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Abstract

Recently, there has been a growing interest in celestial holography, which is holography
in asymptotically flat spacetimes. This holographic duality exhibits numerous mysterious
and fruitful features, particularly on the dual CFT side. In this paper, we present the
candidate of dual CFT for Minkowski spacetime extracted from SL(2,C)/SU(2) ∼= H+

3
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1 Introduction

In recent years, an important extension of the holographic principle [1, 2] known as celestial
holography has been proposed, which is a correspondence in asymptotically flat spacetimes
[3, 4, 5, 6, 7, 8]. This proposal asserts that quantum gravity in four-dimensional asymptotically
flat spacetimes is equivalent to conformal field theory (CFT) on a two-dimensional sphere. The
central object of this correspondence is the relationship between scattering amplitudes in four-
dimensional spacetime and correlation functions in the two-dimensional CFT (Celestial CFT;
CCFT). While there are some suggestions about the non-unitary nature of CCFT [9, 10], many
details remain unclear.

In the context of holographic principle, the location where CFT is defined is an impor-
tant element. In AdS/CFT correspondence, CFT is defined on the asymptotic boundary of
the AdS spacetime, and it is understood that the position of this boundary, the IR cutoff of
the spacetime, corresponds to the UV cutoff in CFT. However, since celestial holography is
codimension-two holography, the location where CFT is defined becomes non-trivial. There-
fore, this leads to various proposals such as foliating Minkowski space into (A)dS slices and
applying a holographic dictionary to each slice [11, 12] . We infer the existence of CFT on the
asymptotic boundary of the on-shell hyperboloid (Euclidean AdS3, H

+
3 ) in momentum space

from the fact that correlators can be expressed as Witten diagrams on it [3, 4, 13, 14].
Other than celestial holography, we have a very concrete example of holographic principle in

AdS/CFT. Recently, a specific setup of AdS3/CFT2, namely AdS3 string / symmetric orbifold
duality, has been proposed in some specific cases, Eberhardt dual (unit NSNS flux) [15, 16, 17,
18], extension to more NSNS flux case [19, 20], less than unit flux case [21], for example. In those
cases, correlation functions from both sides coincide. AdS3 side is a string theory on Lorentzian
AdS3 with some background B-field, and its principal part of the world-sheet theory is SL(2,R)k
Wess-Zumino-Witten (WZW) model. Its Euclidean AdS3 counterpart SL(2,C)/SU(2) WZW
model, also known as H+

3 -WZW model, are investigated in detail by Teschner [22, 23, 24].
On the other hand, CFT2 side is so-called symmetric orbifold CFT. In this duality, the J0
eigenvalue in WZW model is considered as conformal weight in CFT side. We will review this
kind of AdS3/CFT2 only briefly, but this is also one of the important concepts of this paper.

In this paper, we propose H+
3 -WZW model as a toy-model of CCFT in the following logic.

Firstly, we assume the existence of dual boundary CFT of H+
3 -WZW string theory as done in

AdS3 string / symmetric orbifold duality. Correlation functions of this dual boundary CFT
can be evaluated from H+

3 -WZW model, as explicitly done in section 4 for the case of two-
point functions and three-point functions. These two-/three- point correlators are shown to
have exactly the expected form in CCFT, and thus we claim that the dual boundary CFT of
H+

3 -WZW string theory can be interpreted as CCFT. In our setup, the corresponding theory
in four-dimensional Minkowski spacetime is massive scalar theory.

When consideringH+
3 -WZW string theory in so-called mini-superspace limit, bulk excitation

becomes geodesic and one can expect that our CCFT construction can be understood in semi-
classical AdS3/CFT2 point of view. More concretely, operators of our interest correspond to
excitations that violate BF bound in traditional AdS3/CFT2 setup, as explained in section
4.5. Actually, we can start from semi-classical AdS3/CFT2 and construct CCFT toy-model
without considering any stringy setup. Although this procedure is one of our important results
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and supports our main claim, it could not be incorporated into the logical flow of the main
argument of this paper, thus we decided to include it in appendix B.

This paper is organized as follows. In section 2, we first provide a brief review of celestial
holography. Subsequently, we consider celestial holography as AdS/CFT in momentum space.
Specifically, we introduce that correlation functions in CCFT can be expressed in the form of
Witten diagrams on the momentum hyperboloid. In section 3, we provide a short review of
H+

3 -WZW model and AdS3 string / symmetric orbifold CFT. In section 4, we introduce the
dual boundary CFT of H+

3 -WZW string theory and propose it as a toy-model of CCFT. We
compare both spectrum, two-point functions, and three-point functions to examine validity as
the toy-model of CCFT of massive scalar theory. In section 5, we conclude this paper and give
some future directions. We present an alternative (but understandable as a limit of our model)
CCFT toy-model construction from semi-classical AdS3/CFT2 in appendix B.

2 Review of celestial CFT

In this section, we review the fundamental aspects of celestial holography. In section 2.2, we
review that the CCFT correlation function can be written as a Witten diagram on EAdS3

(momentum hyperboloid). This fact suggests that CCFT is holographic dual of EAdS3. This
section is partially based on the nice reviews for celesital holography [25, 26].

2.1 Conformal primary operators and correlation functions in CCFT

In celestial holography, scattering amplitudes in four-dimensional asymptotic flat spacetime
corresponds to correlation functions in CCFT, Celestial Amplitudes. This correspondence can
be understood as a transformation of the basis in scattering amplitudes, which is termed as the
conformal basis. This conformal basis is built from conformal primary wave functions Ψ∆(x; z),
which can be expressed using plane waves as follows 1[25]:

Ψ∆(x;w) =

∫
H3

[d3p̂] G∆(p̂;w)e
imp̂·x, (2.1)

where m is mass of massive scalar field. Here, G∆(p̂; z) is a bulk-boundary propagator of the
Euclidean AdS3/CFT2 correspondence:

G∆(p̂(y, z);w) =
1

(−p̂(y, z) · q(w))∆
=

(
y

y2 + |z − w|2

)∆

, (2.2)

where (y, z) : y > 0, z ∈ C is the parameter of on-shell momentum:

p̂µ(y, z) =
1

2y
(1 + y2 + zz̄, z + z̄, i(z̄ − z), 1− y2 − zz̄), p̂2 = −1, (2.3)

1Here, the measure of hyperbolic integral is defined as follows:∫
H3

[d3p̂] =

∫
dy

y3

∫
d2z.
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and q(w) : w ∈ C is null vector:

qµ(w) = (1 + ww̄, w + w̄, i(w̄ − w), 1− ww̄), q2 = 0. (2.4)

We should note that this (y, z) corresponds to the point on the unit mass hyperboloid in
momentum space (see Fig.1).

⃗̂p

p0

O

1

eip̂·X

Figure 1: unit mass hyperboloid

Using this conformal primary wave function, we can define the operator of CCFT

O∆(z) = (Ψ∆(x; z), ϕ(x))KG, (2.5)

where ϕ(x) is a field operator in four-dimensional spacetime, and (, )KG is a Klein-Gordon inner
product. For example, correlation functions correspond to the scattering amplitude A for k → l
particles of massive scalar fields is given by [27]:〈

l∏
i=1

O−
1+iλi

(zi)
k∏

j=1

O+
1+iλj

(zj)

〉

=
l∏

i=1

k∏
j=1

∫
H3

[dp̂outi ]ciG1+iλi
(p̂outi ; zi)

∫
H3

[dp̂inj ]c
∗
jG1+iλj

(p̂inj ; zj) iA(pout1 , ..., poutl ; pin1 , ..., p
in
k ), (2.6)

where cj := 2−iλjm
1+iλj

j

√
λj/(2π)

5
2 and λ ∈ R>0. This restriction for the conformal dimension

∆ ∈ 1+ iR>0 is called principal series, which is derived from normalizable condition for confor-
mal primary wavefunctions [6]. For massless fields, this is given as ∆ ∈ 1+ iR. 2 We introduce
shadow transformation as follows:

Õ∆(z) :=
∆− 1

2π

∫
d2z′

1

|z − z′|2(2−∆)
O∆(z

′). (2.7)

2Note that this relation is modified dictionary introduced in [27]. In massive case, this is same as ordinary
dictionary (e.g.[26, 25]) up to normalization factor.
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Though there are some choice of the notations for the normalization factor, we take the above
notation in order to return to the original form after taking this transformation twice:

˜̃O∆(z) = O∆(z). (2.8)

Although there is still ambiguity in phases, this will be fixed later. In the above notation, we
can compute two-point functions from passing though amplitudes [27]:

⟨O−
1+iλ1

(z1)O+
1+iλ2

(z2)⟩ =
δ(λ1 − λ2)
|z1 − z2|2(1+iλ1)

, (2.9)

⟨O−
1+iλ1

(z1)Õ+
1+iλ2

(z2)⟩ =
2πi

λ1
δ(λ1 − λ2)δ(2)(z1 − z2). (2.10)

From momentum conservation for scattering amplitude, massive three-point CCFT correlators
corresponding to scattering amplitude for m→ m+m should vanish: 3

⟨O∆1O∆2O∆3⟩ = 0. (2.11)

2.2 Celestial CFT on momentum hyperboloid

In this subsection, we would like to mention the reason why we state that CCFT may be
holographic dual CFT of momentum space hyperboloid (EAdS3). It is known that celestial
amplitudes can be expressed as correlators on EAdS3 [3, 4]. For concreteness, we consider
massive three-point amplitudes with interaction Lint = gϕψ2 where ϕ is massive scalar field
with mass 2m(1+ε), and ψ is massive scalar field with mass m. In this case, celestial amplitude
Ã3 which corresponding to the tree-level three-point scattering amplitude ϕ→ ψψ is calculated
in [3] and can be written as follows:

Ã3 ∝ g

(
3∏

i=1

∫
H3

[dp̂i(yi, wi)]G∆i
(p̂i(yi, wi); zi)

)
δ(4) (−2(1 + ε)p̂1 + p̂2 + p̂3) . (2.12)

Leading order about ε (mass conservation limit) of this celestial amplitude can be written as
follows [3]:

Ã3 ∝
√
ε

∫
H3

[dp̂(y, w)]
3∏

i=1

G∆i
(p̂(y, w); zi) . (2.13)

This is the contact Witten diagram on EAdS3, and this imply celestial amplitude can be
written as AdS3 correlator. If considering subnleading part, we can expect additional Witten
diagram contribute. However, the essential claim of the above discussion holds. Discussion
about relations between more general class of celestial amplitude and EAdS3 correlator can be
seen in [4].

3Massless three-point correlators are known to have a distributional behavior. It has a support only in
collinear limit. See e.g. [28]. However, massive three-point functions (m → m + m) vanish in any limit.
Therefore, massive three-point function is exactly 0 for any momenta.
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3 H+
3 -WZW model and AdS3/CFT2

Here we begin with a review of the H+
3 -WZW model and discuss its relation to EAdS3/CFT2

correspondence in order to specify a certain part of the model with the CCFT in the next
section. In section 3.2, a good omen of selecting the model is provided with the aid of a
concrete example of AdS3/CFT2 correspondence.

3.1 H+
3 -WZW model

General description of WZW models. The following discussion is just to summarize the
general features so those who understand may skip this section. See e.g. [29, 30, 31] for more
basics.

The Wess-Zumino-Witten (WZW ) model for a generic, possibly non-compact, Lie group G
is a conformal nonlinear sigma model g : S2 ∼= Ĉ ∋ z 7→ g(z) ∈ G such that the classical action
is

SWZW[g] =− ik

2π

∫
S2

d2z tr
[
∂g−1∂̄g

]
− ik

24π

∫
B3

d3y ϵijk tr
[(
g̃−1∂ig̃

)(
g̃−1∂j g̃

)(
g̃−1∂kg̃

)]
,

(3.1)

where k is the level of the theory. The second term, so-called Wess-Zumino term, is necessary
for the theory to be conformal even after quantization [32]. It includes the extension g̃ : B3 ∋
y 7→ g̃(y) ∈ G of g, so the integration over B3 makes sense but the existence of g̃ is essentially
non-trivial. Indeed, the obstruction is topological and controlled by the second homotopy class
of the target space G, favorably vanishing in the case of H+

3
∼= SL(2,C)/SU(2) (see appendix

A).
The holomorphic and antiholomorphic currents are

J(z) := kg(z)∂g−1(z), J̄(z) := kg(z)∂̄g−1(z), (3.2)

and they have expansions J(z) =
∑

a J
a(z)T a, J̄(z) =

∑
a J̄

a(z)T a with respect to the basis
(T a)a of the Lie algebra g = LieG satisfying

[
T a, T b

]
= ifab

c T
c. The OPE among Ja(z)’s are

found by the conformal Ward identity as

Ja(z)J b(w) ∼ kδab

(z − w)2
+

ifab
c

z − w
J c(w). (3.3)

Here, the symbol “∼” implies that only the singular part of the Laurent expansion is extracted.
Ja have mode expansions Ja(z) =

∑
n∈Z J

a
nz

−n−1 and the algebra consisting of the coefficients
(Ja

n)n∈Z reads [
Ja
m, J

b
n

]
= kmδabδm+n,0 + ifab

c J
c
m+n, (3.4)

(Ja
n)

† = −Ja
−n, (3.5)

for compact Lie groups. The Hermitian conjugate rule (3.5), however, is not necessarily the
case for non-compact groups.
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H+
3 model. The following discussion is based on [22, 23, 24, 33] with most of the conventions

borrowed from [33].
The H+

3 -WZW model is a coset theory obtained by taking G = SL(2,C) and gauging with
the subgroup H = SU(2) [34] whose target space is the 3d hypersurface H+

3 identical to the
momentum hyperboloid (2.3) in a purely mathematical sense. The Hermitian conjugate rule
for the currents (3.2) is

(Ja
n)

† = −J̄a
−n. (3.6)

The protagonists of the model are affine or Kač-Moody primary fields ϕj each corresponding
to the irreducible representations4 of SL(2,C) labeled by the spin j = −1

2
+ iρ (ρ ∈ R). They

have the following OPE with the currents

Ja(z)ϕj(x,w) ∼
Da

j

z − w
ϕj(x,w), J̄a(z̄)ϕj(x, w̄) ∼

D̄a
j

z − w
ϕj(x, w̄), (3.7)

where z, w ∈ S2(worldsheet coordinate) and x ∈ Ĉ ∼= S2 is a certain basis label whose impor-
tance would later become apparent. The “coefficients”

D+
j = −x2∂x + 2jx, D0

j := −x∂x + j, D−
j := −∂x, (3.8)

are indeed differential operator realization of sl(2,C) basis T±, T 0 ([T 0, T±] = ±T±, [T+, T−] =
2T 0) acting on L2(C). We cannot be too careful for the distinction between the z-coordinate
S2 and the x-coordinate S2 in the subsequent analysis. Under the global SL(2,C) action, the
transformation laws for ϕj’s are

ϕj

(
αx+ β

γx+ δ
, z

)
= |γx+ δ|−4jϕj(x, z). (3.9)

and via the Sugawara construction

T (z) := − 1

k − 2

∑
a

: JaJa : (z), (3.10)

they turn into Virasoro primary fields

T (z)ϕj(x,w) ∼ hj

(z − w)2
ϕj(x,w) +

1

z − w
∂ϕj(x,w), (3.11)

with conformal weights

hj := −
1

k − 2
j(j + 1) =

1

k − 2

(
ρ2 +

1

4

)
. (3.12)

4In this model only the continuous representations are paramount, and we do not take up other types
of representations since there appears only continuous representation in the semi-classical Hilbert space (the
Hilbert space for general k is constructed from semi-classical one accompanied by J−n decsendants). See section
4.5. The SL(2,R)-WZW model, a Lorentzian counterpart of H+

3 -model, in comparison involves both continuous
and discrete representations [35].
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The central charge computed from the OPE between the two energy-momentum tensors is

cH+
3
=

3k

k − 2
. (3.13)

By taking semi-classical limit k → ∞, namely the mini-superspace limit, the correlation
function approaches [33]

lim
k→∞

〈
N∏
i=1

ϕji(xi, zi)

〉
∝
∫
H+

3

dg
N∏
i=1

ψji(xi, g), (3.14)

where the Haar measure
∫
H+

3
dg is the same as the one appeared in (2.1) and

ψj(x, g) =
2j + 1

π

((
x
1

)†

g

(
x
1

))2j

=
2j + 1

π

(
y

y2 + |x− w|2

)1−2iρ

(3.15)

is a function on H+
3 proportional to the celestial bulk-boundary operator (2.2) with λ = −2ρ

(y and w come from the same parametrization (2.3) of H+
3 ). On the basis of this fact, x ∈ S2

is not merely a label but a coordinate on the boundary of H+
3 .

With the above setups, the two-/three-point functions for spins ji = −1
2
+ iρi are given by

⟨ϕj1(x1, z1)ϕ
j2(x2, z2)⟩

=
1

|z1 − z2|2hj2

(
− π2b

(2j1 + 1)2
δ(ρ1 + ρ2)δ

(2)(x1 − x2)

+
π

b
γ

(
−2j1 + 1

b

)
δ(ρ1 − ρ2) |x1 − x2|4j2

)
,

(3.16)

⟨ϕj1(x1, z1)ϕ
j2(x2, z2)ϕ

j3(x3, z3)⟩

= C
H+

3
j1,j2,j3

· |z3 − z2|
hj1

−hj2
−hj3 |z3 − z1|hj2

−hj3
−hj1 |z2 − z1|hj3

−hj1
−hj2

|x3 − x2|2(j1−j2−j3)|x3 − x1|2(j2−j3−j1)|x2 − x1|2(j3−j1−j2)
,

(3.17)

with b2 := k − 2 and C
H+

3
j1,j2,j3

some numerical constants given in the next section.

3.2 AdS3 string / symmetric orbifold duality

In this subsection, we briefly review the AdS3 string / symmetric orbifold duality, which is
a concrete example of AdS3/CFT2, to explain our motivation to consider H+

3 -WZW model.
Actually, H+

3 -WZW model itself is NOT what we consider as the toy-model of CCFT: we need
to consider the boundary theory of bulk WZW model as CCFT. Readers who can accept this
idea may skip here and jump to the next section.
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AdS3 string theory. AdS3 side is string theory on AdS3×M and its worldsheet description
is SL(2,R)k WZW model ⊗ sigma model with target space M. The central charge of the
worldsheet CFT is 26 without bc ghosts (cbc = −26),

cAdS3 =
3k

k − 2
, cM = 26− 3k

k − 2
. (3.18)

SL(2,R)k WZW model is a Lorentzian version of H+
3 WZW model, as they are related by the

Wick rotation in target AdS3.
There needs to be introduced spectrally-flowed sectors in the spectrum of the SL(2,R)k

WZW model as revealed in [35]. Spectrally-flowed sectors are labelled by integer w.

Symmetric orbifold CFT. Dual boundary CFT is symmetric orbifold CFT56,

SymN

(
Linear Dilaton theory with Q =

k − 3√
k − 2

⊗M
)
. (3.19)

M denotes the same theory mentioned in worldsheet theory. The central charge of the seed
theory is (cM is the same one in (3.18)),

cLD = 1 + 6Q2 = 1 +
6(k − 3)2

k − 2
,

cM = 26− 3k

k − 2
,

ctotal = cLD + cM = 6k. (3.20)

Symmetric orbifold CFT is defined to the set of seed CFT and positive integer N , as

SymN (C) = C⊗N/SN . (3.21)

In other words, N -th symmetric orbifold CFT is the SN permutation orbifold of the N times
tensor product of seed theory. The central charge of N -th symmetric orbifold CFT is N times
that of the seed theory.

As is often the case with orbifold CFT, corresponding twisted sector is introduced. Twisted
sectors are labelled by SN ’s conjugacy class. Each element of SN can be written as the product
of cyclic permutation. Twisted sector corresponding to single cyclic permutation of length w
is called w-twisted sector.

Corresponding quantities. String scattering amplitudes and correlation function on dual
boundary CFT coincide as shown in (5.18) of [20]. In this duality, w-spectrally flowed excitation
in string theory corresponds to w-twist operator insertion in dual CFT side.

Additionally, conformal weight (L0 eigenvalue) in the dual boundary CFT corresponds to
J3
0 eigenvalue in the worldsheet CFT (see e.g. section 2.1 of [18]).

5Actually we need to take a grand canonical ensemble i.e. summation over N = 1, . . . .
6As done in [20], marginal deformation must be introduced for k > 3 in order to get the correct correspon-

dence.
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4 Celestial CFT from H+
3 -WZW model

In this section, we explain how the H+
3 -model realizes the CCFT. Section 4.1 describes the

logic for identifying the boundary of the WZW target space H+
3 with CCFT based on the fact

that x is a boundary coordinate accompanied by the idea of symmetric orbifold explained in
the previous section. Section 4.2 rewrites the WZW spin −1

2
+ iρ to celestial principal series

∆ = 1 + iλ and construct operator set of CCFT using affine primaries (3.7). In section 4.3
and 4.4, we compute two-/three-point functions following the construction and show that the
three-point function vanishes. The level k is not limited to a specific value throughout this
section, but in section 4.5 we propose k → ∞ limit as another potential way to remove z
dependence and get a Hilbert space of semi-classical theory.

4.1 Assumption and main claim

Motivated from the AdS3 string / symmetric orbifold duality, we assume that there exists a dual
boundary CFT that corresponds to H+

3 -WZW string theory’s non-spectrally-flowed sector. The
coordinates of the dual boundary CFT coincides with the label of x-basis, as one can observe
its classical limit in (3.15).

Considering that massive on-shell particle in Minkowski spacetime consists in H+
3 slice in

momentum space, we propose that the CCFT is the dual boundary CFT of H+
3 -WZW string

theory (Fig. 2).
In string theory, z dependence is integrated out. Thus we drop the z dependence (worldsheet

coodinate) of the H+
3 correlator to extract the x dependence of string amplitude hereafter. For

simplicity, our interest in this section is just sphere contribution for string amplitude, which
might correspond to tree-level contribution to the Minkowski scattering amplitude.

Figure 2: The H+
3 -WZW worldsheet and the CCFT as the boundary CFT of the target space

H+
3

Here we should note some general features of this dual CFT, assuming the correspondence.
The WZW primary fields we consider belong to continuous representation, which correspond
to tachyonic excitations in LAdS3 sense (see section 4.4 of [35]). Thus, our model appears to be
non-unitary and fulfills one of the expected characteristics of CCFT. We further discuss their
semi-classical limit in section 4.5 and appendix B.
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Roughly speaking, current algebra on the worldsheet is translated into boundary Virasoro
algebra, at least J0,±1 or L0,±1 level. Combining it with (3.6), we expect our dual CFT to satisfy

(Ln)
† = −L̄−n (n = 0,±1), (4.1)

which is consistent with CCFT’s one (see eq. (6.25) of [36], or [37]).

4.2 Spectrum

The celestial conformal primary operatorO∆=1+iλ (λ ∈ R) transforms under the global SL(2,C)
action as

(g · O∆)(x) := O∆

(
αx+ β

γx+ δ

)
= |γx+ δ|2∆O∆(x), g =

(
α β
γ δ

)
∈ SL(2,C). (4.2)

Comparing (3.9) and (4.2), one can infer that x(∈ C) coordinate is identical to the celestial

sphere coordinate and ϕj=− 1
2
+iρ corresponds to O∆=1−2iρ, i.e. there are relations between the

principal series and the WZW spin as follows:

j = −1

2
+ iρ ←→ ∆i = 1− 2iρ = 1 + iλ (λ ≡ −2ρ). (4.3)

This is natural and consistent with the fact that conformal weight (L0 eigenvalue) in the dual
boundary CFT corresponds to J3

0 eigenvalue in the worldsheet CFT, referred to in section 3.2.
Hereafter, we write the WZW operator ϕ∆ and conformal weight h∆i

instead of ϕj and
(3.12) on the ground of this fact. Then following the correspondence (4.3) one can rewrite
(3.16) and (3.17) to

⟨ϕ∆1(x1, z1)ϕ
∆2(x2, z2)⟩

=
2

|z1 − z2|2h∆1

(
− π2b

(∆1 − 1)2
δ(λ1 + λ2)δ

(2)(x1 − x2)

+
π

b
γ

(
∆1 − 1

b2

)
δ(λ1 − λ2)

1

|x1 − x2|2∆1

)
,

(4.4)

⟨ϕ∆1(x1, z1)ϕ
∆2(x2, z2)ϕ

∆3(x3, z3)⟩

= C
H+

3
∆1,∆2,∆3

· 1

|z3 − z2|2(h∆2
+h∆3

−h∆1)|z3 − z1|2(h∆3
+h∆1

−h∆2)|z2 − z1|2(h∆1
+h∆2

−h∆3)

× 1

|x3 − x2|∆2+∆3−∆1|x3 − x1|∆3+∆1−∆2|x2 − x1|∆1+∆2−∆3
,

(4.5)

where γ(x) := Γ(x)/Γ(1 − x) (Recall also that b2 = k − 2). These equations are much similar
to celestial two- and three-point functions (2.10) and (2.9) and particularly the delta-function
regarding λi in the R.H.S. of the two-point function suggests that the two-point function with

11



the same λ signs follows the power law |x1 − x2|−2∆2(the second term) while the two-point
function with different λ signs follows the delta-function law δ(2)(x1 − x2)(the first term). Now
the affine primaries ϕji are primaries of conformal weights

h∆i
= − 1

k − 2

(
−∆i

2

)(
−∆i

2
+ 1

)
=

1

4(k − 2)

(
λ2i + 1

)
(4.6)

w.r.t. z-plane (worldsheet), but also are (quasi-)primaries of conformal weights

∆i

2
=

1

2
+ i

λi
2

(4.7)

w.r.t. x-plane (boundary of the target space H+
3 ), which supports the idea that celestial sphere

coordinate is not identical to the z-plane but to the x-plane.
We proceed with discussion adopting the shadow transformation [33]7 originally introduced

in eq. (40) of Teschner’s paper [22]. The shadow transformation is related to the celestial
shadow defined in (2.7) by

ϕ̃∆
Tes

(x) :=
b2

2π
γ

(
1 +

1−∆

b2

)∫
C
d2x′

1

|x− x′|2(2−∆)
ϕ∆(x′)

=
∆− 1

2π

Γ
(
1− i λ

b2

)
Γ
(
1 + i λ

b2

) ∫
C
d2x′

1

|x− x′|2(2−∆)
ϕ∆(x′)

= eiα(λ)ϕ̃∆(x), (4.8)

where ∆ = 1 + iλ and eiα(λ) :=
Γ(1−i λ

b2
)

Γ(1+i λ
b2
)
.

We propose the celestial operator O∆ as a linear combination of H+
3 -WZW affine primaries

O∆(x) :=
√
λ

√
i

2πb

(
e−

iα(λ)
2 ϕ∆(x)− e+

iα(λ)
2 ϕ̃2−∆(x)

) (√
λ: principal value

)
=
√
λ

√
i

2πb
e−

iα(λ)
2

(
ϕ∆(x)− ϕ̃2−∆

Tes

(x)

)
(4.9)

to exhibit that the CCFT correlators are in agreement with the bulk scattering amplitudes,
which is the paramount result of this paper. This idea of linear combination is introduced to
realize the vanishing of three-point functions among the same particles discussed in the next
subsection.

We should additionally note that the relation between O∆ and Õ∆ for λ > 0:

O1+iλ = + i · Õ1−iλ,

O1−iλ = − i · Õ1+iλ.
(4.10)

7This shadow transformation ϕ̃∆
Tes

we introduced here slightly differs from the definition in [33] by the
numerical factor 1/2 so as for the composition of two consecutive shadow transformations to be identity map.
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4.3 Two-point function

Based on our definition (4.9) the two-point functions are8

⟨O∆1(x1)O∆2(x2)⟩

=
i
√
λ1
√
λ2

2πb
e−

iα(λ1)
2 e−

iα(λ2)
2

×
(
⟨ϕ∆1ϕ∆2⟩k − ⟨ϕ̃2−∆1

Tes

ϕ∆2⟩k − ⟨ϕ
∆1ϕ̃2−∆2

Tes

⟩k + ⟨ϕ̃2−∆1

Tes

ϕ̃2−∆2

Tes

⟩k
)

=
2πi√
λ1
√
λ2
δ(λ1 + λ2)δ

(2)(x1 − x2) +
δ(λ1 − λ2)
|x1 − x2|2∆1

. (4.11)

For ∆1 = 1 + iλ1, ∆2 = 1 + iλ2 (λi > 0), only the second term survive

⟨O1+iλ1(x1)O1+iλ2(x2)⟩ =
δ(λ1 − λ2)
|x1 − x2|2∆1

, (4.12)

whereas for ∆1 = 1+ iλ1, ∆2 = 1− iλ2 (λi > 0) only the first term is non-vanishing and (4.10)
leads to

⟨O1+iλ1(x1)O1−iλ2(x2)⟩ =
2πi√

λ1
√
−λ2

δ(λ1 − λ2)δ(2)(x1 − x2)

⇐⇒ ⟨O1+iλ1(x1)Õ1+iλ2(x2)⟩ =
2πi

λ1
δ(λ1 − λ2)δ(2)(x1 − x2). (4.13)

(4.12) and (4.13) are the very results (2.9) and (2.10).

4.4 Three-point function

For any single massive scalar theory on 4d Minkowski spacetime, any on-shell three-point am-
plitudes should vanish, leading to the expectation that the corresponding three-point function
in CCFT is also zero. In this part, we show that a linear combination (4.9) of non-shadow ϕ∆

and shadow ϕ̃2−∆ satisfies this condition.
The starting point is the target space three-point correlators (4.5) whose OPE coefficients

are given by [33]

C
H+

3
∆1,∆2,∆3

:=
πb−

1
b2

(∆1+∆2+∆3−1)−1Υ′
b(0)Υb

(
∆1

b

)
Υb

(
∆2

b

)
Υb

(
∆3

b

)
Υb

(
∆1+∆2+∆3−2

2b

)
Υb

(
∆1+∆2−∆3

2b

)
Υb

(
∆1−∆2+∆3

2b

)
Υb

(−∆1+∆2+∆3

2b

) , (4.14)

8Here the shadow transformation is performed with reference to the formula∫
d2w

1

|z1 − w|2∆|w − z2|2(2−∆)
=

4π2

λ2
δ(2)(z1 − z2) (∆ = 1 + iλ).
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and Υb is so-called the Upsilon function (see appendix C). In what follows, the x- and z-
dependent parts are abbreviated for reasons of space limitation as

P∆1,∆2,∆3(z1, z2, z3) := |z3 − z2|
2(hj2

+hj3
−hj1)|z3 − z1|2(hj3

+hj1
−hj2)|z2 − z1|2(hj1

+hj2
−hj3), (4.15)

Q∆1,∆2,∆3(x1, x2, x3) := |x3 − x2|∆2+∆3−∆1 |x3 − x1|∆3+∆1−∆2|x2 − x1|∆1+∆2−∆3 . (4.16)

For general values of k, three-point correlators with one shadow and two non-shadow operators
are given by

⟨ϕ̃2−∆1

Tes

(x1)ϕ
∆2(x2)ϕ

∆3(x3)⟩

=
C

H+
3

2−∆1,∆2,∆3

P∆1,∆2,∆3(z1, z2, z3)Q∆1,∆2,∆3(x1, x2, x3)

∆1 − 1

b2
γ

(
∆1 − 1

b2

)

× γ
(
∆1 −∆2 +∆3

2

)
γ

(
∆1 +∆2 −∆3

2

)
Γ(2−∆1)

Γ(∆1)
.

(4.17)

We have employed the formula [38]∫
d2w

1

|z1 − w|2a|z2 − w|2b|z3 − w|2c

=
2πΓ(1− a)Γ(1− b)Γ(1− c)

Γ(a)Γ(b)Γ(c)
· 1

|z1 − z2|2(1−c)|z2 − z3|2(1−a)|z3 − z1|2(1−a)
, (4.18)

and γ(x+ 1) = −x2γ(x) here. It further follows using (C.5), (C.12), and (C.13) that the OPE
coefficients satisfy

C
H+

3
2−∆1,∆2,∆3

= C
H+

3
∆1,∆2,∆3

· b2 · γ(∆1 − 1)

γ
(
∆1−1
b2

) · 1

γ
(
∆1−∆2+∆3

2

)
γ
(
∆1+∆2−∆3

2

) , (4.19)

and thus

⟨ϕ̃2−∆1

Tes

(x1)ϕ
∆2(x2)ϕ

∆3(x3)⟩ = ⟨ϕ∆1(x1)ϕ
∆2(x2)ϕ

∆3(x3)⟩ . (4.20)

So if we let celestial operator O∆ be (4.9), it finally reproduces the expected identity

⟨O∆1(x1)O∆2(x2)O∆3(x3)⟩ = 0. (4.21)

It should be strongly noted that O∆’s are not zero operators since the two-point functions
(4.11) are non-vanishing.
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4.5 Mini-superspace limit

One can in fact omit the z-dependence in both two- and three-point functions without consid-
ering the WZW model as a string theory, by taking the mini-superspace limit k → ∞, as can
be seen from (4.6). In this limit, the Hilbert space of the theory precisely matches with

L2
(
H+

3

) ∼=⊕
ρ>0

H− 1
2
+iρ, (4.22)

whose basis are the conformal primary wave functions Ψ∆, and the central charge for the z-plane
CFT approaches cH+

3
→ 3. This is not inconsistent with the proposal c = i∞ in [9, 10] since this

cH+
3
→ 3 central charge is not for the x-plane CCFT but for the worldsheet CFT. Additionally,

in the mini-superspace limit, (4.8) approaches the well-known shadow transformation (2.7) in
celestial holography context

lim
k→∞

ϕ̃∆
Tes

(x) =
∆− 1

2π

∫
C
d2x′

1

|x− x′|2(2−∆)
ϕ∆(x′). (4.23)

Also, in this limit, (4.19) becomes

lim
k→∞

C
H+

3
2−∆1,∆2,∆3

C
H+

3
∆1,∆2,∆3

= −Γ(1−∆1)

Γ(∆1 − 1)
γ

(
∆1 −∆2 +∆3

2

)
γ

(
∆1 +∆2 −∆3

2

)
. (4.24)

Physically, the worldsheet shrinks up into line in this limit, and is expected to admit a
semi-classical particle picture. As briefly mentioned in section 4.1, operators in continuous
representation (ϕj with j = −1

2
+ iρ) correspond to tachyonic particle in LAdS3 sense, and

actually they become spacelike geodesics in the k → ∞ limit as considered in [35]. As a
consistency check, one can see ∆ = 1+ iλ is conformal weight for states that violate BF bound,
namely tachyons. As expected, actually we can start from semi-classical setup: we discuss
semi-classical AdS3/CFT2 in appendix B, where we construct similar operator set of CCFT
toy-model without assuming any string theory, if we include tachyons i.e. particles that violate
the BF bound.

In the limit, one can find relation to recent Liouville theoretic approach to CCFT [39, 40,
41, 42, 43]. See the detail in the next discussion part.

5 Conclusion and discussion

In this paper, we propose the boundary theory of H+
3 -WZW model as a toy-model of CCFT.

We construct primary operators in CCFT from H+
3 -WZW affine primary operator, and checked

that the spectrum and two- and three-point functions are consistent with conventional results
in CCFT. Some of future directions of our work are below.

Determination of bulk scalar theory. We can calculate bulk four-point scattering am-
plitude for our model by using celestial holography dictionary. We can determine the mass
parameter of exchanging particle for the bulk scalar theory by analysing complex structure of
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scattering amplitudes of maldelstam variable plane. In addition, we may obtain some hint of
bulk interaction. Mass parameter and level k are expected to be related.

Moreover, In the context of CCFT, we have to distinguish between incoming and outgoing
particles in scattering amplitudes. While this distinction may not pose significant issues when
considering massive scattering, it becomes problematic when dealing with massless particles,
as pointed out in [27]. These results are our ongoing work.

Central charge of celestial CFT. It has some difficulties in identifying the central charge
of CCFT due to some facts like that it is codimension-two holography and/or there are no
parameters like AdS radius because we are dealing with flat spacetime.

There are several proposals regarding the central charge, for example, [9, 10] states c = i∞.
In [9], the Virasoro algebra is defined on the Milne slice (Fig.3) through the application of
AdS3/CFT2, allowing for the algebraic definition of the central charge. In [10], extending
wedge holography [44] to flat spacetimes, the calculation of the partition function of CFT is
performed, enabling the determination of the central charge from its cutoff dependence.

On the other hand, [45] show c = 0 by transformation rules of the stress tensor of CCFT
from covariant phase space formalism perspective. [46] also show c = 0 by computing OPE
from scattering amplitudes perspective.

It is worth working on determining central charge in our construction. If we naively utilize
the AdS3 string / symmetric orbifold duality, central charge in our setup is proportional to 6k.

Minkowski slicing? Momentum space slicing? For one recent approach to celestial
holography, there has been a attempt to understand this novel duality as a pile-up of Euclidean
AdS3 and Lorentzian dS3 [47]9, see Fig.3. This idea was firstly introduced by de Boer and
Solodukhin [11].

Celestial holography can be regarded as a piling of (A)dS/CFT on such slices. If the bulk is
four-dimensional Minkowski spacetime, the slice is either EAdS3 or dS3, and the WZW model
has been proposed as a dual CFT to these [49, 50].

Mini-superspace limit and relation to Liouville theory Taking a closer look at AdS3

string / symmetric orbifold duality, the dual boundary CFT of H+
3 -WZW we assumed to exist

is something related to linear dilaton theory with cLD = 1 + 6 (k−3)2

k−2
, and this straightly leads

to that our model of CCFT is something like linear dilaton. This suggests, especially, when we
consider the mini-superspace limit k →∞ the central charge of our CCFT diverges.

The authors of [39, 40, 41, 42, 43] suggest Liouville theory as CCFT, especially in [43],
the Liouville sector of CCFT is proposed to be one with cLiouv = 1 + 6(b′ + 1/b′)2 in b′ → 0
limit. In the limit, the potential term in Liouville theory e2b

′ϕ becomes trivial at least naively
and the theory is almost linear dilaton theory. Thus the construction in [43] is consistent with
our approach to CCFT if we take the mini-superspace limit, and parameters are related as
b′ ∼ 1/

√
k.

9Similar approach to Klein space can be found in [48] for example.
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Figure 3: Penrose diagram of Minkowski space, the Milne slices. Red lines represent Euclidean
AdS3 slices, and blue line is Lorentzian dS3 slices.
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A Basics of H+
3
∼= SL(2,C)/SU(2) = EAdS3

For any invertible matrix A ∈ GL(n,C) (n ∈ N), there is a unique polar decomposition

A = U |A| (∃!U : unitary, |A| :=
√
A†A : the absolute value of A). (A.1)

If one specifies A from SL(2,C), then detA = 1, | detU | = 1 and det |A| > 0 impliy

detA = detU = det |A| = 1, (A.2)

leading to the decomposition as a topological space

SL(2,C) ∼= SU(2)× {positive Hermitian matrices with unit determinant}. (A.3)

Note that this is not a direct product as a group since the latter space is not closed under the
matrix product. It is parameterized by four real numbers a, b, c, d ∈ R as(

a+ d b+ ic
b− ic a− d

)
, (A.4)
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with the constraint

−a2 + b2 + c2 + d2 = −1, (A.5)

arising from the determinant condition. Positiveness also forces two eigenvalues α1, α2 of (A.4)
to be positive, limiting the range of a by

0 < α1 + α2 = tr

(
a+ d b+ ic
b− ic a− d

)
= 2a ⇐⇒ a > 0. (A.6)

A widely accepted notation is

H+
3 := SL(2,C)/SU(2), (A.7)

in accordance with the defining equation (A.5) and (A.6) of the 3d hyperbolic surface, or Eu-
clidean AdS3 space (EAdS3). Again from another perspective, the hypersurface has no canonical
group structure because the Lie algebra sl(2,C) is semisimple and therefore SL(2,C) never has
continuous normal subgroups. Since one can easily see thatH+

3 is homeomorphic to contractible
space R3, it follows

π2(H
+
3 )
∼= 0, π3(H

+
3 )
∼= 0, (A.8)

which guarantee WZ-term of the H+
3 -WZW model is well-defined, though the level is not

necessarily quantized (k ∈ Z) in contrast to the case of compact Lie groups.

B Mini-superspace limit: semi-classical AdS3/CFT2

In this appendix, we consider the analytic continuation to ∆ = 1+ iλ (breaking the BF bound!)
in the traditional AdS3/CFT2 setup and show that a construction of CCFT toy-model similar
to that demonstrated in the body of this paper is valid, without considering any string theory.
Actually, the fact that celestial operators violate the BF bound in the sense of AdS3/CFT2 is
already suggested in [10] by numerical analysis.

From equation (20) and (25) of [51], a contribution from most simple vertex LI(∆1,∆2,∆3) =
ϕs.c.
∆1
ϕs.c.
∆2
ϕs.c.
∆3

can be calculated as

〈
ϕs.c.
∆1

(x1)ϕ
s.c.
∆2

(x2)ϕ
s.c.
∆3

(x3)
〉
s.c.

=
Cs.c.

∆1∆2∆3

|x1 − x2|∆1+∆2−∆3|x2 − x3|∆2+∆3−∆1|x3 − x1|∆3+∆1−∆2
,

Cs.c.
∆1∆2∆3

= −
Γ
[
∆1+∆2−∆3

2

]
Γ
[
∆2+∆3−∆1

2

]
Γ
[
∆3+∆1−∆2

2

]
2π2Γ [∆1 − 1] Γ [∆2 − 1] Γ [∆3 − 1]

Γ

[
∆1 +∆2 +∆3 − 2

2

]
, (B.1)

where “s.c.” stands for semi-classical. Traditionally we impose ∆ = 1 +
√

1 + (m/RAdS)2 ≥ 1,
in other words m must satisfy the BF bound (m/RAdS)

2 ≥ −1.
One can immediately check that the three-point coefficient Cs.c.

∆1∆2∆3
satisfies

Cs.c.
∆1∆2∆3

Cs.c.
(2−∆1)∆2∆3

=
Γ(1−∆1)

Γ(∆1 − 1)
γ

(
∆1 −∆2 +∆3

2

)
γ

(
∆1 +∆2 −∆3

2

)
, (B.2)
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whose right-hand side is −1 times that of (4.24). If we set the celestial operator Os.c.
∆ as

Os.c.
∆ (x) ∝

(
ϕs.c.
∆ (x) + ϕ̃s.c.

2−∆(x)
)
, (B.3)

Os.c.
∆ enjoys the vanising three-point function, namely

⟨Os.c.
∆1

(x1)Os.c.
∆2

(x2)Os.c.
∆3

(x3)⟩s.c. = 0. (B.4)

After the analytic continuation ∆ = 1+ iλ and if we properly take the normalization constant
in (B.3), Os.c.

∆ s satisfy celestial two-point functions (2.9) and (2.10). All other arguments for
massive scalar CCFT mentioned in the body of this paper are also satisfied.

Our claim in this appendix is, the CFT side of semi-classical AdS3/CFT2 with spectrum
ϕs.c.
1+iλ for all λ ∈ R (infinite number of tachyons) and interaction term

∫
λ1,λ2,λ3∈R LI(1+ iλ1, 1+

iλ2, 1 + iλ3) is an alternative toy-model of CCFT.

C Some useful formulae for Upsilon function

Although there are many references for formulae of these sorts, we mainly refer to appendix A
of [52] for its conciseness. The Upsilon function Υb(z) is defined as

Υb(z) :=
1

Γb(z)Γb(b+ b−1 − z)
. (C.1)

using the special function

Γb(z) :=
Γ2(z|b, b−1)

Γ2

(
1
2
(b+ b−1)|b, b−1

) (C.2)

Here, Γ2(z|α, β) is the double gamma function

Γ2(z|α, β) := exp

(
∂

∂s
ζ2(s, z|α, β)

∣∣∣∣
s=0

)
(Reα, Re β > 0), (C.3)

and ζ2(s, z|α, β) is so-called the Barnes double zeta function, namely

ζ2(s, z|α, β) :=
∞∑

n1,n2=0

1

(z + αn1 + βn2)
s (Re s > 2, Re z > 0), (C.4)

meromorphically continued to all complex s with only singularities simple poles at s = 1, 2.
From the definition (C.1), it immediately follows that

Υb(z) = Υb

(
b+ b−1 − z

)
. (C.5)

Other powerful fomulae are obtained by starting with

ζ2(s, z + b|b, b−1) =
∞∑

n1,n2=0

1

(z + b+ bn1 + b−1n2)
s

=
∞∑

n1,n2=0

1

(z + bn1 + b−1n2)
s −

∞∑
n2=0

1

(z + b−1n2)
s

= ζ2(s, z|b, b−1)− bsζ(s, bz), (C.6)
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where ζ(s, a) is the Hurwitz zeta function

ζ(s, a) :=
∞∑
n=0

1

(n+ a)s
(Re s > 1, Re a > 0), (C.7)

that has a meromorphic continuation to the whole complex plane whose only singularity is
simple pole at s = 1. Then the well-known facts

ζ(0, a) =
1

2
− a, (C.8)

∂

∂s
ζ(s, a)

∣∣∣∣
s=0

= log Γ(a)− 1

2
log(2π), (C.9)

validate the computation of the transformation law

Γ2(z + b|b, b−1) = exp

(
∂

∂s
ζ2(s, z + b|b, b−1)

∣∣∣∣
s=0

)
= exp

(
∂

∂s
ζ2(s, z|b, b−1)

∣∣∣∣
s=0

− bs log b · ζ(s, bz)|s=0 −
(
log Γ(bz)− 1

2
log(2π)

))
= exp

(
∂

∂s
ζ2(s, z|b, b−1)

∣∣∣∣
s=0

−
(
1

2
− bz

)
log b− log Γ(bz) +

1

2
log(2π)

)
=

√
2πbbz−

1
2

Γ(bz)
Γ2(z|b, b−1), (C.10)

which by replacing z → b−1 − z entails another equation

Γ2(b
−1 − z + b|b, b−1) =

√
2πb

1
2
−bz

Γ(1− bz)
Γ2(b+ b−1 − (z + b)|b, b−1). (C.11)

Combining these results, we get a translation law

Υb(z + b) =
1

Γb(b+ b−1 − (z + b)|b, b−1)Γb(z + b|b, b−1)

=
Γ(bz)

Γ(1− bz)
b1−2bzΥb(z)

= γ(bz)b1−2bzΥb(z). (C.12)

A similar manner computation yields another translation law

Υb(z + b−1) = γ(b−1z)b2b
−1z−1Υb(z). (C.13)
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