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ABSTRACT. In the present paper, we prove the anabelian Grothendieck conjecture for the tame fun-
damental groups of the configuration spaces associated to hyperbolic curves over [the perfections of]
finitely generated fields of positive characteristic. The main theorem of the present paper generalizes
the classical anabelian results for hyperbolic curves in positive characteristic established by A. Tam-
agawa, S. Mochizuki, and J. Stix. The main theorem of the present paper may also be regarded as the
first anabelian Grothendieck conjecture-type result for algebraic varieties in positive characteristic
of higher dimension [i.e., of dimension greater than one]. In the process of the proof of the main
theorem, we prove a certain exactness of homotopy sequences for the tame fundamental groups with
respect to suitable morphisms between normal varieties. Moreover, we also introduce the notion
of a generalized fiber subgroup of the tame fundamental group of the configuration space associ-
ated to a hyperbolic curve in arbitrary characteristic and establish a “group-theoretic algorithm”
that reconstructs, from the tame fundamental group of the configuration space, the generalized fiber
subgroups.
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INTRODUCTION

In the present paper, subsequent to the recent work of the third author, from the viewpoint of
the compatibility/rigidity/synchronization of group-theoretic cyclotomes, we study the anabelian
Grothendieck conjecture for the configuration spaces associated to hyperbolic curves over [the
perfections of] finitely generated fields of positive characteristic.
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Let us first recall famous classical anabelian results for hyperbolic curves in positive character-
istic established by A. Tamagawa, S. Mochizuki, and J. Stix. For each □ ∈ {†,‡}, let

• □k be a field,
• □k a separable closure of □k, and
• □X+ = (□X ,□D) a hyperbolic curve over □k [cf. Definition 2.1].

For each □ ∈ {†,‡}, write

• □X+
□k

def
= (□X ×□k

□k,□D×□k
□k) for the hyperbolic curve over □k obtained by forming

the base-change of □X+ to □k,
• □U def

= □X \□D⊆ □X for the open subscheme of □X obtained by forming the complement
of □D in □X ,
• G□k

def
= Gal(□k/□k) for the absolute Galois group of the field □k determined by the sepa-

rable closure □k,
• □Π def

= π tame
1 (□X+) for the tame fundamental group of □X+ = (□X ,□D), relative to a

suitable choice of basepoint, and
• □∆ def

= π tame
1 (□X+

□k
) for the tame fundamental group of □X+

□k
= (□X×□k

□k,□D×□k
□k),

relative to a suitable choice of basepoint.

Thus, for each □ ∈ {†,‡}, the natural morphisms □X□k →
□X → Spec(□k) determine an exact

sequence of topological groups

1 // □∆ // □Π // G□k
// 1.

Now let us recall that we say that a hyperbolic curve X+ over a field k is isotrivial [cf. Defini-
tion 6.5] if, for an arbitrary separable closure k of k, there exist a hyperbolic curve X+

0 over the
separable closure k0 in k of the minimal subfield of k and an isomorphism X+×k k ∼→ X+

0 ×k0 k
over k. Then the classical anabelian results established by A. Tamagawa, S. Mochizuki, and J. Stix
may be summarized as follows [cf. [26, Theorem 0.5], [15, Theorem 3.2], [24, Theorem 1], [25,
Theorem 5.1.3]]:

Theorem A. The following assertions hold:

(i) Suppose that both †k and ‡k are finite. Write

Isom(†U,‡U)

for the set of isomorphisms †U ∼→ ‡U of schemes and

OutIsom(†Π,‡Π)

for the set of continuous outer isomorphisms †Π ∼→ ‡Π of topological groups. Then the
natural map

Isom(†U,‡U)
∼ // OutIsom(†Π,‡Π)

is bijective.
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(ii) Suppose that the equality (†k,†k) = (‡k,‡k) holds, that †k is finitely generated and tran-
scendental over a finite field, and that the hyperbolic curve †X+ is nonisotrivial. Write

Isom†k,F−1
†k
(†U,‡U)

for the set of isomorphisms †U ∼→ ‡U in the category Var†k,F−1
†k

defined in the discussion

“Inverting Frobenius” following [25, Lemma 4.1.1],

IsomG†k
(†Π,‡Π)

for the set of continuous isomorphisms †Π ∼→ ‡Π over G†k = G‡k, and

∆\IsomG†k
(†Π,‡Π)

for the quotient set of IsomG†k
(†Π,‡Π) with respect to ‡∆-conjugation. Then the natural

map

Isom†k,F−1
†k
(†U,‡U)

∼ // ∆\IsomG†k
(†Π,‡Π)

[cf. also [25, Corollary 4.2.5], the discussion following [25, Lemma 4.1.6]] is bijective.

Next, we introduce the notion of the compactified configuration space associated to a hyper-
bolic curve [cf. Definition 2.6]. Let n, g, r be nonnegative integers such that 2−2g− r < 0. Write
M g,n+r for the moduli stack of (n+ r)-pointed stable curves of genus g over Z [cf. [1, Propo-
sition 5.1], [1, Theorem 5.2], [12, Theorem 2.7]] and Mg,n+r ⊆M g,n+r for the open substack
of M g,n+r that parametrizes (n+ r)-pointed stable curves of genus g whose underlying curves
are smooth. Thus, we have a natural action of the symmetric group Sn+r on n + r letters on
the algebraic stacks Mg,n+r ⊆M g,n+r, i.e., that arises from the permutations of n+ r marked
points. Write Sn+r,r ⊆ Sn+r for the subgroup of Sn+r of permutations of the last r letters,

Mg,n+[r]
def
= [Mg,n+r/Sn+r,r] ⊆M g,n+[r]

def
= [M g,n+r/Sn+r,r] for the stack-theoretic quotients of

the algebraic stacks Mg,n+r ⊆M g,n+r by the actions of the subgroup Sn+r,r ⊆ Sn+r of Sn+r,

respectively, and Dg,n+[r]
def
= (M g,n+[r] \Mg,n+[r])red ⊆M g,n+[r] for the reduced closed substack of

M g,n+[r] determined by the complement of Mg,n+[r] in M g,n+[r]. Then one verifies immediately
from the various definitions involved that if n = 0, then the algebraic stack Mg,n+[r] = Mg,0+[r]
may be naturally identified with the moduli stack of hyperbolic curves of type (g,r) over Z. Let
S be a scheme, and let X+ = (X ,D) be a hyperbolic curve of type (g,r) over S. Then the n-th
compactified configuration space of X+ is defined to be the pair

X+
(n)

def
= (X(n)

def
= M g,n+[r]×M g,0+[r]

S, DX
(n)

def
= Dg,n+[r]×M g,0+[r]

S)

consisting of X(n), DX
(n) defined by the fiber products of the [representable — cf. [12, Corollary 2.6]]

functors M g,n+[r]→M g,0+[r], Dg,n+[r]→M g,0+[r] obtained by forgetting the first n marked points
and the classifying morphism S→M g,0+[r] of the hyperbolic curve X+, respectively. Observe that
one verifies easily from the various definitions involved that the scheme over S

UX
(n)

def
= X(n) \DX

(n)
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obtained by forming the complement of DX
(n) in X(n) may be naturally identified with the n-th

configuration space of the curve X \D⊆ X [cf., e.g., [18, Definition 2.1, (i)]]. Moreover, one also
verifies easily from the various definitions involved that the scheme X(n) may be naturally identified
with the underlying scheme of the n-th log configuration space of the curve X \D⊆ X [cf., e.g., [4,
Definition 1], [18, Definition 2.1, (i)]].

Now recall the notational conventions introduced in the discussion preceding Theorem A. For
each □ ∈ {†,‡}, let □n be a positive integer. Moreover, for each □ ∈ {†,‡}, write

• □Π□n
def
= π tame

1 (□X+
(□n)

) for the tame fundamental group of □X+
(□n)

def
= (□X(□n),D

□X
(□n)),

relative to a suitable choice of basepoint, and
• □∆□n

def
= π tame

1
(
(□X+

□k
)(□n)

)
for the tame fundamental group of (□X+

□k
)(□n)

def
= ((□X□k)(□n),

□D
□X□k
(□n)

), relative to a suitable choice of basepoint.

Thus, for each □ ∈ {†,‡}, the natural morphisms (□X□k)(□n)→ □X(□n)→ Spec(□k) determine an
exact sequence of topological groups

1 // □∆□n
// □Π□n

// G□k
// 1.

Then our main result is as follows [cf. Theorem 6.7, Corollary 6.9]:

Theorem B. The following assertions hold:
(i) Suppose that the following two conditions are satisfied:

(i-1) For each □ ∈ {†,‡}, the field □k is the perfection of a field finitely generated over a
finite field.

(i-2) If †k is infinite, then the hyperbolic curve †X+ is nonisotrivial.
Write

Isom(U
†X
(†n),U

‡X
(‡n))

for the set of isomorphisms U
†X
(†n)

∼→U
‡X
(‡n) of schemes and

OutIsom(†Π†n,
‡Π‡n)

for the set of continuous outer isomorphisms †Π†n
∼→ ‡Π‡n of topological groups. Then

the natural map

Isom(U
†X
(†n),U

‡X
(‡n))

∼ // OutIsom(†Π†n,
‡Π‡n)

[cf. also Proposition 6.2, (i)] is bijective.
(ii) Suppose that the following three conditions are satisfied:

(ii-1) The equality (†k,†k) = (‡k,‡k) holds.
(ii-2) The field †k is finitely generated and transcendental over a finite field.
(ii-3) The hyperbolic curve †X+ is nonisotrivial.

Write

Isom†k,F−1
†k
(U

†X
(†n),U

‡X
(‡n))
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for the set of isomorphisms U
†X
(†n)

∼→U
‡X
(‡n) in the category Var†k,F−1

†k
defined in the discus-

sion “Inverting Frobenius” following [25, Lemma 4.1.1],

IsomG†k
(†Π†n,

‡Π‡n)

for the set of continuous isomorphisms †Π†n
∼→ ‡Π‡n over G†k = G‡k, and

∆\IsomG†k
(†Π†n,

‡Π‡n)

for the quotient set of IsomG†k
(†Π†n,

‡Π‡n) with respect to ‡∆‡n-conjugation. Then the
natural map

Isom†k,F−1
†k
(U

†X
(†n),U

‡X
(‡n))

∼ // ∆\IsomG†k
(†Π†n,

‡Π‡n)

[cf. also Theorem 3.7, (ii); Proposition 6.2, (i); the discussion following [25, Lemma 4.1.6]]
is bijective.

Theorem B may be regarded as a generalization of Theorem A. Moreover, Theorem B may
also be regarded as the first anabelian Grothendieck conjecture-type result for algebraic varieties
in positive characteristic of higher dimension [i.e., of dimension greater than one]. Here, we should
emphasize that one may verify that a similar assertion to the assertion of Theorems A, B for the
fiber products of finitely many hyperbolic curves over finite fields does not hold in general due
to the existence of “incompatible Frobenius twists of the components of the fiber products under
consideration”. This situation is totally different from the corresponding situation in characteristic
zero. In particular, it appears to the authors that this observation makes Theorem B interesting
and difficult to find. Note that various anabelian Grothendieck conjecture-type results for the
configuration spaces associated to hyperbolic curves over fields of characteristic zero have already
been established [cf., e.g., [6, Theorem B], [6, Theorem 6.3]].

Next, observe that, in light of some results obtained in [28], one may easily derive Theorem B,
(ii), from [the relative anabelian version — cf. Theorem 6.8 — of] Theorem B, (i) [cf. the proof of
Corollary 6.9]. On the other hand, the key ingredients of the proof of Theorem B, (i), consist of
the following results:

(a) Anabelian Grothendieck conjecture-type results for the geometrically “pro-prime-to-p”
fundamental group of hyperbolic curves over [the perfections of] finitely generated fields
of positive characteristic established by A. Tamagawa, M. Saı̈di, and the third author of
the present paper [cf. [20, Theorem 1], [21, Theorem D], [28, Theorem 2.9]].

(b) Certain exactness of homotopy sequences for the tame fundamental groups with respect
to suitable morphisms between normal varieties [cf. §1, §2].

(c) Group-theoreticity of generalized fiber subgroups of the tame fundamental groups of the
configuration spaces associated to hyperbolic curves [cf. §3, §4].

(d) Group-theoretic synchronization of cyclotomes that arise from the configuration spaces
associated to hyperbolic curves [cf. §5].

Roughly speaking, (b) and (c) enable us to apply various anabelian Grothendieck conjecture-type
results for hyperbolic curves [i.e., (a)] that arise from configuration spaces. Then (d) enables us to
“control the Frobenius twists” of the hyperbolic curves that appear.
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Our main theorem concerning (b) may be summarized as follows [cf. Lemma 1.8, (i); Theo-
rem 1.13; Corollary 1.14]:

Theorem C. Let
• k be a field,
• X+ = (X ,DX) and S+ = (S,DS) good pairs over k [cf. Definition 1.1],
• f : X→ S a morphism that is good with respect to (DX ,DS) over k [cf. Definition 1.3], and

• s→US a geometric point of US
def
= S\DS ⊆ S.

Write

• UXs for the geometric fiber of UX
def
= X \DX ⊆ X at s→US,

• π ét
1 (UXs) for the maximal pro-prime-to-char(k) quotient of the étale fundamental group

π ét
1 (UXs) of UXs , relative to a suitable choice of basepoint [cf. conditions (1), (3) of Defi-

nition 1.3],
• Z(π ét

1 (UXs))⊆ π ét
1 (UXs) for the center of π ét

1 (UXs),
• π tame

1 (X+) for the tame fundamental group of X+ = (X ,DX), relative to a suitable choice
of basepoint,
• π tame

1 (S+) for the tame fundamental group of S+ = (S,DS), relative to a suitable choice
of basepoint,
• ∆tame

X+/S+ ⊆ π tame
1 (X+) for the kernel of the outer homomorphism π tame

1 (X+)→ π tame
1 (S+)

induced by f ,
• ∆tame

X+/S+ for the maximal pro-prime-to-char(k) quotient of ∆tame
X+/S+ , and

• Πtame
X+/S+ for the quotient of π tame

1 (X+) by Ker(∆tame
X+/S+ ↠ ∆tame

X+/S+). [Observe that since
∆tame

X+/S+ is normal in π tame
1 (X+), and Ker(∆tame

X+/S+ ↠ ∆tame
X+/S+) is characteristic in ∆tame

X+/S+ ,
one verifies easily that Ker(∆tame

X+/S+ ↠ ∆tame
X+/S+) is normal in π tame

1 (X+).]

Then the sequence of topological groups

π ét
1 (UXs)

// Πtame
X+/S+

// π tame
1 (S+) // 1

induced by the natural morphisms UXs → X
f→ S is exact. Moreover, the image of the kernel of the

first arrow π ét
1 (UXs)→ Πtame

X+/S+ by the natural continuous surjective homomorphism π ét
1 (UXs) ↠

π ét
1 (UXs)/Z(π ét

1 (UXs)) is contained in the center of the quotient π ét
1 (UXs)/Z(π ét

1 (UXs)). In particu-
lar, if, moreover, the group π ét

1 (UXs) is center-free, then the exact sequence of topological groups

1 // π ét
1 (UXs)

// Πtame
X+/S+

// π tame
1 (S+) // 1

induced by the natural morphisms UXs → X
f→ S is exact.

By applying Theorem C to a projection morphism between configuration spaces [i.e., a mor-
phism discussed in Definition 2.7, (ii), (iii)], one may conclude that a suitable quotient of the tame
fundamental group of the configuration space admits a structure of an extension of the tame fun-
damental group of the configuration space of lower dimension associated to the given hyperbolic
curve by the maximal “pro-prime-to-p” quotient of the étale fundamental group of the geomet-
ric fiber of the projection morphism [cf. Lemma 2.8, (iii)]. Now observe that, strictly speaking,
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in order to obtain the main theorem, we have to apply Theorem C to not only the configuration
spaces but also various connected finite étale coverings of the configuration spaces [cf. the proof
of Lemma 6.3].

Next, observe that, to conclude that such an extension structure of the tame fundamental group
of the configuration space is group-theoretic, i.e., compatible with an arbitrary continuous iso-
morphisms, we have to prove that the subgroups of the tame fundamental groups of configuration
spaces obtained by forming the kernels of the outer continuous homomorphisms induced by the
projection morphisms, which we shall refer to as generalized fiber subgroups [cf. Definition 3.4],
is group-theoretic. Our main theorem concerning (c) may be summarized as follows [cf. Corol-
lary 4.9, (i), (ii)]:

Theorem D. For each □ ∈ {†,‡}, let □Σ be a set of prime numbers. Suppose, moreover, that, for
each □ ∈ {†,‡}, the inequality

1+2 ·#
(□Σ∩{char(□k)}

)
≤ #□Σ

holds. For each □ ∈ {†,‡}, write □∆□Σ
□n for the maximal pro-□Σ quotient of the tame fundamental

group □∆□n. Let

α : †∆
†Σ
†n

∼ // ‡∆
‡Σ
‡n

be a continuous isomorphism. Then the equality †n = ‡n holds. Moreover, for an element i of
{0, . . . ,†n = ‡n}, the isomorphism α determines a bijective map between the set of generalized
fiber subgroups of †∆†Σ

†n of co-length i [cf. Definition 3.4] and the set of generalized fiber subgroups

of ‡∆‡Σ
‡n of co-length i.

Note that a “group-theoretic reconstruction algorithm version” of Theorem D may be found
in Theorem 4.8. Moreover, observe that Theorem D may be regarded as a generalization of [7,
Theorem A], hence also of [18, Corollary 6.3]. More specifically, [7, Theorem A] is none other
than Theorem D in the case where, for each □ ∈ {†,‡}, the set □Σ consists either of all prime
numbers or of a single prime number invertible in □k.

By applying suitable anabelian Grothendieck conjecture-type results for hyperbolic curves [i.e.,
(a)] to suitable generalized fiber subgroups [equipped with suitable outer Galois actions], one ob-
tains isomorphisms of the hyperbolic curves [i.e., obtained by forming the geometric fiber of the
projection morphism] “up to Frobenius twists”. In particular, to obtain an isomorphism of the
configuration spaces of the desired type, it suffices to “control the Frobenius twists”. This con-
trol/compatibility of Frobenius twists may be interpreted as the phenomenon of group-theoretic
synchronization of cyclotomes associated to the hyperbolic curves that appear, which is consistent
with the viewpoint of [28]. This step is established in detail in §5, which is the content of (d)
[cf. Lemma 5.5, (vi)]. Finally, in §6, by combining the above results, we complete the proof of
Theorem B, (i).

Acknowledgments. The authors would like to thank Akio Tamagawa for helpful comments con-
cerning the notion of a good pair. The first author was supported by JSPS KAKENHI Grant Num-
ber 24K06668. The second author was supported by JSPS KAKENHI Grant Number 22K13892.
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1. HOMOTOPY SEQUENCES FOR GOOD PAIRS

In the present §1, we study the homotopy sequences for the tame fundamental groups of suitable
morphisms between normal varieties [cf. Corollary 1.14 below].

Definition 1.1. Let k be a field.
(i) We shall define a normal variety over k to be a scheme that is separated, of finite type,

geometrically connected, and geometrically normal over k.
(ii) We shall define a good pair over k to be a pair consisting of a normal [cf. Remark 1.1.1

below] variety X over k and a reduced closed subscheme D ⊆ X of X of pure codimen-
sion one such that the [necessarily fs] log scheme obtained by equipping X with the log
structure determined by D is log smooth over k.

(iii) Let X+ = (X ,D) be a good pair over k. Then we shall write

π tame
1 (X+) = π tame

1 (X ,D)

for the tame fundamental group of the good pair (X ,D), relative to a suitable choice of
basepoint. Moreover, we shall write

π ét
1 (X)

for the étale fundamental group of the normal variety X , relative to a suitable choice of
basepoint.

Remark 1.1.1. Let us recall [cf., e.g., [5, Proposition A.3], [5, Proposition A.5]] that the underlying
scheme of an fs log scheme that is log smooth over a field k is log regular and geometrically normal
over the field k.

Lemma 1.2. Let k be a field, (X ,D) a good pair over k, and V → X \D a connected finite étale
covering tamely ramified along D. Write K for the algebraic closure of k in the function field of V ,
Y → X for the normalization of X in V , and E def

= (Y \V )red ⊆ Y for the reduced closed subscheme
of Y whose underlying closed subset is given by Y \V . Write X log, Y log for the [necessarily fs] log
schemes obtained by equipping X, Y with the log structures determined by D, E, respectively. Then
the following assertions hold:

(i) The natural morphism Y log→ X log is a connected Kummer finite log étale covering.
(ii) The pair (Y,E) is a good pair over K.

Proof. Assertion (i) follows from [5, Proposition B.7] [cf. also [5, Remark B.2]]. Assertion (ii)
follows from assertion (i). □
Definition 1.3. Let k be a field, and let (X ,DX), (S,DS) be good pairs over k. Then we shall say
that a morphism f : X → S over k is good with respect to (DX ,DS) if the following five conditions
are satisfied:

(1) The morphism f is proper and geometrically connected.
(2) The inclusion f−1DS ⊆ DX holds.
(3) The morphism X \ f−1DS→ S\DS determined by f [cf. (2)] is smooth.
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(4) The composite DX ∩ (X \ f−1DS)→ S \DS of the natural closed immersion DX ∩ (X \
f−1DS) ↪→ X \ f−1DS with the morphism X \ f−1DS→ S \DS determined by f [cf. (2)]
is smooth and of pure relative codimension one.

(5) If one writes X log, Slog for the [necessarily fs and log regular] log schemes obtained by
equipping X , S with the log structures determined by DX , DS, respectively, then the mor-
phism X log→ Slog determined by f [cf. (2)] is log smooth.

Lemma 1.4. Let k be a field, (X ,DX) and (S,DS) good pairs over k, f : X → S a morphism over
k that is good with respect to (DX ,DS), and s→ S \DS a geometric point of S \DS. Write Xs, DXs

for the geometric fibers of X, DX at s→ S\DS, respectively. Then the pair (Xs,DXs) is a good pair
over s.

Proof. This assertion follows from conditions (1), (5) of Definition 1.3 [cf. also Remark 1.1.1]. □
Lemma 1.5. Let k be a field, (X ,DX) and (S,DS) good pairs over k, f : X → S a morphism over
k that is good with respect to (DX ,DS), and V → X \DX a connected finite étale covering tamely
ramified along DX . Write K for the algebraic closure of k in the function field of V , Y → X for
the normalization of X in V , and DY

def
= (Y \V )red ⊆ Y for the reduced closed subscheme of Y

whose underlying closed subset is given by Y \V . Thus, it follows from Lemma 1.2, (ii), that the
pair (Y,DY ) is a good pair over K. Write X log, Slog, Y log for the [necessarily fs and log regular]
log schemes obtained by equipping X, S, Y with the log structures determined by DX , DS, DY ,
respectively. Then the following assertions hold:

(i) The composite Y log→ X log→ Slog is a log smooth morphism whose underlying morphism
of schemes is proper.

(ii) Write Y log→ T log→ Slog for the log Stein factorization [cf. [5, Definition 3]] of the com-
posite Y log→ X log→ Slog [cf. (i)]. Then the natural morphism T log→ Slog is a connected
Kummer finite log étale covering.

(iii) Write T for the underlying scheme of T log, UT
def
= T ×S (S \DS) ⊆ T , and DT

def
= (T \

UT )red ⊆ T for the reduced closed subscheme whose underlying closed subset is given by
T \UT . Then the pair (T,DT ) is a good pair over K.

(iv) The scheme T is isomorphic, over S, to the normalization of S in Y .
(v) The natural morphism Y → T over K is good with respect to (DY ,DT ) [cf. (iii)].

Proof. Assertion (i) follows from Lemma 1.2, (i), together with conditions (1), (5) of Defini-
tion 1.3. Assertion (ii) is a formal consequence of [5, Theorem 1, (i)]. Assertion (iii) follows
immediately from assertion (ii). Assertion (iv) follows immediately from the definition of the
notion of the log Stein factorization.

Finally, we verify assertion (v). It follows from assertion (i) that the morphism Y → T is proper.
Moreover, it follows from [5, Theorem 1, (ii)] that the morphism Y → T is geometrically con-
nected. This completes the proof of the assertion that the morphism Y → T satisfies condition (1)
of Definition 1.3. Next, observe that it is immediate that the morphism Y → T satisfies condition
(2) of Definition 1.3. Next, observe that one verifies immediately, by considering the morphisms
Y log→ T log→ Slog, from [11, Proposition 3.12], together with assertions (i), (ii), that the morphism
Y → T satisfies condition (5) of Definition 1.3.

Next, we verify the assertion that the morphism Y → T satisfies condition (4) of Definition 1.3.
First, observe that since the morphism T log→ Slog is log étale [cf. assertion (ii)], it follows from [11,
Proposition 3.8] that the induced morphism UT → S \DS is étale. Thus, since [we have assumed
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that] the morphism X → S satisfies condition (4) of Definition 1.3, one verifies immediately from
Abhyankar’s lemma [cf. [30, Exposé XIII, Proposition 5.5]], together with Lemma 1.2, (i), that the
morphism Y → T satisfies condition (4) of Definition 1.3. This completes the proof of the assertion
that the morphism Y → T satisfies condition (4) of Definition 1.3.

Next, we verify the assertion that the morphism Y → T satisfies condition (3) of Definition 1.3.
Let us recall that the morphism Y log → T log is log smooth [cf. condition (5) of Definition 1.3].
Thus, since the morphism Y → T satisfies condition (4) of Definition 1.3, it follows immediately
from [11, Theorem 3.5] that the morphism Y → T satisfies condition (3) of Definition 1.3. This
completes the proof of the assertion that the morphism Y → T satisfies condition (3) of Defini-
tion 1.3, hence also of assertion (v). □

In the remainder of the present §1, let
• k be a field,
• X+ = (X ,DX) and S+ = (S,DS) good pairs over k, and
• f : X → S a morphism which is good with respect to (DX ,DS) over k.

Write

• UX
def
= X \DX ⊆ X and

• US
def
= S\DS ⊆ S.

Definition 1.6.
(i) We shall write

π ét
1 ( f ) : π ét

1 (UX) // π ét
1 (US)

for the continuous outer homomorphism induced by the morphism f : X → S [cf. condi-
tion (2) of Definition 1.3],

∆UX/US

def
= Ker

(
π ét

1 ( f ) : π ét
1 (UX)→ π ét

1 (US)
)
⊆ π ét

1 (UX)

for the kernel of the outer homomorphism π ét
1 ( f ) : π ét

1 (UX)→ π ét
1 (US),

∆UX/US
( ∆UX/US

)oooo

for the maximal pro-prime-to-char(k) quotient of ∆UX/US
, and

ΠUX/US

def
= π ét

1 (UX)/Ker(∆UX/US
↠ ∆UX/US

).

[Observe that since ∆UX/US
is normal in π ét

1 (UX), and Ker(∆UX/US
↠ ∆UX/US

) is character-
istic in ∆UX/US

, one verifies easily that Ker(∆UX/US
↠ ∆UX/US

) is normal in π ét
1 (UX).] By a

slight abuse of notation, we shall write

π ét
1 ( f ) : ΠUX/US

// π ét
1 (US)

for the continuous outer homomorphism determined by π ét
1 ( f ) : π ét

1 (UX)→ π ét
1 (US). Thus,

we have an exact sequence of topological groups

1 // ∆UX/US
// ΠUX/US

π ét
1 ( f )

// π ét
1 (US).
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(ii) We shall write

π tame
1 ( f ) : π tame

1 (X+) // π tame
1 (S+)

for the continuous outer homomorphism induced by the morphism f : X → S [cf. condi-
tion (2) of Definition 1.3],

∆tame
X+/S+

def
= Ker

(
π tame

1 ( f ) : π tame
1 (X+)→ π tame

1 (S+)
)
⊆ π tame

1 (X+)

for the kernel of the outer homomorphism π tame
1 ( f ) : π tame

1 (X+)→ π tame
1 (S+),

∆tame
X+/S+ ( ∆tame

X+/S+)
oooo

for the maximal pro-prime-to-char(k) quotient of ∆tame
X+/S+ , and

Πtame
X+/S+

def
= π tame

1 (X+)/Ker(∆tame
X+/S+ ↠ ∆tame

X+/S+).

[Observe that since ∆tame
X+/S+ is normal in π tame

1 (X+), and Ker(∆tame
X+/S+ ↠∆tame

X+/S+) is charac-
teristic in ∆tame

X+/S+ , one verifies easily that Ker(∆tame
X+/S+ ↠∆tame

X+/S+) is normal in π tame
1 (X+).]

By a slight abuse of notation, we shall write

π tame
1 ( f ) : Πtame

X+/S+
// π tame

1 (S+)

for the continuous outer homomorphism determined by π tame
1 ( f ) : π tame

1 (X+)→ π tame
1 (S+).

Thus, we have an exact sequence of topological groups

1 // ∆tame
X+/S+

// Πtame
X+/S+

π tame
1 ( f )

// π tame
1 (S+).

In the remainder of the present §1, let s→US be a geometric point of US. Write
• Xs, DXs , UXs for the geometric fibers of X , DX , UX at s→US, respectively, and
• π ét

1 (UXs) for the maximal pro-prime-to-char(k) quotient of π ét
1 (UXs) [cf. conditions (1), (3)

of Definition 1.3].

Lemma 1.7. The π tame
1 (X+)-conjugacy class of continuous homomorphisms

π tame
1 (X+

s ) // ∆tame
X+/S+

[cf. Lemma 1.4] induced by the natural morphism Xs→ X is surjective.

Proof. This assertion follows from [5, Theorem 2] and [5, Proposition B.7] [cf. conditions (1), (5)
of Definition 1.3]. □
Lemma 1.8. Consider the commutative diagram of topological groups

π ét
1 (UXs)

// ΠUX/US

π ét
1 ( f )

//

����

π ét
1 (US) //

����

1

π ét
1 (UXs)

// Πtame
X+/S+π tame

1 ( f )
// π tame

1 (S+) // 1

11



— where the left-hand horizontal arrows are the continuous outer homomorphisms induced by
the natural morphism UXs → UX , and the vertical arrows are the natural continuous surjective
homomorphisms. Then the following assertions hold:

(i) The two horizontal sequences of the diagram under consideration are exact.
(ii) The kernel of the left-hand upper horizontal arrow π ét

1 (UXs)→ ΠUX/US
of the diagram

under consideration is contained in the center of π ét
1 (UXs).

Proof. The exactness of the upper horizontal sequence of the diagram under consideration follows
from [2, Proposition 1.3] [cf. conditions (1), (3), (4) of Definition 1.3]. The exactness of the
lower horizontal sequence of the diagram under consideration follows from [5, Theorem 2] and
[5, Proposition B.7] [cf. conditions (1), (5) of Definition 1.3]. Assertion (ii) follows from [2,
Proposition 1.4] [cf. conditions (1), (3), (4) of Definition 1.3]. □
Definition 1.9. Observe that it follows from Lemma 1.8, (i), that we have an exact sequence of
topological groups

1 // ∆UX/US
// ΠUX/US

π ét
1 ( f )

// π ét
1 (US) // 1.

We shall write
ρs : π ét

1 (US) // Out(∆UX/US
)

for the continuous outer action determined by this exact sequence of topological groups.

Lemma 1.10. The following assertions hold:
(i) The image of a wild inertia subgroup of π ét

1 (US) associated to an irreducible component
of the closed subscheme DS by the continuous outer action ρs : π ét

1 (US)→Out(∆UX/US
) is

trivial.
(ii) The continuous outer action ρs : π ét

1 (US)→Out(∆UX/US
) factors through the natural con-

tinuous surjective homomorphism π ét
1 (US)↠ π tame

1 (S+).

Proof. Assertion (i) follows immediately from [29, Chapter I, Proposition 3.2] [cf. conditions (1),
(5) of Definition 1.3]. Assertion (ii) is a formal consequence of assertion (i). □
Definition 1.11. We shall write

ρ tame
s : π tame

1 (S+) // Out(∆UX/US
)

for the continuous outer action determined by the continuous outer action ρs : π ét
1 (US)→Out(∆UX/US

)
[cf. Lemma 1.10, (ii)] and

E(UXs)
def
= Aut(∆UX/US

)×Out(∆UX /US
) π tame

1 (S+)

for the fiber product of the natural surjective homomorphism Aut(∆UX/US
)↠ Out(∆UX/US

) and the
outer action ρ tame

s : π tame
1 (S+)→ Out(∆UX/US

). Thus, the natural exact sequence of groups

∆UX/US
// Aut(∆UX/US

) // Out(∆UX/US
) // 1

— where the first arrow is a continuous action by conjugation — determines an exact sequence of
groups

1 // ∆UX/US
/Z(∆UX/US

) // E(UXs)
// π tame

1 (S+) // 1.
12



Lemma 1.12. The following assertions hold:
(i) The continuous action ΠUX/US

→ Aut(∆UX/US
) by conjugation [cf. the displayed exact se-

quence of Definition 1.9] and the natural continuous surjective homomorphisms ΠUX/US
↠

π ét
1 (US)↠ π tame

1 (S+) determine a commutative diagram of groups

1 // ∆UX/US
//

����

ΠUX/US

π ét
1 ( f )

//

��

π ét
1 (US) //

����

1

1 // ∆UX/US
/Z(∆UX/US

) // E(UXs)
// π tame

1 (S+) // 1

— where the upper horizontal sequence is the displayed exact sequence of Definition 1.9,
the lower horizontal sequence is the exact sequence of the final display of Definition 1.11,
and the left-hand and right-hand vertical arrows are the natural continuous surjective
homomorphisms [which thus implies that the middle vertical arrow is surjective].

(ii) The middle vertical arrow ΠUX/US
↠ E(UXs) of the diagram of (i) factors through the

natural continuous surjective homomorphism ΠUX/US
↠ Πtame

X+/S+ .

Proof. Assertion (i) follows immediately from the various definitions involved. Next, we verify
assertion (ii). Let us first observe that it is immediate that, to verify assertion (ii), it suffices
to verify that the image of every wild inertia subgroup of π ét

1 (UX) associated to an irreducible
component of the closed subscheme DX by the composite π ét

1 (UX)↠ ΠUX/US
↠ E(UXs) is trivial.

Let P ⊆ π ét
1 (UX) be a wild inertia subgroup of π ét

1 (UX) associated to an irreducible component
of the closed subscheme DX . Then it follows immediately from the various definitions involved
that the image of P ⊆ π ét

1 (UX) in π tame
1 (S+) is trivial. In particular, it follows from assertion (i)

that the image of P ⊆ π ét
1 (UX) by the composite π ét

1 (UX) ↠ ΠUX/US
↠ E(UXs) is contained in

the closed subgroup ∆UX/US
/Z(∆UX/US

) ⊆ E(UXs) of E(UXs). Thus, since ∆UX/US
/Z(∆UX/US

) is
pro-prime-to-char(k), one concludes that the image of P ⊆ π ét

1 (UX) by the composite π ét
1 (UX)↠

ΠUX/US
↠ E(UXs) is trivial, as desired. This completes the proof of assertion (ii), hence also of

Lemma 1.12. □

Theorem 1.13. The image of the kernel of the left-hand lower horizontal arrow π ét
1 (UXs)→Πtame

X+/S+

of the diagram of the statement of Lemma 1.8 by the natural continuous surjective homomorphism
π ét

1 (UXs)↠ π ét
1 (UXs)/Z(π ét

1 (UXs)) is contained in the center of the quotient π ét
1 (UXs)/Z(π ét

1 (UXs)).

Proof. Let us first observe that it follows immediately from the various definitions involved that the
left-hand lower horizontal arrow π ét

1 (UXs)→Πtame
X+/S+ of the diagram of the statement of Lemma 1.8

factors as the composite

π ét
1 (UXs)

// // ∆UX/US
// Πtame

X+/S+.

Next, let us recall from Lemma 1.8, (ii), that the kernel of the first arrow π ét
1 (UXs) ↠ ∆UX/US

is
contained in the center of π ét

1 (UXs). Moreover, let us recall from Lemma 1.12, (i), (ii), that the
kernel of the second arrow ∆UX/US

→ Πtame
X+/S+ is contained in the center of ∆UX/US

. Thus, the
desired assertion follows formally. This completes the proof of Theorem 1.13. □
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Corollary 1.14. Suppose that the group π ét
1 (UXs) is center-free. Then the natural morphism Xs→X

and the morphism f : X → S determine an exact sequence of topological groups

1 // π ét
1 (UXs)

// Πtame
X+/S+

π tame
1 ( f )

// π tame
1 (S+) // 1.

Put another way, the natural morphism Xs→ X determines a Πtame
X+/S+-conjugacy class of continu-

ous isomorphisms

π ét
1 (UXs)

∼ // ∆tame
X+/S+.

Proof. This assertion is a formal consequence of Theorem 1.13. □

2. COMPACTIFIED CONFIGURATION SPACES OF HYPERBOLIC CURVES

In the present §2, we introduce the notion of the compactified configuration space of a hyper-
bolic curve [cf. Definition 2.6 below]. Moreover, we study the homotopy sequences for the tame
fundamental groups of connected tamely ramified finite coverings of compactified configuration
spaces [cf. Lemma 2.8, (iii), below].

In the present §2, let g, r be nonnegative integers such that 2−2g− r < 0.

Definition 2.1. Let S be a scheme. Then we shall define a hyperbolic curve of type (g,r) over S to
be a pair (X ,D) consisting of a scheme X over S and a closed subscheme D⊆ X of X such that

• the scheme X is proper, geometrically connected, smooth, and of relative dimension one
over S,
• every geometric fiber of X over S is [a necessarily smooth and proper curve] of genus g,

and, moreover,
• the composite D ↪→ X → S is étale and of degree r.

We shall define a hyperbolic curve over S is defined to be a hyperbolic curve of type (g′,r′) some
nonnegative integers g′, r′ such that 2−2g′− r′ < 0.

Definition 2.2.
(i) We shall write

Sr

for the symmetric group on r letters.
(ii) We shall write

M g,r

for the moduli stack of r-pointed stable curves of genus g over Z [cf. [1, Proposition 5.1],
[1, Theorem 5.2], [12, Theorem 2.7]] and

Mg,r ⊆M g,r

for the open substack of M g,r that parametrizes r-pointed stable curves of genus g whose
underlying curves are smooth.

Definition 2.3. Let n be a nonnegative integer.
14



(i) We shall write

Sn+r,r ⊆Sn+r

for the subgroup of Sn+r [necessarily isomorphic to Sr] of permutations of the last r
letters.

(ii) Observe that one verifies easily that we have an action of the group Sn+r on the algebraic
stacks Mg,n+r ⊆M g,n+r that arises from the permutations of n+ r marked points. We
shall write

Mg,n+[r]
def
= [Mg,n+r/Sn+r,r]⊆M g,n+[r]

def
= [M g,n+r/Sn+r,r]

for the stack-theoretic quotients of the algebraic stacks Mg,n+r ⊆M g,n+r by the actions
of the subgroup Sn+r,r ⊆Sn+r of Sn+r, respectively, and

Dg,n+[r]
def
= (M g,n+[r] \Mg,n+[r])red ⊆M g,n+[r]

for the reduced closed substack of M g,n+[r] determined by the complement of Mg,n+[r] in
M g,n+[r].

(iii) We shall write

Mg,[r]
def
= Mg,0+[r] ⊆M g,[r]

def
= M g,0+[r] ⊇Dg,[r]

def
= Dg,0+[r].

(iv) Let I be a subset of {1, . . . ,n}. Then we shall write

prMI : M g,n+[r]
// M g,n−#I+[r]

for the functor obtained by forgetting the marked points labeled by the elements of I.

Remark 2.3.1. One verifies immediately from the various definitions involved that the algebraic
stack Mg,[r] may be naturally identified with the moduli stack of hyperbolic curves of type (g,r)
over Z.

Definition 2.4. Let S be a scheme, and let X+ = (X ,D) be a hyperbolic curve of type (g,r) over
S. Then we shall say that X+ is split if the finite étale covering D→ X → S of S is trivial, or,
alternatively, the classifying morphism S→Mg,[r] of the hyperbolic curve X+ [cf. Remark 2.3.1]
factors through the natural finite étale covering Mg,r→Mg,[r].

Lemma 2.5. The following assertions hold:
(i) Let n be a nonnegative integer. Then the diagram of stacks

M g,n+r

��

prM{1,...,n} // M g,r

��

M g,n+[r]
prM{1,...,n}

// M g,[r]

— where the vertical arrows are the natural finite étale Galois coverings — is (1-)cartesian.
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(ii) Write r0 for 3 (respectively, 1; 0) if g= 0 (respectively, = 1;≥ 2). [Thus, one verifies easily
that r0 ≤ r.] Let σ be an element of Sr, and let I ⊆ {1, . . . ,r} be a subset of cardinality
r− r0. Then the diagram of stacks

M g,r //

prMI ##F
FF

FF
FF

F
M g,r

prMI{{xx
xx
xx
xx

M g,r0

— where the upper horizontal arrow is the action of σ — is (1-)commutative.

Proof. Assertion (i) is immediate. Next, we verify assertion (ii). If g /∈ {0,1}, then this assertion
is immediate. If g = 0, then this assertion follows immediately from the well-known fact that the
natural morphism M g,r0 → Spec(Z) is an isomorphism. Suppose that g = 1. Let M be a scheme,
M→M g,r0 an étale surjective morphism [cf. [12, Theorem 2.7]], and η →M a geometric generic
point of M. Then one verifies immediately from [12, Theorem 2.7], together with the various
definitions involved, that, to verify assertion (ii) in the case where g = 1, it suffices to verify that
the diagram of stacks

η //

  A
AA

AA
AA

A M g,r // M g,r

prMI

��


























M g,r

prMI ##F
FF

FF
FF

F

M g,r0

— where the arrows η →M g,r are the natural morphisms, and the right-hand upper horizontal
arrow is the action of σ — is (1-)commutative. On the other hand, this assertion is well-known [cf.,
e.g., [19, §4, Corollary 1]]. This completes the proof of assertion (ii), hence also of Lemma 2.5. □

Definition 2.6. Let n be a nonnegative integer, S a scheme, and X+ = (X ,D) a hyperbolic curve of
type (g,r) over S. Then we shall write

X(n)
def
= M g,n+[r]×M g,[r]

S

for the scheme over S obtained by forming the fiber product of the [representable — cf. [12, Corol-
lary 2.6]] functor prM{1,...,n} : M g,n+[r] →M g,[r] and the classifying morphism S→M g,[r] of the
hyperbolic curve X+ [cf. Remark 2.3.1],

UX
(n) ⊆ X(n), DX

(n) ⊆ X(n)

for the open, closed subschemes of X(n) determined by the open, closed substacks Mg,n+[r], Dg,n+[r]⊆
M g,n+[r] of M g,n+[r], respectively, and

X+
(n)

def
= (X(n),D

X
(n))
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for the pair consisting of X(n) and DX
(n). We shall refer to UX

(n), X(n) as the n-th configuration space
[cf. Remark 2.6.1, (i), below], n-th compactified configuration space of X+, respectively.

Remark 2.6.1. In the situation of Definition 2.6:
(i) One verifies easily from the various definitions involved that the scheme UX

(n) may be
naturally identified with the n-th configuration space of the curve X \D⊆ X [cf., e.g., [18,
Definition 2.1, (i)]].

(ii) One also verifies easily from the various definitions involved that the scheme X(n) may be
naturally identified with the underlying scheme of the n-th log configuration space of the
curve X \D⊆ X [cf., e.g., [4, Definition 1], [18, Definition 2.1, (i)]].

Definition 2.7. Let n be a nonnegative integer, S a scheme, and X+ = (X ,D) a hyperbolic curve of
type (g,r) over S.

(i) We shall write
εX+

for 3 (respectively, 1; 0) if the equality (g,r) = (0,3) holds, and X+ is split (respectively,
if the equality (g,r) = (1,1) holds; if either (g,r) /∈ {(0,3),(1,1)}, or X+ is not split).

(ii) Let I be a subset of {1, . . . ,n}. Then we shall write

prI : X(n)
// X(n−#I)

for the morphism over k determined by the functor prMI : M g,n+[r]→M g,n−#I+[r].
(iii) Let I be a subset of {1, . . . ,n+εX+} of cardinality≤ n such that I ̸⊆ {1, . . . ,n} [which thus

implies that r = εX+ , and that the hyperbolic curve X+ is split]. Fix a lifting S→Mg,εX+

of the classifying morphism S→Mg,[εX+ ] of the hyperbolic curve X+. Observe that it
follows from Lemma 2.5, (i), that this lifting naturally determines an isomorphism over S

M g,n+εX+ ×M g,εX+
S ∼ // X(n).

Then we shall write
prI : X(n)

// X(n−#I)

for the morphism over k determined by [cf. Lemma 2.5, (ii)] the functor prMI : M g,n+εX+→
M g,n+εX+−#I .

(iv) Suppose that r ̸= εX+ . Then it is immediate that the action of Sn+r on M g,n+r determines
an action of Sn on X(n). We shall refer to an automorphism of X(n) that arises from this
action as a modular symmetry automorphism of X(n).

(v) Suppose that r = εX+ [which thus implies that the hyperbolic curve X+ is split]. Fix a
lifting S→Mg,εX+ of the classifying morphism S→Mg,[εX+ ] of the hyperbolic curve
X+. Observe that it follows from Lemma 2.5, (i), that this lifting naturally determines an
isomorphism over S

M g,n+εX+ ×M g,εX+
S ∼ // X(n).

Then it follows from Lemma 2.5, (ii), that the action of Sn+εX+ on M g,n+εX+ determines
an action of Sn+εX+ on X(n). We shall refer to an automorphism of X(n) that arises from
this action as a modular symmetry automorphism of X(n).
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Lemma 2.8. Let n be a nonnegative integer, k a field, X+ = (X ,D) a hyperbolic curve of type (g,r)
over k, i an element of {1, . . . ,n+ εX+ +1}, and Zn+1→UX

(n+1) a connected finite étale covering
tamely ramified along DX

(n+1). Let us fix a lifting Spec(k)→Mg,r of the classifying morphism
Spec(k)→Mg,[r] of the hyperbolic curve X+ whenever the hyperbolic curve X+ is split. Write
K for the algebraic closure of k in the function field of Zn+1 and Zn+1 → X(n+1) (respectively,
Zn → X(n)) for the normalization of X(n+1) (respectively, X(n)) in Zn+1, i.e., relative to the given
covering Zn+1→UX

(n+1) (respectively, to the composite of the given covering Zn+1→UX
(n+1) with

the morphism pr{i} : UX
(n+1)→UX

(n)). Write, moreover, En, En+1 for the reduced closed subschemes
of Zn, Zn+1 whose underlying closed subsets are given by the inverse images of DX

(n), DX
(n+1),

respectively, and Zn
def
= Zn \En. Then the following assertions hold:

(i) Each of the pairs Z+
n

def
= (Zn,En), Z+

n+1
def
= (Zn+1,En+1) is a good pair over K.

(ii) The morphism Zn+1 → Zn induced by the morphism pr{i} : X(n+1) → X(n) is good with
respect to (En+1,En) [cf. (i)].

(iii) Let z→ Zn be a geometric point of Zn. Write (Zn+1)z for the geometric fiber at z→ Zn of
the morphism Zn+1→ Zn induced by the morphism pr{i} : X(n+1)→ X(n) and π ét

1 ((Zn+1)z)

for the maximal pro-prime-to-char(k) quotient of π ét
1 ((Zn+1)z) [cf. (ii); conditions (1), (3)

of Definition 1.3]. Then the natural morphisms (Zn+1)z→ Zn+1→ Zn determine an exact
sequence of topological groups

1 // π ét
1
(
(Zn+1)z

)
// Πtame

Z+
n+1/Z+

n
// π tame

1 (Z+
n ) // 1

[cf. (i); (ii); Definition 1.1, (iii); Definition 1.6, (ii)].

Proof. First, we verify assertion (i). Observe that it follows from Lemma 1.2, (ii), and Lemma 1.5,
(iii), together with Lemma 1.5, (iv), that, to verify assertion (i), it suffices to verify that the pair
X+
(n) = (X(n),DX

(n)) is a good pair over k. On the other hand, this assertion follows immediately
from [12, Theorem 2.7]. This completes the proof of assertion (i).

Next, we verify assertion (ii). Observe that it follows from Lemma 1.5, (v), together with
Lemma 1.5, (iv), that, to verify assertion (ii), it suffices to verify that the morphism pr{i} : X(n+1)→
X(n) is good with respect to (DX

(n+1),D
X
(n)). Next, observe that it follows from the various def-

initions involved that the morphism pr{i} : X(n+1) → X(n) satisfies conditions (1), (2), (3), (4) of
Definition 1.3. Moreover, it follows immediately from [12, Theorem 2.7], together with [11, The-
orem 3.5], that the morphism pr{i} : X(n+1)→ X(n) satisfies condition (5) of Definition 1.3. This
completes the proof of assertion (ii).

Finally, we verify assertion (iii). Observe that it follows from Corollary 1.14, together with
assertion (ii), that, to verify assertion (iii), it suffices to verify that the group π ét

1 ((Zn+1)z) is center-
free. On the other hand, since [one verifies easily that] the geometric fiber (Zn+1)z is a hyperbolic
curve over z, this assertion is well-known [cf., e.g., [26, Corollary 1.4, (i), (ii)], [26, Proposition
1.11]]. This completes the proof of assertion (iii), hence also of Lemma 2.8. □

3. GENERALITIES ON GENERALIZED FIBER SUBGROUPS

In the present §3, we introduce and discuss generalized fiber subgroups of the tame fundamental
groups of the compactified configuration spaces of hyperbolic curves [cf. Definition 3.4 below].
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In particular, we verify some group-theoretic properties of generalized fiber subgroups [cf. Theo-
rem 3.7 below].

Definition 3.1. Let G be a profinite group, and let Σ be a set of prime numbers.
(i) We shall write

GΣ

for the maximal pro-Σ quotient of G.
(ii) Let N ⊆ G be a normal open subgroup of G. Then we shall define the almost pro-Σ-

maximal quotient of G associated to N [cf. [18, Definition 1.1, (iii)]] to be the quotient
G/Ker(N ↠ NΣ) of G by the kernel of the natural continuous surjective homomorphism
N ↠ NΣ. [Observe that since N is normal in G, and Ker(N ↠ NΣ) is characteristic in
N, one verifies easily that Ker(N ↠ NΣ) is normal in G.] We shall define an almost pro-
Σ-maximal quotient of G [cf. [18, Definition 1.1, (iii)]] to be the almost pro-Σ-maximal
quotient of G associated to some normal open subgroup of G.

Definition 3.2. Let G be a profinite group.
(i) We shall say that G is slim [cf. [18, §0]] if the centralizer in G of every open subgroup of

G is trivial.
(ii) We shall say that a subgroup H ⊆ G of G is subnormal [cf. [13, Definition 1.1]] if there

exist a positive integer m and a sequence H = Hm ⊆ . . . ⊆ H2 ⊆ H1 = G of subgroups of
G such that Hi is normal in Hi−1 for each i ∈ {2, . . . ,m}.

(iii) We shall say that G is sn-internally indecomposable [cf. [13, Definition 1.8, (iii)]] if the
centralizer in G of every nontrivial subnormal subgroup of G is trivial.

(iv) We shall say that G is strongly sn-internally indecomposable [cf. [13, Definition 1.8, (iii)]]
if every open subgroup of G is sn-internally indecomposable.

(v) We shall say that G is sn-quasi-elastic (respectively, quasi-elastic) [cf. [13, Definition
2.1, (i), (ii)]] if every nontrivial topologically finitely generated subnormal (respectively,
normal) closed subgroup of G is open.

(vi) We shall say that G is sn-elastic [cf. [13, Definition 2.1, (ii)]] if every open subgroup of G
is sn-quasi-elastic.

Lemma 3.3. Let k be a separably closed field, and let Σ be a nonempty set of prime numbers
invertible in k. Then every almost pro-Σ-maximal quotient of the étale fundamental group of a
hyperbolic curve over k is topologically finitely generated, strongly sn-internally indecomposable,
and sn-elastic.

Proof. Let G be a topological group isomorphic to the étale fundamental group of a hyperbolic
curve over k, and let N ⊆ G be a normal open subgroup of G. Write Q for the almost pro-Σ-
maximal quotient of G associated to N. Then it follows from [26, Proposition 1.1, (i), (ii)] that NΣ,
hence also Q, is topologically finitely generated. Moreover, it is well-known [cf., e.g., [10, Lemma
2.14, (i)]] that the continuous outer action of G/N on NΣ is faithful. In particular, since NΣ is slim
[cf., e.g., [26, Corollary 1.4, (i), (ii)], [26, Proposition 1.11]], it follows from the various definitions
involved that Q is slim. Thus, it follows from [13, Proposition 1.12] (respectively, [13, Lemma 2.3])
that, to verify that Q is strongly sn-internally indecomposable (respectively, sn-elastic), it suffices
to verify that NΣ is strongly sn-internally indecomposable (respectively, sn-elastic). On the other
hand, this assertion follows from [13, Theorem 3.13]. This completes the proof of Lemma 3.3. □
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In the remainder of the present §3, let
• n be a positive integer,
• g, r nonnegative integers such that 2−2g− r < 0,
• k a separably closed field,
• X+ a hyperbolic curve of type (g,r) over k,
• Σ a set of prime numbers, and
• l a prime number contained in Σ invertible in k.

In particular, the hyperbolic curve X+ is split. Let us fix a lifting Spec(k)→Mg,r of the classifying
morphism Spec(k)→Mg,[r] of the hyperbolic curve X+ [cf. Remark 2.3.1]. For each i∈ {0, . . . ,n},
we shall write

Πi
def
= π tame

1 (X+
(i))

Σ

[cf. Definition 1.1, (iii); Definition 2.6; Lemma 2.8, (i)].

Definition 3.4. Let I be a subset of {1, . . . ,n+ εX+} of cardinality ≤ n, and let i be an element of
{0, . . . ,n}. Then we shall write

FI
def
= FI(Πn)⊆Πn

for the kernel of the continuous outer [necessarily surjective — cf. Lemma 2.8, (iii)] homomor-
phism Πn→Πn−#I induced by the morphism prI : X(n)→ X(n−#I) [cf. Definition 2.7, (ii), (iii)] and
refer to FI ⊆ Πn as the generalized fiber subgroup of Πn associated to I. We shall define a gener-
alized fiber subgroup of Πn to be the generalized fiber subgroup of Πn associated to some subset
of {1, . . . ,n+ εX+} of cardinality ≤ n. We shall say that a generalized fiber subgroup of Πn is of
co-length i if the subgroup is the generalized fiber subgroup of Πn associated to some subset of
{1, . . . ,n+ εX+} of cardinality n− i. We shall write

GFSi(Πn)

for the set of generalized fiber subgroups of Πn of co-length i.

Lemma 3.5. Let I be a subset of {1, . . . ,n+ εX+} of cardinality ≤ n. Write FI(l) ⊆ Π{l}n for the
image in Π{l}n of the generalized fiber subgroup FI ⊆Πn of Πn associated to I. Then the following
assertions hold:

(i) The subgroup FI(l)⊆Π{l}n is the generalized fiber subgroup of Π{l}n [i.e., the “Πn” in the
case where we take the “Σ” to be {l}] associated to I.

(ii) The continuous surjective homomorphism F{l}I ↠ FI(l) induced by the natural continuous
surjective homomorphism FI ↠ FI(l) is an isomorphism.

Proof. Assertion (i) follows from the well-known fact that the operation of taking the maximal
pro-l quotient is right exact. Next, we verify assertion (ii) by induction on #I. If #I = 0, then the
assertion (ii) is immediate. Suppose that #I > 0, and that the induction hypothesis is in force. Let
i be an element of I. Then one verifies immediately from assertion (i), together with the induction
hypothesis, that, to verify assertion (ii), we may assume without loss of generality, by replacing
FI ⊆ Πn by FI/FI\{i} ⊆ Πn/FI\{i} = Πn−#I+1, that #I = 1. On the other hand, assertion (ii) in the
case where #I = 1 follows immediately from Lemma 2.8, (iii), and [18, Proposition 2.2, (i)]. This
completes the proof of assertion (ii), hence also of Lemma 3.5. □
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Remark 3.5.1. In the situation of Lemma 3.5, suppose that I ̸= /0. Then one verifies immediately
from Lemma 3.5, (i), (ii), together with [18, Proposition 2.2, (i)], that the maximal pro-l quotient
F{l}I may be naturally identified with the “Πn” for a suitable hyperbolic curve over a separably
closed field for which the “(n,g,r,Σ)” is given by (#I,g,r+n−#I,{l}).

Lemma 3.6. Suppose that Σ is the set of all prime numbers. Let F ⊆ Πn be a generalized fiber
subgroup of Πn of co-length n− 1, Σ′ a set of prime numbers invertible in k, and N ⊆ Πn a nor-
mal open subgroup of Πn. Then the almost pro-Σ′-maximal quotient of F associated to N ∩F is
isomorphic to an almost pro-Σ′-maximal quotient of the étale fundamental group of a hyperbolic
curve over k.

Proof. This assertion is a formal consequence of Lemma 2.8, (iii). □

Theorem 3.7. Suppose that Σ is the set of all prime numbers. Let F ⊆ Πn be a generalized fiber
subgroup of Πn. Then the following assertions hold:

(i) If F is of co-length n−1, then the profinite group F is strongly sn-internally indecompos-
able and sn-elastic.

(ii) The profinite group F is topologically finitely generated and slim.

Proof. First, we verify assertion (i). It follows from Lemma 3.3 and Lemma 3.6, together with [13,
Proposition 1.14], that F is strongly sn-internally indecomposable. Next, observe that it follows
immediately from a similar argument to the argument applied in the proof of [13, Lemma 2.8] that,
to verify the sn-elasticity of F , it suffices to verify that, for each positive integer m, there exists a
positive integer dm such that every open subgroup U ⊆ F of F of index≥ dm satisfies the following
two conditions:

(1) There exists a set S of normal open subgroups of U such that
∩

N∈S N = {1}, and, more-
over, for each N ∈ S, the almost pro-l-maximal quotient of U associated to N is sn-quasi-
elastic.

(2) There is no open subgroup of U{l} topologically generated by m elements.

To this end, let us first observe that it follows immediately from Lemma 3.3 and Lemma 3.6 that
every open subgroup of F satisfies condition (1). Moreover, it follows immediately from [26,
Corollary 1.2], together with Hurwitz’s formula, that, for each positive integer m, there exists a
positive integer dm such that every open subgroup of F of index ≥ dm satisfies condition (2). This
completes the proof of the sn-elasticity of F , hence also of assertion (i).

Next, we verify assertion (ii). Let us first observe that one verifies easily that an extension of a
profinite group that is topologically finitely generated (respectively, slim) by a profinite group that
is topologically finitely generated (respectively, slim) is topologically finitely generated (respec-
tively, slim). Moreover, one also verifies easily that, for each J⊆ I⊆{1, . . . ,n+εX+} of cardinality
≤ n such that #I = #J + 1, the quotient FI/FJ ⊆ Πn/FJ = Πn−#J is a generalized fiber subgroup
of Πn−#J of co-length n− #J− 1. Thus, to verify assertion (ii), we may assume without loss of
generality that F is of co-length n− 1. Then it follows from Lemma 1.7 and Lemma 2.8, (ii),
together with [26, Proposition 1.1, (i), (ii)], that F is topologically finitely generated. Moreover, it
follows from assertion (i) that F is strongly sn-internally indecomposable, hence also slim. This
completes the proof of assertion (ii), hence also of Theorem 3.7. □
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4. RECONSTRUCTION OF GENERALIZED FIBER SUBGROUPS

In the present §4, we establish a “group-theoretic reconstruction algorithm” of generalized fiber
subgroups [and their invariants] [cf. Theorem 4.8 below and Corollary 4.9 below].

In the present §4, let
• n be a positive integer,
• g, r nonnegative integers such that 2−2g− r < 0,
• k a separably closed field,
• X+ a hyperbolic curve of type (g,r) over k,
• Σ a set of prime numbers, and
• l a prime number contained in Σ invertible in k.

In particular, the hyperbolic curve X+ is split. Let us fix a lifting Spec(k)→Mg,r of the classifying
morphism Spec(k)→Mg,[r] of the hyperbolic curve X+ [cf. Remark 2.3.1]. For each i∈ {0, . . . ,n},
we shall write

Πi
def
= π tame

1 (X+
(i))

Σ

[cf. Definition 1.1, (iii); Definition 2.6; Lemma 2.8, (i); Definition 3.1, (i)].

Lemma 4.1. Let G, H be profinite groups, ϕ : G→H a continuous homomorphism, and p a prime
number. Suppose that the following four conditions are satisfied:

(1) The image of ϕ is normal in H.
(2) The image of the composite of ϕ with the natural continuous surjective homomorphism

H ↠ H{p} is not open in H{p}.
(3) Every almost pro-p-maximal quotient of G is topologically finitely generated.
(4) There exists a set S of normal open subgroups of H such that

∩
N∈S N = {1}, and, more-

over, for each N ∈ S, the almost pro-p-maximal quotient of H associated to N is quasi-
elastic.

Then the image of the homomorphism ϕ is trivial.

Proof. Let N be an element of S. Write M def
= ϕ−1(N) ⊆ G and QG (respectively, QH) for the

almost pro-p-maximal quotient of G (respectively, H) associated to M (respectively, N). Then it is
immediate that the composite of ϕ with the natural continuous surjective homomorphism H ↠ QH
factors through the natural continuous surjective homomorphism G ↠ QG. Write ϕQ : QG→ QH
for the resulting continuous homomorphism. Then it follows from conditions (1), (3) that the
image of ϕQ is a topologically finitely generated normal closed subgroup of QH . In particular, it
follows from condition (4) that the image of ϕQ is either trivial or open in QH . Thus, it follows
from condition (2) that the image of ϕQ is trivial, which implies that the image of ϕ is contained in
N. In particular, the image of ϕ is contained in

∩
N∈S N = {1} [cf. condition (4)], as desired. This

completes the proof of Lemma 4.1. □
Lemma 4.2. Let I, J be subsets of {1, . . . ,n+εX+} of cardinality≤ n. Suppose that J ⊆ I, and that
#I = #J+1. Let G⊆ FI be a normal closed subgroup of FI [cf. Definition 3.4]. Suppose, moreover,
that the following two conditions are satisfied:

(1) Every almost pro-l-maximal quotient of G is topologically finitely generated.
(2) Write FJ(l) ⊆ FI(l) ⊆ Π{l}n for the respective images of FJ ⊆ FI ⊆ Πn in Π{l}n . Then the

image of G⊆ FI in FI(l)/FJ(l) is not open in FI(l)/FJ(l).
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Then the inclusion G⊆ FJ holds.

Proof. Observe that it follows from condition (1) that the profinite group G satisfies condition (3)
of Lemma 4.1 [in the case where we take the “p” of Lemma 4.1 to be l]. Write H def

= FI/FJ . Then
since H is naturally isomorphic to the kernel of the natural continuous surjective homomorphism
Πn/FJ ↠ Πn/FI , it follows from Lemma 3.3 and Lemma 3.6 that the profinite group H satisfies
condition (4) of Lemma 4.1 [in the case where we take the “p” of Lemma 4.1 to be l]. Moreover,
since [it is immediate that] the natural continuous surjective homomorphism FI ↠ FI(l)/FJ(l) fac-
tors through the natural continuous surjective homomorphism FI ↠ H{l}, it follows from condition
(2) that the image of G in H{l} is not open. Thus, since [it is immediate that] the image of G in H is
normal, one concludes from Lemma 4.1 [in the case where we take the “p” of Lemma 4.1 to be l]
that the image of G⊆ FI in H is trivial, which thus implies that G⊆ FJ , as desired. This completes
the proof of Lemma 4.2. □

Definition 4.3. Let Π be a profinite group, p a prime number, and S a set of normal closed sub-
groups of Π{p}. Then we shall write

Fp(Π,S)

for the set of normal closed subgroups G⊆Π of Π that satisfy the following two conditions:
(1) Every almost pro-p-maximal quotient of G is topologically finitely generated.
(2) There exists an element N ∈ S such that the image of G in Π{p}/N is not open in Π{p}/N.

Moreover, we shall write

F p(Π,S)

for the set of maximal elements [with respect to inclusion] of Fp(Π,S).

Lemma 4.4. Let I be a subset of {1, . . . ,n+εX+} of cardinality≤ n. Then the following assertions
hold:

(i) Suppose that #I < n. Let I′ be a subset of {1, . . . ,n+ εX+} of cardinality < n. Then the
inclusion I′ ⊆ I holds if and only if the inclusion FI′ ⊆ FI holds.

(ii) Let G be an element of Fl(FI,GFS1(F
{l}
I )) [cf. Definition 3.4; Remark 3.5.1]. Then there

exists a generalized fiber subgroup F ′ of Πn of co-length n−#I +1 contained in FI such
that G⊆ F ′.

(iii) Every generalized fiber subgroup of Πn of co-length n− #I + 1 contained in FI is an
element of Fl(FI,GFS1(F

{l}
I )).

Proof. First, we verify assertion (i). Necessity is immediate. Next, we verify sufficiency. Assume
that the inclusion FI′ ⊆ FI holds, but that the inclusion I′ ⊆ I does not hold. Observe that it follows
from Lemma 3.5, (i), (ii), that, to obtain a contradiction, we may assume without loss of generality,
by replacing Σ by {l}, that Σ = {l}. Next, observe that it is immediate that, to obtain a contra-
diction, we may assume without loss of generality, by replacing I′ by a suitable subset of I′, that
I′ is of cardinality one, which thus [cf. our assumption that #I < n] implies that the union I ∪ I′ is
of cardinality ≤ n. Thus, to obtain a contradiction, we may assume without loss of generality, by
applying a suitable modular symmetry automorphism of X(n), that the union I ∪ I′ is contained in
{1, . . . ,n}. In particular, it follows immediately from [18, Proposition 2.2, (i)] [cf. also the above
assumption that Σ = {l}] that the composite FI′ ↪→ FI∪I′ ↠ FI∪I′/FI is surjective. Thus, since [we
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have assumed that] the inclusion FI′ ⊆ FI holds, one concludes the equality FI∪I′ = FI , in contra-
diction to the nontriviality of the quotient FI∪I′/FI , which may be derived from [26, Corollary 1.4,
(i), (ii)] and [18, Proposition 2.2, (i)] [cf. also the above assumption that I′ ̸⊆ I]. This completes
the proof of assertion (i).

Assertion (ii) is a formal consequence of Lemma 4.2 [cf. also Lemma 3.5, (i), (ii)]. Next, we
verify assertion (iii). First, observe that it follows from assertion (i) that, to verify assertion (iii),
it suffices to verify that, for a subset J ⊆ I such that #I = #J +1, the subgroup FJ is an element of
Fl(FI,GFS1(F

{l}
I )). To this end, observe that it follows from Theorem 3.7, (ii), that FJ satisfies

condition (1) of Definition 4.3. Next, it is immediate that the image of FJ ⊆ FI in F{l}I /F{l}J [cf.
Lemma 3.5, (i), (ii)] is trivial, which thus implies [cf. [26, Proposition 1.1, (i), (ii)], [18, Propo-
sition 2.2, (i)]] that FJ satisfies condition (2) of Definition 4.3. Thus, the subgroup FJ is an ele-
ment of Fl(FI,GFS1(F

{l}
I )), as desired. This completes the proof of assertion (iii), hence also of

Lemma 4.4. □
Lemma 4.5. Let i be an element of {0, . . . ,n−1}, and let F be a generalized fiber subgroup of Πn
of co-length i. Then the set of generalized fiber subgroups of Πn of co-length i+1 contained in F
coincides with the set F l(F,GFS1(F{l})). In particular, the equalities

GFS0(Πn) = {Πn}, GFSi+1(Πn) =
∪

F∈GFSi(Πn)

F l
(
F,GFS1(F{l})

)
hold.

Proof. This assertion follows immediately from Lemma 4.4, (i), (ii), (iii). □
Lemma 4.6. Let p be a prime number. Consider the following four conditions:

(1) The inclusion p ∈ Σ\ (Σ∩{char(k)}) holds.
(2) The group Π{p}

n is nontrivial.
(3) The inclusion p ∈ Σ holds.
(4) The topological group Πn is not a pro-prime-to-p group.

Then the implications
(1) +3 (2) +3 (3) ks +3 (4)

hold.

Proof. Let us first observe that the implications (2) ⇒ (3) ⇐ (4) are immediate. Next, observe
that, to verify the implications (1)⇒ (2) and (3)⇒ (4), we may assume without loss of generality,
by replacing Πn by Π1, that n = 1. On the other hand, the implications (1)⇒ (2) in the case where
n = 1 follows from [26, Corollary 1.2]. Moreover, the implications (3) ⇒ (4) in the case where
n = 1 follows immediately from [26, Corollary 1.2] and [26, Lemma 1.9]. This completes the
proof of Lemma 4.6. □
Definition 4.7. Let i be a nonnegative integer, and let G be a profinite group.

(i) We shall define the set of closed subgroups of G

{∗}-GFS1(G)

as follows:
24



• If G is not a pro-p configuration space group for every prime number p [cf. [18,

Definition 2.3, (i)]], then {∗}-GFS1(G)
def
= /0.

• If G is a pro-p configuration space group for some prime number p, then {∗}-GFS1(G)
is defined to be the set of closed subgroups of G obtained by applying the construc-
tion discussed in [7, Theorem 2.5, (ii), (iii), (iv)] [cf. also [23, Theorem 5.18]], i.e.,
to be the set of “generalized fiber subgroups of G of co-length one”.

(ii) Let p be a prime number. Then we shall define the set of closed subgroups of G

GFSi(G, p)

as follows:
• If G{p} is trivial, then GFSi(G, p) def

= /0.

• If G{p} is nontrivial, then GFS0(G, p) def
= {G}.

• If G{p} is nontrivial, then

GFSi+1(G, p) def
=

∪
F∈GFSi(G,p)

F p
(
F,{∗}-GFS1(F{p})

)
.

(iii) We shall say that a prime number p is GFS-trivial with respect to G if G{p} is trivial, or,
alternatively, the equality GFS j(G, p) = /0 holds for every nonnegative integer j.

(iv) We shall say that a prime number p is GFS-special with respect to G if the following
condition is satisfied: Let q1, q2 be prime numbers such that q1 ̸= p, q2 ̸= p, and, more-
over, neither q1 nor q2 is GFS-trivial with respect to G. Then the equality GFS j(G,q1) =
GFS j(G,q2) holds for each nonnegative integer j.

(v) We shall say that a prime number p is strictly GFS-special with respect to G if p is GFS-
special with respect to G, and, moreover, there are at least two distinct prime numbers q1,
q2 such that q1 ̸= p, q2 ̸= p, and, moreover, neither q1 nor q2 is GFS-trivial with respect
to G.

(vi) We shall define the set of closed subgroups of G

GFSi(G)

as follows:
• If G is a pro-p configuration space group for some prime number p, then GFSi(G) is

defined to be the set of closed subgroups of G obtained by applying the construction
discussed in [7, Theorem 2.5, (v)], i.e., to be the set of “generalized fiber subgroups
of G of co-length i”.
• If G is not a pro-p configuration space group for every prime number p, and there is

no prime number strictly GFS-special with respect to G, then GFSi(G)
def
= /0.

• If there exists a prime number p strictly GFS-special with respect to G [which thus
implies that G is not a pro-p′ configuration space group for every prime number
p′], then GFSi(G)

def
= GFSi(G,q), where q is a prime number such that q ̸= p, and,

moreover, q is not GFS-trivial with respect to G. [One verifies immediately from the
various definitions involved that this “GFSi(G)” does not depend on the choices of
such prime numbers “p”, “q”.]
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Theorem 4.8. Let i be an element of {0, . . . ,n}. Suppose that the inequality

1+2 ·#
(
Σ∩{char(k)}

)
≤ #Σ

holds. Then the equality
GFSi(Πn) = GFSi(Πn)

holds.

Proof. This assertion is a formal consequence of Lemma 4.5 and the implications (1)⇒ (2)⇒ (3)
of Lemma 4.6. □
Corollary 4.9. For each □ ∈ {†,‡}, let

• □n be a positive integer,
• □g, □r nonnegative integers such that 2−2□g−□r < 0,
• □k a separably closed field,
• □X+ a hyperbolic curve of type (□g,□r) over □k, and
• □Σ a set of prime numbers.

Suppose that, for each □ ∈ {†,‡}, the inequality

1+2 ·#
(□Σ∩{char(□k)}

)
≤ #□Σ

holds. Let

α : π tame
1 (†X+

(†n))
†Σ ∼ // π tame

1 (‡X+
(‡n))

‡Σ

be a continuous isomorphism. Then the following assertions hold:
(i) The equalities

†Σ = ‡Σ, †n = ‡n

hold.
(ii) Let i be an element of {0, . . . ,†n = ‡n} [cf. (i)]. Then the isomorphism α determines a

bijective map

GFSi
(
π tame

1 (†X+
(†n))

†Σ) ∼ // GFSi
(
π tame

1 (‡X+
(‡n))

‡Σ).
(iii) If, moreover, the inequality †n = ‡n≥ 2 [cf. (i)] holds, then the equalities

†g = ‡g, †r = ‡r

hold.
(iv) If, moreover, the inclusion {char(†k),char(‡k)} ⊆ †Σ = ‡Σ [cf. (i)] holds, then the equality

char(†k) = char(‡k)

holds.
(v) If, moreover, the set †Σ = ‡Σ [cf. (i)] is the set of all prime numbers, and char(†k) =

char(‡k) ̸= 0 [cf. (iv)], then the equalities

†g = ‡g, †r = ‡r

hold.
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Proof. The first equality of assertion (i) follows from the equivalence of (3)⇔ (4) of Lemma 4.6.
Next, we verify the second equality of assertion (i) and assertion (iii). Let us first observe that
since [we have assumed that] the inequality 1+2 ·#(□Σ∩{char(□k)})≤ #□Σ holds for each □ ∈
{†,‡}, it follows from the first equality of assertion (i) that (†Σ \ (†Σ∩{char(†k)}))∩ (‡Σ \ (‡Σ∩
{char(‡k)})) is nonempty. Let l be an element of this intersection. Then it is immediate that,
to verify the second equality of assertion (i) and assertion (iii), we may assume without loss of
generality, by replacing †Σ = ‡Σ [cf. the first equality of assertion (i)] by the subset {l}, that †Σ =
‡Σ = {l}. Then the second equality of assertion (i) and assertion (iii) follow from [7, Theorem 2.5,
(i), (vi)] [cf. also [22, Theorem 2.15]]. This completes the proof of assertions (i), (iii). Assertion
(ii) is a formal consequence of Theorem 4.8.

Finally, we verify assertions (iv), (v). Let us first observe that it follows from assertion (ii) that,
to verify assertions (iv), (v), we may assume without loss of generality, by replacing †n = ‡n [cf.
assertion (i)] by 1, that †n= ‡n= 1. Then since [we have assumed that] the inequality 1+2 ·#(□Σ∩
{char(□k)}) ≤ #□Σ holds for each □ ∈ {†,‡}, assertion (iv) follows from [26, Corollary 1.2].
Moreover, assertion (v) follows from [27, Theorem 4.1]. This completes the proof of assertions
(iv), (v), hence also of Corollary 4.9. □
Corollary 4.10. Suppose that we are in the situation of Corollary 4.9. Suppose, moreover, that the
following four conditions are satisfied:

(1) The equality †g = 0 holds.
(2) Both †k and ‡k are algebraic over the minimal subfields, respectively.
(3) The inequality char(†k)> 0 holds.
(4) The set †Σ is the set of all prime numbers.

Then there exists a commutative diagram of schemes

U
†X
(†n)� _

��

∼ // U
‡X
(‡n)� _

��
†X (†n)

∼ // ‡X (‡n)

— where the horizontal arrows are isomorphisms of schemes, and the vertical arrows are the
natural open immersions.

Proof. This assertion follows immediately from Corollary 4.9, (i), (ii), (iv), and [27], Corollary
5.9. □

5. CYCLOTOMES THAT ARISE FROM CONFIGURATION SPACES OF HYPERBOLIC CURVES

In the present §5, we discuss cyclotomes that arise from the tame fundamental groups of con-
figuration spaces of hyperbolic curves [cf. Definition 5.4, (iv), below]. In particular, we establish a
certain synchronization phenomenon concerning such cyclotomes [cf. Lemma 5.5, (vi), below].

Definition 5.1. We shall define a finitely generated field to be a field that is finitely generated over
the minimal subfield of the field.

Proposition 5.2. Let k be a field, k a separable closure of k, X+ = (X ,D) a good pair over k, and
Π an intermediate profinite quotient of the profinite quotient π tame

1 (X+) ↠ Gal(k/k) [cf. Defini-
tion 1.1, (iii)] of π tame

1 (X+). Write ∆ ⊆ Π for the [necessarily closed] subgroup of Π obtained by
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forming the kernel of the resulting continuous surjective homomorphism Π ↠ Gal(k/k). Suppose
that k is either a finitely generated field or the perfection of a finitely generated field, and that X is
proper over k. Then the following assertions hold:

(i) Suppose that k is infinite. Then the topological group Gal(k/k) is quasi-elastic but not
topologically finitely generated.

(ii) The topological group ∆ is topologically finitely generated.
(iii) The field k is finite if and only if the topological group Π is topologically finitely generated.
(iv) Suppose that k is finite. Then the subgroup ∆⊆Π coincides with the kernel of the natural

continuous surjective homomorphism from Π to the maximal abelian torsion-free profinite
quotient of Π.

(v) Suppose that k is infinite. Then the subgroup ∆ ⊆ Π coincides with the unique maximal
normal closed subgroup of Π that is topologically finitely generated.

Proof. First, we verify assertion (i). Let us first recall that it is well-known that the absolute Galois
group of a field is isomorphic to the absolute Galois group of the perfection of the field. Thus,
assertion (i) follows from [3, Theorem 13.4.2], [3, Lemma 16.11.5], and [3, Proposition 16.11.6].
This completes the proof of assertion (i). Assertion (ii) follows from [17, Proposition 2.2].

Next, we verify assertion (iii). Observe that one verifies easily that it follows from assertion
(ii) that, to verify assertion (iii), we may assume without loss of generality, by replacing Π by
Gal(k/k), that Π = Gal(k/k). If k is finite, then it is well-known that Π is procyclic, hence also
topologically finitely generated. If k is infinite, then it follows from assertion (i) that Π is not
topologically finitely generated. This completes the proof of assertion (iii). Assertion (iv) follows
from [17, Theorem 2.6, (i)]. Assertion (v) follows immediately from assertions (i), (ii). This
completes the proof of Proposition 5.2. □

In the remainder of the present §5, for each □ ∈ {†,‡}, let

• □n be a positive integer,
• □g, □r nonnegative integers such that 2−2□g−□r < 0,
• □k a field,
• □k a separable closure of □k, and
• □X+ = (□X ,□D) a hyperbolic curve of type (□g,□r) over □k.

For each □ ∈ {†,‡} and each i ∈ {0, . . . ,□n}, write

• □p for the characteristic of the field □k,
• □X+

□k
def
= (□X ×□k

□k,□D×□k
□k) for the hyperbolic curve over □k obtained by forming

the base-change of □X+ to □k,
• G□k

def
= Gal(□k/□k) for the absolute Galois group of the field □k determined by the sepa-

rable closure □k,
• □Πi

def
= π tame

1 (□X+
(i)) [cf. Definition 2.6; Lemma 2.8, (i)], and

• □∆i
def
= π tame

1
(
(□X+

□k
)(i)

)
[cf. Definition 2.6; Lemma 2.8, (i)].

Thus, for each □ ∈ {†,‡} and each i ∈ {0, . . . ,□n}, the natural morphisms (□X□k)(i)→
□X(i)→

Spec(□k) [cf. Definition 2.6] determine an exact sequence of topological groups

1 // □∆i // □Πi // G□k
// 1.
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For each □∈{†,‡}, let us fix a lifting Spec(□k)→M□g,□r of the classifying morphism Spec(□k)→
M□g,[□r] of the hyperbolic curve □X+ [cf. Remark 2.3.1] whenever the hyperbolic curve □X+ is
split.

Definition 5.3. Let □ be an element of {†,‡}. Then, for each positive integer j, we shall write

µ j(
□k)⊆ □k×

for the subgroup of j-th roots of unity in □k. Moreover, we shall write

Λ(□k) def
= lim←−

i
µi(

□k)

— where i ranges over the positive integers — for the cyclotome associated to □k.

Remark 5.3.1. Let □ be an element of {†,‡}. Then recall that it is well-known that the module
Λ(□k) has a natural structure of profinite module; moreover, the resulting profinite module is
isomorphic to the pro-prime-to-□p completion of the additive module Z.

Definition 5.4. Let □ be an element of {†,‡}, I a subset of {1, . . . ,□n+ ε□X+} [cf. Definition 2.7,
(i)] of cardinality ≥ ε□X+ +1, and i an element of I.

(i) We shall write

□Fi∈I
def
= F{1,...,□n+ε□X+}\(I\{i})(

□∆□n)/F{1,...,□n+ε□X+}\I(
□∆□n)

⊆ □∆□n/F{1,...,□n+ε□X+}\I(
□∆□n) =

□∆#I−ε□X+

[cf. Definition 3.4] and
□F i∈I

for the maximal pro-prime-to-□p quotient of □Fi∈I . Observe that one verifies easily from
the various definitions involved that this subgroup □Fi∈I ⊆ □∆#I−ε□X+

of □∆#I−ε□X+
is a

generalized fiber subgroup of □∆#I−ε□X+
of co-length #I− ε□X+−1.

(ii) Recall that one verifies immediately from Lemma 1.7 and Lemma 2.8, (ii), that the sub-
group □Fi∈I ⊆ □∆#I−ε□X+

of □∆#I−ε□X+
may be naturally regarded as a quotient of the

tame fundamental group of the good pair obtained by considering the geometric fiber
[cf. Lemma 1.4] of the unique morphism □X(#I−ε□X+)

→ □X(#I−ε□X+−1) that fits into the
commutative diagram

□X(□n)
pr{1,...,□n+ε□X+}\I

yysss
sss

sss
s pr{1,...,□n+ε□X+}\(I\{i})

&&MM
MMM

MMM
MMM

□X(#I−ε□X+)
// □X(#I−ε□X+−1).

We shall define a cuspidal inertia subgroup of □Fi∈I (respectively, of □F i∈I) to be a
[necessarily closed] subgroup of □Fi∈I (respectively, of □F i∈I) obtained by forming the
image of a cuspidal inertia subgroup [i.e., an inertia subgroup associated to a cusp] of the
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tame fundamental group of the good pair obtained by considering the geometric fiber of
the above morphism □X(#I−ε□X+)

→ □X(#I−ε□X+−1).

(iii) For each positive integer j prime to □p, we shall write

H2
c (

□F i∈I,Z/ jZ)

for the “second cohomology group with compact supports” of □F i∈I [cf. [8, Definition
3.1, (ii), (iv)]], i.e., the module defined as follows:
• We shall define a cuspidally trivialized central extension of □F i∈I by Z/ jZ to be a

central extension

1 // Z/ jZ // E // □F i∈I // 1

of □F i∈I by Z/ jZ equipped with a collection {sC : C→ E ×□F i∈I
C}C — where C

ranges over the cuspidal inertia subgroups of □F i∈I — of splittings of the extension
obtained by restricting the above extension E to C ⊆ □F i∈I such that, for each cuspi-
dal inertia subgroup C of □F i∈I and each γ ∈ □F i∈I , the splitting for the conjugate of
C by γ is given by the conjugate of the splitting for C by [a lifting in E of] γ .
• Let (E,{sC}C), (E ′,{s′C}C) be cuspidally trivialized central extensions of □F i∈I by
Z/ jZ. Then we shall say that (E,{sC}C) is equivalent to (E ′,{s′C}C) if there exists
a continuous isomorphism of E with E ′ over □F i∈I that restricts to the identity au-
tomorphism of Z/ jZ and, moreover, is compatible [in the evident sense] with the
collections {sC}C, {s′C}C of splittings.
• The set H2

c (
□F i∈I,Z/ jZ) is defined to be the set of the equivalence classes of cuspi-

dally trivialized central extensions of □F i∈I by Z/ jZ.
• Let (E,{sC}C), (E ′,{s′C}C) be cuspidally trivialized central extensions of □F i∈I by
Z/ jZ. Then it is immediate that the fiber product E×□F i∈I

E ′ has a natural structure
of a central extension of □F i∈I by Z/ jZ×Z/ jZ. Thus, by pushing out this central
extension by the addition Z/ jZ×Z/ jZ→ Z/ jZ of the module Z/ jZ, we obtain
a central extension E ′′ of □F i∈I by Z/ jZ. Moreover, one verifies immediately that
the collections {sC}C, {s′C}C of splittings naturally determine a collection {s′′C}C of
splittings of the extension obtained by restricting the above extension E ′′ to the vari-
ous cuspidal inertia subgroups of □F i∈I , which gives rise to a structure of cuspidally
trivialized central extension of □F i∈I by Z/ jZ. Now one also verifies immediately
that the equivalence class [E ′′,{s′′C}C] of (E ′′,{s′′C}C) depends only on the respective
equivalence classes [E,{sC}C], [E ′,{s′C}C] of (E,{sC}C), (E ′,{s′C}C). Finally, one
also verifies immediately that if one writes

[E,{sC}C]+ [E ′,{s′C}C]
def
= [E ′′,{s′′C}C],

then this “+” determines a module structure on the set H2
c (

□F i∈I,Z/ jZ).
(iv) We shall write

Λ(□F i∈I)
def
= lim←−

j
Hom

(
H2

c (
□F i∈I,Z/ jZ),Z/ jZ

)
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— where j ranges over the positive integers prime to □p — for the cyclotome associated
to □F i∈I [cf. [8, Definition 3.8, (i)]].

Remark 5.4.1. Suppose that we are in the situation of Definition 5.4.
(i) Recall that one verifies immediately from Lemma 2.8, (iii), that the group □F i∈I may be

naturally identified with the maximal pro-prime-to-□p quotient of the étale fundamen-
tal group of the geometric fiber of the morphism U

□X
(#I−ε□X+)

→ U
□X
(#I−ε□X+−1) [cf. Def-

inition 2.6] determined by the morphism □X(#I−ε□X+)
→ □X(#I−ε□X+−1) that appears in

Definition 5.4, (ii). In particular, it is well-known [cf., e.g., the discussion preceding [26,
Corollary 1.4]] that if C is a cuspidal inertia subgroup of □Fi∈I (respectively, of □F i∈I),
then there exists a natural identification isomorphism

C ∼ // Λ(□k).

(ii) It follows immediately from [8, Corollary 3.9, (ii), (iii)] that there exists a natural identi-
fication isomorphism

Λ(□F i∈I)
∼ // Λ(□k).

Lemma 5.5. Let

α : †Π†n
∼ // ‡Π‡n

be a continuous isomorphism. Suppose that the following two conditions are satisfied:

(1) The isomorphism α restricts to an isomorphism †∆†n
∼→ ‡∆‡n.

(2) There exists a prime number l such that l ̸= † p, and, moreover, the image of the l-adic
cyclotomic character G†k→ Z×l of G†k is open.

Then the following assertions hold:
(i) The equalities †n = ‡n, † p = ‡ p hold.
(ii) Let i be an element of {0, . . . ,†n = ‡n} [cf. (i)]. Then the isomorphism α determines a

bijective map

GFSi(
†∆†n)

∼ // GFSi(
‡∆‡n)

[cf. Definition 3.4].
(iii) Let †I be a subset of {1, . . . ,†n+ε†X+

†k
} of cardinality≥ ε†X+

†k
+1, and let †i be an element

of †I. Then there exist a subset ‡I of {1, . . . ,‡n+ ε‡X+
‡k
} of cardinality ≥ ε‡X+

‡k
+1 and an

element ‡i of ‡I such that the isomorphism α restricts to continuous isomorphisms

F{1,...,†n+ε†X+
†k
}\(†I\{†i})(

†∆†n)
∼ // F{1,...,‡n+ε‡X+

‡k
}\(‡I\{‡i})(

‡∆‡n),

F{1,...,†n+ε†X+
†k
}\†I(

†∆†n)
∼ // F{1,...,‡n+ε‡X+

‡k
}\‡I(

‡∆‡n).

In particular, the isomorphism α determines a continuous isomorphism

†F†i∈†I
∼ // ‡F‡i∈‡I.
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(iv) In the situation of (iii), let †C ⊆ †F†i∈†I be a cuspidal inertia subgroup of †F†i∈†I . Then
the image ‡C ⊆ ‡F‡i∈‡I of †C ⊆ †F†i∈†I by the isomorphism †F†i∈†I

∼→ ‡F‡i∈‡I induced by
the isomorphism †F†i∈†I

∼→ ‡F‡i∈‡I of (iii) [cf. (i)] is a cuspidal inertia subgroup of ‡F‡i∈‡I .
(v) In the situation of (iv), the diagram of modules

†C ∼ //

≀
��

Λ(†k) Λ(†F†i∈†I)
∼oo

≀
��

‡C ∼
// Λ(‡k) Λ(‡F‡i∈‡I)∼

oo

— where the left-hand horizontal arrows are the isomorphisms discussed in Remark 5.4.1,
(i), the right-hand horizontal arrows are the isomorphisms discussed in Remark 5.4.1,
(ii), and the vertical arrows are the isomorphisms induced by the isomorphism α [cf. (i),
(iii), (iv)] — commutes.

(vi) In the situation of (iii), let †I′ be a subset of {1, . . . ,†n+ ε†X+
†k
} of cardinality ≥ ε†X+

†k
+

1, and let †i′ be an element of †I′. Thus, it follows from (iii) that there exist a subset
‡I′ of {1, . . . ,‡n+ ε‡X+

‡k
} of cardinality ≥ ε‡X+

‡k
+ 1 and an element ‡i′ of ‡I′ such that

the isomorphism α determines a continuous isomorphism †F†i′∈†I′
∼→ ‡F‡i′∈‡I′ . Then the

diagram of modules

Λ(†F†i∈†I)
∼ //

≀
��

Λ(†k) Λ(†F†i′∈†I′)
∼oo

≀
��

Λ(‡F‡i∈‡I) ∼
// Λ(‡k) Λ(‡F‡i′∈‡I′)∼

oo

— where the horizontal arrows are the isomorphisms discussed in Remark 5.4.1, (ii), and
the vertical arrows are the isomorphisms induced by the isomorphism α [cf. (i), (iii), (iv)]
— commutes.

Proof. Assertions (i), (ii) follow formally from Corollary 4.9, (i), (ii), (iv) [cf. also condition (1)].
Assertion (iii) follows formally from assertion (ii). Assertion (iv) follows formally from assertion
(i) and [14, Corollary 2.7, (i)] [cf. also condition (2)]. Assertion (v) follows formally from [8,
Corollary 3.9, (v)].

Finally, we verify assertion (vi). Let us first observe that one verifies easily that, to verify asser-
tion (vi), we may assume without loss of generality, by replacing □k by a suitable finite extension
field of □k in □k, that the hyperbolic curve □X+ is split for each □ ∈ {†,‡}. Moreover, observe
that it follows from assertion (ii) [cf. also [8, Corollary 3.9, (ii)]] that, to verify assertion (vi), we
may assume without loss of generality, by replacing □Π□n by the quotient □Π□n/F□J(

□∆□n) =
□Πmin{□n,#{□i,□i′}} — where □J is a suitable subset of {1, . . . ,□n+ε□X+}\{□i,□i′} of cardinality
max{0,□n−#{□i,□i′}}— for each □ ∈ {†,‡}, that the inequalities

†n≤ #{†i,†i′} (≤ 2), ‡n≤ #{‡i,‡i′} (≤ 2)
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hold. Next, observe that if †n = 1, then assertion (vi) is immediate. Thus, to verify assertion (vi),
we may assume without loss of generality that the equalities

†n = #{†i,†i′}= ‡n = #{‡i,‡i′}= 2

[cf. assertion (i)], hence also the equalities {†i,†i′}= {‡i,‡i′}= {1,2}, hold.
Next, let us observe that it follows immediately from the well-known structure of the maximal

pro-prime-to-p quotient of the étale fundamental group of an algebraic curve over a separably
closed field of characteristic p, together with the various definitions involved, that, for a given
cuspidal inertia subgroup of □F□i∈□I , the following two conditions are equivalent:

• The given cuspidal inertia subgroup of □F□i∈□I arises from the diagonal divisor of □X×□k
□X (⊇U

□X
(□n)

) [cf. Remark 2.6.1, (i)].

• The given cuspidal inertia subgroup of □F□i∈□I may be obtained by forming the image in
□F□i∈□I of a closed subgroup of □∆□n that is a cuspidal inertia subgroup of □F□i∈□I and
is also a cuspidal inertia subgroup of □F□i′∈□I .

Thus, it follows immediately from assertion (v) that, to verify assertion (vi), it suffices to verify
that, in the situation of assertion (iii), if one takes the “†C” to be a cuspidal inertia subgroup
that arises from the diagonal divisor of †X ×†k

†X (⊇ U
†X
(†n)), then the “‡C” is a cuspidal inertia

subgroup that arises from the diagonal divisor of ‡X ×‡k
‡X (⊇ U

‡X
(‡n)). On the other hand, this

assertion follows immediately — in light of the well-known structure of the maximal pro-prime-
to-p quotient of the étale fundamental group of an algebraic curve over a separably closed field of
characteristic p, together with the various definitions involved — from the above equivalence and
assertion (ii). This completes the proof of assertion (vi), hence also of Lemma 5.5. □

Definition 5.6. In the situation of Lemma 5.5, suppose that the equality (†k,†k) = (‡k,‡k) holds.
Then we shall say that the isomorphism α is cyclotomically trivial if, in the situation of Lemma 5.5,
(iii), the composite

Λ(†k) Λ(†F†i∈†I)
∼oo ∼ // Λ(‡F‡i∈‡I)

∼ // Λ(‡k) = Λ(†k)

— where the first and third arrows are the isomorphisms discussed in Remark 5.4.1, (ii), and
the second arrow is the isomorphism induced by the isomorphism of Lemma 5.5, (iii) [cf. also
Lemma 5.5, (i), (iv)] — is the identity automorphism of Λ(†k). Observe that it follows from
Lemma 5.5, (vi), that this composite does not depend on the choice of “(†I,†i,‡I,‡i)”.

Remark 5.6.1. Let α : †Π†n
∼→ ‡Π‡n be a continuous isomorphism. Suppose that the field †k

(respectively, ‡k) is either a finitely generated field or the perfection of a finitely generated field.
Then let us first observe that it follows from Proposition 5.2, (iii), (iv), (v), that the isomorphism
α satisfies condition (1) that appears in the statement of Lemma 5.5. Moreover, observe that
one verifies easily that the isomorphism α satisfies condition (2) that appears in the statement of
Lemma 5.5.
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6. THE ANABELIAN GROTHENDIECK CONJECTURE FOR CONFIGURATION SPACES OF
HYPERBOLIC CURVES

In the present §6, by applying the results obtained in the previous sections, together with some
recent developments in the study of the anabelian geometry of hyperbolic curves over fields of pos-
itive characteristic in [28], we prove the absolute version of the anabelian Grothendieck conjecture
for the tame fundamental groups of the configuration spaces of hyperbolic curves over [the per-
fections of] finitely generated fields of positive characteristic [cf. Theorem 6.7 below]. This result
may be regarded as a higher dimensional generalization of [26, Theorem 0.5], [15, Theorem 3.2],
and [28, Theorem B]. Finally, we also discuss the relative versions of the anabelian Grothendieck
conjecture for the tame fundamental groups of the configuration spaces of hyperbolic curves over
[the perfections of] finitely generated fields of positive characteristic [cf. Theorem 6.8 below and
Corollary 6.9 below], which generalize [24, Theorem 1], [25, Theorem 5.1.3], [28, Theorem A],
and [28, Theorem 2.9].

In the present §6, for each □ ∈ {†,‡}, let
• □n be a positive integer,
• □g, □r nonnegative integers such that 2−2□g−□r < 0,
• □p a prime number,
• □k a field of characteristic □p,
• □k a separable closure of □k, and
• □X+ = (□X ,□D) a hyperbolic curve of type (□g,□r) over □k.

For each □ ∈ {†,‡} and each i ∈ {0, . . . ,□n}, write

• □X+
□k

def
= (□X ×□k

□k,□D×□k
□k) for the hyperbolic curve over □k obtained by forming

the base-change of □X+ to □k,
• G□k

def
= Gal(□k/□k) for the absolute Galois group of the field □k determined by the sepa-

rable closure □k,
• □Πi

def
= π tame

1 (□X+
(i)) [cf. Definition 1.1, (iii); Definition 2.6; Lemma 2.8, (i)], and

• □∆i
def
= π tame

1
(
(□X+

□k
)(i)

)
[cf. Definition 2.6; Lemma 2.8, (i)].

Thus, for each □ ∈ {†,‡} and each i ∈ {0, . . . ,□n}, the natural morphisms (□X□k)(i)→
□X(i)→

Spec(□k) [cf. Definition 2.6] determine an exact sequence of topological groups

1 // □∆i // □Πi // G□k
// 1.

For each □∈{†,‡}, let us fix a lifting Spec(□k)→M□g,□r of the classifying morphism Spec(□k)→
M□g,[□r] of the hyperbolic curve □X+ [cf. Remark 2.3.1] whenever the hyperbolic curve □X+ is
split.

Definition 6.1. Let S1, S2 be schemes. Then we shall write

Isom(S1,S2)

for the set of isomorphisms S1
∼→ S2 of schemes and

Aut(S1)
def
= Isom(S1,S1)

for the group of automorphisms of the scheme S1.
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Proposition 6.2. For each □ ∈ {†,‡}, write AutM (U
□X
(□n)

) ⊆ Aut(U
□X
(□n)

) [cf. Definition 2.6] for

the subgroup of the [automorphisms of U
□X
(□n)

induced by the] modular symmetry automorphisms of
□X (□n). Then the following assertions hold:

(i) Every isomorphism U
†X
(†n)

∼→U
‡X
(‡n) extends to a unique isomorphism †X (†n)

∼→ ‡X (‡n).

(ii) Every isomorphism U
†X
(†n)

∼→U
‡X
(‡n) lies on a unique isomorphism ‡k ∼→ †k. In the remainder

of the statement of the present Proposition 6.2, fix an isomorphism ‡k ∼→ †k over this
isomorphism ‡k ∼→ †k.

(iii) Suppose that the equality †n = ‡n holds, and that, for each □ ∈ {†,‡}, the hyperbolic
curve □X+ is split. Recall from Remark 2.6.1, (i), that, for each □ ∈ {†,‡}, the scheme
U

□X
(□n)

may be naturally identified with the □n-th configuration space of U
□X
(1) , which thus

implies that every isomorphism U
†X
(1)
∼→U

‡X
(1) naturally determines an isomorphism U

†X
(†n)

∼→

U
‡X
(‡n). In particular, we have a natural [necessarily injective] map Isom(U

†X
(1),U

‡X
(1)) ↪→

Isom(U
†X
(†n),U

‡X
(‡n)), by means of which we shall regard Isom(U

†X
(1),U

‡X
(1)) as a subset of

Isom(U
†X
(†n),U

‡X
(‡n)):

Isom(U
†X
(1),U

‡X
(1))⊆ Isom(U

†X
(†n),U

‡X
(‡n)).

Let f : U
†X
(†n)

∼→U
‡X
(‡n) be an isomorphism. Then there exists an element σ f of AutM (U

†X
(†n))

such that, for every subset I of {1, . . . ,†n+ ε†X+}∩{1, . . . ,‡n+ ε‡X+} [cf. Definition 2.7,
(i)] of cardinality ≤ †n = ‡n, the continuous outer isomorphism †∆†n

∼→ ‡∆‡n induced by
the isomorphism U

†X
(†n)×†k

†k ∼→U
‡X
(‡n)×‡k

‡k determined by the composite f ◦σ f [cf. (ii)]

maps FI(
†∆†n) [cf. Definition 3.4] bijectively onto FI(

‡∆‡n). Moreover, in this situation,
the composite f ◦σ f ∈ Isom(U

†X
(†n),U

‡X
(‡n)) is contained in the subset Isom(U

†X
(1),U

‡X
(1)).

Proof. Assertions (i), (ii) follow immediately from a similar argument to the argument applied in
the proof of [9, Lemma 2.7, (i)]. Assertion (iii) follows immediately from a similar argument to
the argument applied in the proof of [9, Lemma 2.7, (i), (ii), (iii)], where we replace “[MzTa],
Corollary 6.3” in the proof of [9, Lemma 2.7, (i), (ii), (iii)] by Corollary 4.9, (ii), of the present
paper [cf. also Lemma 4.4, (i), of the present paper]. This completes the proof of Proposition 6.2.

□

Lemma 6.3. Let α be a continuous automorphism of †Π†n, and let F ⊆ †Π†n be a generalized fiber
subgroup of †∆†n of co-length †n−1. Suppose that the following three conditions are satisfied:

(1) The inequality †n≥ 2 holds.
(2) The automorphism α of †Π†n preserves F ⊆ †Π†n and induces the identity automorphism

of the quotient †Π†n/F = †Π†n−1.
(3) The field †k is either a finitely generated field or the perfection of a finitely generated field.

Then the following assertions hold:
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(i) Let N ⊆ †Π†n be a normal open subgroup of †Π†n. Write Z†n−1→U
†X
(†n−1) (respectively,

Z†n → U
†X
(†n); Z′†n → U

†X
(†n)) for the finite étale Galois covering that corresponds to the

normal open subgroup N/(N∩F)⊆ †Π†n/F = †Π†n−1 (respectively, N ⊆ †Π†n; α(N)⊆
†Π†n). Let z→ Z†n−1 be a geometric point of Z†n−1. Write (Z†n)z, (Z′†n)z for the respec-
tive geometric fibers at z→ Z†n−1 of the natural morphisms Z†n → Z†n−1, Z′†n → Z†n−1
[cf. (2)] and π ét

1 ((Z†n)z), π ét
1 ((Z

′
†n)z) for the respective maximal pro-prime-to-† p quo-

tients of π ét
1 ((Z†n)z), π ét

1 ((Z
′
†n)z) [cf. conditions (1), (3) of Definition 1.3; Lemma 2.8,

(ii)]. Thus, it follows from Lemma 2.8, (iii), that the maximal pro-prime-to-† p quo-
tients of N ∩F, α(N)∩F may be naturally identified with π ét

1 ((Z†n)z), π ét
1 ((Z

′
†n)z), re-

spectively. In particular, the automorphism α determines a continuous isomorphism
π ét

1 ((Z†n)z)
∼→ π ét

1 ((Z
′
†n)z) [cf. (2)]. Then this isomorphism π ét

1 ((Z†n)z)
∼→ π ét

1 ((Z
′
†n)z)

arises from a unique isomorphism (Z†n)z
∼→ (Z′†n)z over z.

(ii) In the situation of (i), suppose that the equality N = †Π†n holds [which thus implies that
(Z†n)z = (Z′†n)z]. Then the unique isomorphism (Z†n)z

∼→ (Z′†n)z of (i) is the identity auto-
morphism of (Z†n)z = (Z′†n)z.

(iii) The automorphism α is F-inner.

Proof. First, we verify assertion (i). Let us first observe that it follows from Remark 5.6.1, to-
gether with condition (3), that the automorphism α of †Π†n satisfies conditions (1), (2) that appear
in the statement of Lemma 5.5. Next, observe that it follows from Lemma 5.5, (vi), together with
conditions (1), (2), that if one writes F for the maximal pro-prime-to-† p quotient of F , then the au-
tomorphism of Λ(F) [cf. Definition 5.4, (iv)] induced by α [cf. Lemma 5.5, (iv)] is the identity auto-
morphism. Thus, one verifies immediately — by considering a suitable quotient [i.e., as discussed
in Lemma 2.8, (iii)] of the inverse image of the decomposition subgroup of N/(N ∩F) associated
to a closed point of Z†n−1 by the natural continuous surjective homomorphism N ↠ N/(N ∩F)
(respectively, α(N)↠ α(N)/(α(N)∩F) = N/(N∩F)) — from [28, Theorem 2.9], together with
conditions (2), (3), that the continuous isomorphism π ét

1 ((Z†n)z)
∼→ π ét

1 ((Z
′
†n)z) that appears in the

statement of assertion (i) arises from a unique isomorphism (Z†n)z
∼→ (Z′†n)z over z, as desired. This

completes the proof of assertion (i).
Next, we verify assertion (ii). Let us observe that it follows from [10, Lemma 2.14, (i)] that,

to verify assertion (ii), it suffices to verify that the automorphism π ét
1 ((Z†n)z)

{l} ∼→ π ét
1 ((Z

′
†n)z)

{l}

induced by the isomorphism π ét
1 ((Z†n)z)

∼→ π ét
1 ((Z

′
†n)z) that appears in the statement of assertion

(i) is inner. On the other hand, this assertion follows from [16, Proposition 1.2, (iii)], together with
conditions (1), (2). This completes the proof of assertion (ii). Finally, we verify assertion (iii).
Observe that it follows formally from assertions (i), (ii) that the restriction of α to F is inner. Thus,
assertion (iii) follows from Theorem 3.7, (ii), and Lemma 6.4 below, together with condition (2).
This completes the proof of assertion (iii), hence also of Lemma 6.3. □
Lemma 6.4. Let

1−→ G1 −→ G2 −→ G3 −→ 1
be an exact sequence of groups, and let σ be an automorphism of G2. Suppose that G1 is center-
free, and that σ induces the respective identity automorphisms of G1, G3. Then σ is the identity
automorphism of G2.
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Proof. Let γ be an element of G2. Then since σ induces the identity automorphism of G1, the
equalities γ−1 ·δ · γ = σ(γ−1 ·δ · γ) = σ(γ)−1 ·δ ·σ(γ) for each δ ∈ G1, hence also the inclusion
σ(γ)γ−1 ∈ ZG2(G1), hold. On the other hand, since σ induces the identity automorphism of G3, the
inclusion σ(γ)γ−1 ∈G1 holds. In particular, one concludes that σ(γ)γ−1 ∈ ZG2(G1)∩G1 = Z(G1),
which thus [cf. our assumption that G1 is center-free] implies that σ is the identity automorphism
of G2, as desired. This completes the proof of Lemma 6.4. □
Definition 6.5. We shall say that a hyperbolic curve X+ over a field k is isotrivial if, for an arbitrary
separable closure k of k, there exist a hyperbolic curve X+

0 over the separable closure k0 in k of the
minimal subfield of k and an isomorphism X+×k k ∼→ X+

0 ×k0 k over k.

Definition 6.6. Let G1, G2 be profinite groups. Then we shall write

OutIsom(G1,G2)

for the set of continuous outer isomorphisms G1
∼→ G2 and

Out(G1)
def
= OutIsom(G1,G1)

for the group of continuous outer automorphisms of G1.

Theorem 6.7. Suppose that the following two conditions are satisfied:
(1) For each □ ∈ {†,‡}, the field □k is the perfection of a finitely generated field.
(2) If †k is infinite, then the hyperbolic curve †X+ is nonisotrivial.

Then the natural map

Isom(U
†X
(†n),U

‡X
(‡n))

∼ // OutIsom(†Π†n,
‡Π‡n)

[cf. Proposition 6.2, (i)] is bijective.

Proof. First, we verify the injectivity of the map under consideration. Let f be an automorphism of
the scheme U

†X
(†n) that induces the trivial continuous outer automorphism of the topological group

†Π†n. Then it follows immediately from Proposition 6.2, (iii), that the automorphism f of U
†X
(†n)

arises from a unique automorphism f1 of U
†X
(1). Now observe that since the automorphism f induces

the trivial continuous outer automorphism of the topological group †Π†n, the automorphism f1
induces the trivial continuous outer automorphism of the topological group †Π1. Thus, it follows
from [26, Theorem 0.5], [15, Theorem 3.2], and [28, Theorem B] [cf. also conditions (1), (2)] that
the automorphism f1, hence also the automorphism f , is trivial, as desired. This completes the
proof of the injectivity of the map under consideration.

Next, we verify the surjectivity of the map under consideration. Let α : †Π†n
∼→ ‡Π‡n be a

continuous isomorphism. Let us first observe that it follows from Remark 5.6.1, together with
condition (1), that the isomorphism α satisfies conditions (1), (2) that appear in the statement of
Lemma 5.5. Next, observe that it follows from Lemma 5.5, (i), that the equality †n = ‡n holds.
Write n def

= †n = ‡n. In the remainder of the present proof, we prove the existence of an isomor-
phism U

†X
(†n)

∼→U
‡X
(‡n) whose image by the map under consideration is given by the continuous outer

automorphism determined by α by induction on n. If n = 1, then the desired existence follows
from [26, Theorem 0.5], [15, Theorem 3.2], and [28, Theorem B] [cf. also conditions (1), (2)].
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Suppose that n ≥ 2, and that the induction hypothesis is in force. Also, observe that one verifies
immediately from the injectivity of the map under consideration [i.e., already verified in the first
paragraph of the present proof] that, to verify the desired existence, we may assume without loss
of generality, by replacing □k by a suitable finite extension field of □k in □k, that the hyperbolic
curve □X+ is split for each □ ∈ {†,‡}.

Next, observe that it follows immediately from Lemma 5.5, (ii), that the set OutIsom(†Π1,
‡Π1),

hence [cf. the induction hypothesis] also the set Isom(U
†X
(1),U

‡X
(1)), is nonempty. Thus, it is imme-

diate that, to verify the desired existence, we may assume without loss of generality, by replacing
‡X+ by †X+ [cf. also Proposition 6.2, (i), (iii)], that the equality † = ‡ holds, which thus implies
that α is a continuous automorphism of the topological group †Π†n. Next, observe that it follows
immediately from Lemma 5.5, (ii), that, to verify the desired existence, we may assume without
loss of generality, by replacing α by the composite of α with a continuous automorphism of †Π†n
that arises from a suitable modular symmetry automorphism of †X (†n), that

(a) the automorphism α preserves every generalized fiber subgroup of †∆†n.
Let F ⊆ †Π†n be a generalized fiber subgroup of †∆†n of co-length 1. Thus, it follows imme-

diately from the induction hypothesis [cf. also (a)] that, to verify the desired existence, we may
assume without loss of generality, by replacing α by the composite of α with a continuous auto-
morphism of †Π†n that arises from the automorphism of U

†X
(†n) determined by a suitable automor-

phism of U
†X
(1) [cf. Proposition 6.2, (i), (iii)], that

(b) the automorphism α induces the identity automorphism of the quotient †Π†n/F = †Π1.
Next, observe that it is immediate that, to verify the desired existence, it suffices to verify that

α is †∆†n-inner. In the remainder of the present proof, we prove that α is †∆†n-inner by induction
on n. If n = 2, then it follows from Lemma 6.3, (iii), together with conditions (1), (2) [cf. also
(b)], that α is †∆†n-inner. Suppose that n ≥ 3, and that the induction hypothesis is in force. Let
F ′ ⊆ †Π†n be a generalized fiber subgroup of †∆†n of co-length †n−1 that is contained in F . Thus,
it follows immediately from the induction hypothesis [cf. also (a)] that

(c) the automorphism of the quotient †Π†n/F ′ = †Π†n−1 induced by α is †∆†n−1-inner.
In particular, it follows from Lemma 6.3, (iii), together with conditions (1), (2) [cf. also (c)],
that α is †∆†n-inner, as desired. This completes the proof of the surjectivity of the map under
consideration, hence also of Theorem 6.7. □
Remark 6.7.1. Observe that if, in the situation of Theorem 6.7, one drops the nonisotriviality
assumption [i.e., condition (2)], then the conclusion no longer holds in general. A counter-example
is discussed in [28, Remark 4.10.1].

Remark 6.7.2. Let us point out that, as far as the authors know, Theorem 6.7 is the first result
concerning the absolute version of the anabelian Grothendieck conjecture for varieties in positive
characteristic of higher dimension [i.e., of dimension greater than one].

Theorem 6.8. Suppose that the following two conditions are satisfied:
(1) The equality (†k,†k) = (‡k,‡k) holds.
(2) The field †k is either a finitely generated field or the perfection of a finitely generated field.

Write
Isom†k(U

†X
(†n),U

‡X
(‡n))⊆ Isom(U

†X
(†n),U

‡X
(‡n))

38



for the subset of isomorphisms U
†X
(†n)

∼→U
‡X
(‡n) over †k = ‡k,

IsomΛ
G†k

(†Π†n,
‡Π‡n)

for the set of continuous isomorphisms †Π†n
∼→ ‡Π‡n over G†k = G‡k that are cyclotomically trivial

[cf. (1), Remark 5.6.1], and

∆\IsomΛ
G†k

(†Π†n,
‡Π‡n)

for the quotient set of IsomΛ
G†k

(†Π†n,
‡Π‡n) with respect to ‡∆‡n-conjugation. Then the natural map

Isom†k(U
†X
(†n),U

‡X
(‡n))

∼ // ∆\IsomΛ
G†k

(†Π†n,
‡Π‡n)

[cf. Proposition 6.2, (i)] is bijective.

Proof. This assertion follows immediately from the argument obtained by replacing “[26, Theorem
0.5], [15, Theorem 3.2], and [28, Theorem B]” in the proof of Theorem 6.7 by [28, Theorem
2.9]. □
Corollary 6.9. Suppose that the following three conditions are satisfied:

(1) The equality (†k,†k) = (‡k,‡k) holds.
(2) The field †k is an infinite finitely generated field.
(3) The hyperbolic curve †X+ is nonisotrivial.

Write

Isom†k,F−1
†k
(U

†X
(†n),U

‡X
(‡n))

for the set of isomorphisms U
†X
(†n)

∼→U
‡X
(‡n) in the category Var†k,F−1

†k
defined in the discussion “In-

verting Frobenius” following [25, Lemma 4.1.1],

IsomG†k
(†Π†n,

‡Π‡n)

for the set of continuous isomorphisms †Π†n
∼→ ‡Π‡n over G†k = G‡k, and

∆\IsomG†k
(†Π†n,

‡Π‡n)

for the quotient set of IsomG†k
(†Π†n,

‡Π‡n) with respect to ‡∆‡n-conjugation. Then the natural map

Isom†k,F−1
†k
(U

†X
(†n),U

‡X
(‡n))

∼ // ∆\IsomG†k
(†Π†n,

‡Π‡n)

[cf. Theorem 3.7, (ii); Proposition 6.2, (i); the discussion following [25, Lemma 4.1.6]] is bijective.

Proof. Let us first observe that one verifies immediately from Theorem 6.8 [cf. also [28, Lemma 4.2]]
that, to verify Corollary 6.9, it suffices to verify that, for each continuous isomorphism α : †Π†n

∼→
‡Π‡n over G†k = G‡k, the composite

Λ(†k) Λ(†F†i∈†I)
∼oo ∼ // Λ(‡F‡i∈‡I)

∼ // Λ(‡k) = Λ(†k)
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discussed in Definition 5.6 that arises from α [cf. conditions (1), (2); Remark 5.6.1] is given by
multiplication by † pN = ‡ pN for some integer N [cf. also Remark 5.3.1]. On the other hand, this
follows immediately from [28, Proposition 4.4], together with Lemma 5.5, (ii) [cf. conditions (1),
(2), (3)]. This completes the proof of Corollary 6.9. □

Remark 6.9.1. The “general formal content” of the two remarks following Theorem 6.7 applies
to the respective situations discussed in Theorem 6.8, Corollary 6.9, as well. We leave the routine
details of translating these remarks into the language of the respective situations of Theorem 6.8,
Corollary 6.9 to the interested reader.
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[30] Revêtements étales et groupe fondamental (SGA 1), Séminaire de géométrie algébrique du Bois Marie 1960–
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