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Basic notation

gar - untwisted affine Lie algebra over C

b.r C gar : Cartan subalgebra

AT C (har)* : positive affine roots

C =) icr, /@ € gar : canonical central element

o/, 1 € I,y = I U {0} : simple coroots

0 =) icr, Gi0% € AT : (primitive) null root

a;, t € I, = 1T U{0} : simple roots

P =} . ;Zw;: classical weight lattice

E;, F;, 1 € I, = I U {0} : Chevalley generators for g.¢

w; = A; —a/Ag, i € I : level-zero fundamental weights
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A;y 1 € I,s = T U {0} : affine fundamental weights
W = (r; |+ € I) : finite Weyl group

r;, ¢ € I : simple reflections

Wi =W x QV : affine Weyl group

vV __ V
Q¥ = ZiEI Lo,
QYT = ZiEI ZZOO‘;/

1
p=3 Z oa =) .., € P: Weyl vector
aEAT

AT C bh* : positive roots of the finite-dim. subalgebra g (C gar)

h C g : Cartan subalgebra



Semi-infinite Bruhat graph

02 (x), * € Wy : semi-infinite length, defined by

07 (wt,) = L(w) + 2(p, p)

for w € W and p € QV

Semi-infinite Bruhat graph is a A:f-labeled, directed graph

with vertex set W,s whose edges are of the form:
b +
r — rgr, & Wy, B8€ A,

with  £2 (rgx) = £2 (z) + 1.




For Ly Y S Waf7

def
<y <=

Fdirected path from x to y in the semi-infinite Bruhat graph;

r <oy <g> wg%y and x= £y



Semi-infinite LS paths

AE P, = Z ZLzowo; : level-zero dominant and regular
il

77:(2131 >§$2>%...>%w8;
0=ap<a;<--<as=1),

where x;, € Wy and ap € Q, is a semi-infinite LS path of shape \

if for all 1 < k < s — 1, there exists a directed path

3 Bi1 By B
Tp = Ys < Yp_1 & -0 = Y — Yo = Ty

with ap{yi—1\, B)) € Z (1 <1 < ¢t).

T\ | Lo\ | | T\ |wk+1)\| | €T\ |
| | | | | | |

|
|
O0=ap a1 a: ak—1 Qar Qgt1 As_1 a; =




Bz () : the set of all semi-infinite LS paths of shape A
B?(A) : connected component of B2 ()\) containing (e; 0 = ag, a; = 1)
For

n = (x; >%--->%ms;O:a0<a1<°--<as=1)GB%()‘)

above, we set

t(n) := x1 € Wy : initial direction of n,

k(n) := xs € Wy : final direction of 7.

Remark

Here, for simplicity of explanation, we have assumed that

A E Z L=oTo; (i.e., level-zero dominant and regular).
il



Extremal weight modules and their crystal bases

A= Z m;wo; € Py, m; € Z>¢ : level-zero dominant
icl

U,(gar) : quantum affine algebra

V() : extremal weight module of extremal weight A over U,(gar);
this is a module generated by a vector vy over U,(gar)

with the relation that v, is “extremal of weight A\” in the sense:
3{S’wfv)\}wewaf C V(A) such that

S.vy = vy, and such that for all w € Wy and 1 € I,

wh,aY
if (wA, ) > 0, then E;S,vs = 0 and F VS, vy = S,..,05,

(w, o)

if (wA, oY) <0, then F;S,v) =0 and Ei(_ i >)Swv>\ = Sr.wUx.



B(A) : crystal basis of V()

uy) € B(A) : extremal element corresponding to vy;
this element is “extremal of weight A\” in the following sense:
3{S’wu)\}wewaf C B(A\) such that

Seuy = u)y, and such that

if (wA, ) > 0, then e;S,uy = 0 and f;
if (wA, o)) <0, then f;S,uy =0 and e; i>Swu>\ = Sy, wlUx

for all w € Wy and © € 1.



Connected components of the crystal basis B(\)

A= Z m;wo; € Py, m; € Z>p : level-zero dominant
iel

V(A) : extremal weight module of extremal weight A over U,(gar)
vx € V(M) : (generating) extremal vector of weight A

U,(gar) : quantum affine algebra

U;(gaf) : positive part of U,(gar)

B(—00) 3 u_o : crystal basis of U (gar)

U, (gar) : negative part of U,(gar)

B(oc0) O us : crystal basis of US (gar)



B(A) : crystal basis of V()
uy € B(A) : extremal element corresponding to v,

Par()\) : the set of I-tuples ¢y = (p?);c; of partitions
such that the length of the partition p(® is < m; (Vi € I);

for ¢y = (p'V);er € Par(X), we set |co| := 2 icl 1],
where |p(¥| is the size of the partition p*) for i € I.

Par()\) : the set of I-tuples cy = (p?);c; of partitions
such that the length of the partitions p(® is < m; (Vi € I)
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Fact (Kashiwara, Beck-Nakajima)

As crystals,

B(A) C B(oo) ® {ma} ® B(—0).

Moreover, every extremal element in B(\) is connected to

an extremal element of the form:

SegUoo @ TA Q U_oo € B(00) ® {T\} ® B(—00),
for some ¢y = (p);c; € Par(\) (or, cg = (p)icr € Par(N));
also, we have

Sc_ouoo R R U_ = S;)’U)\ (mod q).
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Remark

The elements S.,, where ¢y = (p(i))ie 1 are I-tuples of partitions,
are the “purely imaginary” PBW-type basis elements in U q+ (gaf), and
S_ := SY, where the C(q)-algebra automorphism ¥ of U,(g.¢) is given
by

E/:=F, F :=E, (¢ =q"
and the C-algebra automorphism ™ of U,(gaf) is given by

Ei:=E;, F,:=F, q¢":=q" q:=q"
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Realization of the crystal B(\)

Assume that
A = Zmiwi € P, is such that m; = 0 (vz’ el).
icl

Theorem

We have an isomorphism

Py : B(A) S B2(N)

of crystals such that
PA(S U @ TA Q U_oc) =N

for all ¢y € Par(\).
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Here, for each ¢y € Par()), the element n® € B2 (\) is an extremal

element of the form:

’l’]c(’:(tgl,...,tgs_l, te, = e; 0 = ap, ceosas=1), s>1,

with & € QY (1 < k < s — 1), such that

Y,
&k — &k+1 € E L>o0,
el
ar(X\ o) YEZ

foralll1 < k< s—1; & := 0 by convention.
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Demazure submodules of V()

A=) ,cymiw; € P : level-zero dominant and regular
U, (gar) : negative part of U,(gar)

For each * € W,s, we set

Vo (A) := U; (8ar) Szva C V(A),

where S, vy € V() is an extremal vector of weight xA.

Remark

V. (A) 2V (zA) C V(xA).
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Fact (Kashiwara)

For each © € Wy, V. () has the crystal basis

B, (A) = (S;) H(B(zA) N (B(o0) ® Tar ® U_o0))

where S* : B(A) — B(z) is an isomorphism of crystals.

16



Characterization of B_ ()

Assume that A\ = Z m;w; € Py is such that m; 2 0 (i € I).
el

For each x € W, ¢, we set

B2,(\) = {n € BY(N) | k(n) 25 x}.

Theorem

For each x € Wy,
(B, (A) = BZ,.(N),

where &, : B(A\) = B2 ()\) is the isomorphism above of crystals.
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Relation with symmetric Macdonald polynomials

Assume that A\ = Z m;w; € Py is such that m; 2 0 (i € I).
iel
Write V7 () as:
Vo) = @ Vo Naers

YEQ
kGZZO

where Q = E L ; we set
el

gr-ch(V,-(A) i= 3 (dimegg) Vo (Aaiy_ro)e* g,

YEQ
keZZO
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Theorem

gr-ch(V,- (V) = —2eid 0
[[1[G—a)

with £ = e*™, where Py(x; g, 0) denotes the specialization

at t = 0 of the symmetric Macdonald polynomial Py(x;q,t).

Remark

Here we have used our previous result that the “graded character”
gr-ch(W,(A)) of the local Weyl module W,(A) (in the notation below)
is identical to the specialization Py(x; g~ !, 0) at t = 0 of the symmetric

Macdonald polynomial Py(x; g1, t).
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Remark

(the Ram-Yip formula)
The nonsymmetric Macdonald polynomial E, »(x; g, t) is equal to

the following:
deg(8;') 4(2p,— cl(B;)

Z wwt(PJ)tE(dir(pJ))(t—l . t)|J| HjEJ_ q

de VY, (2p,— cl(BY ’
- Hjej(l _gq 8(B1)4(2p,— cl(B; )))

where ps runs over specific finite sequences of elements in Wj,s corre-
sponding to certain finite sets J determined by A;

wt(ps) € P, dir(py) € W, cl(B;) € —AT and deg(B)) € Zz for j € J,
with J_ C J.

Also, note that Py\(z; g1, 0) = E,.A(x; g~ 1, 0).
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Relation with level-zero fundamental representations

Assume that A\ = Z m;w; € Py is such that m; 2 0 (i € I).
iel

For the unit element e € W, we set

We(A) := V(N Z Uq—(gaf)S(;),vA;
co€Par(A)\(0);er

recall that Par()) is the set of I-tuples cy = (p®);cr of partitions
such that the length of the partition p(® is < m; for all ¢ € I,

and S_ vy € V(A) is an extremal vector of weight A — |cold.

We denote the quotient map by

cl: V.o (A) - We(A).
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Remark W,(A) has the crystal basis

[neBE(N) | k(n) € W}

Now, for 7 = (1, ..., Ts; Aoy - .-, as) € B2(N), we set
cl(n) := (cl(x1), ..., cl(xs) ; ag, ..., as),

where cl : W, - W is a (surjective) homomorphism given by:
cl(wt,) =w forw e W, u€ Q.

Note that

{cl(n) | n € B{ (A) and £(n) € W}

= {cl(n) | n € BT(A)} =: B(A)a.
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Note

FOI'ZI?:’thEWafandﬁza_l_kéEA:f?

T i) rgx in the semi-infinite Bruhat graph if and only if

(1) k=0, w'la e AT, and £(wr,-1,) = £(w) + 1, or
(2) k=1, wla € AT, and £(wr,1,) = £(w) — 2{p, w(a¥)) + 1.

We set
B(A)a := {cl(n) | 1 € BZ (N},

the set of quantum LS paths of shape A.

Then, as a U,(g)-crystal, B(\). is isomorphic to

[n€Bi(\) | k(n) € W} C BE(N).
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Remark

As U,(g)-modules,

We(A) = ®iEI W(wi)@)mia

where

W (zo;) : i-th level-zero fundamental representation of U é(gaf);

U,(8) C U!(gar) = Uy((C[t, t'] ®c g) & Ce).
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Proposition

For the unit element e € W, the graded character gr-ch(W,(\))
of W,()\) is identical to the specialization E,_x(x; ¢g~', 0) at t = 0
of the nonsymmetric Macdonald polynomial E,_x(x; g~ !, t), where

w, € W denotes the longest element.

Remark

We have
Eu(z; g1, 0) = P\(z; g1, 0),

where w, € W is the longest element.
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Quantum Bruhat graph

QBG : quantum Bruhat graph associated with W and A™;
this is a labeled, directed graph with

vertex set W,

edges : ugv, u,v € W and B8 € AT,

where u ﬁ) v means that

(1) v = urg and £(v) = £(u) + 1 (Bruhat edge),
or
(2) v = urg and

L(v) = £(u) — 2(p,BY) + 1 (quantum edge).
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Specialization at ¢t = co of nonsymmetric Macdonald polynomials

Let A = ) ,.;m;w; € P, be level-zero dominant and regular,
i.e., m; =2 0 for all 7 € I.

For an edge u i v in the QBG, we set

0 (for a Bruhat edge),
(A, B3Y) (for a quantum edge).

wty(u — v) := {

Also, for u,v € W, we set
wti(u = v) : = wtr(ug — uq) + -+ - + wtr(ug—1 — ug),
by taking a shortest directed path
U=Uy —> UL —> " —> U1 —> U = V

in the QBG.
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For n € B(\)q of the form:
n = ('wla"'aws§o — Ao, A1y ... ,05 = 1)7
we set k(1) := ws € W, and
s—1
wt(n) 1= Z(ai—H — a;)w; 1A € P;
i=0

we also set

S
deg,, (1) := — Z a;wty(w;r1 = w;),
i=1
where ws1; := w, € W (the longest element in W).
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Now, we define:

geh, (B\)a) i= 3 glotus(memiin,
NEB(N)c1

Theorem

In the notation and setting above, we have

Eyo( ;5 g, 00) = gchy, (B(A)a)-
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Comparison with the specialization at t = 0

For n € B(\)q of the form:

n = (wy - ,ws0=ap,a1, -+ ,a; =1),
we set
s—1
Deg(n) := Z a;wty(w;11 = w;).
i=1
Remark
We have

deg,,(n) = —Deg(n) — wtx(w, = K(n)).
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Also, we set

gr-ch(B(\)q) := Z g~ Deemewtin)
NEB(A)c1

Theorem

In the notation and setting above, we have

gr-ch(B(\)a) = gr-ch(W,.(\)) = Eya(x; g1, 0).
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