Character sheaves and modular generalized Springer correspondence Part 2: The generalized Springer correspondence

Anthony Henderson (joint with Pramod Achar, Daniel Juteau, Simon Riche)

University of Sydney

January 2015

Simplifying the context

To get a 'toy model' of character sheaves on G:

- 1. Instead of *G*-equivariant perverse sheaves on *G*, consider *G*-equivariant perverse sheaves on the **unipotent variety** \mathcal{U}_G . This is simpler because there are only finitely many *G*-orbits, but still highly relevant e.g. for cuspidal character sheaves.
- 2. Assume p is large enough so that there is a G-equivariant isomorphism $\mathcal{U}_G \xrightarrow{\sim} \mathcal{N}_G$ where \mathcal{N}_G is the **nilpotent cone** in the Lie algebra \mathfrak{g} ; then we can use Fourier transform on \mathfrak{g} .
- The behaviour for large p is no different from considering G over C with the usual topology rather than étale topology.

This setting (first with simplification 1 only, later with 2 also) was studied by Lusztig in the case of $\overline{\mathbb{Q}_{\ell}}$ -sheaves: one of his main results here was the 'generalized Springer correspondence'. Aim: to prove an analogue in the **modular** case where char(k) = ℓ , as a first step towards understanding modular character sheaves.

The new set-up

New notation:

- G is a connected reductive algebraic group over \mathbb{C} ,
- \mathfrak{g} is its Lie algebra, on which G has the adjoint action,
- *N_G* = {x ∈ g | x nilpotent} is the nilpotent cone, on which G has finitely many orbits,
- k is a sufficiently large field of characteristic $\ell \geq 0$,

• $\mathcal{D}_G(\mathcal{N}_G, k)$ is the constructible equivariant derived category. For any $A \in \mathcal{D}_G(\mathcal{N}_G, k)$ and *G*-orbit \mathcal{O} in \mathcal{N}_G , the restrictions $\mathcal{H}^i A|_{\mathcal{O}}$ are *G*-equivariant local systems (i.e. *G*-equivariant sheaves of finite-dimensional *k*-vector spaces) on \mathcal{O} , so they correspond to finite-dimensional representations over *k* of the finite group

$$A_G(x) = G_x/G_x^\circ$$
, where G_x is the stabilizer in G of $x \in \mathcal{O}$.

Let $\mathfrak{N}_{G,k}$ denote the set of pairs $(\mathcal{O}, \mathcal{E})$ where \mathcal{O} is a *G*-orbit in \mathcal{N}_G and \mathcal{E} is an **irreducible** *G*-equivariant local system on \mathcal{O} .

Example $(G = GL_n)$

When $G = GL_n$, $\mathfrak{g} = \operatorname{Mat}_n$ and $\mathcal{N}_G = \{x \in \operatorname{Mat}_n | x^n = 0\}$. By the Jordan form theorem, we have a bijection

$$G \setminus \mathcal{N}_G \longleftrightarrow \mathcal{P}_n = \{ \text{partitions } \lambda \text{ of } n \},\$$

where $x \in \mathcal{O}_{\lambda}$ means that x has Jordan blocks of sizes $\lambda_1, \lambda_2, \cdots$. In this case $A_G(x) = 1$ for all x, so $\mathfrak{N}_{G,k} \longleftrightarrow \mathcal{P}_n$ for all fields k.

Example (G of type G_2)

The five nilpotent orbits, in order of decreasing dimension, are:

 G_2 (regular), $G_2(a_1)$ (subregular), A_1 , A_1 , 0.

These Bala–Carter labels record the type of the smallest Levi subalgebra meeting the orbit (where A_1 means the short-root A_1). We have $A_G(x) = 1$ for all x except $A_G(x) = S_3$ for $x \in G_2(a_1)$, so $|\mathfrak{N}_{G,k}| = 7$ usually, $|\mathfrak{N}_{G,k}| = 6$ if $\operatorname{char}(k) \in \{2,3\}$.

There is an anti-autoequivalence D of $\mathcal{D}_G(\mathcal{N}_G, k)$, Verdier duality. We study the abelian subcategory $\operatorname{Perv}_G(\mathcal{N}_G, k)$ of G-equivariant perverse k-sheaves on \mathcal{N}_G , where $A \in \mathcal{D}_G(\mathcal{N}_G, k)$ is perverse if

$$\mathcal{H}^{i}A|_{\mathcal{O}} = \mathcal{H}^{i}(DA)|_{\mathcal{O}} = 0$$
 whenever $i > -\dim \mathcal{O}$.

The simple objects in $\operatorname{Perv}_{G}(\mathcal{N}_{G}, k)$ are in bijection with $\mathfrak{N}_{G,k}$:

 $IC(\mathcal{O}, \mathcal{E}) = \begin{array}{l} \text{`intermediate extension' of } \mathcal{E}[\dim \mathcal{O}] \text{ to } \overline{\mathcal{O}}, \\ \text{extended by zero to the whole of } \mathcal{N}_{\mathcal{G}}. \end{array}$

Example ($G = GL_2$, cf. Juteau–Mautner–Williamson)

The two orbits are $\mathcal{O}_{(1,1)}=\{0\}$ and $\mathcal{O}_{(2)}=\mathcal{N}_{G}\setminus\{0\}.$ We have

$$\begin{split} \mathrm{IC}(\mathcal{O}_{(1,1)},\underline{k}) &= \underline{k}_0 \text{ (skyscraper sheaf),} \\ \mathrm{IC}(\mathcal{O}_{(2)},\underline{k}) &= \underline{k}_{\mathcal{N}_G}[2] \text{ if } \ell \neq 2. \end{split}$$

The $\ell = 2$ case is different, because then $H^1(\mathcal{O}_{(2)}, k) \neq 0$.

Cuspidal pairs and induction series

Let P be a parabolic subgroup of G and L a Levi factor of P. We have a geometric parabolic induction functor

$$\mathsf{I}_{L\subset P}^{G}=\mathrm{Ind}_{P}^{G}\circ\mathrm{Res}_{P}^{L}:\mathcal{D}_{L}(\mathcal{N}_{L},k)\rightarrow\mathcal{D}_{G}(\mathcal{N}_{G},k),$$

defined in the same way as for character sheaves:

$$\operatorname{Res}_{P}^{L}: \mathcal{D}_{L}(\mathcal{N}_{L}, k) \xrightarrow{\sim} \mathcal{D}_{P}(\mathcal{N}_{L}, k) \xrightarrow{(\cdot)^{*}} \mathcal{D}_{P}(\mathcal{N}_{P}, k),$$

$$\operatorname{Ind}_{P}^{G}: \mathcal{D}_{P}(\mathcal{N}_{P}, k) \xrightarrow{\sim} \mathcal{D}_{G}(G \times_{P} \mathcal{N}_{P}, k) \xrightarrow{(\cdot)_{!}} \mathcal{D}_{G}(\mathcal{N}_{G}, k).$$

Lemma (Lusztig when $\ell = 0$, [AHR] when $\ell > 0$)

 $I_{L \subset P}^{G}$ commutes with D and maps $\operatorname{Perv}_{L}(\mathcal{N}_{L}, k)$ to $\operatorname{Perv}_{G}(\mathcal{N}_{G}, k)$. It has left adjoint $\mathbf{R}_{L \subset P}^{G} = \operatorname{Ind}_{P}^{L} \circ \operatorname{Res}_{P}^{G}$ and right adjoint $\mathbf{R}_{L \subset P}^{G}$ where P^{-} denotes the opposite parabolic with the same Levi L. We say that a pair $(\mathcal{O}, \mathcal{E}) \in \mathfrak{N}_{G,k}$, or the corresponding $\mathrm{IC}(\mathcal{O}, \mathcal{E})$, is *cuspidal* if the following equivalent conditions hold:

- 1. $\mathbf{R}_{L\subset P}^{G}(\mathrm{IC}(\mathcal{O},\mathcal{E})) = 0$ for all $L \subset P \subsetneq G$;
- 2. IC(\mathcal{O}, \mathcal{E}) is not a quotient of $I_{L \subset P}^{G}(A)$ for any $L \subset P \subsetneq G$ and any $A \in \operatorname{Perv}_{L}(\mathcal{N}_{L}, k)$;
- 3. IC(\mathcal{O}, \mathcal{E}) is not a subobject of $\mathsf{I}_{L \subset P}^{G}(A)$ for any $L \subset P \subsetneq G$ and any $A \in \operatorname{Perv}_{L}(\mathcal{N}_{L}, k)$.

Remark

When $\ell = 0$, the Decomposition Theorem of [BBD] implies that if $A \in \operatorname{Perv}_L(\mathcal{N}_L, k)$ is simple, then $\mathbf{I}_{L \subset P}^G(A)$ is semisimple, so one can replace 'quotient'/'subobject' with 'summand'. Semisimplicity can fail if $\ell > 0$, and cuspidals **can** occur as constituents of $\mathbf{I}_{L \subset P}^G(A)$. This is analogous to modular representations of $G(\mathbb{F}_q)$ when $\ell \neq p$.

Lemma (Lusztig – same proof works for $\ell > 0$)

If $(\mathcal{O}, \mathcal{E})$ is cuspidal, \mathcal{O} is distinguished, *i.e.* meets no proper Levi.

Let $\mathfrak{M}_{G,k}$ be the set of *cuspidal data* $(L, \mathcal{O}_L, \mathcal{E}_L)$ where L is a Levi subgroup of G (take only one representative of each G-conjugacy class, allowing L = G) and $(\mathcal{O}_L, \mathcal{E}_L)$ is a cuspidal pair for L.

Proposition (Lusztig when $\ell = 0$, [AHJR] when $\ell > 0$)

For any $(L, \mathcal{O}_L, \mathcal{E}_L) \in \mathfrak{M}_{G,k}$, $\mathsf{I}_{L \subset P}^G(\mathrm{IC}(\mathcal{O}_L, \mathcal{E}_L))$ is independent of the parabolic P, and its head and socle are isomorphic.

Remark

The analogue for modular representations is by Geck-Hiss-Malle.

The *induction series* associated to $(L, \mathcal{O}_L, \mathcal{E}_L) \in \mathfrak{M}_{G,k}$ is the set of simple quotients (equivalently, subobjects) of $\mathbf{I}_{L \subset P}^G(\mathrm{IC}(\mathcal{O}_L, \mathcal{E}_L))$.

Lemma (Lusztig – same proof works for $\ell > 0$)

Any simple object $IC(\mathcal{O}, \mathcal{E})$ in $Perv_G(\mathcal{N}_G, k)$ belongs to the induction series associated to some $(L, \mathcal{O}_L, \mathcal{E}_L) \in \mathfrak{M}_{G,k}$ as above. (If $IC(\mathcal{O}, \mathcal{E})$ is cuspidal, then $(L, \mathcal{O}_L, \mathcal{E}_L) = (G, \mathcal{O}, \mathcal{E})$.)

The (modular) generalized Springer correspondence is:

Theorem (Lusztig when $\ell = 0$, [AHJR] when $\ell > 0$)

- 1. Induction series associated to different cuspidal data are disjoint: in other words, a given $IC(\mathcal{O}, \mathcal{E})$ belongs to the induction series associated to a unique $(L, \mathcal{O}_L, \mathcal{E}_L) \in \mathfrak{M}_{G,k}$.
- 2. The induction series associated to $(L, \mathcal{O}_L, \mathcal{E}_L)$ is canonically in bijection with the set of irreducible k-reps of $N_G(L)/L$.
- 3. Hence we have a bijection

$$\mathfrak{N}_{G,k}\longleftrightarrow \bigsqcup_{(L,\mathcal{O}_L,\mathcal{E}_L)\in\mathfrak{M}_{G,k}} \operatorname{Irr}(N_G(L)/L,k).$$

The proof will be discussed in the next lecture.

Remark

The analogue of 1 holds for modular representations of $G(\mathbb{F}_q)$ also; for the analogue of 2 one needs a *q*-deformed group algebra.

Background: the Springer correspondence

- In the mid-1970s, Springer gave a geometric construction of the irreducible Q_ℓ-reps of the Weyl group W = N_G(T)/T.
- As reformulated by Lusztig and Borho–Macpherson, this comes from an action of W on the semisimple perverse sheaf

$$\operatorname{Spr} = \mathsf{I}_{\mathcal{T} \subset \mathcal{B}}^{\mathcal{G}}(\underline{\overline{\mathbb{Q}_{\ell}}}_{0}) = \mu_{!} \underline{\overline{\mathbb{Q}_{\ell}}}[\operatorname{dim} \mathcal{N}_{\mathcal{G}}] \in \operatorname{Perv}_{\mathcal{G}}(\mathcal{N}_{\mathcal{G}}, \overline{\mathbb{Q}_{\ell}}),$$

where $\mu : G \times_B \mathcal{N}_B \to \mathcal{N}_G$ is the Springer resolution of \mathcal{N}_G . The Springer correspondence is the resulting bijection

$$\begin{aligned} \{ \text{simple summands of } \operatorname{Spr} \} & \longleftrightarrow \operatorname{Irr}(W, \overline{\mathbb{Q}_{\ell}}) \\ \operatorname{IC}(\mathcal{O}, \mathcal{E}) & \mapsto \operatorname{Hom}_{\operatorname{Perv}_{\mathcal{G}}(\mathcal{N}_{\mathcal{G}}, \overline{\mathbb{Q}_{\ell}})}(\operatorname{Spr}, \operatorname{IC}(\mathcal{O}, \mathcal{E})). \end{aligned}$$

- ► Lusztig then found that this was the (L, O_L, E_L) = (T, 0, Q_ℓ) case of the generalized Springer correspondence, thus accounting for the IC(O, E)'s that are not summands of Spr.
- ► Juteau (2007) showed that the Springer correspondence holds with k instead of Q_ℓ and 'quotients' instead of 'summands'.

Example ($G = GL_n$, $W = S_n$)

- When ℓ = 0, |Irr(S_n, k)| = |P_n|, so every IC(O_λ, <u>k</u>) is a summand of Spr, i.e. the Springer correspondence for GL_n is already 'generalized'. In particular, GL_n does not have a cuspidal pair unless n = 1.
- ▶ When $\ell > 0$, James constructed the irreps D^{λ} of S_n over k, labelled by λ that are ℓ -regular (no part occurs $\geq \ell$ times). Under Juteau's correspondence, D^{λ} maps to $IC(\mathcal{O}_{\lambda t}, \underline{k})$ where λ^t is the transpose partition; so these are the simple quotients of Spr. (All simples occur as constituents of Spr.) The only distinguished orbit in \mathcal{N}_G is $\mathcal{O}_{(n)}$; we will see that

$$(\mathcal{O}_{(n)},\underline{\Bbbk})$$
 is cuspidal $\iff n$ is a power of ℓ .

So $\mathfrak{M}_{G,k}$ is essentially the set of Levis of the form $\prod_{i\geq 0} GL_{\ell^i}^{m_i}$, where m_i are nonnegative integers such that $\sum_{i\geq 0} m_i \ell^i = n$.

Example ($G = GL_n$, $\ell > 0$ continued)

For $L = \prod_{i \ge 0} GL_{\ell^i}^{m_i}$ such a Levi subgroup of GL_n , we have

$$N_G(L)/L \cong \prod_{i \ge 0} S_{m_i},$$

 $\operatorname{Irr}(N_G(L)/L, k) \leftrightarrow \prod_{i \ge 0} \{\ell \text{-regular } \lambda^{(i)} \vdash m_i\}.$

Under our correspondence, the collection $(\lambda^{(i)})$ maps to $\operatorname{IC}(\mathcal{O}_{\lambda}, \underline{k})$ where $\lambda = \sum_{i\geq 0} \ell^{i}(\lambda^{(i)})^{t}$. Note that $\operatorname{IC}(\mathcal{O}_{(n)}, \underline{k})$ occurs in the series of $L = \prod_{i\geq 0} GL_{\ell^{i}}^{b_{i}}$ where $\sum_{i\geq 0} b_{i}\ell^{i} = n$ and all $b_{i} < \ell$.

Remark

The above combinatorial correspondence is a simplified version of what appears in the analogous theory of induction series for modular representations of $GL_n(\mathbb{F}_q)$ (Dipper–Du).

Example ($G = G_2$, W dihedral of order 12)

- When ℓ = 0, |Irr(W, k)| = 6 < 7 = |𝔑_{G,k}|. The non-Springer pair is (G₂(a₁), 𝔅_{sign}), which must be cuspidal because the other proper Levi subgroups are both isomorphic to GL₂.
- When l = 2, |Irr(W, k)| = 2, and only IC(0, k) and IC(A₁, k) belong to Juteau's correspondence. The other series are:

$$\begin{array}{ll} (L \text{ of type } A_1, \mathcal{O}_{(2)}, \underline{k}), \ |N_G(L)/L| = 2: & \operatorname{IC}(A_1, \underline{k}), \\ (L \text{ of type } \widetilde{A_1}, \mathcal{O}_{(2)}, \underline{k}), \ |N_G(L)/L| = 2: & \operatorname{IC}(G_2(a_1), \mathcal{E}_{\operatorname{refln}}), \end{array}$$

leaving 2 cuspidal pairs, $(G_2(a_1), \underline{k})$ and (G_2, \underline{k}) .

The above GL_n and G_2 examples illustrate:

Theorem ([AHJR])

When $\ell > 0$, IC($\mathcal{O}_{reg}, \underline{k}$) belongs to the induction series associated to $(L, \mathcal{O}_{L, reg}, \underline{k})$ where L is minimal such that $\ell \nmid |W/W_L|$.