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Abstract

In the present paper, we continue our study, which was initiated
in the previous paper of the present series of papers, of combinatorial
anabelian geometry of (not necessarily bijective) continuous homo-
morphisms between PSC-fundamental groups of semi-graphs of an-
abelioids of PSC-type. In particular, we continue to study certain
Hom-versions of the combinatorial versions of the Grothendieck con-
jecture established in some previous works, i.e., to study certain suf-
ficient conditions of certain group-theoretic compatibility properties
described in terms of outer representations.

The outer representations we mainly concern in the present paper
are of PIPSC-type and of NN-type, both of which are of substan-
tial importance in the study of algebro-geometric anabelian geometry
of configuration spaces of hyperbolic curves. We also include, as a
preparation for one of the main results, a presentation of a “reduction
technique”, namely, a technique of reduction to the “compactified quo-
tients” of (various open subgroups of) the PSC-fundamental groups
under consideration, in a similar vein to the previous paper where we
included other two “reduction techniques”.
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Introduction

Semi-graphs of anabelioids of PSC-type and their PSC-fundamental groups
are central objects in the study of combinatorial anabelian geometry. Among
the various results obtained in the previous research in this realm, the com-
binatorial version of the Grothendieck conjecture (or “the combinatorial
Grothendieck conjecture” for short), which is an analogue of (a certain ver-
sion of) the original arithmetic Grothendieck conjecture, is of particular in-
terest and importance. In the present paper, we continue our study, which
was initiated in the previous paper [HmCbGCI] of the present series of pa-
pers, of combinatorial anabelian geometry of (not necessarily bijective) con-
tinuous homomorphisms between PSC-fundamental groups of semi-graphs
of anabelioids of PSC-type. In particular, we continue our investigation of
Hom-versions of the combinatorial Grothendieck conjecture in a similar vein
to [HmCbGCI], §4, pivoting our attention to the outer representations of
PIPSC-type and of NN-type (cf. Theorem A, Theorem B, and Theorem C
below for our main results). In the remainder of the present Introduction
section, the readers are assumed to have already read most of [HmCbGCI],
Introduction, with the exception of the paragraph that starts with “Finally,
in §4, we apply ...”.

Now let us explain the flow of the present paper. We will adopt the no-
tations and conventions introduced in [HmCbGCI], Introduction. Moreover,

if G is a semi-graph of anabelioids of pro-Σ PSC-type and G̃ −→ G its pro-Σ
universal covering, then we shall write Node(G̃) (resp. Cusp(G̃)) for the set of
closed edges (resp. the set of open edges) of G̃. In addition, in the following
discussion, the letter G (resp. H) always denotes a semi-graph of anabelioids
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of pro-ΣG PSC-type (resp. of pro-ΣH PSC-type). In particular, the pro-ΣG

universal covering G̃ −→ G is fixed implicitly, the PSC-fundamental group
ΠG of G is considered to be associated to that fixed pro-ΣG universal cov-

ering G̃ −→ G (i.e., we set ΠG
def
= Aut(G̃/G)op), and similar conventions are

adopted also for H.
In §1, we review some generalities on outer representations of PSC-type.

An outer representation of PSC-type is, by definition, a pair
(
G, ρ : I −→

Aut(G)
)
, where I is a profinite group and ρ is a group homomorphism which

is continuous with respect to the natural profinite topology of Aut(G) (cf.
the discussion preceding [CbGC], Lemma 2.1). The class of l-graphically
full outer representations, which we treated in the previous paper, is an
intriguing class of outer representations of PSC-type, but the focus of the
present paper lies on other kinds of outer representations of PSC-type. The
following diagram illustrates the six types of outer representations which we
deal with in the present paper, along with the logical implications between
them:

IPSC-type +3

��

SNN-type +3

��

SVA-type

��
PIPSC-type +3 NN-type +3 VA-type.

“IPSC” (resp. “PIPSC”; “NN”; “SNN”; “VA”; “SVA”) stands for “inertial
pointed stable curve” (resp. “potentially IPSC”; “nodally nondegenerate”;
“strictly NN”; “veriticially admissible”; “strictly VA”). Outer representations
of PSC-type which are of (P)IPSC-type and of (S)NN-type are particularly
important. Roughly speaking, the former is defined to be outer representa-
tions of PSC-type which are (almost) isomorphic, in a certain sense, to an
outer representation arising from a degenerating family of hyperbolic curves
over a complete discrete valuation ring whose residue field is algebraically
closed and of characteristic zero, while the latter, a generalization of the for-
mer, is defined entirely in group-theoretic language (i.e., without referring
to any specific geometric situation) and encompasses (combinatorial Galois-
category-theoretic counterparts of) other natural geometric situations addi-
tional to those mentioned in the definition of the former. The importance
of them is evident from the fact that some versions of the combinatorial
Grothendieck conjecture regarding these types of outer representations of
PSC-type play crucial roles in the study of algebro-geometric anabelian ge-
ometry of configurations spaces of hyperbolic curves (cf., e.g., the proof of
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[NodNon], Theorem 6.1, and the proof of [CbTpII], Theorem 2.3). The aim
of the present paper is precisely to establish certain “Hom-versions” of such
significant versions of the combinatorial Grothendieck conjecture.

Let
(
G, ρ : I −→ Aut(G)

)
be an outer representation of PSC-type. Write

Πρ
def
= ΠG

out
o I, where the “

out
o” is taken with respect to ρ (cf. the discussion

entitled “Topological Groups” in [HmCbGCI], §0). In order to discuss the
special types of the outer representations of PSC-type mentioned above, it
is necessary to introduce beforehand the following special subgroups of Πρ.

For c̃ ∈ VCN(G̃) (resp. c̃ ∈ Vert(G̃) q Node(G̃)), we shall write Dc̃ (resp.
Ic̃) for the normalizer subgroup (resp. the centralizer subgroup) of Πc̃ ⊂
ΠG in Πρ and refer to it as the decomposition subgroup (resp. the inertia
subgroup) associated to c̃ (cf. the discussion entitled “Topological Groups” in
§0 for the terminologies “normalizer subgroup” and “centralizer subgroup”).
These subgroups Dc̃ and Ic̃ are also reviewed in §1 and will play crucial roles
throughout the present paper.

Next, in §2, we give a brief exposition on a well-known “reduction tech-
nique”, namely, a technique of reduction to the “compactified quotients” of
(various open subgroups of) the PSC-fundamental groups under considera-
tion. As the arguments are entirely similar to those of [HmCbGCI], §2, the
details are largely omitted.

In §3 and §4, we formulate and prove certain “Hom-versions” of the combi-
natorial Grothendieck conjecture. In other words, we show that, for a contin-
uous homomorphism α between PSC-fundamental groups, the compatibility
of α with certain outer representations of PSC-type implies a certain group-
theoretic compatibility property of α. Here, we recall that, for S ⊂ VCN(G̃)
and T ⊂ VCN(H̃), α : ΠG −→ ΠH is said to be (S, T )-compatible if, for every
c̃ ∈ S, either α(Πc̃) = 1 or there exists d̃ ∈ T such that α(Πc̃) ⊂ Πd̃; we
also recall that the properties of being (S, T )-compatible for some S, T are
collectively referred to as the group-theoretic compatibility properties.

In §3, we focus on outer representations of PIPSC-type. The setting we
consider in the statement of the Hom-versions of the combinatorial Grothendieck
conjecture is the commutative diagram

1 // ΠG

α

��

// ΠG
out
o I

α̃
��

// I

β

��

// 1

1 // ΠH // ΠH
out
o J // J // 1,

(∗∗)
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where the two horizontal sequences are the respective exact sequences as-
sociated to outer representations of PSC-type

(
G, ρI : I −→ Aut(G)

)
and(

H, ρJ : J −→ Aut(H)
)
(cf. the discussion entitled “Topological Groups”

in [HmCbGCI], §0). Then our first main result in the present paper is as
follows.

Theorem A (Theorem 3.3). Let us consider the commutative diagram (∗∗).
Suppose that

(
G, ρI : I −→ Aut(G)

)
is of VA-type, that

(
H, ρJ : J −→ Aut(H)

)
is of PIPSC-type, and that β is an open homomorphism. Then α is

(
Vert(G̃),Vert(H̃)

)
-

compatible.

Theorem A, along with its proof, can be considered as a “Hom-version”
of [CbTpII], Theorem 1.9, (ii), at least if one disregards the point that, while
[CbTpII], Theorem 1.9, (ii), includes the “group-theoretic nodality” (i.e.,

roughly, the Isom-version counterpart of the
(
Node(G̃),Node(H̃)

)
-compatibility)

of the isomorphism under consideration, Theorem A says nothing about
nodal subgroups.

The discrepancy between [CbTpII], Theorem 1.9, (ii), and Theorem A
concerning nodal subgroups just pointed out above is inherent and cannot
be remedied easily (cf. [HmCbGCI], Remark 1.7.6 for more detail). However,
in light of a substantially different viewpoint presented in [GrphPIPSC], we
find that under some additional assumptions we can say something non-
trivial also on nodal subgroups. This is our second main result in the present
paper, in the proof of which we apply the “reduction technique” reviewed in
§2.

Theorem B (Theorem 3.7). Let us consider the commutative diagram (∗∗).
Suppose that

(
G, ρI : I −→ Aut(G)

)
and

(
H, ρJ : J −→ Aut(H)

)
are of

PIPSC-type and that α is
(
Cusp(G̃),Cusp(H̃)

)
-compatible. Then α is

(
Node(G̃),Edge(H̃)

)
-

compatible (and thus, by assumption,
(
Edge(G̃),Edge(H̃)

)
-compatible).

Let
(
G, ρ : I −→ Aut(G)

)
be an outer representation of PSC-type. Then

the content of [GrphPIPSC] we quote in the proof of Theorem B is, es-
sentially, a group-theoretic reconstruction algorithm of the nodal subgroups

of ΠG, regarded as subgroups of Πρ
def
= ΠG

out
o I, from the abstract profi-

nite group structure of Πρ under the assumptions that Cusp(G̃) = ∅ and
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that
(
G, ρ : I −→ Aut(G)

)
is of PIPISC-type. This reconstruction algorithm

should be considered as belonging to absolute anabelian geometry of outer
representations of PSC-type (cf. the fact that the “input data” of the algo-
rithm is a single abstract profinite group Πρ), in contrast to our situation that
we are pursuing (certain Hom-versions of) semi-absolute anabelian geometry
of outer representations of PSC-type (cf. the fact that our “input data”
should be considered as including not only the profinite group Πρ but also
the natural surjection Πρ −↠ I). We could have obtained a straightforward
generalization of this “absolute” result of [GrphPIPSC] (cf. Remark 3.7.1),
but we have chosen to pay the price of abandoning absoluteness and consider
a semi-absolute situation in order to obtain the result that remains valid even
for the cases where it does not necessarily hold that Cusp(G̃) = Cusp(H̃) = ∅
(cf. Remark 3.7.2).

Finally, in §4, we focus on outer representations of NN-type. The main
result of §4 (cf. Theorem C below) states that, roughly, if a continuous ho-
momorphism between PSC-fundamental groups is compatible with an outer
representation of VA-type on the domain and an outer representation of NN-
type on the codomain, and, moreover, it satisfies a certain group-theoretic
compatibility property, then this group-theoretic compatibility “extends” to
the neighbour vertices. Such “extension” phenomenon is typically observed
in the context of existing Isom-versions of the combinatorial Grothendieck
conjecture for outer representations of PSC-type which are of NN-type, and
thus we may consider Theorem C as a nicely unified description of that phe-
nomenon. On the other hand, since the proofs of those existing Isom-versions
do not function in our Hom-version situation, we had to develop a substan-
tially different technique (cf. Remark 4.7.2).

To state the result, we need another notation. If c̃ ∈ Vert(G̃) (resp.

c̃ ∈ Edge(G̃)), then we shall write Fc̃ for the subset of Vert(G̃) consisting of ṽ
such that ṽ is equal to c̃ or there exists an edge ẽ which abuts both to c̃ and
ṽ (resp. such that c̃ abuts to ṽ). Moreover, if S ⊂ VCN(G̃), then we shall

write FS
def
=
⋃

c̃∈S Fc̃. Now our result is formulated as follows.

Theorem C (Theorem 4.7). Let us consider the commutative diagram (∗∗).
Let S ⊂ VCN(G̃) and T ⊂ VCN(H̃). Suppose that

(
G, ρI : I −→ Aut(G)

)
is

of VA-type, that
(
H, ρJ : J −→ Aut(H)

)
is of NN-type, that β is non-trivial,

that α is (S, T )-compatible, and that, for every c̃ ∈ S, it holds that α(Πc̃) 6= 1.
Then α is (FS, FT )-compatible.
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Theorem C may be considered as a unified generalized Hom-version of
[NodNon], Theorem 4.1, [NodNon], Corollary 4.2, and [CbTpII], Theorem
1.9, (i), (2) =⇒ (1) (cf. Remark 4.8.2 for the detail).

Finally, we note that we still do not have a Hom-version of [CbTpII], The-
orem 1.9, (i), (3) =⇒ (1), which is deeper than the implication (2) =⇒ (1).
We also note that, in contrast to §3 (cf. Theorem B), we regrettably cannot
establish group-theoretic compatibility properties for edge-like subgroups in
§4.

0 Notations and Conventions

We shall continue to use the “Notations and Conventions” of [HmCbGCI],
§0. In addition, we shall use the following notations and conventions:

Numbers

C denotes the field of complex numbers.

Topological Groups

LetK be a topological group and G,H ⊂ K closed subgroups of K. Then
we shall write ZG(H) (resp. NG(H); CG(H)) for the centralizer subgroup
(resp. normalizer subgroup; commensurator subgroup) of H in G, i.e.,

ZG(H)
def
= {g ∈ G | g−1hg = h for any h ∈ H.},

NG(H)
def
= {g ∈ G | g−1Hg = H.},

CG(H)
def
= {g ∈ G | H ∩ g−1Hg is of finte index in H and g−1Hg.}.

It is immediate from the definitions that ZG(H) ⊂ NG(H) ⊂ CG(H) ⊂ G;
G ∩H ⊂ NG(H). Moreover, we shall write

RG(H)
def
= {g ∈ G | H ∩ g−1Hg 6= 1.}.

Note that the subset RG(H) of G is not necessarily a subgroup of G. If H 6= 1
(resp. H is infinite), then it is immediate from the definitions that NG(H) ⊂
RG(H) (resp. CG(H) ⊂ RG(H)). Differing from the concepts of normalizer,
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centralizer, and commensurator, to the best of the author’s knowledge, this
construction “RG(H)” does not have commonly shared symbols or names.
The author decided to use the letter “R” for this construction in the present
paper simply because “R” had not been utilized for any other purposes.

1 Review of Outer Representations of PSC-

type

In this section, we review some basic definitions and results concerning
outer representations of PSC-type, which is by definition a continuous ho-
momorphism from a profinite group to the (profinite) automorphism group
of a semi-graph of anabelioids of PSC-type. This section does not contain
any new result.

A basic reference for the theory of semi-graphs of anabelioids of PSC-
type is [CbGC]. We shall use the terminologies “semi-graph of anabelioids
of PSC-type”, “PSC-fundamental group of a semi-graph of anabelioids of
PSC-type”, “finite étale covering of semi-graphs of anabelioids of PSC-type”,
“vertex”, “edge”, “node”, “cusp”, “verticial subgroup”, “edge-like subgroup”,
“nodal subgroup”, and “cuspidal subgroup”, as they are defined in [CbGC],
Definition 1.1. Moreover, if G is a semi-graph of anabelioids of PSC-type,
then we shall write ΣG for the (necessarily unique — cf. [CbGC], Remark
1.1.2) set of prime numbers such that G is a semi-graph of anabelioids of
pro-ΣG PSC-type. Also, we shall apply the various notational conventions
established in [NodNon], Definition 1.1; in particular, if G is a semi-graph of

anabelioids of PSC-type, then the pro-ΣG universal covering G̃ −→ G is fixed
throughout the discussion, and the PSC-fundamental group ΠG is always
considered to be associated to that fixed pro-ΣG universal covering G̃ −→ G.
Thus there is a natural action G̃ x ΠG, which induces a natural bijection

(
the set of open subgroups of ΠG

) ∼=−→

(the set of the isomorphism classes
of the connected finite étale

subcoverings of G̃ −→ G

)
;(

U ⊂ ΠG
)

7−→
(
G̃
/
U −→ G

)
.

If G ′ −→ G is a connected finite étale subcovering of the pro-ΣG universal
covering G̃ −→ G, then we always choose the implicit structure morphism
G̃ −→ G ′ as the pro-ΣG′ universal covering of G ′. (Here, we note that ΣG =
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ΣG′ .) Under this convention, the inverse of the natural bijection above is
given by

(
G ′ −→ G

)
7−→

(
ΠG′ ⊂ ΠG

)
. Finally, we shall refer to the “PSC-

fundamental group of a semi-graph of anabelioids of PSC-type” simply as
the “fundamental group” (of the semi-graph of anabelioids of PSC-type).

In the following, the letters “G” and “H” always denote semi-graphs of
anabelioids of PSC-type. Note that we do not assume that ΣG = ΣH.

Before proceeding, let us also recall the issue concerning the profinite
topology on Aut(G). Since the fundamental group ΠG of G is topologically
finitely generated (cf. [CbGC], Remark 1.1.3), the profinite topology of ΠG
induces (profinite) topologies on Aut(ΠG) and Out(ΠG) (cf. the discussion
entitled “Topological Groups” in [HmCbGCI], §0). Moreover, if we write
Aut(G) for the group of automorphisms of G, then by the discussion preced-
ing [CbGC], Lemma 2.1, the natural homomorphism Aut(G) −→ Out(ΠG)
is an injection with closed image. (Here, we recall that an automorphism
of a semi-graph of anabelioids consists of an automorphism of the underly-
ing semi-graph, together with a compatible system of isomorphisms between
the various anabelioids at each of the vertices and edges of the underlying
semi-graph which are compatible with the various morphisms of anabelioids
associated to the branches of the underlying semi-graph — cf. [SemiAn],
Definition 2.1.) Thus, by equipping Aut(G) with the topology induced via
this homomorphism by the topology of Out(ΠG), we may regard Aut(G) as
a profinite group.

Now we begin the review.

Definition 1.1 ([NodNon], Definition 2.1). Let I be a profinite group and
ρ : I −→ Aut(G) a continuous homomorphism. Then we shall refer to the pair(
G, ρ : I −→ Aut(G)

)
as an outer representation of PSC-type. If moreover

G is a semi-graph of anabelioids of pro-Σ PSC-type, i.e., ΣG = Σ, then we
shall say that the pair

(
G, ρ : I −→ Aut(G)

)
is an outer representation of

pro-Σ PSC-type. We have the evident notion of an isomorphism of outer
representations of PSC-type.

Example 1.1.1. l-graphically full outer representations, which we focused
on [HmCbGCI], §4, are outer representations of PSC-type by definition.

Example 1.1.2. Let Σ be a non-empty set of prime numbers, k a separably
closed field whose characteristic is not contained in Σ, S = Spec k, and Slog a
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log scheme obtained by equipping S with the log structure determined by the
chart N −→ k; 1 7−→ 0. Then, as is discussed in [AbsTopII], Example 1.1,
any stable log curve X log over Slog (cf. the discussion entitled “Curves” in
[CbGC], §0) naturally determines an outer representation of pro-Σ PSC-type(

GΣ
Xlog , ρ : I

Σ
Slog −→ Aut

(
GΣ
Xlog

))
.

Here, we write GΣ
Xlog for the semi-graph of anabelioids of pro-Σ PSC-type

associated to X log and IΣ
Slog for the maximal pro-Σ quotient of the log funda-

mental group ISlog of Slog. It is well-known that ISlog is naturally isomorphic
to Hom(Q/Z, k×) as a profinite group, hence also is (non-canonically) iso-
morphic to ẐΣ′

as a profinite group, where we write Σ′ for the complement
of the characteristic of k in the set of prime numbers. In particular, IΣ

Slog is

(non-canonically) isomorphic to ẐΣ as a profinite group.

In the following, we are mainly concerned with the exact sequence of
profinite groups and continuous homomorphisms

1 −→ ΠG −→ Πρ −→ I −→ 1, (∗)

where we write Πρ
def
= ΠG

out
o I, associated to an outer representation of PSC-

type
(
G, ρ : I −→ Aut(G)

)
. In other words, we are interested in the exact

sequence obtained by pulling back the exact sequence

1 −→ ΠG −→ Aut(ΠG) −→ Out(ΠG) −→ 1

via the continuous homomorphism I
ρ−→ Aut(G) natural

↪−→ Out(ΠG) (cf. the
discussion entitled “Topological Groups” in [HmCbGCI], §0). Here, we note
that ΠG is topologically finitely generated and center-free (cf. [CbGC], Re-
mark 1.1.3).

Definition 1.2. We shall write VN(G) def
= Vert(G)qNode(G) and VN(G̃) def

=

Vert(G̃)q Node(G̃). We shall refer to a verticial or nodal subgroup of ΠG as
a VN-subgroup of ΠG.

Definition 1.3 ([NodNon], Definition 2.2). Let
(
G, ρ : I −→ Aut(G)

)
be an

outer representation of PSC-type. Let us consider the exact sequence (∗)
associated to

(
G, ρ : I −→ Aut(G)

)
.
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(1) For c̃ ∈ VCN(G̃), we shall refer to Dc̃
def
= NΠI

(Πc̃) as the decomposition
subgroup of ΠI associated to c̃.

(2) For c̃ ∈ VN(G̃), we shall refer to Ic̃
def
= ZΠI

(Πc̃) as the inertia subgroup
of ΠI associated to c̃.

Remark 1.3.1. The following assertions follow immediately from the defi-
nitions and might be applied without a mention:

(1) For every c̃ ∈ VN(G̃), it holds that Ic̃ ⊂ Dc̃.

(2) For every ẽ ∈ Node(G̃) and ṽ ∈ Vert(G̃) to which ẽ abuts, it holds that
Iṽ ⊂ Iẽ.

(3) For every ẽ ∈ Edge(G̃) and ṽ ∈ Vert(G̃) to which ẽ abuts, it holds that
Iṽ ⊂ Dẽ.

Lemma 1.4. Let
(
G, ρ : I −→ Aut(G)

)
be an outer representation of PSC-

type. Let us consider the exact sequence (∗) associated to
(
G, ρ : I −→

Aut(G)
)
. Then the following assertions hold.

(1) For every c̃ ∈ VCN(G̃), it holds that Dc̃ ∩ ΠG = Πc̃. In particular, the
exact sequence (∗) induces the following exact sequence:

1 −→ Πc̃ −→ Dc̃ −→ Im(Dc̃ → I) −→ 1.

(2) For every ṽ ∈ Vert(G̃), it holds that Iṽ ∩ ΠG = 1. In particular, the
composite of the natural homomorphisms Iṽ ↪−→ Πρ −↠ I is injective.

(3) For every ẽ ∈ Node(G̃), it holds that Iẽ ∩ ΠG = Πẽ. In particular, the
exact sequence (∗) induces the following exact sequence:

1 −→ Πẽ −→ Iẽ −→ Im(Iẽ → I) −→ 1.

(4) For every ṽ ∈ Vert(G̃), the natural inclusions Πṽ, Iṽ ↪−→ Dṽ determine
an injective homomorphism Πṽ × Iṽ ↪−→ Dṽ.

(5) For every ẽ ∈ Edge(G̃) and ṽ ∈ Vert(G̃) to which ẽ abuts, the natural
inclusions Πẽ, Iṽ ↪−→ Dẽ determine an injective homomorphism Πẽ ×
Iṽ ↪−→ Dẽ. Moreover, if ẽ ∈ Node(G), then this homomorphism factors
through Iẽ ⊂ Dẽ.
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Proof. Most part of the proof of Lemma 1.4 is essentially included in the
proofs of [NodNon], Lemma 2.3, (i), [NodNon], Lemma 2.5, (iv), [NodNon],
Lemma 2.7, and [GrphPIPSC], Lemma 1.5, (iv). However, we give the proof
of them here for the sake of the reader.

The assertion (1) follows from the commensurable terminality of Πc̃ in
ΠG (cf. [CbGC], Proposition 1.2, (ii)). The assertion (2) follows from the
assertion (1) and the center-freeness of Πṽ (cf. [CbGC], Remark 1.1.3). The
assertion (3) follows from the assertion (1) and the abelianness of Πẽ (cf.
[CbGC], Remark 1.1.3). The assertions (4) and (5) follow immediately from
the assertions (2), (3) and the definitions. This completes the proof of Lemma
1.4.

Definition 1.5 ([NodNon], Definition 2.4, (ii)). An outer representation of
PSC-type

(
G, ρ : I −→ Aut(G)

)
is said to be of VA-type (resp. of SVA-type)

if, in the notation of Definition 1.3, the following two conditions hold:

• I is isomorphic to ẐΣG as a profinite group.

• For every ṽ ∈ Vert(G̃), the composite of the natural homomorphisms
Iṽ ↪−→ ΠI −↠ I (which is necessarily injective — cf. Lemma 1.4, (2))
is an open (resp. a bijective) homomorphism.

We shall refer to an outer representation of PSC-type which is of VA-type
(resp. of SVA-type) simply as an outer representation of VA-type (resp. of
SVA-type).

Lemma 1.6 (essentially included in [NodNon], Lemma 2.5 and [NodNon],
Lemma 2.7). Let

(
G, ρ : I −→ Aut(G)

)
be an outer representation of VA-

type (resp. of SVA-type). Let us consider the exact sequence (∗) associated
to
(
G, ρ : I −→ Aut(G)

)
. Then the following assertions hold.

(1) The subgroups “Im(Dc̃ → I)” and “Im(Iẽ → I)” of I which appear in
Lemma 1.4, (1) and (3), are both open in I (resp. equal to I).

(2) The natural injective homomorphisms given in Lemma 1.4, (4) and (5),
are both open homomorphisms (resp. isomorphisms).

(3) For any ẽ ∈ Node(G̃), Iẽ is isomorphic to ẐΣG × ẐΣG as a profinite
group, hence abelian.

12



Proof. The assertions (1) and (2) follow immediately from the definitions of
“VA-type” and “SVA-type”, in light of Remark 1.3.1, (1), (2), (3).

Let us verify the assertion (3). By the assertion (1), it holds that Im(Iẽ →
I) ∼= ẐΣG . In particular, there exists a continuous section homomorphism
s : Im(Iẽ → I) ↪−→ Iẽ of the exact sequence in Lemma 1.4, (3). Since
Im(s) ⊂ Iẽ = ZIẽ(Πẽ) by definition, the inclusion Πẽ ↪−→ Iẽ and the section

s determine a continuous group isomorphism Πẽ × Im(Iẽ → I)
∼=−→ Iẽ. Since

both Πẽ and Im(Iẽ → I) are isomorphic to ẐΣG (cf. [CbGC], Remark 1.1.3,
and the assertion (1)), the assertion (3) follows. This completes the proof of
Lemma 1.6.

Lemma 1.7 ([NodNon], Remark 2.7.1). Let
(
G, ρ : I −→ Aut(G)

)
be an

outer representation of SVA-type. Let us consider the exact sequence (∗)
associated to

(
G, ρ : I −→ Aut(G)

)
. Then the following assertions hold.

(1) For any ẽ ∈ Node(G̃), it holds that Iẽ = Dẽ.

(2) For any ẽ ∈ Edge(G̃) and ṽ ∈ Vert(G̃) to which ẽ abuts, it holds that
Dẽ ⊂ Dṽ.

Proof. The assertion (1) follows immediately from the last assertion of Lemma
1.4, (5), and the resp’d case of Lemma 1.6, (2). The assertion (2) follows
immediately from the resp’d case of Lemma 1.6, (2), together with the fact
that Πẽ ⊂ Πṽ.

In §3 and §4, we are mainly interested in outer representations of PSC-
type that satisfy the conditions defined below.

Definition 1.8 ([NodNon], Definition 2.4, (i), (iii), and [CbTpIII], Definition
1.3). Let

(
G, ρ : I −→ Aut(G)

)
be an outer representation of PSC-type.

(1)
(
G, ρ : I −→ Aut(G)

)
is said to be of IPSC-type if it is, as an outer

representation of PSC-type, isomorphic to the outer representation
of PSC-type

(
GΣ
Xlog , ρ : I

Σ
Slog −→ Aut

(
GΣ
Xlog

))
associated to some pair

“(Σ, X log −→ Slog)” as in Example 1.1.2.
(
G, ρ : I −→ Aut(G)

)
is said

to be of PIPSC-type if the following two conditions hold:

• I is isomorphic to ẐΣG as a profinite group.

• There exists an open subgroup I ′ of I such that the restricted
outer representation of PSC-type

(
G, ρ|I′ : I ′ −→ Aut(G)

)
is of

IPSC-type.

13



(2)
(
G, ρ : I −→ Aut(G)

)
is said to be of NN-type (resp. of SNN-type) if

it is of VA-type (resp. of SVA-type), and, moreover, in the notation of
Definition 1.3, the following condition holds:

For every ẽ ∈ Node(G̃), if one writes ṽ1, ṽ2 for the two
distinct vertices to which ẽ abuts, then the homomorphism
Iṽ1 × Iṽ2 −→ Iẽ induced by the inclusions Iṽ1 , Iṽ2 ⊂ Iẽ (which
is well-defined since Iẽ is abelian — cf. Lemma 1.6, (3)) is
an injective open homomorphism.

We shall refer to an outer representation of PSC-type which is of PIPSC-
type (resp. of IPSC-type; of NN-type; of SNN-type) simply as an outer
representation of PIPSC-type (resp. of IPSC-type; of NN-type; of SNN-
type).

Remark 1.8.1. The reader should be careful not to confuse the distinct
terms “outer representation of PSC-type” and “outer representation of IPSC-
type” due to their similar appearance. By definition, the latter constitutes a
very specific instance of the former.

In passing, we recall the following.

Lemma 1.9 (essentially included in [NodNon], Lemma 2.6, (i), and [GrphPIPSC],
Lemma 1.8, (iii)). Let

(
G, ρ : I −→ Aut(G)

)
be an outer representation of

PSC-type. Let us consider the exact sequence (∗) associated to
(
G, ρ : I −→

Aut(G)
)
. If Πρ′ is an open subgroup of Πρ, then write I ′ for the image of

Πρ′ via the surjection Πρ −↠ I and G ′ −→ G for the connected finite étale

subcovering of G̃ −→ G corresponding to the open subgroup Πρ′ ∩ ΠG of ΠG,
i.e., ΠG′ = Πρ′ ∩ ΠG. Then the following assertions hold.

(1) For any open subgroup Πρ′ ⊂ Πρ, the exact sequence (∗) naturally in-
duces the following exact sequence:

1 −→ ΠG′ −→ Πρ′ −→ I ′ −→ 1.

Moreover, this exact sequence arises from a unique outer representation
of PSC-type

(
G ′, ρ′ : I ′ −→ Aut(G ′)

)
.

(2) Let Πρ′ ⊂ Πρ be an open subgroup and □ ∈
{
VA,NN,PIPSC

}
. Then,

if
(
G, ρ : I −→ Aut(G)

)
is of □-type, then

(
G ′, ρ′ : I ′ −→ Aut(G ′)

)
in

(1) is also of □-type.

14



(3) Suppose that
(
G, ρ : I −→ Aut(G)

)
is of VA-type (resp. of NN-type; of

PIPSC-type). Then there exists an open subgroup Πρ′ ⊂ Πρ such that(
G ′, ρ′ : I ′ −→ Aut(G ′)

)
in (1) is of SVA-type (resp. of SNN-type; of

IPSC-type). Moreover, one can take such a Πρ′ as the inverse image
of some open subgroup I ′ of I, or, equivalently, as an open subgroup of
Πρ which includes ΠG.

Proof. The assertion (1) is identical to [HmCbGCI], Lemma 4.2, (1), and the
proof is given there.

The assertion (2) follows from [GrphPIPSC], Lemma 1.8, (iii).
Finally, let us verify the assertion (3). The assertion (3) in the case

where
(
G, ρ : I −→ Aut(G)

)
is of PIPSC-type is immediate. The assertion

(3) in the case where
(
G, ρ : I −→ Aut(G)

)
is of NN-type may be derived

from the assertion (3) in the case where
(
G, ρ : I −→ Aut(G)

)
is of VA-type.

Thus, to verify assertion (3), it suffices to verify the assertion (3) in the
case where

(
G, ρ : I −→ Aut(G)

)
is of VA-type. To this end, observe that⋂

ṽ∈Vert(G̃) p(Iṽ) is open in I, where we write p for the projection Πρ −↠ I,

since this is essentially a finite intersection (of open subgroups of I — cf.
Definition 1.5). The desired “Πρ′” is now obtained as the inverse image of
this open subgroup of I. This completes the proof of the assertion (3), hence
also the proof of Lemma 1.9.

2 Reduction to the Compactified Situations

In this section, we give a brief exposition on the argument of “reduction
to the compactified situations”, which is well-known to experts and will be
of use in the proof of Theorem 3.7. The contents of §1 play no role in this
section except that some remark concerning outer representation of PSC-
type is given in Remark 2.2.2. As a consequence, we prove that, in order
to show a certain group-theoretic compatibility property of a continuous ho-
momorphism between PSC-fundamental groups, it suffices to verify certain
group-theoretic compatibility properties of continuous homomorphisms be-
tween the PSC-fundamental groups of the “compactifications” of the various
intermediate coverings (i.e., between appropriate quotients of various open
subgroups). As the arguments are entirely similar to those of [HmCbGCI],
§2, the details are largely omitted.

The notational and terminological conventions established in the discus-
sion preceding Definition 1.1 remains valid in this section; in particular, the

15



letters “G” and “H” always denote semi-graphs of anabelioids of PSC-type;
we do not assume that ΣG = ΣH.

To begin with, we recall the notion of sturdiness.

Definition 2.1 ([CbGC], Definition 1.1, (ii), and [CbGC], Remark 1.1.5).
G is said to be sturdy if every irreducible component of “the pointed stable
curve that gives rise to G” is of genus ≥ 2.

In general, one can “compactify” a semi-graph of anabelioids just by “re-
moving the cusps of the underlying semi-graph” and “restricting the attention
to the coverings unramified over the cusps”. If the semi-graphs of anabelioids
under consideration is of PSC-type and sturdy, then the compactification is
again a semi-graph of anabelioids of PSC-type. We may concentrate on this
case.

Definition 2.2. Suppose that G is sturdy.

(1) We shall write Gcpt for the compactification of G (cf. [CbGC], Re-
mark 1.1.6; also Remark 2.2.1 below), which is again a semi-graph of
anabeliaids of pro-ΣG PSC-type.

(2) We shall always consider the PSC-fundamental group ΠGcpt of Gcpt as
the quotient group of ΠG in the natural way (cf. [CbGC], Remark 1.1.6;
also Remark 2.2.1 below).

Remark 2.2.1. Suppose that we are in the situation of Definition 2.2. Let
us make the definition more explicit here.

The underlying semi-graph of Gcpt is the graph obtained by removing all
the cusps (i.e., the open edges) from the underlying semi-graph of G. The
constituent anabelioid Gcpt

e of Gcpt at each node e ∈ Node(Gcpt) = Node(G)
is equal to Ge. The constituent anabelioid Gcpt

v of Gcpt at each vertex v ∈
Vert(Gcpt) = Vert(G) is (the anabelioid determined by) the Galois category
obtained as the full subcategory constituted by “the objects which is unram-
ified over every e ∈ Cusp(G) abutting to v” of (the Galois category corre-
sponding to) the constituent anabelioid Gv of G. The constituent morphism
of anabelioids at each branch b of e ∈ Node(Gcpt) is (the morphism of anabe-

lioids determined by) the composite exact functor Gcpt
v

incl.
↪−→ Gv −→ Ge = Gcpt

e ,
where the exact functor Gv −→ Ge is (the exact functor corresponding to)
the constituent morphism of anabelioids at b, a branch of e ∈ Node(G).
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In particular, the Galois category B(Gcpt) (cf. the discussion following
[SemiAn], Definition 2.1, for the notation “B”) is naturally considered as
a full subcategory of B(G). It is easily verified that the subsystem of (the
projective system which gives rise to) the pro-Σ universal covering of B(G)
constituted by the objects belonging to B(Gcpt) (i.e., “the objects unramified
over all the cusps of the base”) determines the pro-Σ universal covering of
B(Gcpt). This determines the natural surjection ΠG −↠ ΠGcpt by which
we consider ΠGcpt as a quotient group of ΠG, where the surjectivity of this
natural homomorphism follows from the (easily verified) fact that an object
of B(Gcpt) is connected in B(Gcpt) if and only if it is connected in B(G).

Finally, it follows from the tautological fact that a connected finite étale
Galois subcovering G ′ −→ G is unramified over e ∈ Cusp(G) if and only if, for

every ẽ ∈ Cusp(G̃) lying over e, Πẽ ⊂ ΠG is included in ΠG′ ⊂ ΠG, that the
kernel of the natural surjection ΠG −→ ΠGcpt is the closed normal subgroup
of ΠG generated by all the cuspidal subgroups of ΠG.

Remark 2.2.2. Let us consider the exact sequence (∗) associated to an
outer representation of PSC-type (G, ρ : I −→ Aut(G)) (cf. the discussion
preceding Definition 1.2). Then it follows from the definitions (cf. also
the final portion of Remark 2.2.1) that the kernel of the natural surjection
ΠG −↠ ΠGcpt is (regarded via the natural injection ΠG ↪−→ Πρ as) a normal
subgroup of Πρ, and thus the exact sequence (∗) naturally determines an
exact sequence

1 −→ ΠGcpt −→ Πρ/Ker(ΠG ↠ ΠGcpt) −→ I −→ 1.

Write φ for the natural homomorphism Aut(G) −→ Aut(Gcpt). Then it is
easily verified that this new exact sequence is naturally identified with the
exact sequence (∗) in the case where we take the “(G, ρ : I −→ Aut(G))” of
the discussion preceding Definition 1.2 to be (Gcpt, φ ◦ ρ : I −→ Aut(Gcpt)).
Also, it is easily verified that, if (G, ρ : I −→ Aut(Gcpt)) is of PIPSC-type,
then (Gcpt, φ ◦ ρ : I −→ Aut(Gcpt)) is also of PIPSC-type.

Lemma 2.3. The following assertions hold.

(1) There exists a connected finite étale subcovering G ′ −→ G of G̃ −→ G
such that G ′ is sturdy.

(2) If G is sturdy, then, for every connected finite étale subcovering G ′ −→
G of G̃ −→ G, G ′ is sturdy.
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Proof. Let us verify the assertion (1). First, let us show that, to verify the
assertion (1), it suffices to show that, for every v ∈ Vert(G), there exists a

connected finite étale Galois subcovering G ′(v) −→ G of G̃ −→ G such that
every w ∈ Vert(G ′(v)) lying over v is “of genus ≥ 2”, or, equivalently, such
that there exists w ∈ Vert(G ′(v)) lying over v that is “of genus ≥ 2” (cf. the
condition that G ′ −→ G is Galois). Indeed, if we have such G ′(v) −→ G for ev-

ery v ∈ Vert(G), then a connected finite étale subcovering of G̃ dominating all
of the “G ′(v) −→ G” is manifestly sturdy (cf. the proof of the assertion (2)).
On the other hand, the existence of such a G ′(v) −→ G follows immediately
from the desired existence in the case where Vert(G) is of cardinality 1, which
is easily verified, applied to (the semi-graph of anabelioids determined by)
the constituent anabelioid Gv, together with (the Galois-category-theoretic
interpretation of) the well-known fact that the natural outer homomorphism
π1(Gv) = Πv −→ ΠG is injective. This completes the proof of the assertion
(1).

In order to verify the assertion (2), it is immediate that it suffices to show
the following statement:

Claim 2.3.A: Let X, Y be smooth curves over C and f : X −→ Y
a finite morphism over C. Suppose that Y is of genus ≥ 2. Then
X is also of genus ≥ 2.

On the other hand, this follows immediately from a certain functoriality of
the compactification of smooth curves over C, together with the well-known
“Riemann-Hurwitz formula” for finite separable morphisms between smooth
proper curves. This completes the proof of the assertion (2), hence also the
proof of Lemma 2.3.

Lemma 2.4. Let G ′ −→ G be a connected finite étale Galois subcovering of
G̃ −→ G such that G ′ is sturdy. Write X for the set of ΠG′-conjugacy classes
of the VN-subgroups of ΠG′; Y for the set of Π(G′)cpt-conjugacy classes of the
VN-subgroups of Π(G′)cpt. Then we have a natural commutative diagram of
right ΠG-sets and ΠG-equivariant bijections

VN(G ′)

∼=
��

∼= // X

∼=
��

VN
(
(G ′)cpt

) ∼= // Y.
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Proof. The right ΠG-actions are defined in an evident way. The left-hand
vertical arrow is the identity map. The right-hand vertical arrow maps each
conjugacy class of a VN-subgroup of ΠG′ to the conjugacy class of its image
via the natural surjection ΠG′ −↠ Π(G′)cpt . The upper horizontal arrow is

obtained by forming the quotient of the ΠG-equivalent bijection from VN(G̃)
to the set of VN-subgroups of ΠG′ given by c̃ 7−→ Πc̃ ∩ΠG′ (cf. [HmCbGCI],
Lemma 1.3, (2)). The lower horizontal arrow is defined similarly. The proof
of the ΠG-equivariance of each arrow and the commutativity of this diagram
is left to the leader (cf. [HmCbGCI], Lemma 2.1, (5)). Then the bijectivity
of the right-hand vertical arrow follows immediately.

Definition 2.5. Let S ⊂ VN(G̃) and G ′ −→ G a connected finite étale sub-

covering of G̃ −→ G such that G ′ is sturdy. Then we shall write S̃(G ′, cpt) ⊂
VCN

(
(̃G ′)cpt

)
for the inverse image of S(G ′) ⊂ VN(G ′) ∼= VN

(
(G ′)cpt

)
via the

natural surjection VN
(
(̃G ′)cpt

)
−↠ VN

(
(G ′)cpt

)
.

Lemma 2.6. Let S ⊂ VN(G̃) and H ⊂ ΠG a closed subgroup. For every

connected finite étale subcovering G ′ −→ G of G̃ −→ G such that G ′ is sturdy,
write Im(H∩ΠG′) for the image of H∩ΠG′ via the natural surjection ΠG′ −↠
Π(G′)cpt (cf. Remark 2.2.1). Then the following conditions are equivalent.

(i) H = 1 or H is included in an S q Cusp(G̃)-like subgroup of ΠG.

(ii) There exists a cofinal subsystem (Gλ −→ G)λ∈Λ of (the projective system

which gives rise to) the pro-ΣG universal covering G̃ −→ G constituted

by connected finite étale subcoverings of G̃ −→ G such that, for every
λ ∈ Λ, Gλ is sturdy, and, moreover, Im(H ∩ ΠGλ

) = 1 or Im(H ∩ ΠGλ
)

is included in an S̃(Gλ, cpt)-like subgroup of ΠGcpt
λ
.

Proof. The implication (i) =⇒ (ii) is easily verified in light of Lemma 2.3.
The verification of the implication (ii) =⇒ (i) in the case where there

exists a connected finite étale subcovering G ′ −→ G such that G ′ is sturdy
and Im(H ∩ΠG′) 6= 1 is entirely similar to the proof of [HmCbGCI], Lemma
2.4, (ii) =⇒ (i).

Finally, the implication (ii) =⇒ (i) in the case where the equality
Im(H ∩ΠG′) = 1 holds for every connected finite étale subcovering G ′ −→ G
with G ′ sturdy follows, in light of the final portion of Remark 2.2.1, easily
from [HmCbGCI], Prop 3.1, (v) =⇒ (iv) and [HmCbGCI], Remark 3.1.2.
This completes the proof of Lemma 2.6.
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Lemma 2.7. Let α : ΠG −→ ΠH be a continuous homomorphism, S ⊂
VN(G̃), and T ⊂ VN(H̃). Moreover, let (Hλ −→ H)λ∈Λ be a cofinal sub-
system of (the projective system which gives rise to) the pro-ΣH universal

covering H̃ −→ H constituted by connected finite étale subcoverings. For
every λ ∈ Λ, write Gλ −→ G for the connected finte étale subcovering corre-
sponding to the open subgroup α−1(ΠHλ

) ⊂ ΠG; write αλ : ΠGλ
−→ ΠHλ

for
the continuous homomorphism induced by α. Suppose that Gλ and Hλ are
sturdy for every λ ∈ Λ and that α is

(
Cusp(G̃),Cusp(H̃)

)
-compatible. Then

the following assertions hold.

(1) There exists a unique homomorphism αcpt
λ : ΠGcpt

λ
−→ ΠHcpt

λ
compatible

with αλ relative to the natural surjections of Definition 2.2, (2).

(2) The following conditions are equivalent.

(i) α is
(
S, T q Cusp(H̃)

)
-compatible.

(ii) For every λ ∈ Λ, αcpt
λ in the assertion (1) is

(
S̃(Gλ, cpt), T̃ (Hλ, cpt)

)
-

compatible.

Proof. The assertion (1) follows, in light of the final portion of Remark 2.2.1,

immediately from the
(
Cusp(G̃),Cusp(H̃)

)
-compatibility of α (and hence

also of αλ — cf. [HmCbGCI], Corollary 1.8). The assertion (2) follows
immediately from Lemma 2.6. This completes the proof of Lemma 2.7.

3 Hom-version of the Combinatorial Grothendieck

Conjecture for Outer Representations of PIPSC-

type

The remainder of the present paper is devoted to formulating and prov-
ing certain “Hom-versions” of the combinatorial Grothendieck conjecture for
outer representations of PIPSC- or NN-type. More specifically, we show
that, for a continuous homomorphism α between PSC-fundamental groups,
the compatibility of α with certain outer representations of PSC-type implies
a certain group-theoretic compatibility property of α.

In this section, we will mainly focus on the outer representations of
PIPSC-type. Roughly speaking, the first main result of this section, Theorem
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3.3, states that, if a continuous homomorphism α between PSC-fundamental
groups is compatible with an outer representation of VA-type on the domain
and an outer representation of PIPSC-type on the codomain, then α maps
verticial subgroups into verticial subgroups. This theorem, along with its
proof, can be considered as a “Hom-version” of [CbTpII], Theorem 1.9, (ii),
at least if one disregards the point that, while [CbTpII], Theorem 1.9, (ii), in-
cludes the group-theoretic nodality of the isomorphism under consideration,
Theorem 3.3 says nothing about nodal subgroups.

The discrepancy between [CbTpII], Theorem 1.9, (ii), and Theorem 3.3
concerning nodal subgroups just pointed out above is due to the issue dis-
cussed in [HmCbGCI], Remark 1.7.6, and hence cannot be remedied eas-
ily. However, in light of a substantially different viewpoint presented in
[GrphPIPSC], we find that under some additional assumptions we can say
something non-trivial also on nodal subgroups. This is the second main re-
sult of this section, Theorem 3.7.

The notational and terminological conventions established in the discus-
sion preceding Definition 1.1 remains valid in this section; in particular, the
letters “G” and “H” always denote semi-graphs of anabelioids of PSC-type;
we do not assume that ΣG = ΣH.

In the following, we are mainly concerned with the following commutative
diagram of profinite groups and continuous homomorphisms;

1 // ΠG //

α

��

ΠρI
//

α̃
��

I //

β

��

1

1 // ΠH // ΠρJ
// J // 1,

(∗∗)

where the two horizontal sequences are the exact sequences (∗) associated to
outer representations of PSC-type

(
G, ρI : I −→ Aut(G)

)
and

(
H, ρJ : J −→

Aut(H)
)
(cf. the discussion preceding Definition 1.2). Moreover, we are

actually interested in the cases where each of the two outer representations
of PSC-type

(
G, ρI : I −→ Aut(G)

)
and

(
H, ρJ : J −→ Aut(H)

)
is of VA-

type, of NN-type, or of PIPSC-type.

Lemma 3.1. Let us consider the commutative diagram (∗∗). Let I ′ ⊂ ΠρI

be (the image of) a section of ΠρI −↠ I. Then the following assertions hold.

(1) Suppose further that β is non-trivial. Then it holds that α̃(I ′) 6= 1.
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(2) Suppose further that I ∼= ẐΣG , that J ∼= ẐΣH, and that β is surjective.
Then α̃(I ′) ⊂ ΠρJ is (the image of) a section of ΠρJ −↠ J .

Proof. This is immediate.

We recall the following crucial result from [CbTpII].

Lemma 3.2. Let us consider the exact sequence (∗) associated to an outer
representation of IPSC-type (G, ρ : I −→ Aut(G)) (cf. the discussion pre-
ceding Definition 1.2). Let I0 ⊂ Πρ be (the image of) a section of the nat-

ural homomorphism Πρ −↠ I. Then there exists ṽ ∈ Vert(G̃) such that
ZΠG(I0) ⊂ Πṽ.

Proof. This is [CbTpII], Theorem 1.6, (iii).

The following is the first main result in this section, which may be thought
of as a Hom-version of [CbTpII], Theorem 1.9, (ii).

Theorem 3.3. Let us consider the commutative diagram (∗∗). Suppose fur-
ther that the following three conditions hold.

(i) The outer representation of PSC-type
(
G, ρI : I −→ Aut(G)

)
is of VA-

type.

(ii) The outer representation of PSC-type
(
H, ρJ : J −→ Aut(H)

)
is of

PIPSC-type.

(iii) β is an open homomorphism.

Then α is
(
Vert(G̃),Vert(H̃)

)
-compatible.

Proof. By replacing ΠρI and ΠρJ by their appropriate open subgroups, we
may assume without loss of generality that

(
G, ρI : I −→ Aut(G)

)
is of SVA-

type, that
(
H, ρJ : J −→ Aut(H)

)
is of IPSC-type, and that β is surjective

(cf. Lemma 1.9, (3)). Let ṽ ∈ Vert(G̃). It follows from Definition 1.5 that
the centralizer Iṽ ⊂ ΠρI of Πṽ is (the image of) a section of ΠρI −↠ I.
Then it follows from Lemma 3.1, (2), that α̃(Iṽ) is (the image of) a section

of ΠρJ −↠ J . Thus, by Lemma 3.2, there exists w̃ ∈ Vert(H̃) such that
ZΠH(α̃(Iṽ)) ⊂ Πw̃. On the other hand, it follows immediately from the
obvious inclusion Πṽ ⊂ ZΠG(Iṽ) that α(Πṽ) ⊂ ZΠH(α̃(Iṽ)). By combining
these two inclusions, we obtain the desired inclusion α(Πṽ) ⊂ Πw̃. This
completes the proof of Theorem 3.3.
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Remark 3.3.1. Theorem 3.3, along with its proof, can be considered as
a Hom-version of (the “group-theoretic verticiality” portion of) [CbTpII],
Theorem 1.9, (ii). Indeed, these two theorems share, not only the appearance
of the statement, but also the technical core of the proof, say, the equivalence
between the property of being a closed subgroup of a verticial subgroup
and the property of being a closed subgroup of a section centralizer (cf.
Lemma 3.2; [CbTpII], Theorem 1.6, (iii)). However, (the author believes
that) [CbTpII], Theorem 1.9, (ii), cannot be obtained as a formal consequence
of Theorem 3.3, because of the fact that an outer representation of NN-type
is not necessarily of PIPSC-type (cf. [CbTpI], Remark 5.9.2, (iii)).

As is discussed in the beginning of this section, the conclusion of Theorem
3.3 does not lead to the (Node(G̃),Node(H̃))-compatibility of α (cf. also
[HmCbGCI], Remark 1.7.6). In relation to this, one can derive a non-trivial
result from the following observation given in [GrphPIPSC].

Definition 3.4. Let G be a profinite group. Then we shall write Gab-free for
the maximal torsion-free quotient of the maximal abelian qutient Gab of G.

Lemma 3.5. Let (G, ρ : I −→ Aut(G)) be an outer representation of IPSC-

type and C a non-trivial pro-cyclic closed subgroup of Πρ = ΠG
out
o I, where

the “
out
o” is taken with respect to ρ. Suppose further that Cusp(G) = ∅. Then

the following conditions are equivalent.

(i) C is included in a nodal subgroup of ΠG ⊂ Πρ.

(ii) For every open subgroup H ⊂ Πρ, the image of the composition of the
natural homomorphisms

C ∩H ↪−→ H −↠ Hab-free

is trivial.

Proof. This is [GrphPIPSC], Lemma 2.5.

Remark 3.5.1. Suppose that we are almost in the situation of Lemma 3.5
but we assume that C = 1. Then we observe that, if Node(G) = ∅, then the
condition (i) of Lemma 3.5 does not hold while the condition (ii) of Lemma
3.5 holds.
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Remark 3.5.2. It follows immediately from [HmCbGCI], Proposition 3.1,
(i) ⇐⇒ (iii), that the assumption that C is pro-cyclic in Lemma 3.5 is
superfluous.

Lemma 3.6. Let (G, ρI : I −→ Aut(G)) and (H, ρJ : J −→ Aut(H)) be outer
representation of PIPSC-type. Let us consider the exact sequence (∗) asso-
ciated to each of them (cf. the discussion preceding Definition 1.2). We
consider ΠG (resp. ΠH) as a subgroup of ΠρI (resp. ΠρJ ) via the natural
injection. Let α̃ : ΠρI −→ ΠρJ be a continuous homomorphism.

Suppose that Cusp(G) = ∅ and that Cusp(H) = ∅. Then, for every

ẽ ∈ Node(G̃), α̃(Πẽ) = 1 or there exists f̃ ∈ Node(H̃) such that α̃(Πẽ) ⊂ Πf̃ .
In particular, if we suppose moreover that α̃(ΠG) ⊂ ΠH, then the continuous
homomorphism α : ΠG −→ ΠH obtained by restricting the domain and the
codomain of α̃ is

(
Node(G̃),Node(H̃)

)
-compatible.

Proof. Lemma 3.6 follows immediately from Lemma 3.5 and Lemma 1.9,
(2), in light of the fact that the images of the nodal subgroups of ΠG via a
continuous homomorphism are pro-cyclic (cf. [CbGC], Remark 1.1.3).

Now we are ready to show the following theorem.

Theorem 3.7. Let us consider the commutative diagram (∗∗). Suppose that(
G, I −→ Aut(G)

)
and

(
H, J −→ Aut(H)

)
are of PIPSC-type and that α is(

Cusp(G̃),Cusp(H̃)
)
-compatible. Then α is

(
Node(G̃),Edge(H̃)

)
-compatible

(and thus, by assumption,
(
Edge(G̃),Edge(H̃)

)
-compatible).

Proof. In light of [HmCbGCI], Corollary 1.8, it suffices to show the
(
Node(G̃),Edge(H̃)

)
-

compatibility of the restriction of α to some open subgroups of domain and
codomain. Thus, by replacing ΠρI and ΠρJ by appropriate open subgroups
(cf. Lemma 1.9, (2), and Lemma 2.3, (1)), we may assume that G and H are
sturdy. Note that, for every connected finite étale subcovering G ′ −→ G of
G̃ −→ G, G ′ is also sturdy by Lemma 2.3, (2). The same assertion holds also

for H̃ −→ H.
By an argument entirely similar to the argument in the second para-

graph of the proof of [HmCbGCI], Theorem 4.4, where we replace the use of
[HmCbGCI], Lemma 2.5, by Lemma 2.7 of the present paper, we are reduced

to showing that αcpt : ΠGcpt −→ ΠHcpt induced by α is
(
Node(G̃cpt),Node(H̃cpt)

)
-

compatible. On the other hand, this follows immediately from Remark 2.2.2
and Lemma 3.6. This completes the proof of Theorem 3.7.
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Remark 3.7.1. At first glance, the reader may think that Theorem 3.7
should have been formulated in an “absolute anabelian” fashion similarly to
Lemma 3.6, i.e., in a fashion where we do not assume that the homomorphism
ΠρI −→ ΠρJ under consideration is compatible with the natural surjections
ΠρI −↠ I and ΠρJ −↠ J . Indeed, if we were to focus only on the case
where Cusp(G) = Cusp(H) = ∅, then we could obtain an “absolute” result
straightforwardly, which we leave the detail to the interested readers. We
prioritized dealing with the case where it does not necessarily hold that
Cusp(G) = Cusp(H) = ∅, and for this reason, we only obtained the “semi-
absolute” result. For further detail on this point, we refer to Remark 3.7.2
below.

Remark 3.7.2. Here, we briefly explain why our argument unfortunately
leads to a substantially weaker conclusion if we modify the assumption of
Theorem 3.7 so that the homomorphism ΠρI −→ ΠρJ under consideration
is not necessarily compatible with the natural surjections ΠρI −↠ I and
ΠρJ −↠ J . Recall that our argument is ultimately summarized as follows
(cf. the proof of Lemma 2.6).

The image in ΠH of the nodal subgroup of ΠG under consideration
stabilizes something with respect to an appropriate action, hence
is included in the stabilizer subgroup corresponding to it. On
the other hand, one observes that the stabilizer subgroup of ΠH
under consideration is a nodal subgroup of ΠH.

If we do not assume the compatibility of the homomorphism ΠρI −→ ΠρJ

with the natural surjections ΠρI −↠ I and ΠρJ −↠ J , then we have to treat
“the image in ΠρJ of the nodal subgroup of ΠG” rather than “the image in ΠH
of the nodal subgroup of ΠG”. Then the image is not necessarily included in
“the stabilizer subgroup of ΠH” but is included in “the stabilizer subgroup of
ΠρJ”. In particular, the image is not necessarily included in a nodal subgroup
of ΠH, but is included in a nodal decomposition subgroup of ΠρJ .
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4 Hom-version of the Combinatorial Grothendieck

Conjecture for Outer Representations of NN-

type

In this section, we continue our study of “Hom-versions” of the combina-
torial Grothendieck conjecture, pivoting our attention to the outer represen-
tations of NN-type. Theorem 4.7, the main result of this section, states that,
roughly, if a continuous homomorphism between PSC-fundamental groups is
compatible with an outer representation of VA-type on the domain and an
outer representation of NN-type on the codomain, and, moreover, it satisfies
a certain group-theoretic compatibility property, then this group-theoretic
compatibility “extends” to the neighbour vertices. This theorem may be
considered as a unified Hom-version of (the “group-theoretic verticiality” por-
tion of) [NodNon], Theorem 4.1, (the “group-theoretic verticiality” portion
of) [NodNon], Corollary 4.2, and [CbTpII], Theorem 1.9, (i), (2) =⇒ (1)
(cf. Remark 4.8.2), while the proofs of these Isom-versions do not function in
our Hom-version situation, and thus we developed a substantially different
technique. We also note that, in contrast to the previous section, we regret-
tably cannot establish group-theoretic compatibility properties for edge-like
subgroups in this section.

The notational and terminological conventions established in the discus-
sion preceding Definition 1.1 remains valid in this section; in particular, the
letters “G” and “H” always denote semi-graphs of anabelioids of PSC-type;
we do not assume that ΣG = ΣH.

To begin with, we prepare some terminologies and notations.

Definition 4.1. Let α : ΠG −→ ΠH be a continuous homomorphism, S ⊂
VCN(G̃), and T ⊂ VCN(H̃).

(1) We shall say that α is S-visible if, for every c̃ ∈ S, it holds that α(Πc̃) 6=
1.

(2) We shall say that α is strictly (S, T )-compatible if α is S-visible and
(S, T )-compatible.

Remark 4.1.1. Suppose that we are in the situation of Definition 4.1. Then
a result similar to [HmCbGCI], Corollary 1.8, holds also for S-visibility and
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strict (S, T )-compatibility. The proof is also entirely similar and left to the
reader.

Definition 4.2. (i) Let ṽ ∈ Vert(G̃) and c̃ ∈ VCN(G̃). Then we shall say
that ṽ is neighbour to c̃ if one of the following conditions holds:

• c̃ ∈ Edge(G̃) and c̃ abuts to ṽ.

• c̃ ∈ Vert(G̃) and ṽ = c̃.

• c̃ ∈ Vert(G̃) and there exists a (necessarily unique — cf. [HmCbGCI],

Lemma 1.2, (3)) node ẽ ∈ Node(G̃) which abuts both to ṽ and to
c̃.

(ii) Let c̃ ∈ VCN(G̃). Then we shall write Fc̃ for the following subset of

Vert(G̃): {
ṽ ∈ Vert(G̃)

∣∣ ṽ is neighbour to c̃.
}
⊂ Vert(G̃).

(iii) Let S ⊂ VCN(G̃). Then we shall write FS for the following subset of

Vert(G̃):⋃
c̃∈S

Fc̃ =
{
ṽ ∈ Vert(G̃)

∣∣ ṽ is neighbour to c̃ for some c̃ ∈ S.
}
⊂ Vert(G̃).

Remark 4.2.1. If c̃ ∈ Edge(G̃), then, by definition, Fc̃ coincides with the set
of vertices to which c̃ abuts. In particular, if c̃ is a cusp (resp. node), then it
follows immediately (resp. from [HmCbGCI], Remark 1.2.1, or Remark 4.5.1
below) that the cardinality of Fc̃ is equal to one (resp. two).

Remark 4.2.2. It follows from [HmCbGCI], Lemma 1.2, (2), (3), that, for

ṽ ∈ Vert(G̃) and c̃ ∈ VCN(G̃), ṽ is neighbour to c̃ if and only if Πṽ ∩Πc̃ 6= 1.

Before proceeding, we note the following result (essentially) given in
[NodNon].

Lemma 4.3. Let
(
G, ρ : I −→ Aut(G)

)
be an outer representation of SNN-

type. Let us consider the exact sequence (∗) associated to
(
G, ρ : I −→

Aut(G)
)
(cf. the discussion preceding Definition 1.2). Let c̃, d̃ ∈ VCN(G̃).

Then the following equivalence holds:

Dc̃ ∩Dd̃ 6= 1 ⇐⇒ Fc̃ ∩ Fd̃ 6= ∅.
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Proof. If c̃, d̃ ∈ Edge(G̃) (resp. c̃, d̃ ∈ Vert(G̃)), then the assertion follows im-
mediately from [NodNon], Proposition 3.8, (i) (resp. [NodNon], Proposition

3.9, (i)). Thus we may assume that c̃ ∈ Vert(G̃) and d̃ ∈ Edge(G̃). Though
this case is, in fact, not of use in the present paper, the proof of this case is
short enough that the author decided to include it.

The implication “⇐=” follows from the observation that, if ṽ ∈ Fc̃ ∩ Fd̃,
then it holds that 1 6= Iṽ ⊂ Dc̃ ∩ Dd̃ (cf. Remark 1.3.1, (3), and Lemma
1.7, (2)). Let us verify (the contrapositive of) the converse. Suppose that
Fc̃ ∩Fd̃ = ∅. Take ṽ ∈ Fd̃. Then it holds that Dd̃ ⊂ Dṽ (cf. Lemma 1.7, (2)),
hence Dc̃ ∩Dd̃ ⊂ Dc̃ ∩Dṽ. Moreover, it follows from [NodNon], Proposition
3.9, (i), (iii), that either Dc̃ ∩ Dṽ = 1 or Dc̃ ∩ Dṽ = Iũ holds, where in
the latter case it holds that ũ ∈ Fc̃, which thus (cf. our assumption that
Fc̃ ∩ Fd̃ = ∅) implies that ũ /∈ Fd̃. In the former case, the desired triviality
Dc̃ ∩Dd̃ = 1 follows formally from the inclusion Dc̃ ∩Dd̃ ⊂ Dc̃ ∩Dṽ. On the
other hand, in the latter case, we compute as follows:

Dc̃ ∩Dd̃ = (Dc̃ ∩Dṽ) ∩Dd̃ = Iũ ∩Dd̃ = 1.

Note that the third “=” follows, in light of [NodNon], Proposition 3.5, from
ũ /∈ Fd̃. This completes the proof of Lemma 4.3.

To state Lemma 4.6, which plays a crucial role in the proof of Theorem
4.7, we have to recall the notion of untangledness.

Definition 4.4 ([NodNon], Definition 1.2). G is said to be untangled if every
node of G abuts to two distinct vertices of G.

Lemma 4.5 ([NodNon], Remark 1.2.1, (i), (ii)). The following assertions
hold.

(1) There exists a connected finite étale subcovering G ′ −→ G of G̃ −→ G
such that G ′ is untangled.

(2) If G is untangled, then any connected finite étale covering of G is also
untangled.

Proof. Let us verify the assertion (1). Let l ∈ Σ. For each e ∈ Node(G),
we construct a finite étale covering G ′(e) −→ G of degree l as follows. First
we prepare a trivial covering G1 q · · · q Gl −→ G of degree l, where each
Gi is a copy of G. Write b, b′ for the two branches of e and, moreover, ei
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(resp. bi; b
′
i) for the “e” (resp. “b”; “b′”) in Gi. Then by “cutting” each

ei and “connecting” bi with b′i+1 (where we set b′l+1
def
= b′1), we obtain a

finite étale covering G ′(e) −→ G of degree l. Write L
def
= {e ∈ Node(G) |

both of two branches of e abut to the same vertex of G.}. Then, for any e ∈
L, it follows from the definition of L, together with the construction of G ′(e),
that G ′(e) is connected and, more precisely, that G ′(e) −→ G is a connected
finite étale Galois covering of degree l. Since any node of G ′(e) lying over e
abuts to two distinct vertices, any connected finite étale subcovering G ′ −→ G
of G̃ −→ G which dominates all of

(
G ′(e) −→ G

)
e∈L satisfies the desired

condition. This completes the proof of the assertion (1).
The assertion (2) is obvious. This completes the proof of Lemma 4.5.

Remark 4.5.1. The fact that any ẽ ∈ Node(G̃) abuts to precisely two ver-
tices follows immediately from Lemma 4.5. In fact, this deduction aligns
precisely the verification presented in [NodNon], Remark 1.2.1, (iii).

Remark 4.5.2. Utilizing the construction of “G ′(e) −→ G” given in the proof
of Lemma 4.5, one can also verify the well-known fact that the underlying
(profinite) semi-graph of the pro-ΣG universal covering G̃ of G is a “tree”, i.e.,
does not have any closed loop. Indeed, suppose to the contrary that there
exists a closed loop in G̃, i.e., a sequence ẽ0, . . . , ẽn ∈ Node(G̃) (n ≥ 0) and a

sequence ṽ0, . . . , ṽn ∈ Vert(G̃) satisfying the following two conditions:

• The nodes ẽ0, . . . , ẽn ∈ Node(G̃) are all distinct.

• For 0 ≤ i ≤ n, ẽi abuts both to ṽi and to ṽi+1, where we set ṽn+1
def
= ṽ0.

Replacing G̃ −→ G by G̃ −→ G† for some suitable connected finite étale
subcovering G† −→ G of G̃ −→ G, we may assume without loss of generality

that e0, . . . , en ∈ Node(G) are all distinct, where we write ei
def
= ẽi(G). We

consider the finite étale covering G ′(en) −→ G in order to derive a contradic-
tion. It follows from the fact that e0, . . . , en form a closed loop of G, together
with the construction of G ′(en), that G ′(en) is connected and, more precisely,
that G ′(en) −→ G is a connected finite étale Galois covering of degree l. Let

us fix a morphism G̃ −→ G ′(en) over G, with respect to which we consider

G ′(en) −→ G as a subcovering of G̃ −→ G. Then it follows from the con-
struction of G ′(en) that ṽ0

(
G ′(en)

)
, . . . , ṽn

(
G ′(en)

)
lie in “the same sheet”,

i.e., the same copy of G among the l copies of G that appear in the construc-
tion of G ′(en). Moreover, again by the construction of G ′(en), ṽn

(
G ′(en)

)
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and ṽn+1

(
G ′(en)

)
= ṽ0

(
G ′(en)

)
do not lie in “the same sheet”. These two

observations obviously lead to a contradiction. This completes the proof of
the fact that the underlying (profinite) semi-graph of the pro-ΣG universal

covering G̃ of G is a tree.

Lemma 4.6. Let
(
G, ρ : I −→ Aut(G)

)
be an outer representation of SNN-

type. Let us consider the exact sequence (∗) associated to
(
G, ρ : I −→

Aut(G)
)
(cf. the discussion preceding Definition 1.2). Let c̃ ∈ VCN(G̃).

Suppose that G is untangled. Then the following assertions hold.

(1) RΠG(Πc̃) = Πc̃.

(2) RΠI
(Πc̃) = Dc̃.

(3) For ṽ, w̃ ∈ Vert(G̃), write Mṽ,w̃
def
= {γ ∈ ΠG | ṽγ = w̃.} ⊂ ΠG. (In

particular, it holds that Mṽ,ṽ = Πṽ — cf. [HmCbGCI], Lemma 1.3,
(1).) Then it holds that

RΠG(Dc̃) =
⋃

ṽ,w̃∈Fc̃

Mṽ,w̃.

(4) If a closed subgroup H of ΠG satisfies H ⊂ RΠG(Dc̃), then H ⊂ Πṽ for
some ṽ ∈ Fc̃.

Proof. In the following discussion, we will use [HmCbGCI], Lemma 1.3, (1),
without further mention.

Let us verify the assertion (1). We have only to verify the inclusion
RΠG(Πc̃) ⊂ Πc̃, since the converse is a formal consequence of the fact that
Πc̃ 6= 1 (cf. [CbGC], Remark 1.1.3). Suppose that γ ∈ RΠG(Πc̃), or, equiva-

lently, Πc̃ ∩ Πc̃γ 6= 1. If c̃ ∈ Edge(G̃), then the assertion (1) follows immedi-

ately from [HmCbGCI], Lemma 1.2, (1). On the other hand, if c̃ ∈ Vert(G̃),
then it follows from Remark 4.2.2 that c̃γ is neighbour to c̃. However, if
c̃ 6= c̃γ, then, since c̃γ is neighbour to c̃, there exists ẽ ∈ Node(G̃) which abuts
both to c̃ and to c̃γ, in contradiction to the untangledness assumption on G
(cf. the fact that c̃(G) must coincide with c̃γ(G)). Thus, for any γ ∈ RΠG(Πc̃),
it must hold that c̃ = c̃γ, or, equivalently, γ ∈ Πc̃. This completes the proof
of the assertion (1).

Let us verify the assertion (2). If c̃ ∈ Vert(G̃) (resp. c̃ ∈ Edge(G̃)), then
let ṽ ∈ Vert(G̃) be equal to c̃ (resp. a vertex to which c̃ abuts). Then,

30



since Iṽ is (the image of) a section of ΠI −↠ I (cf. Definition 1.8, (2)), it
holds that ΠI = Iṽ · ΠG, i.e., any element γ ∈ ΠI can be written uniquely
as γ = ab with a ∈ Iṽ and b ∈ ΠG. Moreover, if we write γ = ab as above,
then the equivalence γ ∈ RΠI

(Πc̃) ⇐⇒ b ∈ RΠG(Πc̃) holds, since a ∈ Iṽ
commutes with any element of Πc̃ ⊂ Πṽ. Put another way, it holds that
RΠI

(Πc̃) = Iṽ · RΠG(Πc̃). Thus the assertion (2) follows formally from the
assertion (1) and the resp’d case of Lemma 1.6, (2). This completes the proof
of the assertion (2).

The assertion (3) follows from the following computation (where the un-
tangledness assumption on G is unnecessary);

RΠG(Dc̃) = {γ ∈ ΠG | Dc̃ ∩Dc̃γ 6= 1.}
= {γ ∈ ΠG | Fc̃ ∩ Fc̃γ 6= ∅.}
= {γ ∈ ΠG | There exist ṽ, w̃ ∈ Fc̃ such that ṽγ = w̃.}

=
⋃

ṽ,w̃∈Fc̃

Mṽ,w̃,

where we note that the second “=” follows from Lemma 4.3.
Let us verify the assertion (4). We divide our argument to three cases:

the case where c̃ ∈ Cusp(G̃), the case where c̃ ∈ Node(G̃), and the case where

c̃ ∈ Vert(G̃).
If c̃ ∈ Cusp(G̃), then it follows immediately from the assertion (3) that

RΠG(Dc̃) = Πṽ, where we write ṽ for the unique element of Fc̃. Thus the
desired assertion follows.

Next, suppose that c̃ ∈ Node(G̃). Write ṽ, w̃ for the two distinct ele-
ments of the set Fc̃. Then it follows immediately from the assertion (3) that
RΠG(Dc̃) = Πṽ ∪ Πw̃ ∪ Mṽ,w̃ ∪ Mw̃,ṽ. If Mṽ,w̃ ∪ Mw̃,ṽ 6= ∅, then the equal-
ity ṽ(G) = w̃(G) holds, which thus implies that both of the two branches
of c̃(G) abut to the single vertex ṽ(G) = w̃(G), in contradiction to the
assumption that G is untangled. Thus it follows that Mṽ,w̃ ∪ Mw̃,ṽ = ∅,
hence RΠG(Dc̃) = Πṽ ∪ Πw̃. Now suppose that a closed subgroup H of ΠG
satisfies H ⊂ RΠG(Dc̃) = Πṽ ∪ Πw̃. In this situation, the following ele-
mentary argument shows that H ⊂ Πṽ or H ⊂ Πw̃, as desired: if there
exist h ∈ H \ Πṽ ⊂ Πw̃ and k ∈ H \ Πw̃ ⊂ Πṽ, then it follows that
hk ∈ H \ (Πṽ ∪ Πw̃), in contradiction to H ⊂ Πṽ ∪ Πw̃. (Instead of this
elementary argument, we could also apply [HmCbGCI], Proposition 3.1,
(iii) =⇒ (i), to “S” = Fc̃ = {ṽ, w̃}.) This completes the proof of the

assertion (4) in the case where c̃ ∈ Node(G̃).
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Finally, we consider the case where c̃ ∈ Vert(G̃). By the assertion (3), we
have

RΠG(Dc̃) =

(⋃
ṽ∈Fc̃

Πṽ

)
∪

( ⋃
ṽ∈Fc̃\{c̃}

Mṽ,c̃

)
∪

( ⋃
ṽ∈Fc̃\{c̃}

Mc̃,ṽ

)
∪

( ⋃
ṽ,w̃∈Fc̃\{c̃},

ṽ ̸=w̃

Mṽ,w̃

)
.

Further, by the same argument as the argument applied in the case where
c̃ ∈ Node(G̃), it follows from the untangledness assumption on G that Mṽ,c̃ =
Mc̃,ṽ = ∅ for any ṽ ∈ Fc̃ \ {c̃}. Thus we have

RΠG(Dc̃) =

(⋃
ṽ∈Fc̃

Πṽ

)
∪

( ⋃
ṽ,w̃∈Fc̃\{c̃},

ṽ ̸=w̃

Mṽ,w̃

)
=

(⋃
ṽ∈Fc̃

Πṽ

)
∪

( ⋃
ṽ,w̃∈Fc̃\{c̃},

ṽ ̸=w̃

(Mṽ,w̃\Πc̃)

)
.

Now we claim as follows:

Claim 4.6.A: If γ ∈
⋃

ṽ,w̃∈Fc̃\{c̃},
ṽ ̸=w̃

(Mṽ,w̃ \ Πc̃), then γ2 /∈ RΠG(Dc̃).

Let us verify Claim 4.6.A. Let γ ∈ ΠG and ṽ, w̃ ∈ Fc̃ \ {c̃}. Suppose that
ṽ 6= w̃, ṽγ = w̃ and c̃γ 6= c̃. In light of Lemma 4.3, it suffices to show
that Fc̃ ∩ Fc̃γ2 = ∅. Since the underlying (profinite) semi-graph of G̃ is a
“tree” (cf. Remark 4.5.2), it suffices to give a sequence of distinct nodes

ẽ1, ẽ2, ẽ3, ẽ4 ∈ Node(G̃) and a sequence of vertices ũ1, ũ2, ũ3 ∈ Vert(G̃) satis-
fying the following condition:

For each i ∈ {1, 2, 3, 4}, ẽi abuts both to ũi−1 and to ũi, where

we set ũ0
def
= c̃ and ũ4

def
= c̃γ

2
.

To this end, we set ũ1 = w̃, ũ2 = c̃γ, and ũ3 = w̃γ. It follows from the
various assumptions involved that, for each i ∈ {1, 2, 3, 4}, there exists a
(necessarily unique — cf. Remark 4.5.2 or [HmCbGCI], Lemma 1.2, (3))

node ẽi ∈ Node(G̃) which abuts both to ũi−1 and to ũi. Thus, to verify
Claim 4.6, it suffices to show that the nodes ẽ1, ẽ2, ẽ3, ẽ4 are all distinct.
Since two nodes ẽ and f̃ coincide if and only if Fẽ = Ff̃ (cf. [HmCbGCI],
Lemma 1.2, (1), (3), and [HmCbGCI], Remark1.2.1), it suffices to verify the
following three assertions:

(a) {w̃, w̃γ} ∩ {c̃, c̃γ, c̃γ2} = ∅.
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(b) w̃ 6= w̃γ.

(c) c̃ 6= c̃γ 6= c̃γ
2
.

The assertion (a) follows from the observation that, if the intersection under
consideration is nonempty, then it is immediate that c̃(G) = w̃(G), which thus
implies (cf. the fact that w̃ ∈ Fc̃\{c̃}) a contradiction to our assumption that
G is untangled. The assertion (b) follows from the assumption that ṽ 6= w̃
and ṽγ = w̃. The assertion (c) follows from the assumption that c̃γ 6= c̃. This
completes the proof of Claim 4.6.A.

Now we proceed to complete the proof of the assertion (4) in the case

where c̃ ∈ Vert(G̃). Let H be a closed subgroup of ΠG such that H ⊂
RΠG(Dc̃) =

(⋃
ṽ∈Fc̃

Πṽ

)
∪
(⋃

ṽ,w̃∈Fc̃\{c̃},
ṽ ̸=w̃

(Mṽ,w̃\Πc̃)
)
. Then, by Claim 4.6.A, in

fact, it holds thatH ⊂
⋃

ṽ∈Fc̃
Πṽ. This readily implies, in light of [HmCbGCI],

Proposition 3.1, (iii) =⇒ (i), applied to “S” = Fc̃, that H ⊂ Πṽ for some
ṽ ∈ Fc̃. This completes the proof of the assertion (4) in the case where

c̃ ∈ Vert(G̃), hence also the proof of Lemma 4.6.

Theorem 4.7. Let us consider the commutative diagram (∗∗) (cf. the dis-

cussion preceding Lemma 3.1). Let S ⊂ VCN(G̃) and T ⊂ VCN(H̃). Suppose
further that the following four conditions hold.

(i)
(
G, ρI : I −→ Aut(G)

)
is of VA-type.

(ii)
(
H, ρJ : J −→ Aut(H)

)
is of NN-type.

(iii) α is strictly (S, T )-compatible.

(iv) β is non-trivial.

Then α is (FS, FT )-compatible.

Proof. To begin with, we note, in light of [HmCbGCI], Corollary 1.8, its
analogue for strict compatibility (cf. Remark 4.1.1), Lemma 1.9, (2), (3),
and Lemma 4.5, (1), (2), that, by replacing ΠρI and ΠρJ by their appropriate
open subgroups, we may assume that

(
G, ρI : I −→ Aut(G)

)
is of SVA-type,

that
(
H, ρJ : J −→ Aut(H)

)
is of SNN-type, and that H is untangled.

Let ṽ ∈ FS. Fix c̃ ∈ S such that ṽ is neighbour to c̃. By assumption,
there exists d̃ ∈ T such that 1 6= α(Πc̃) ⊂ Πd̃. We would like to show that
α(Πṽ) ⊂ Πw̃ for some w̃ ∈ Fd̃.

To this end, first we claim as follows:
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Claim 4.7.A: It holds that

1 6= α̃(Iṽ) ⊂ RΠJ

(
α(Πc̃)

)
⊂ RΠJ

(Πd̃) = Dd̃.

We verify Claim 4.7.A as follows. The “ 6=” follows from the non-triviality of
β, in light of Definition 1.5 and Lemma 3.1, (1). The first inclusion follows
immediately from the assumption 1 6= α(Πc̃), together with the fact that
Iṽ ⊂ Dc̃ (cf. Remark 1.3.1, (1), (3), and Lemma 1.7, (2)). The second
inclusion follows formally from the assumption α(Πc̃) ⊂ Πd̃. The “=” follows
immediately from Lemma 4.6, (2), where we note that we have assumed that
H is untangled here. This completes the proof of Claim 4.7.A.

It follows from Claim 4.7.A that

α(Πṽ) ⊂ RΠH

(
α̃(Iṽ)

)
⊂ RΠH(Dd̃).

Indeed, the first inclusion follows immediately from 1 6= α̃(Iṽ), together with
the fact that Πṽ ⊂ ZΠG(Iṽ), while the second inclusion follows formally from
the inclusion α̃(Iṽ) ⊂ Dd̃. Then, by Lemma 4.6, (4), there exists w̃ ∈ Fd̃ such
that α(Πṽ) ⊂ Πw̃. This completes the proof of Theorem 4.7.

Remark 4.7.1. We make some preparations for the following discussion
here. In the following, we shall refer to the following statement as “Theorem
4.7.1.A”:

Let us consider the commutative diagram (∗∗) (cf. the discus-
sion preceding Lemma 3.1). Suppose further that the following
conditions hold.

(i) The vertical arrows α, α̃, and β of the diagram (∗∗) are all
isomorphisms.

(ii)
(
G, ρI : I −→ Aut(G)

)
and

(
H, ρJ : J −→ Aut(H)

)
are both

of NN-type.

(iii) Cusp(G̃) 6= ∅ and α is group-theoretically cuspidal (cf. [CbGC],
Definition 1.4, (iv)).

Then there exist ṽG ∈ Vert(G̃) and ṽH ∈ Vert(H̃) such that
α(ΠṽG) = ΠṽH .
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Moreover, we shall refer to as “Theorem 4.7.1.B” the statement obtained
by replacing the condition (iii) of Theorem 4.7.1.A by the following weaker
condition:

(iii)′ There exist ẽG ∈ Edge(G̃) and ẽH ∈ Edge(H̃) such that α(ΠẽG) = ΠẽH .

With regard to these two statements, we make the following four observa-
tions.

(a) Theorem 4.7.1.B is true. Indeed, Theorem 4.7.1.B follows formally from
[CbTpII], Theorem 1.9, (i), (3) =⇒ (1). (For a more direct proof, see
Remark 4.7.3.)

(b) Theorem 4.7.1.A follows formally from Theorem 4.7.1.B.

(c) [NodNon], Corollary 4.2, follows formally from Theorem 4.7.1.A and
[NodNon], Theorem 4.1.

(d) The basic strategy of the proof of [NodNon], Corollary 4.2, is, roughly,
to prove Theorem 4.7.1.A and apply the observation (c), while the
logical structure of the proof actually carried out in [NodNon] is, in
fact, more complicated.

Remark 4.7.2. As is discussed in detail in Remark 4.8.2 below, Theorem 4.7
can be thought of as a unified generalized Hom-version of Theorem 4.7.1.B
(cf. Remark 4.7.1), [NodNon], Theorem 4.1 (hence also [NodNon], Corollary
4.2 — cf. the observations (b) and (c) in Remark 4.7.1), and [CbTpII],
Theorem 1.9, (i), (2) =⇒ (1). However, the strategy of the proof of
Theorem 4.7 is definitely different from the proofs of the three theorems
quoted above (where we mean the observation (a) in Remark 4.7.1 by “the
proof of Theorem 4.7.1.B”).

Let us consider [NodNon], Theorem 4.1, here. We leave the consideration
of other theorems to the interested reader. At a rough level, we must admit
that the proof of Theorem 4.7 is similar to that of [NodNon], Theorem 4.1,
in that they both depend deeply on the “graph-theoretic geometry via the
decomposition and inertia subgroups” (cf. the lemmas in [NodNon] quoted
in the proof of Lemma 4.3 of the present paper). However, it should not
be ignored that the “sandwiching technique” (cf. [NodNon], Lemma 1.15)
plays no role in the proof of Theorem 4.7, though it is crucial in the proof
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of [NodNon], Theorem 4.1. Not only that, in fact, (the author believes that)
such a technique cannot be applied to the “Hom-version” situation of (a
certain special case, corresponding to [NodNon], Theorem 4.1 — cf. Corol-
lary 4.8, (4) or (5), below — of) Theorem 4.7. The problem which occurs
when one tries to apply such a technique to the “Hom-version” situation of
(a certain special case of) Theorem 4.7 is similar to the problem discussed
in [HmCbGCI], Remark 1.7.6. That is to say, even if the image via α̃ of

the inertia subgroup of a vertex of G̃ is included in the intersection of the
decomposition subgroups of two components of H̃, it might be still possible
that those two components coincide.

Remark 4.7.3. In this context, it might be of interest to note that Theorem
4.7.1.B (cf. Remark 4.7.1) (hence also [NodNon], Corollary 4.2 — cf. the
observations (b) and (c) in Remark 4.7.1) may be proved more directly in
the context of [NodNon], §4, by utilizing a certain variant of the “sandwich-
ing technique” (cf. [NodNon], Lemma 1.15) in a similar vein to [NodNon],
Theorem 4.1. In particular, the complexity pointed out in the observation
(d) in Remark 4.7.1 may be avoided.

Let us explain the outline here. To prove Theorem 4.7.1.B, we may as-
sume (cf. the argument in the first paragraph of the proof of Theorem 4.7)
that

(
G, ρI : I −→ Aut(G)

)
and

(
H, ρJ : J −→ Aut(H)

)
are both of SNN-

type. By assumption, there exist ẽG ∈ Edge(G̃) and ẽH ∈ Edge(H̃) such that

α(ΠẽG) = ΠẽH . Let ṽG ∈ Vert(G̃) be a vertex to which ẽG abuts. Then it is
easily verified (by constructing a suitable finite étale covering of G — cf. the
proof of [NodNon], Lemma 1.15) that there exists γ ∈ ΠG such that ẽγG 6= ẽG
and ẽγG also abuts to ṽG. It follows from [NodNon], Proposition 3.8, (ii), that
DẽG ∩DẽγG

= IṽG , hence DẽH ∩D
ẽ
α(γ)
H

= α̃(IṽG). Thus, by [NodNon], Propo-

sition 3.8, (ii), there exists ṽH ∈ Vert(H̃) such that α̃(IṽG) = IṽH , hence (by
taking the “ZΠH(–)” of each side of the equality — cf. [NodNon], Lemma
3.6, (i)) α(ΠṽG) = ΠṽH . This completes the direct proof of Theorem 4.7.1.B
in the context of [NodNon], §4.

Corollary 4.8. Let us consider the commutative diagram (∗∗) (cf. the dis-
cussion preceding Lemma 3.1). Suppose further that the following two con-
ditions hold.

(i) The outer representations of PSC-type
(
G, ρI : I −→ Aut(G)

)
and

(
H, ρJ : J −→

Aut(H)
)
are both of NN-type.
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(ii) β is non-trivial.

Then the following assertions hold.

(1) If α is strictly
(
Edge(G̃),Edge(H̃)

)
-compatible, and Edge(G̃) 6= ∅, then

α is strictly
(
Vert(G̃),Vert(H̃)

)
-compatible.

(2) If α is strictly
(
Node(G̃),Edge(H̃)

)
-compatible, and Node(G̃) 6= ∅, then

α is strictly
(
Vert(G̃),Vert(H̃)

)
-compatible.

(3) If α is strictly
(
Cusp(G̃),Edge(H̃)

)
-compatible, then α is strictly

(
FCusp(G̃),Vert(H̃)

)
-

compatible.

(4) Let S ⊂ Vert(G̃). If α is strictly
(
S,Vert(H̃)

)
-compatible, then α is(

FS,Vert(H̃)
)
-compatible.

(5) Let ṽ ∈ Vert(G̃). If α is Vert(G̃)-visible, and
(
{ṽ},Vert(H̃)

)
-compatible,

then α is (necessarily strictly)
(
Vert(G̃),Vert(H̃)

)
-compatible.

Proof. The assertions (1), (2), (3), and (4) follow immediately from Theorem
4.7.

Let us verify the assertion (5). By [HmCbGCI], Lemma 1.10, together

with the visibility assumption, it follows that α is strict (ṽΠG ,Vert(H̃))-
compatible (where we use the notation “(–)ΠG” as in [HmCbGCI], Lemma
1.10). We start from this compatibility and apply Theorem 4.7 repeatedly
(cf. the visibility assumption). Then, because the underlying semi-graph of

G is connected and finite, we finally reach the desired
(
Vert(G̃),Vert(H̃)

)
-

compatibility of α. This completes the proof of the assertion (5), hence also
the proof of Corollary 4.8.

Remark 4.8.1. It is immediatethat the assumption in the statement of
Corollary 4.8 that

(
G, ρI : I −→ Aut(G)

)
is of NN-type is superfluous and

may be weakened to the assumption that
(
G, ρI : I −→ Aut(G)

)
is of VA-

type.

Remark 4.8.2. Let us explain how Theorem 4.7 can be thought of as a
unified generalized Hom-version of Theorem 4.7.1.B (cf. Remark 4.7.1),
[NodNon], Theorem 4.1 (hence also [NodNon], Corollary 4.2 — cf. the ob-
servations (b) and (c) in Remark 4.7.1), and [CbTpII], Theorem 1.9, (i),
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(2) =⇒ (1) (cf. Remark 4.7.2). Since Corollary 4.8 is essentially a formal
consequence of Theorem 4.7, we may also apply Corollary 4.8.

First let us consider [NodNon], Theorem 4.1. Suppose that we are in
the situation of [NodNon], Theorem 4.1. In light of [HmCbGCI], Remark
1.7.5 (or [HmCbGCI], Lemma 1.9, (ii) =⇒ (i)), it suffices to show that α is(
Vert(G̃),Vert(H̃)

)
-compatible and that α−1 is

(
Vert(H̃),Vert(G̃)

)
-compatible.

On the other hand, these follow immediately from Corollary 4.8, (5).
Theorem 4.7.1.B follows, in light of [HmCbGCI], Lemma 1.9, (ii) =⇒ (i),

applied to “(S, T )” = ({ẽG}, {ẽH}), formally from Theorem 4.7, applied to
“(G,H, S, T )” = (G,H, {ẽG}, {ẽH}) and “(G,H, S, T )” = (H,G, {ẽH}, {ẽG}).

Finally, [CbTpII], Theorem 1.9, (i), (2) =⇒ (1) follows, by an argument
similar to the arguments given above, from Corollary 4.8, (2).
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