holds. Take ẽ ∈ Node
(
(̃Gλ)Σ

)
such that Πc̃ ∩ Πγ′

c̃ = Πẽ. It holds that ẽ ∈ S̃(Gλ,Σ) because of the edge-
completeness assumption on S (cf. the second sentence of the second para-
graph of this proof). Moreover, we observe, as in the argument preceding
Claim 2.4.B, that 1 6= Im(H ∩ΠGλ

) ⊂ Πẽ∩Πγ
ẽ . In light of Lemma 1.2, (1), it

follows that Πẽ = Πγ
ẽ for every γ ∈ H. Thus ẽ ∈ S̃(Gλ,Σ) gives the desired

“c̃λ” of Claim 2.4.A. This completes the proof of Claim 2.4.A, hence also the
proof of the implication (ii) =⇒ (i). This completes the proof of Lemma
2.4.

Lemma 2.5. Let α : ΠG −→ ΠH be a continuous homomorphism, S ⊂
VCN(G̃), T ⊂ VCN(H̃), and ∅ 6= Σ′ ⊂ ΣG ∩ ΣH. Moreover, let (Hλ −→
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H)λ∈Λ be a cofinal subsystem of (the projective system which gives rise to)

the pro-ΣH universal covering H̃ −→ H constituted by connected finite étale
subcoverings of H̃ −→ H. For every λ ∈ Λ, write Gλ −→ G for the con-
nected finte étale subcovering of G̃ −→ G corresponding to the open subgroup
α−1(ΠHλ

) ⊂ ΠG; write αλ : ΠGλ
−→ ΠHλ

for the continuous homomorphism
induced by α. Suppose that the following condition holds:

for every c̃ ∈ S, there exists a connected finite étale subcover-
ing H′ −→ H of H̃ −→ H such that the image of α(Πc̃) ∩ ΠH′

in Π(H′)Σ via the natural surjection ΠH′ −↠ ΠΣ
H′

∼= Π(H′)Σ (cf.
Lemma 2.1, (2)) is non-trivial.

Then the following conditions are equivalent.

(i) α is (S, T )-compatible.

(ii) For every λ ∈ Λ, the continuous homomorphism (αλ)
Σ : Π(Gλ)Σ −→

Π(Hλ)Σ is
(
S̃(Gλ,Σ), T̃ (Hλ,Σ)

)
-compatible.

Proof. The implication (i) =⇒ (ii) is immediate. The implication (ii) =⇒
(i) follows immediately from Lemma 2.4, (ii) =⇒ (i).

Remark 2.5.1. In Lemma 2.5, the condition (i) is equivalent to saying that,
for every c̃ ∈ S, there exists d̃ ∈ T such that α(Πc̃) ⊂ Πd̃, because of the non-
triviality assumption. That is to say, the part “α(Πc̃) = 1 or” in Definition
1.7, (1), is irrelevant here.

3 Filtration-preservation and Group-theoretic

Compatibility

In this section, we study the relationship between the filtration-preservation
properties and the group-theoretic compatibility properties (cf. Theorem
3.2). This result is not only of use in the proof of the main result of the
present paper, Theorem 4.4, but also of independent interest. The key step
is Proposition 3.1, where, roughly, we extract a characteristic property of the
subgroups of S-like subgroups which can be described in a purely “abelian-
ized” way.

The notational and terminological conventions established in the discus-
sion preceding Definition 1.1 remains valid; in particular, the letters “G”
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and “H” always denote semi-graphs of anabelioids of PSC-type; we do not
assume that ΣG = ΣH.

Proposition 3.1. Let S be a non-empty subset of VCN(G̃) and H a closed

subgroup of ΠG. Recall here that we write S for the closure of S ⊂ VCN(G̃)
in VCN(G̃) with respect to the profinite topology (cf. Remark 1.5.4). Let us
consider the following seven conditions:

(i) H is included in an S-like subgroup of ΠG.

(ii) An open subgroup of H is included in an S-like subgroup of ΠG.

(iii) Every element of H is contained in an S-like subgroup of ΠG.

(iv) H is included in an S-like subgroup of ΠG.

(v) For any connected finite étale subcovering G ′ −→ G of G̃ −→ G, the
image of the composite of the natural homomorphisms

H ∩ ΠG′ ↪−→ ΠG′ −↠ MG′/MS
G′

is trivial.

(vi) There exists a connected finite étale subcovering G† −→ G of G̃ −→
G such that, for every connected finite étale subcovering G ′ −→ G of
G̃ −→ G which factors through G† −→ G, the image of the composite of
the natural homomorphisms

H ∩ ΠG′ ↪−→ ΠG′ −↠ MG′/MS
G′

is trivial.

(vii) There exists a cofinal subsystem (Gλ −→ G)λ∈Λ of (the projective system

which gives rise to) the pro-ΣG universal covering G̃ −→ G constituted

by finite étale Galois subcoverings of G̃ −→ G such that, for every
λ ∈ Λ, the image of the composite of the natural homomorphisms

H ∩ ΠGλ
↪−→ ΠGλ

−↠ MGλ
/MS

Gλ

is trivial.
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Then the implications

(i) ⇐⇒ (ii) ⇐⇒ (iii) =⇒ (iv) ⇐⇒ (v) ⇐⇒ (vi) ⇐⇒ (vii)

hold. In particular, if we suppose further that S = S, then the conditions
above are all equivalent.

Proof. The implication (i) =⇒ (ii) is clear, while the converse follows
immediately from Lemma 1.4, (2). Thus the equivalence (i) ⇐⇒ (ii) holds.

Next, let us verify the equivalence (i) ⇐⇒ (iii). The implication (i) =⇒
(iii) is clear. Conversely, suppose that the condition (iii) holds. We may
assume that H 6= 1 and S is edge-complete (cf. Remark 1.6.1). If every non-
trivial element of H is contained in an edge-like subgroup of ΠG, it follows
from Lemma 1.2, (1) and (2), and the edge-completeness assumption that
every non-trivial element of H is contained in an S-like edge-like subgroup of
ΠG. Then it follows from Claim 1.4.A in the proof of [CbTpII], Proposition
1.4 that H is included in an S-like subgroup. Thus we may assume that there
exists an element γ ∈ H which is not contained in any edge-like subgroup.
In this case, there is a(n) (necessarily unique — cf. Lemma 1.2, (3)) S-like
vertex ṽ such that γ ∈ Πṽ. Note that we are now in the situation where

• every element of H is contained in a verticial subgroup of ΠG,

• γ ∈ H is not contained in any edge-like subgroup of ΠG, and

• ṽ is the unique vertex of G̃ such that γ ∈ Πṽ,

to which we can apply Claim 1.5.A in the proof of [CbTpII], Proposition 1.5.
This shows H ⊂ Πṽ, as desired. This completes the proof of the implication
(iii) =⇒ (i).

The implications (i) =⇒ (iv) =⇒ (v) =⇒ (vi) =⇒ (vii) are
immediate (cf. also Remark 1.5.5), while the implication (vii) =⇒ (v)
follows immediately from Remark 1.5.3. Now we have only to show the
implication (v) =⇒ (iv). For this, we may assume that S = S (cf. Remark
1.5.5). Then, in light of the already verified equivalence (i) ⇐⇒ (iii), we
may assume that H is pro-cyclic. Moreover, since (we have assumed that)
S 6= ∅, we may also assume that H is non-trivial. We shall write J for the
H assumed to be non-trivial and pro-cyclic.

To show the implication (v) =⇒ (iv) for H = J , first we concentrate
on the case where ΣG is equal to {l}, a singleton. The general case will be
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treated after that. For U an open subgroup of ΠG, write GU for the connected
finite étale subcovering of G̃ −→ G corresponding to U , i.e., ΠGU

= U ⊂ ΠG.
Then we claim as follows:

Claim 3.1.A: For any normal open subgroup N of ΠG, there exists
an element of S(GJ ·N) at which the connected finite étale covering
GN −→ GJ ·N is totally ramified, i.e., there exists an element c ∈
S(GJ ·N) that satisfies the condition that the composite of the
natural homomorphisms

Πc ↪−→ J ·N −↠ (J ·N)/N

is surjective. (Note that, even though the subgroup “Πc” ⊂
J · N = ΠGJ·N is determined by c only up to J · N -conjugation,
the composite morphism under consideration is completely deter-
mined by c since (J ·N)/N is abelian.)

We verify Claim 3.1.A as follows. Since J is pro-cyclic, and (J ·N)/N is its
quotient, (J · N)/N is a finite cyclic (hence abelian) l-group; in particular,
we obtain a natural surjection Πab

GJ·N
−↠ (J · N)/N . Moreover, again since

(J · N)/N is a quotient of J , it follows from the condition (v) that the
composite of the natural homomorphisms∏

c∈S(GJ·N )

Πc −→ Πab
GJ·N

−↠ (J ·N)/N

is surjective. Therefore, it follows from the fact that (J ·N)/N is a cyclic l-
group and S(GJ ·N) 6= ∅ that there exists c ∈ S(GJ ·N) such that the composite
of the natural homomorphisms Πc ↪−→ ΠGJ·N −↠ (J ·N)/N is surjective, as
desired. This completes the proof of Claim 3.1.A.

We apply Claim 3.1.A as follows. In light of Remark 1.5.6, it suffices to
give, for every connected finite étale Galois subcovering G ′ −→ G of G̃ −→ G,
an element c′ ∈ S(G ′) stabilized by the action of J ⊂ ΠG on VCN(G ′). On
the other hand, if we apply Claim 3.1.A to the open normal subgroup N =
ΠG′ ⊂ ΠG, we immediately obtain the desired “c′” as the unique component
of G ′ = GN lying over the “c” in Claim 3.1.A. This completes the proof of
the implication (v) =⇒ (iv) for H = J and ΣG = {l}.

Now we treat the general case of the implication (v) =⇒ (iv) for H = J .
Here, the readers are recommended to recall the contents of Lemma 2.1,
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because the group actions, identifications, and notational conventions given
in Lemma 2.1 will be applied without further mention below. Suppose that
the condition (v) holds for H = J . It follows immediately from Lemma 2.2,
(1), that there exist l ∈ ΣG and a connected finite étale subcovering G ′ −→ G
of G̃ −→ G such that Im(J ∩ ΠG′) ⊂ Π(G′)(l) is non-trivial, where we write

(G ′)(l) for (G ′){l} and Im(J ∩ ΠG′) for the image of J ∩ ΠG′ ⊂ ΠG′ via the
natural surjection ΠG′ −↠ Π(G′)(l) . We fix such l ∈ ΣG. Then, in light of
Lemma 2.4, (ii) =⇒ (i), it suffices to show that, for every connected finite

étale Galois subcovering G ′ −→ G of G̃ −→ G, Im(J ∩ ΠG′) ⊂ Π(G′)(l) is

included in a S̃(G ′, {l})-like subgroup of Π(G′)(l) (cf. Definition 2.3). On the
other hand, this follows immediately from the already verified “ΣG = {l}”
case of the implication (v) =⇒ (iv) applied to the following Claim 3.1.B:

Claim 3.1.B: The condition (v) holds for “(G, H = J, S)” =(
(G ′)(l), Im(J ∩ ΠG′′), S̃(G ′, {l})

)
. That is to say, for every con-

nected finite étale subcovering K −→ (G ′)(l) of (̃G ′)(l) −→ (G ′)(l),
the image of the composite of the natural homomorphisms

Im(J ∩ ΠG′) ∩ ΠK ↪−→ ΠK −↠ MK/M
S̃(G′,{l})
K

is trivial.

Finally, Claim3.1.B, i.e., the triviality of the composite of the lower horizontal
arrows of the following natural commutative diagram, follows immediately
from the triviality of the composite of the upper horizontal arrows of the
following natural commutative diagram, where we write p for the natural
surjection ΠG′ −↠ Π

(l)
G′

∼= Π(G′)(l) and L −→ G ′ for the connected finite étale

subcovering of G̃ −→ G ′ corresponding to the inverse image p−1(ΠK) ⊂ ΠG′ ,
i.e., ΠL = p−1(ΠK):

J ∩ ΠL
� � //

induced
by p

����

ΠL // //

induced
by p

����

ML/M
S
L

induced
by p����

Im(J ∩ ΠG′) ∩ ΠK
� � // ΠK // // MK/M

S̃(G′,{l})
K .

This completes the proof of the implication (v) =⇒ (iv), hence also the
proof of Proposition 3.1.
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Remark 3.1.1. Proposition 3.1, along with its proof, should be thought of
as a unified generalization of [CbTpII], Proposition 1.4, [CbTpII], Proposi-

tion 1.5, and [GrphPIPSC], Lemma 1.2. Indeed, if one takes S to be Edge(G̃)
(resp. Vert(G̃); Node(G̃)), which is manifestly closed in VCN(G̃), then the
equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (viii) in Proposition 3.1 are
precisely the statement of [CbTpII], Proposition 1.4 (resp. [CbTpII], Propo-
sition 1.5; [GrphPIPSC], Lemma 1.2). Note that the assumption S 6= ∅
is automatic for S = Vert(G̃), while, in fact, it should have been assumed

that Edge(G̃) 6= ∅ (resp. Node(G̃) 6= ∅) in [CbTpII], Proposition 1.4 (resp.
[GrphPIPSC], Lemma 1.2), as is noted in Remark 3.1.2 below.

Remark 3.1.2. We observe that the assumption “S 6= ∅” in Proposition
3.1 is used only in the verification of the implication (v) =⇒ (iv). If one

takes S ⊂ VCN(G̃) to be empty, each of the conditions (i), (ii), (iii), (iv) of
Proposition 3.1 can never be true, while (it is easily verified by an argument
entirely similar to the proof of Lemma 2.2, (1) and (2), that) each of the
conditions (v), (vi), (vii) is true if and only if H = 1.

For essentially the same reason, in [CbTpII], Proposition 1.4 (resp. [GrphPIPSC],

Lemma 1.2), it should have been assumed that Edge(G̃) 6= ∅ (resp. Node(G̃) 6=
∅). The author believes that these slight errors in [CbTpII], Proposition 1.4,
and [GrphPIPSC], Lemma 1.2, may not cause any serious problems in their
applications obtained so far, since the trivial case H = 1 is the only one
possible counter-example.

Theorem 3.2. Let α : ΠG −→ ΠH be a continuous homomorphism, S ⊂
VCN(G̃), and T ⊂ VCN(H̃). Let us consider the following three conditions:

(i) α is (S, T )-compatible.

(ii) α is (S, T )-filtration-preserving.

(iii) α is (S, T )-compatible.

Then the implications (i) =⇒ (ii) =⇒ (iii) holds. In particular, if we
suppose further that S = S and T = T , then the conditions above are all
equivalent.

Proof. The implication (i) =⇒ (ii) follows immediately from the definitions.
If T 6= ∅, then the implication (ii) =⇒ (iii) follows immediately from
Proposition 3.1, (v) =⇒ (iv), and Remark 1.5.5. If T = ∅, then the
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implication (ii) =⇒ (iii) follows immediately from the observation given in
Remark 3.1.2, where we recall the part “α(Πc̃)=1 or” of Definition 1.7, (1).
This completes the proof of Theorem 3.2.

Remark 3.2.1. The last assertion of Theorem 3.2 can be thought of as a
unified generalized Hom-version of [CbGC], Theorem 1.6, (ii). Indeed, to
deduce [CbGC], Theorem 1.6, (ii), from Theorem 3.2, (4), we have only to

apply the equivalences given in Remark 1.7.5 to the isomorphism α : ΠG
∼=−→

ΠH under consideration, and set “(S, T )” in Theorem 3.2, (4), to be, for

instance,
(
Vert(G̃),Vert(H̃)

)
.

On the other hand, the proof of Theorem 3.2 is substantially different from
the original proof of [CbGC], Theorem 1.6, (ii). Indeed, it does not use the
technique of reconstruction of various VCN-subgroups involving numerical
data concerning ramification, which plays a central role in the original proof
of [CbGC], Theorem 1.6, (ii). Rather, Theorem 3.2 is essentially a formal
consequence of Proposition 3.1, and the proof of Proposition 3.1 relies deeply
on the technique established in the proof of [CbTpII], Proposition 1.4 and
[CbTpII], Proposition 1.5 (cf. Remark 3.1.1). It seems to the author that
it is difficult to apply the argument involving numerical data to our “Hom-
version” situation.

Remark 3.2.2. Suppose that we are in the situation of Theorem 3.2. Then
we observe that, if, in Definition 1.7, (1), we had not allowed such α that
α(Πc̃) = 1 for every c̃ ∈ S to be (S, ∅)-compatible when S 6= ∅ (cf. Remark
1.7.1), then the implication (ii) =⇒ (iii) of Theorem 3.2 would be false.
Indeed, under this altered definition, if S 6= ∅, T = ∅, and α is the trivial
homomorphism, then α satisfies the condition (ii) while α would not satisfy
the condition (iii).

4 Hom-version of the Combinatorial Grothendieck

Conjecture for Graphically Full Outer Rep-

resentations

In this section, we prove that a continuous homomorphism between PSC-
fundamental groups ΠG −→ ΠH satisfying a certain compatibility with “l-
graphically full outer representations” is (Vert(G̃),Vert(H̃))- and (Edge(G̃),Edge(H̃))-
compatible. This result may be considered as a Hom-version of the combi-

34



natorial Grothendieck conjecture given in [CbGC], Theorem 2.7, (ii). Before
that, we also give a short review of l-graphically full outer representations.

The notational and terminological conventions established in the discus-
sion preceding Definition 1.1 remains valid; in particular, the letter “G” al-
ways denotes a semi-graph of anabelioids of PSC-type.

Before proceeding, let us recall the issue concerning the profinite topology
on Aut(G). Since the fundamental group ΠG of G is topologically finitely
generated (cf. [CbGC], Remark 1.1.3), the profinite topology of ΠG induces
(profinite) topologies on Aut(ΠG) and Out(ΠG) (cf. the discussion entitled
“Topological Groups” in §0). Moreover, if we write Aut(G) for the group of
automorphisms of G, then by the discussion preceding [CbGC], Lemma 2.1,
the natural homomorphism Aut(G) −→ Out(ΠG) is an injection with closed
image. (Here, we recall that an automorphism of a semi-graph of anabelioids
consists of an automorphism of the underlying semi-graph, together with a
compatible system of isomorphisms between the various anabelioids at each
of the vertices and edges of the underlying semi-graph which are compatible
with the various morphisms of anabelioids associated to the branches of the
underlying semi-graph — cf. [SemiAn], Definition 2.1.) Thus, by equipping
Aut(G) with the topology induced via this homomorphism by the topology
of Out(ΠG), we may regard Aut(G) as a profinite group.

Let I be a profinite group and ρ : I −→ Aut(G) a continuous homo-
morphism. Then, as is defined in [NodNon], Definition 2.1, (i), the pair
(G, ρ : I −→ Aut(G)) is referred to as an outer representation of PSC-type.
Moreover, for l ∈ ΣG, if I is l-cyclotomically full (resp. l-graphically full)
with respect to ρ : I −→ Aut(G) in the sense of [CbGC], Definition 2.3 (ii)
(resp. (iii)), then we shall say that the outer representation of PSC-type
(G, ρ : I −→ Aut(G)) is l-cyclotomically full (resp. l-graphically full).

In the remainder of the present paper, we are concerned with the exact
sequence of profinite groups and continuous homomorphisms

1 −→ ΠG −→ Πρ −→ I −→ 1, (∗)

where we write Πρ
def
= ΠG

out
o I, associated to an outer representation of PSC-

type (G, ρ : I −→ Aut(G)). In other words, we are interested in the exact
sequence obtained by pulling back the exact sequence

1 −→ ΠG −→ Aut(ΠG) −→ Out(ΠG) −→ 1
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via the continuous homomorphism I
ρ−→ Aut(G) natural

↪−→ Out(ΠG) (cf. the
discussion entitled “Topological Groups” in §0). Here, we note that ΠG is
topologically finitely generated and center-free (cf. [CbGC], Remark 1.1.3).

Lemma 4.1. Let (G, ρ : I −→ Aut(G)) be an outer representation of PSC-
type. Let us consider the exact sequence (∗) associated to

(
G, ρ : I −→

Aut(G)
)
. Let Πρ′ be an open subgroup of Πρ. Write I ′ for the image of

Πρ via the surjection Πρ −↠ I and G ′ −→ G for the connected finite étale

subcovering of G̃ −→ G corresponding to the open subgroup Πρ′ ∩ ΠG of ΠG,
i.e., ΠG′ = Πρ′ ∩ ΠG. Then the following assertions hold.

(1) The exact sequence (∗) naturally induces the following exact sequence:

1 −→ ΠG′ −→ Πρ′ −→ I ′ −→ 1.

Moreover, this exact sequence arises from a unique outer representation
of PSC-type

(
G ′, ρ′ : I ′ −→ Aut(G ′)

)
.

(2) Let l ∈ ΣG. Then, if
(
G, ρ : I −→ Aut(G)

)
is l-cyclotomically full

(resp. l-graphically full) (cf. [CbGC], Definition 2.3, (ii) (resp.(iii))),
then

(
G ′, ρ′ : I ′ −→ Aut(G ′)

)
in (1) is also l-cyclotomically full (resp.

l-graphically full).

Proof. Let us verify the assertion (1). The well-definedness and the exact-
ness of the sequence are immediate. Thus it suffices to show that the ho-
momorphism I ′ −→ Out(ΠG′) factors through the natural closed immersion
Aut(G ′) ↪−→ Out(ΠG′), or, equivalently, that the conjugation action of any
element of Πρ′ on the closed normal subgroup ΠG′ ⊂ Πρ′ is graphic in the
sense of [CbGC], Definition 1.4, (i) (cf. the discussion preceding [CbGC],
Lemma 2.1). On the other hand, in light of [CbGC], Proposition 1.5, (ii),
this follows immediately from the assumption and Remark 1.5.2. This com-
pletes the proof of the assertion (1).

Next, we verify the non-resp’d case of the assertion (2). We apply the
notation of [CbGC], Definition 2.3. Moreover, we recall the pro-l cyclotomic

character Aut(G) cyc.−→ Z×
l defined in [CbGC], Lemma 2.1. It suffices to show

that the restriction of the composite Πρ −↠ I
ρ−→ Aut(G) cyc.−→ Z×

l (whose
image is assumed to be open) to the open subgroup Πρ′ ⊂ Πρ coincides

with the composite Πρ′ −↠ I ′
ρ′−→ Aut(G ′)

cyc.−→ Z×
l . It follows from the

definitions that the composite morphism Πρ −→ Z×
l can be computed as
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follows (and entirely similar statement holds also for the composite morphism
Πρ′ −→ Z×

l ).

(i) Take an arbitrary connected finite étale subcovering G ′′ −→ G of G̃ −→
G such that G ′′ is sturdy (cf. [CbGC], Definition 1.1, (ii), and [CbGC],
Remark 1.1.5) and such that the corresponding open subgroup ΠG′′ ⊂
ΠG is stable (as a subgroup) under the conjugation action of Πρ on ΠG.
Then Πρ acts graphically (cf. [CbGC], Definition 1.4, (i), and [CbGC],
Proposition 1.5, (ii), for the terminology “graphic”) on ΠG′′ , hence also
on Π(G′′)cpt (cf. Example 1.7.2 for the notation “Π(G′′)cpt”).

(ii) The action of Πρ on Π(G′′)cpt defined in (i) determines a continuous
action of Πρ on H2(Π(G′′)cpt ,Zl), which is a free Zl-module of rank 1,
hence a continuous homomorphism Πρ −→ Z×

l . Finally, we take the
inverse (i.e., “(–)−1”) of this homomorphism.

Here, we emphasize that, in (i) above, we may take an open subgroup which
is not necessarily characteristic in ΠG, despite that only the characteristic
open subgroups of ΠG are considered in (the discussion preceding) [CbGC],
Lemma 2.1. The verification of this slight generalization is immediate from
an entirely similar argument to the proof of [CbGC], Lemma 2.1. Now the de-
sired coincidence follows immediately from this description of the composite
morphisms Πρ −→ Z×

l and Πρ′ −→ Z×
l .

Finally, we verify the resp’d case of the assertion (2). Since we have al-
ready shown the non-resp’d case of the assertion (2), we have only to show

that, for every connected finite étale subcovering G ′′ −→ G ′ of G̃ −→ G ′ corre-
sponding to a characteristic open subgroup ΠG′′ ⊂ ΠG′ , wl

(
(Mvert

G′′ /M edge
G′′ )⊗ẐΣG

Zl

)
is included in (0, 2)Q

def
= {q ∈ Q | 0 < q < 2.}, where the “wl” is taken

with respect to the natural action of Πρ′ . To this end, take a connected fi-

nite étale subcovering G ′′′ −→ G of G̃ −→ G corresponding to a characteristic
open subgroup ΠG′′′ ⊂ ΠG such that it holds that ΠG′′′ ⊂ ΠG′′ . Then it follows
from the assumption that it holds that wl

(
(Mvert

G′′′ /M
edge
G′′′ )⊗ẐΣG Zl

)
⊂ (0, 2)Q,

where the “wl” is taken with respect to the natural action of Πρ. More-
over, by the “coincidence of the cyclotomic character” demonstrated in the
proof of the non-resp’d case, the set wl

(
(Mvert

G′′′ /M
edge
G′′′ ) ⊗ẐΣG Zl

)
is invari-

ant if one changes the acting group from Πρ to Πρ′ . Finally, since we have

a natural Πρ′-equivariant open homomorphism (Mvert
G′′′ /M

edge
G′′′ ) ⊗ẐΣG Zl −→

(Mvert
G′′ /M edge

G′′ )⊗ẐΣGZl, we have wl

(
(Mvert

G′′ /M edge
G′′ )⊗ẐΣGZl

)
⊂ wl

(
(Mvert

G′′′ /M
edge
G′′′ )⊗ẐΣG
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Zl

)
. This completes the proof of the resp’d case of the assertion (2), hence

also the proof of Lemma 4.1.

Lemma 4.2. Let l ∈ ΣG and (G, ρ : I −→ Aut(G)) an l-graphically full
outer representation of PSC-type. Let us consider the outer representation
of PSC-type (G(l), ρ(l) : I −→ Aut(G(l))) naturally determined by (G, ρ : I −→
Aut(G)). Then the following assertions hold.

(1) The pro-l cyclotomic character I −→ Z×
l associated to (G(l), ρ(l) : I −→

Aut(G(l))) coincides with the pro-l cyclotomic character I −→ Z×
l as-

sociated to (G, ρ : I −→ Aut(G)) (cf. [CbGC], Lemma 2.1 for the defi-
nition of pro-l cyclotomic character).

(2) If (G, ρ : I −→ Aut(G)) is l-graphically full, then (G(l), ρ(l) : I −→
Aut(G(l))) is also l-graphically full.

(3) The exact sequence (∗) in the case where we take “(G, ρ : I −→ Aut(G))”
to be (G(l), ρ(l) : I −→ Aut(G(l))) coincides with the exact sequence ob-
tained by taking the quotients of ΠG and Πρ of the exact sequence (∗)
by the kernel of the natural homomorphism ΠG −↠ Π

(l)
G

∼= ΠG(l) (cf.
Lemma 2.1, (2)). Here, we note that the kernel of the natural homo-

morphism ΠG −↠ Π
(l)
G

∼= ΠG(l) is characteristic in ΠG and thus normal
in ΠρI .

Proof. The assertions (1) and (2) follow from a similar argument to the proof
of Lemma 4.1, (2). The assertion (3) follows immediately from the definitions.
This completes the proof of Lemma 4.2.

Next, we recall the following result from [CbGC], which plays the most
crucial role in the proof of Theorem 4.4.

Lemma 4.3. Let l ∈ ΣG and (G, ρ : I −→ Aut(G)) an l-graphically full outer
representation of PSC-type. Then the following assertions hold.

(1) The quotient MG⊗ẐΣG Zl −↠ (MG/M
vert
G )⊗ẐΣG Zl is characterized as the

maximal torsion-free quasi-trivial Zl[I]-quotient module of MG ⊗ẐΣG Zl

(cf. [CbGC], Definition 2.3, (i)).

(2) The submodule M edge
G ⊗ẐΣG Zl ⊂ MG⊗ẐΣG Zl is characterized as the max-

imal quasi-toral Zl[I]-submodule of MG⊗ẐΣG Zl (cf. [CbGC], Definition
2.3, (i)).
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Proof. This is [CbGC], Proposition 2.4, (viii) and (ix).

This crucial result, combined with various results obtained in the present
paper, naturally leads to the following theorem.

Theorem 4.4. Let (G, ρI : I −→ Aut(G)) and (H, ρJ : J −→ Aut(H)) be
outer representations of PSC-type. Let us consider the following commutative
diagram of profinite groups and continuous homomorphisms:

1 // ΠG //

α

��

ΠρI
//

α̃
��

I //

β

��

1

1 // ΠH // ΠρJ
// J // 1,

where the two horizontal sequences are the respective exact sequences (∗)
associated to (G, ρI : I −→ Aut(G)) and to (H, ρJ : J −→ Aut(H)). Let □ ∈
{Vert,Edge} and S ⊂ □(G̃). Suppose further that there exists l ∈ ΣG ∩ ΣH
for which the following four conditions hold.

(i) For every c̃ ∈ S, there exists a connected finite étale subcovering H′ −→
H of H̃ −→ H such that the image of α(Πc̃) ∩ ΠH′ via the natural

surjection ΠH′ −↠ Π
(l)
H′

∼= Π(H′)(l) is non-trivial.

(ii) The outer representation of PSC-type (G, ρI : I −→ Aut(G)) is l-graphically
full.

(iii) The outer representation of PSC-type (H, ρJ ◦ β : I −→ Aut(H)) is
l-graphically full.

(iv) If, moreover, □ = Edge, then the two cyclotomic characters I −→ Z×
l

associated to (G, ρI : I −→ Aut(G)) and to (H, ρJ ◦ β : I −→ Aut(H))
coincide.

Then α is
(
S,□(H̃)

)
-compatible.

Proof. We fix l ∈ ΣG ∩ ΣH as in the statement. By pulling back the lower
horizontal exact sequence of the commutative diagram under consideration
via β, we may assume that β is an isomorphism (or even the identity) of
profinite groups.

Let (ΠρJ ,λ ⊂ ΠρJ )λ∈Λ be the family of all open subgroups of ΠρJ . This
family determines a family (ΠHλ

= ΠρJ ,λ ∩ ΠH)λ∈Λ of open subgroups of ΠG
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such that
⋂

λ∈Λ ΠHλ
= 1, or, equivalently, a cofinal subsystem (Hλ −→ H)λ∈Λ

of (the projective system which gives rise to) the pro-ΣH universal covering

H̃ −→ H. In light of Lemma 2.5, (ii) =⇒ (i), it suffices to show that the
continuous homomorphism (αλ)

(l) : Π(Gλ)(l)
−→ Π(Hλ)(l)

induced by α, where

we write Gλ −→ G for the connected finite étale subcovering of G̃ −→ G cor-

responding to α−1(ΠHλ
) ⊂ ΠG, is

(
S̃(Gλ, {l}),□((̃Hλ)(l))

)
-compatible. Here,

we note that the assumption (i) makes it possible for us to apply Lemma
2.5. By replacing, for every λ ∈ Λ, each profinite group (“ΠρJ” at the center
of the lower horizontal sequence, for example) in the commutative diagram
under consideration by an appropriate open subgroup (ΠρJ ,λ ⊂ ΠρJ for exam-

ple), we are reduced to showing that ΠG(l) −→ ΠH(l) is
(
S̃(G, {l}),□(H̃(l))

)
-

compatible. Thus, by Lemma 4.2, we may assume that ΣG = ΣH = {l}.
To verify the

(
S,□(H̃)

)
-compatibility of α in the case where ΣG = ΣH =

{l}, again, we take the family (ΠρJ ,λ ⊂ ΠρJ )λ∈Λ of all open subgroups of ΠρJ

and we put ΠHλ
= ΠρJ ,λ ∩ ΠH ⊂ ΠH; ΠGλ

= α−1(ΠHλ
) ⊂ ΠG; αλ : ΠGλ

−→
ΠHλ

the restriction of α. Then, in light of Theorem 3.2, (ii) =⇒ (iii),
and Remark 1.7.3, it suffices to show that αab

λ (MS
Gλ
) ⊂ M◦

Hλ
, where we set

◦ = vert (resp. ◦ = edge) if □ = Vert (resp. □ = Edge). On the other hand,

this follows, in light of the assumption that S ⊂ □(G̃), easily from Lemma
4.3 (resp. Lemma 4.3 and the assumption (iv)), where the “I” in Lemma
4.3 is taken as the image of ΠρJ ,λ via the natural surjection ΠρJ −↠ J . This
completes the proof of Theorem 4.4.

Remark 4.4.1. Theorem 4.4, along with its proof, can be considered as a
Hom-version of [CbGC], Corollary 2.7, (ii). Indeed, they share the technical
core of the proof, say, the characterization of Mvert

G and M edge
G (in the case

where ΣG = {l}) in terms of the l-graphically full actions (cf. Lemma 4.3).
Also, we observe that [CbGC], Corollary 2.7, (ii), follows, at least if we

(inappropriately) ignore the necessity of the assumption (iv) of Theorem
4.4, formally from Theorem 4.4 and Lemma 1.9. Thus Theorem 4.4 is, in a
certain sense, a generalization of [CbGC] Corollary 2.7, (ii), though not in a
straightforward manner.

Regarding the assumption (iv) of Theorem 4.4, which we ignored in the
above discussion, we note that, in the situation of [CbGC], Corollary 2.7,
(ii), one may verify (an “Isom-version” counterpart of) the assumption (iv)
of Theorem 4.4 by an argument involving numerical data. In particular,
we can indeed prove [CbGC], Corollary 2.7, (ii), using Theorem 4.4 in an
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essential way.
The author decided to impose the assumption (iv) in Theorem 4.4 pre-

cisely due to the difficulty of applying such an argument to our “Hom-version”
situation (cf. the proof of [CbGC], Corollary 2.7, (i); also Remark 3.2.1). It
is an interesting remaining work to examine the extent to which assumption
(iv) can be relaxed.

Remark 4.4.2. It follows immediately from Lemma 1.10 that one can strengthen
the conclusion of Theorem 4.4 from α being (S,□(H̃))-compatible to α being

(SΠG ,□(H̃))-compatible (cf. Lemma 1.10 for the notation “SΠG”).

Remark 4.4.3. In Theorem 4.4, the conclusion “α is (S,□(H̃))-compatible”

is equivalent to saying that, for every c̃ ∈ S, there exists d̃ ∈ □(H̃) such that
α(Πc̃) ⊂ Πd̃, i.e., the part “α(Πc̃) = 1 or” in Definition 1.7, (1), is irrelevant,
because of the non-triviality assumption (i).
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