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Exact WKB analysis
Schroédinger equation:

d2
(d - Q(z)) Uz =0

where z is an complex variable, n = ™! > 0 is a large parameter.
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Exact WKB analysis
Schroédinger equation:

d2

( ekl Q(z)) Yiz,n) =

where z is an complex variable, n = ™! > 0 is a large parameter.
o WKB (Wentzel-Kramers-Brillouin) solutions:

alem) = e VODE N iy, )
n=0
In general, WKB solutions are divergent (i.e., formal solutions).

e Exact WKB analysis = WKB method + Borel resummation.

Sly.l(z,n) ~vi(z,m) asn — +oo

Monodromy/connection matrices of (Borel resummed) WKB solutions
are described by “Voros symbols”.

[Voros 83], [Sato-Aoki-Kawai-Takei 91], [Delabaere-Dillinger-Pham 93], ...



Cluster algebras (of rank n > 1)

e A cluster algebra [Fomin-Zelevinsky 02] is defined in terms of seeds.
e A seedis atriplet (B, x,y) where
* skew-symmetric integer matrix B = (b;;)
« cluster x-variables x = (x;)!,
« cluster y-variables y = (y)!,
These two variables satisfy y; = r; H?Zl(xj)bﬁ (r; : “coefficient”).

n
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Cluster algebras (of rank n > 1)

e A cluster algebra [Fomin-Zelevinsky 02] is defined in terms of seeds.

e A seedis atriplet (B, x,y) where
« skew-symmetric integer matrix B = (b,-j)zj:l
« cluster x-variables x = (x;)!,
« cluster y-variables y = (y)!,

These two variables satisfy y; = r; H;?:](xj)”ﬁ (r; : “coefficient”).

o A “signed” mutation at k € {1,...,n} with sign € € {£}:
(‘9) 1 (B,x,y) — (B',X,y) deflned by

b —[’),'/' l.:korj:k
h'. = ’
Y b,'_/' + [bik]+bkj + by [bk_/']+ otherwise.

xkl[ x el ](1+U) i=k ,_{yk_] i=k

A L ik
X; i # k.

Here [a]. = max(a,0). (The coefficients r; also mutate.)
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Results and Application [I-Nakanishi 14]

e Cluster algebraic structure appears in many contexts:
> representation of quivers
» Teichmdller theory
» hyperbolic geometry
> discrete integrable systems
» Donaldson-Thomas invariants and their wall-crossing
» supersymmetric gauge theory
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Results and Application [I-Nakanishi 14]

Cluster algebraic structure appears in many contexts:
> representation of quivers

Teichmdller theory

» hyperbolic geometry

> discrete integrable systems

» Donaldson-Thomas invariants and their wall-crossing

» supersymmetric gauge theory

>

Main result: We add Exact WKB analysis in the above list:

v

skew-symmetric matrix B <  Stokes graph
cluster variables < Voros symbols
cluster mutation < Stokes phenomenon (for  — o)
Application: Identities of Stokes automorphsims in the exact

WKB analysis (c.f., [Delabaere-Dillinger-Pham 93]) follow from
periodicity of corresponding cluster algebras.

Forexample: G, &,, = 6,,6,,,,,S,,

Generalized cluster algebras ([Chekhov-Shapiro 11]) also appear
when Schrédinger equation has a certain type of regular singularity. , .,
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Schrédinger equation and WKB solutions

e Schrédinger equation :

d2

d2
( -n Q(z)) U(z,n) =

n = k' large parameter

« ((z): rational function (“potential”)

x Assume that all zeros of Q(z) are of order 1,
and all poles of Q(z) are of order > 2.

(We may generalize Q = Qo(z) + 17 '01(2) + 172Q2(z) + -+ -

finite sum)
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Schrédinger equation and WKB solutions

e Schrédinger equation :

d2

d2
( -n Q(z)) U(z,n) =

n = k' large parameter
« ((z): rational function (“potential”)

x Assume that all zeros of Q(z) are of order 1,
and all poles of Q(z) are of order > 2.

(We may generalize Q = Qo(z) + 171 Q1(z) + 172Qa(2) + - - - : finite sum)

e WKB solutions (formal solution of 7! with exponential factor):

valem) = &M YOOE N oy L)

n=0

e WKB solutions are divergent in general: (| ,(2)| ~ CA"n!).



Borel resummation method
e Expansion of WKB solution:

Vet = Mo VEOE N by @) (@) ~ CATRY).
n=0
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Borel resummation method
e Expansion of WKB solution:
i [F VO Oy
Vet = Mo VEOE N by @) (@) ~ CATRY).

n=0
e The Borel sum of . (as a formal series of n~!):

SWsz‘fﬂwwmw@.
Fa(z

Here a(z) = [* VO@)dz' and

l//in(Z) n—1
+8(2, ) = . +a(z))" ? : Borel transform of v,
Ve (z,y ;HH%)@ a(2)) v
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Borel resummation method
e Expansion of WKB solution:
i [F VO Oy
Vet = Mo VEOE N by @) (@) ~ CATRY).

n=0
e The Borel sum of . (as a formal series of n~!):

S[ya] = f M 52, )dy.
Fa(z)

Here a(z) = [* VO@)dz' and

l//in(Z) n—1
+8(2, ) = . +a(z))" ? : Borel transform of v,
'pBZy nZ:‘;F(n+%)(y az) ‘7//

e Borel transform = termwise inverse Laplace transform:
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Borel resummation method
e Expansion of WKB solution:
i [F VO Oy
Vet = Mo VEOE N by @) (@) ~ CATRY).

n=0
e The Borel sum of . (as a formal series of n~!):

S[ya] = f M 52 ).
Fa(z)

Here a(z) = [* VO@)dz' and

l//in(Z) n—1
+8(2, ) = . +a(z))" ? : Borel transform of v,
lﬁBZy nZ:‘;F(n_’_%)(y az) l//

e Borel transform = termwise inverse Laplace transform:

00 a—1
(c.f. n :L e‘y”l)i(a/)dy if Re @ > 0.

o If the Borel sums S[y..] are well-defined, they give analytic solutions
of the Schédinger equation and S[y.] ~ . when n — +oo.
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Stokes graph and Stokes segent

e Stokes graph:
« \ertices: turning points (i.e., zeros of Q(z)) and singular points.
« Edges: Stokes curves emanating from turning points.
(real one-dimensional curves defined by Im [* VO(z))dz’ = const.)

Stokes curves are trajectories of the quadratic differential Q(z)dz®2.

_@=2E-3)
0@ =z 0() = 2z + 1)z +i). 0= 17



Stokes graph and Stokes segent

e Stokes graph:
« \ertices: turning points (i.e., zeros of Q(z)) and singular points.
« Edges: Stokes curves emanating from turning points.
(real one-dimensional curves defined by Im [* VO(z))dz’ = const.)

Stokes curves are trajectories of the quadratic differential Q(z)dz®2.

) A O

)
0@) = z. 0(@) = 2z + D(z + ). zz(z - 1)2 :

e Stokes segment is a Stokes curve connecting
turning points (= saddle trajectory of 0(2)dz®?).

Q@) =1-7.
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Stokes graph and Stokes segent

e Stokes graph:
« \ertices: turning points (i.e., zeros of Q(z)) and singular points.
« Edges: Stokes curves emanating from turning points.
(real one-dimensional curves defined by Im [* VO(z))dz’ = const.)

Stokes curves are trajectories of the quadratic differential Q(z)dz®2.

) A O

-29E-3)
0@) = z. 0(@) = 2z + D(z + ). zz(z —12

e Stokes segment is a Stokes curve connecting
turning points (= saddle trajectory of 0(2)dz®?).

e Stokes graph is said to be saddle-free if it doesn’t

contain Stokes segments. 05 =1-2.
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Stokes graph and Borel summability

Theorem (Koike-Schafke)
Suppose that the Stokes graph is saddle-free. Then,
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Stokes graph and Borel summability

Theorem (Koike-Schafke)
Suppose that the Stokes graph is saddle-free. Then,

e .(z,n) are Borel summable (as a formal series of n~!) on each
Stokes region (= a face of the Stokes graph).




Stokes graph and Borel summability

Theorem (Koike-Schafke)
Suppose that the Stokes graph is saddle-free. Then,
e . (z,n) are Borel summable (as a formal series of 7!) on each
Stokes region (= a face of the Stokes graph).

e The Borel sums S[y.](z, ) give analytic (in both z and ) solutions of
the Schrédinger equation on each Stokes region satisfying

Sl:1(z,n) ~ ¥(z,m) as n — +oo.




Voros symbols
Again suppose that the Stokes graph is saddle-free. Then,
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Voros symbols
Again suppose that the Stokes graph is saddle-free. Then,
e An explicit connection formula for (Borel resummed) WKB solutions
on Stokes curves emanating from a turning point of order 1 ([Voros
83], [Aoki-Kawai-Takei 91]).
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Voros symbols
Again suppose that the Stokes graph is saddle-free. Then,
e An explicit connection formula for (Borel resummed) WKB solutions
on Stokes curves emanating from a turning point of order 1 ([Voros
83], [Aoki-Kawai-Takei 91]).
e Connection formulas and monodromy matrices of WKB solutions are
written by (the Borel sum of) Voros symbols "™ and ¢"»P, where

W) = fﬁ (Soaa(zm) —nV0Q@)dz, V() = 56 S odd (2, M)z

Y
(c.f., [Kawai-Takei 05, §3]). Here

d
> Sz = d—zlogwi(z,n) =+ny0() +---, and

1
Soaa(z.m) = 5 (S+(zm) = S-(2.n) =nvO@) + -

> B Hi(R,P;Z) ("path”), y € Hi(R;Z) (“cycle”).
R = Riemann surface of VQ(z), P = the set of poles of Q(2).
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Voros symbols
Again suppose that the Stokes graph is saddle-free. Then,
e An explicit connection formula for (Borel resummed) WKB solutions
on Stokes curves emanating from a turning point of order 1 ([Voros
83], [Aoki-Kawai-Takei 91]).
e Connection formulas and monodromy matrices of WKB solutions are
written by (the Borel sum of) Voros symbols "™ and ¢"»P, where

W) = fﬁ (Soaa(zm) —nV0Q@)dz, V() = Sﬁsodd@,n)dz.

Y
(c.f., [Kawai-Takei 05, §3]). Here

d
> Sz = d—zlogwi(z,n) =+ny0() +---, and

1
Soaa(z.m) = 5 (S+(zm) = S-(2.n) =nvO@) + -

> B Hi(R,P;Z) ("path”), y € Hi(R;Z) (“cycle”).
R = Riemann surface of VQ(z), P = the set of poles of Q(2).

e Voros symbols ¢ and ¢ (for any path 8 and any cycle y) are

Borel summable if the Stokes graph is saddle-free. o



Mutation of Stokes graphs

Go
(The figure describes a part of Stokes graph.)

e Suppose that the Stokes graph Gy has a Stokes segment.
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Mutation of Stokes graphs

Go
(The figure describes a part of Stokes graph.)

e Suppose that the Stokes graph Gy has a Stokes segment.

e Consider the S '-family of the potential: 0¥ (z) = ¢*?Q(z) (0 € R).

Gy : Stokes graph for 0 (z2).
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Mutation of Stokes graphs

Gys Go G5
(The figure describes a part of Stokes graph.)
Suppose that the Stokes graph Gy has a Stokes segment.
Consider the S '-family of the potential: 0¥ (z) = ¢*?Q(z) (6 € R).
Gy : Stokes graph for 0 (z2).

For any sufficiently small 6 > 0, G.;s are saddle-free since the
existence of the Stokes segment implies

Vv Q(Z)dz € R;r;()

S !-action causes a “mutation of Stokes graphs” (= a discontinuous
change of topology of Stokes graphs caused by a Stokes segment).

11/22
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DDP’s jump formula of Voros symbols

Gys Go G-s
e Suppose that Gy has a Stokes segment connecting two distinct
turning points, and no other Stokes segments.
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DDP’s jump formula of Voros symbols

Gys Go G-s
e Suppose that Gy has a Stokes segment connecting two distinct
turning points, and no other Stokes segments.

©)
o Let S[e"s 1, S[¢""] be the Borel sum of Voros symbols for 0)(z) and

Si[ewﬁ] = Gl—ig—lo S[eWéﬂ)]’ Si[evy] = gl_ig.l()S[eV}(,g)]'
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DDP’s jump formula of Voros symbols

Yo

Gys Go G-s
e Suppose that Gy has a Stokes segment connecting two distinct
turning points, and no other Stokes segments.

o Let S[eW/(fG)], Sle"+ ] be the Borel sum of Voros symbols for 0®(z) and

Sl := eli‘EOS[eWEH)], Sale"):= Jim Sle™].

Theorem (Delabaere-Dillinger-Pham 93)
S_[e"] = S, [e"](1 + S, [e"0]) V0B,
S_[e"7] = S:[€"](1 + Sy [e"0])~ Yo7,

Here (, ) is the intersection form (normalized as (x-axis, y-axis) = +1), and
vo is the cycle around the Stokes segment oriented as §y . VO(z)dz € R.

v
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DDP’s jump formula of Voros symbols

Yo

Gys Go G-s
e Suppose that Gy has a Stokes segment connecting two distinct
turning points, and no other Stokes segments.

o Let S[eW/(fG)], Sle"+ ] be the Borel sum of Voros symbols for 0®(z) and

Sl := elifi‘os[e‘”f)], Sale"):= Jim Sle™].

Theorem (Delabaere-Dillinger-Pham 93)
S_[e"] = S, [e"](1 + Sy [e¥0])~ 0P,
S_[e"7] = S:[€"](1 + Sy [e"0])~ Yo7,

Here (, ) is the intersection form (normalized as (x-axis, y-axis) = +1), and
vo is the cycle around the Stokes segment oriented as §y . VO(z)dz € R.

v

e This formula describes the Stokes phenomenon for Voros symbolgé ,
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Dictionary

Exact WKB analysis I Cluster algebras
saddle-free Stokes graph skew-symmetric matirx B
mutation of Stokes graphs mutation of B

(Borel sum of) Voros symbol e cluster x-variable x;
(Borel sum of) Voros symbol ¢ cluster y-variable y;
EERCEE coefficient r;
Stokes phenomenon for Voros symbols || mutation of cluster variables

Wytn) = fﬁ (St = 13Q@) e Vo) = b Seaa(z. )z

Y

, —b,',' i:kor_/':k
h.. = !
Y bij + [bil+bij + bi[bijl+  otherwise.

Jj=1 Yi ).i_\_k[sbk,h(] + ),kg)—hk, i # k.
Xi i+ k.

n
_— - [=ebji ]+ € P — -1 ¢ _
Xx X J 1+y®) i=k y, i=k
X = [ J ] : V= K

(lals = max(a,0) and y; = r; [T, (x))"".)
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Stokes graph ~ Skew-symmetric matrix
o A saddle-free Stokes graph

Stokes graph
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Stokes graph ~ Skew-symmetric matrix

e A saddle-free Stokes graph ~» A triangulated surface:
(Three Stokes curve emanate from an order 1 turning point.)
[Gaiotto-Moore-Neitzke 09]

Stokes graph Triangulated surface
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Stokes graph ~» Skew-symmetric matrix

e A saddle-free Stokes graph ~» A triangulated surface:
(Three Stokes curve emanate from an order 1 turning point.)
[Gaiotto-Moore-Neitzke 09]

e A triangulated surface ~» A quiver [Fomin-Shapiro-Thurston 08]:
« Put vertices on edges of triangulation.
« Draw arrows on each triangle in clockwise direction.
« Remove vertices on “boundary edges” together with attached arrows.
(boundary / internal edge < digon-type / rectangular Stokes region)

¥ N
Stokes graph Triangulated surface QUiVer
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Stokes graph ~» Skew-symmetric matrix

e A saddle-free Stokes graph ~» A triangulated surface:
(Three Stokes curve emanate from an order 1 turning point.)
[Gaiotto-Moore-Neitzke 09]
e A triangulated surface ~» A quiver [Fomin-Shapiro-Thurston 08]:
« Put vertices on edges of triangulation.
« Draw arrows on each triangle in clockwise direction.

« Remove vertices on “boundary edges” together with attached arrows.
(boundary / internal edge < digon-type / rectangular Stokes region)

Stokes graph Triangulated surface " Quiver
o A quiver ~» A skew-symmetric matrix B = (b;)} ., by
b;; = (# of arrows o; — o) — (# of arrows o; — o,)

(Assign labels i € {1,..., n} to rectangular Stokes regions.) o



Muation of Stokes graph and quiver mutation
o S'-family of potentials: 0 (z) = €*?Q(z).
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Muation of Stokes graph and quiver mutation

e S'-family of potentials: 0 (z) = €??Q(z).

e Mutation of Stokes graph ~» Quiver mutation at k-th vertex:
(k = label of Stokes region which “degenerates” to a Stokes segment

under the mutation of Stokes graph)

N~ o

N T e - _

=0 C—
, e
N
/l \ !
\ \
, O\
' N

Gis

B - _ -9

N r -, N e
I

\ \\ ! \ / ‘

N i ~ 4

| N I ~ / I

7
x ! ! P
° i ® 4

-
al

(Figures describes a part of Stokes graphs.)
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Muation of Stokes graph and quiver mutation
o S'-family of potentials: 0 (z) = €*?Q(z).
e Mutation of Stokes graph ~» Quiver mutation at k-th vertex:

(k = label of Stokes region which “degenerates” to a Stokes segment
under the mutation of Stokes graph)

N

N T e - _

@ < ——
I N °
I \ !
\ |
I \ !
! \
. N

Gis

\ - R a
“ \ } / \ // |
\ / \ [

| \ 7
| \ I \ 7 |
[ ) o | Hi _‘.——V*

-
al

(Figures describes a part of Stokes graphs.)
e Quiver muation is compatible with mutation of B-matix:

, )by
Y {bij + [Di]+bij + bi[by 1+

i=korj=k
-/ ([al, = max(a, 0))
otherwise.
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Dictionary (again)

Exact WKB analysis I Cluster algebras
saddle-free Stokes graph skew-symmetric matirx B
mutation of Stokes graphs mutation of B

(Borel sum of) Voros symbol e cluster x-variable x;
(Borel sum of) Voros symbol ¢ cluster y-variable y;
EERCEE coefficient r;
Stokes phenomenon for Voros symbols || mutation of cluster variables

Wytn) = fﬁ (St = 13Q@) e Vo) = b Seaa(z. )z

Y

, —b,',' i:kor_/':k
h.. = !
Y bij + [bil+bij + bi[bijl+  otherwise.

J=1 Ji ).i_\.kisbmh(] +)’k8)7hk’ i+ k.
Xi i+ k.

n
_— - [=ebji ]+ € P — -1 ¢ _
Xx X J A+y° i=k y, i=k
¥ = [ 7 ) N

(lals = max(a,0) and y; = r; [T, (x))"".)
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Simple paths and simple cycles

e For a saddle-free Stokes graph, label horizontal strips
(= rectangular Stokes regions) as Dy, ..., D,.

e n = the number of horizontal strips.

e For each D; we associate a path §; (called “simple path”) and a cycle
vi (called “simple cycle”) on the Riemann surface of VO(2).

« The simple path g, is oriented so that the function Re (fz \/Q(z)dz)
increases along the positive direction of §;.
« The orientation of the simple cycle y; is given so that (y;, 8;) = +1.

Lemma - .
— Yi= > biB; (i=1,....n).
J=1
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Voros symbols for simple path and simple cycles

e Fix a sign ¢ € +. Suppose that the saddle-free Stokes graphs
G = G, and G’ = G_,; are related by the “signed mutation” {:
(+)

Gife=+ — / Gife=+
Gifs=— — Gife=—
u \
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Voros symbols for simple path and simple cycles

e Fix a sign ¢ € +. Suppose that the saddle-free Stokes graphs
G = G, and G’ = G_,; are related by the “signed mutation” {:
(+)

e Define the skew-symmetric matrix B (resp., B’), simple paths/cycles
B, (), (resp., (B, (y)L,) for G (resp., G’). We also set

xi=8 "], yi=S.[e], r=exp (ngg \/Q(z)dz).
Vi

N=S, [E‘Vﬁ}] . V=8, [e‘/y;] , 1l =exp (7756 \/Q(z)dz].
v

Gife=+ Gife=+

Gife=-

(Recall: S.[¢"#] = ehmOS[eW/(f)] etc, where

¢"" is the Voros symbol for 09(z) = e%°0(z). )
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Voros symbols as cluster variables
e Decomposition formula imples the following:

Proposition

n n
vi=n] Jeptn yi=A] @)% G=1,...,n).
j=1 Jj=1
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Voros symbols as cluster variables
e Decomposition formula imples the following:

Proposition

n n
vi=n] |@s =] @& (=10
j=1 j=1

e Under the mutation of Stokes graphs relevant to a Stokes segment
connecting two distinct simple turning points, the Borel sum of Voros
symbols mutate as cluster variables:

Main Theorem ([I-Nakanishi 14])

(&
k

, xk_][l—l x/'[_gb"]*](l+yk‘“’) i=k , {ykl i=k

In the signed muation y,”” of Stokes graphs, we have

1 Yi = ; el s
. ik Y (L4 o) it k.
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Proof of the main formula
The main theorem follows from the DDP formula and the following:

Proposition

P Zieil-ebiliB; i=k g =1 i=k
B i # k. " i+ [ebuliye i £k

Gife=+
G ife=-
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Proof of the main formula
The main theorem follows from the DDP formula and the following:

Proposition

B = B+ Xjol-ebpliB; i=k M i=k
B k. "y lebuleye i # K

X = Sl = S_e[ (") (ﬂ(ewﬁf)l dw)}

= S+g[ (n(ewﬁ,) —eble ) vm)ﬂn,ﬁw

= Xkl[l_[ el ](1+y§) (7 By = +1).

j=1

(DDP formula: yy = yy)
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Simple poles and generalized cluster algebras
We allow Q(z) to have a simple pole, and consider the following mutation:

« L &
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Simple poles and generalized cluster algebras
We allow Q(z) to have a simple pole, and consider the following mutation:

{4

e Stokes graph defines a triangulated orbifold. We can associate a
skew-symmetrizable matrix B: [Felikson-Shapiro-Tumarkin 12].
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Simple poles and generalized cluster algebras
We allow Q(z) to have a simple pole, and consider the following mutation:

{4

e Stokes graph defines a triangulated orbifold. We can associate a
skew-symmetrizable matrix B: [Felikson-Shapiro-Tumarkin 12].

e The Stokes phenomenon for Voros symbols is an example of
mutations in generalized cluster algebra [Chekhov-Shapiro 11]:

Theorem ([I-Nakanishi Il 14])

~1 - [=ebjel+ )2 —1\,,& 2€ 2 —
x,f:{x" ([T Y ara+rrngesp) i=k

j=1
Xi ! i # k,
, {Jk ] i=k
Y = " 2 e
Vi (yf’bk’]*) A+ @+ye+y2) " i#k

Here B = DB is skew-symmetric, and ¢ is defined from the characteristic
exponents at the simple pole attached to the Stokes segment.
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