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Plan B

(1) iSchur duality with Hecke algebra of type B

(2) iCanonical basis (iCB) of quantum coideal algebras

(*) (Almost Skipped) iCB character formula (=Kazhdan-Lusztig
theory) for category O of (super) type B

(3) Geometric realization via partial flag varieties of type B

(4) Positivity of iCB and transfer maps

Plan A (what I will not talk much):
(1) Jimbo (2) Lusztig-Kashiwara
(*) Brundan Conjecture 2002, Cheng-Lam-W Theorem 2012
(3) Beilinson-Lusztig-MacPherson 1990 (4) McGerty 2012
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Schur duality

• Let U = 〈Ei ,Fi ,K±1
i 〉 be the quantum group of type glN .

• ∃ a bar-involution on U such that q = q−1, E i = Ei , F i = Fi
and K i = K−1

i .

• Let V be the natural representation of U.
Then V⊗d is a U-module, via the coproduct ∆ : U→ U⊗ U.

• Let HSd = 〈Hi ,1 ≤ i ≤ d − 1〉 be Hecke algebra of type A.
There is a bar-involution on HSd such that H i = H−1

i .
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Schur duality

V⊗d
U HSd

• [Jimbo] Action of U via coproduct and action of HSd via
R-matrix on V⊗d form double centralizers.

• Schur-Jimbo duality is a decaf of category O of gl(d).
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iSchur duality

Motivation

Motivating problem: Develop a Kazhdan-Lusztig theory in
Category O of Lie superalgebras (osp), say of type B.

• The Hecke algebra of type Bd , HBd = 〈,HSd ,H0〉, acts
naturally on V⊗d :
if we choose the standard basis {vi} of V to run over indices of
the form [−a,a], then H0 acts on the first tensor factor by

H0 : vi 7→

{
v−i , if i > 0,
v−i + (q − q−1)vi , if i < 0.
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iSchur duality

A double centralizer question

• Question: What quantum algebra centralizes HBd ?

V⊗d
U HSd

HBdUı

• Idea behind: this (Uı,HBd )-duality (with this very HBd -action)
serves as a decaf of category O of so(2d + 1).
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iSchur duality

Quantum coideal subalgebras

• Uı comes in 2 forms, depending on the parity of N (ignore!)

• ∃ a presentation Uı = {ei , fi , ...}i>0, but “bad" Serre relations;

∃ an imbedding ı : Uı ↪→ U, e.g., ei → Ei + K−1
i F−i .

• Uı is a coideal subalgebra of U, i.e., ∆ : Uı → Uı ⊗ U.

• The algebra Uı admits a bar-involution ψı, ψı(ei) = ei , ...

(This bar map was independently noted by Ehrig-Stroppel)

• (U,Uı) is an example of quantum symmetric pairs [Noumi,
Letzter, Kolb] in different presentations
(the involution ı is rotation by 180 degrees).
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iSchur duality

iSchur duality

Theorem 1 (Bao-W2012)

The actions of Uı and HBm on V⊗m form double centralizers.
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Canonical basis

Canonical basis

• Let L(λ) be the simple U-module with h.wt. λ ∈ X+.

• L(λ) admits a bar-involution, which is compatible with the
bar-involution on U.

• [Lusztig, Kashiwara] L(λ) admit a canonical/crystal basis
(CB).

• Via ı : Uı → U, L(λ) becomes a Uı-module.
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Canonical basis

Quasi-R-matrix

• Lusztig’s quasi-R-matrix Θ is a variant of Drinfeld’s R-matrix.

• The coproduct ∆ : U→ U⊗ U does not commute with the bar
maps, i.e., ∆ 6= ∆.

• Θ intertwines the coproduct ∆ and ∆, i.e., Θ∆ = ∆Θ. iIt leads
to a bar-involution and CBs in tensor product U-module
L(λ1)⊗ · · · ⊗ L(λ`) [Lusztig].

• The bar map on Uı is not compatible with the bar map on U,
i.e., ı(ψı(u)) 6= ı(u),∀u (recall ei → Ei + K−1

i F−i ).

• One key theorem of [Bao-W] is the existence of Υ which
intertwines the imbedding ı : Uı → U and its bar-conjugate ı.

• This leads to a quasi-R-matrix Θı which intertwines
∆ : Uı → Uı ⊗ U and its bar-conjugate; Θı 6= Θ|Uı .
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i F−i ).

• One key theorem of [Bao-W] is the existence of Υ which
intertwines the imbedding ı : Uı → U and its bar-conjugate ı.

• This leads to a quasi-R-matrix Θı which intertwines
∆ : Uı → Uı ⊗ U and its bar-conjugate; Θı 6= Θ|Uı .
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ı-canonical bases in tensor products

Theorem 2 (Bao-W)
1 The Θı induces a bar involution ψı on the tensor product

Uı-module L(λ1)⊗ · · · ⊗ L(λ`), and in particular on L(λ).
2 This tensor module admits an ı-canonical basis (iCB),

which is ψı-invariant and whose transition matrix to
Lusztig’s CB is uni-upper-triangular with coeff. in qZ[q].
In particular, L(λ) admits an iCB.

• The three bar-involutions Uı � V⊗d 	 HBd are all compatible:

ψı(uMh) = ψı(u)ψı(M)h̄, for u ∈ Uı,M ∈ V⊗d ,h ∈ HBd .



ISCHUR DUALITY ICANONICAL BASIS GEOMETRIC REALIZATION CANONICAL BASIS, II

Canonical basis

ı-canonical bases in tensor products

Theorem 2 (Bao-W)
1 The Θı induces a bar involution ψı on the tensor product

Uı-module L(λ1)⊗ · · · ⊗ L(λ`), and in particular on L(λ).
2 This tensor module admits an ı-canonical basis (iCB),

which is ψı-invariant and whose transition matrix to
Lusztig’s CB is uni-upper-triangular with coeff. in qZ[q].
In particular, L(λ) admits an iCB.

• The three bar-involutions Uı � V⊗d 	 HBd are all compatible:

ψı(uMh) = ψı(u)ψı(M)h̄, for u ∈ Uı,M ∈ V⊗d ,h ∈ HBd .



ISCHUR DUALITY ICANONICAL BASIS GEOMETRIC REALIZATION CANONICAL BASIS, II

Canonical basis

ı-canonical bases in tensor products

Theorem 2 (Bao-W)
1 The Θı induces a bar involution ψı on the tensor product

Uı-module L(λ1)⊗ · · · ⊗ L(λ`), and in particular on L(λ).
2 This tensor module admits an ı-canonical basis (iCB),

which is ψı-invariant and whose transition matrix to
Lusztig’s CB is uni-upper-triangular with coeff. in qZ[q].
In particular, L(λ) admits an iCB.

• The three bar-involutions Uı � V⊗d 	 HBd are all compatible:

ψı(uMh) = ψı(u)ψı(M)h̄, for u ∈ Uı,M ∈ V⊗d ,h ∈ HBd .



ISCHUR DUALITY ICANONICAL BASIS GEOMETRIC REALIZATION CANONICAL BASIS, II

Canonical basis

ı-canonical bases in tensor products

Theorem 2 (Bao-W)
1 The Θı induces a bar involution ψı on the tensor product

Uı-module L(λ1)⊗ · · · ⊗ L(λ`), and in particular on L(λ).
2 This tensor module admits an ı-canonical basis (iCB),

which is ψı-invariant and whose transition matrix to
Lusztig’s CB is uni-upper-triangular with coeff. in qZ[q].
In particular, L(λ) admits an iCB.

• The three bar-involutions Uı � V⊗d 	 HBd are all compatible:

ψı(uMh) = ψı(u)ψı(M)h̄, for u ∈ Uı,M ∈ V⊗d ,h ∈ HBd .



ISCHUR DUALITY ICANONICAL BASIS GEOMETRIC REALIZATION CANONICAL BASIS, II

Canonical basis

ı-canonical bases in tensor products

Theorem 2 (Bao-W)
1 The Θı induces a bar involution ψı on the tensor product

Uı-module L(λ1)⊗ · · · ⊗ L(λ`), and in particular on L(λ).
2 This tensor module admits an ı-canonical basis (iCB),

which is ψı-invariant and whose transition matrix to
Lusztig’s CB is uni-upper-triangular with coeff. in qZ[q].
In particular, L(λ) admits an iCB.

• The three bar-involutions Uı � V⊗d 	 HBd are all compatible:

ψı(uMh) = ψı(u)ψı(M)h̄, for u ∈ Uı,M ∈ V⊗d ,h ∈ HBd .



ISCHUR DUALITY ICANONICAL BASIS GEOMETRIC REALIZATION CANONICAL BASIS, II

Canonical basis

iCB 6= CB: examples

• Recall V has a standard basis {vi}i∈[−a,a], same as CB.

• The iCB of V is given by{
vi , if i ≥ 0,
vi + qv−i , if i < 0.

• Another example of iCB (blue parts are CB) in V⊗ V∗:

(v3/2 ⊗ v∗3/2 + qv1/2 ⊗ v∗1/2) + q(v1/2 ⊗ v∗−1/2 + qv3/2 ⊗ v∗−3/2)

• Note (2 levels of) positivity in above examples!
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iCB 6= CB, again

• The standard divided power is e(n) = en

[n]! .

• Here are some new “divided powers" in a coideal algebra
setting when N is even: for a ≥ 1,

t〈2a〉 =
t(t − [2− 2a])(t − [4− 2a]) · · · (t − [2a− 4])(t − [2a− 2])

[2a]!
,

t〈2a+1〉 =
(t − [−2a])(t − [2− 2a]) · · · (t − [2a− 2])(t − [2a])

[2a + 1]!
.

• These formulas encode the KL polynomials of Hermitian

symmetric pair (Bn,An−1).
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Application: Kazhdan-Lusztig theory of (super) type B

The iCB on V⊗m ⊗ (V∗)⊗n can be expanded with respect to the
simple tensor basis, with coefficients t ıλµ(q) ∈ Z[q].

Theorem 3
1 (Positivity) t ıλµ(q) ∈ Z≥0[q];
2 The polynomials t ıλµ(q) are KL polynomials for BGG

category O of the ortho-symplectic Lie superalgebra
osp(2m + 1|2n). (Take N =∞.)
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Remarks on CB/KL character formula

Why CB (re)formulation for Kazhdan-Lusztig theories?

•Weyl group/Hecke algebra do not control linkage in super O

• Motivation from a formulation of CB character formula for
gl(m|n) (Brundan conjecture 2002, Cheng-Lam-W Theorem
2012) – no new CB is needed

• n = 0. an iCB reformulation of KL conjecture for so2m+1
(Theorem of Beilinson-Bernstein, Brylinski-Kashiwara).

• iCB for V (e.g. v−i + qvi for i > 0) corresponds to tilting
modules for so3

∼= sl2.
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An intermediate summary

• ∃ iSchur duality between Uı and Hecke algebra of type B.

• ∃ new Canonical bases (iCB) for (tensor) modules of Uı

(Uı is not a Drinfeld-Jimbo quantum group).

• iCB allows to formulate a KL theory for the ortho-symplectic
Lie superalgebras, an open problem since 1970’s.

• Recall KL theory [of type B] has much to do flag varieties [of
type B] ...
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Geometric setting

• There is a geometric construction of U̇q(glN) and CB on
U̇q(glN) using partial flag varieties of type A.
[Beilinson-Lusztig-McPherson 1990]

• There is a geometric realization of Schur-Jimbo duality
between U̇q(glN) and HSd [Grojnowski-Lusztig1992]

• (Old) Question: What is the quantum algebras (and duality)
behind partial flag varieties of classical type?

Answers (2014):
[Bao-Kujawa-Yiqiang Li-W] type B and C.
[Zhaobing Fan-Yiqiang Li] type D.
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ıSchur duality recalled

Recall iSchur duality

Uı � Sı
d � V⊗d 	 HBd .

Here Sı
d := EndHBd

(V⊗d ) is a q-Schur-type algebra.
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Type B flag varieties

Set N = 2n + 1, D = 2d + 1. Let q be an odd prime power.
• Fix a non-degenerate symmetric bilinear form Q on FD

q .

• X : the variety of N-step isotropic flags (i.e. V−i = V⊥i ):
V = (0 = V−n−1 ⊆ · · · ⊆ V−1 ⊆ V1 ⊆ · · · ⊆ Vn+1 = FD

q )

• B: the complete flag variety of type Bd .

• O(D)-orbits on X ×X , X ×B and B×B are parameterized by
certain matrices (independent of q = |Fq|).
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Geometric duality

Convolution algebras

• AO(D)(X × X ): the space of O(D)-invariant A -valued
functions on X × X . (A = Z[q,q−1])

• Similarly define AO(D)(X ×B) and AO(D)(B×B).

• AO(D)(X × X ) and AO(D)(B×B) are A -algebras by
convolution products.

• The convolution products also produce the following duality
(i.e. double centralizing action):

AO(D)(X × X ) AO(D)(X ×B) AO(D)(B×B)	 �
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Geometric duality

The algebra Kı

Similar to [BLM90], we show

• Structure constants in AO(D)(X × X ) stabilize as D →∞,
which gives rise to a “limit" algebra Kı.

• ∃ a natural surjective algebra homomorphism φd :

Kı
φd
� AO(D)(X × X ) 	 AO(D)(X ×B).
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Geometric iSchur duality

Theorem 4 (Bao-Kujawa-Li-W2014)

Kı � AO(D)(X × X ) AO(D)(X ×B) AO(D)(B×B)	 �

U̇ı � Sı
d V⊗d HBd	 �

∼= [Iwahori]∼=∼=∼=

Here U̇ı is the modified (or idempotented) version of the coideal
subalgebra Uı. (Sloppy with notation on base change above.)

• Recall ı : Uı → U, ei 7→ Ei + K−1
i F−i . This embedding agrees

with geometry (another example of positivity!)
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iCanonical Basis of U̇ı

Facts:

• AO(D)(X × X ) admits a [geometric] bar involution and a
canonical basis with positivity {A}d , where A runs over

Ξd := {A ∈ MatN×N(Z≥0) | |A| = D = 2d + 1,Aı = A}

(Here ı denotes the involution of rotation by 180 degree.)

• The bar involutions stabilize as D →∞, and lifts to the
algebra Kı.

Recall Q(q)⊗ Kı ∼= U̇ı.

Theorem 5 (BKLW2014)

The algebra Kı, and hence U̇ı, admits a stably CB {A}, where
A ∈ Ξ̃ := {(aij) ∈ MatN×N(Z ) | aij ≥ 0 (i 6= j), |A| is odd}.
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iCanonical basis

Negativity of stably CB

• Recall for type A one has

U̇(slN) vs U̇(glN)

• (Recall N = 2n + 1.) ∃ 2 versions of modified coideal
algebras:

U̇ı(slN) vs U̇ı(glN) = U̇ı

• [Li-W15] The stably canonical basis of U̇(glN) does not have
positive structure constants;
Similar negativity for U̇ı(glN).
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Transfer map

The transfer map φıd+N,d : Sı
d+N → Sı

d is the composition

Sı
d+N

∼=−→ EndHBd+N
(V⊗(d+N))−→EndHBd

×HSN
(V⊗(d+N))

1⊗χ−→ EndHBd
(V⊗d )

∼=−→ Sı
d ,

where χ is a “sign" homomorphism.

The algebra U̇ı can be thought as an inverse limit of the family
{Sı

d}d≥1, i.e., ∃ homomorphism φd : U̇ı(slN)→ Sı
d , compatible

with the transfer map φıd+N,d .
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iCanonical basis

Positivity of iCB under a transfer map

Theorem 6 (Li-W15)
The transfer map sends each CB element to a sum of CB
elements with coefficients in Z≥0[q,q−1].

The transfer map does preserve CB of ıSchur algebras
asymptotically; cf. [McGerty12] in type A.

For A ∈ Ξd0 (recall |A| = 2d + 1), set 2pA := A + 2pI ∈ Ξd0+pN .

Theorem 7 (Li-W15)

For each A ∈ Ξd0 , we have φıd ,d−N({2pA}d ) = {2p−2A}d−N , for
p � 0 (where d = d0 + pN).
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iCanonical basis

Positivity again

The asymptotic property of transfer maps allows us to define
the canonical basis Bı(slN) for U̇ı(slN), parametrized by
A ∈ Ξ̃/ ∼, where the relation ∼ on Ξ̃ is defined by A ∼ A + 2I.

Theorem 8 (Li-W15)

The structure constants for the algebra U̇ı(slN) with respect to
the iCB Bı(slN) are in Z≥0[q,q−1].
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iCanonical basis

Positiivity again, and again

• The iCB Bı(slN) satisfies (and in turn is characterized by) the
almost orthonormality with respect to a geometric bilinear form.

• The geometric bilinear form is positive with respect to the iCB.

• Recall N = 2n + 1. We have U̇(sln) ⊂ U̇ı(slN), and that
Bı(slN) ∩ U̇(sln) is the CB of U̇(sln).

• The action of U̇(sln) (resp., the action of Sı
d ) on V⊗d with

respect to the corresponding iCB is positive.
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Summary

• ∃ new Canonical bases (iCB) for coideal algebra U̇ı and its
modules (Uı is not a Drinfeld-Jimbo quantum algebra.)

• Special cases of these iCB allow to formulate and solve KL
conjecture for osp(2m + 1|2n), an open problem since 1970’s.

• The U̇ı and iCB admit geometric realization, generalizing the
1990 BLM construction for type A.

• There are many different types of positivity for the iCB
(more conjectural than proven).
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iCanonical basis

One more thing

What is next

• iCanonical Bases for [a class of] quantum symmetric pairs

• Affinization of q-coideal algebras, iSchur duality, and iCB
(via classical type affine flag variety, Steinberg variety, ...)

• iCategorification

• Enhance the “locally type A" philosophy of Nakajima and
Khovanov-Lauda-Rouquier to “locally type A with involution" ?!

Thank You!
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