◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Positivity of canonical bases of quantum coideal algebras and geometry of flag varieties

Weiqiang Wang University of Virginia

Kyoto, 1/23/2015

ISCHUR DUALITY

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References

[Bao-W] A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs, arXiv:1310.0103.

[Bao-Kujawa-Yiqiang Li-W] *Geometric Schur duality of classical type*, arXiv:1404.4000v2.

[Li-W] *Positivity vs negativity of canonical bases*, arXiv:1501.00688.

Plan B

- (1) iSchur duality with Hecke algebra of type B
- (2) iCanonical basis (iCB) of quantum coideal algebras
- (*) (Almost Skipped) iCB character formula (=Kazhdan-Lusztig theory) for category \bigcirc of (super) type B
- (3) Geometric realization via partial flag varieties of type B
- (4) Positivity of iCB and transfer maps

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	Canonical basis, II 00000000
Plan R			

(1) iSchur duality with Hecke algebra of type B

(2) iCanonical basis (iCB) of quantum coideal algebras

(*) (Almost Skipped) iCB character formula (=Kazhdan-Lusztig theory) for category 0 of (super) type B

(3) Geometric realization via partial flag varieties of type B

(4) Positivity of iCB and transfer maps

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II
Plan B			

(1) iSchur duality with Hecke algebra of type B

(2) iCanonical basis (iCB) of quantum coideal algebras

(*) (Almost Skipped) iCB character formula (=Kazhdan-Lusztig theory) for category 0 of (super) type B

- (3) Geometric realization via partial flag varieties of type B
- (4) Positivity of iCB and transfer maps

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	Canonical basis, II 00000000
Plan B			

- (1) iSchur duality with Hecke algebra of type B
- (2) iCanonical basis (iCB) of quantum coideal algebras
- (*) (Almost Skipped) iCB character formula (=Kazhdan-Lusztig theory) for category ① of (super) type B
- (3) Geometric realization via partial flag varieties of type B
- (4) Positivity of iCB and transfer maps

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	Canonical basis, II 00000000
Plan B			

- (1) iSchur duality with Hecke algebra of type B
- (2) iCanonical basis (iCB) of quantum coideal algebras
- (*) (Almost Skipped) iCB character formula (=Kazhdan-Lusztig theory) for category ① of (super) type B
- (3) Geometric realization via partial flag varieties of type B
- (4) Positivity of iCB and transfer maps

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II
Plan B			

- (1) iSchur duality with Hecke algebra of type B
- (2) iCanonical basis (iCB) of quantum coideal algebras
- (*) (Almost Skipped) iCB character formula (=Kazhdan-Lusztig theory) for category ① of (super) type B
- (3) Geometric realization via partial flag varieties of type B
- (4) Positivity of iCB and transfer maps

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	Canonical basis, II
Plan B			

- (1) iSchur duality with Hecke algebra of type B
- (2) iCanonical basis (iCB) of quantum coideal algebras
- (*) (Almost Skipped) iCB character formula (=Kazhdan-Lusztig theory) for category ① of (super) type B
- (3) Geometric realization via partial flag varieties of type B
- (4) Positivity of iCB and transfer maps
- Plan A (what I will not talk much):
- (1) Jimbo (2) Lusztig-Kashiwara
- (*) Brundan Conjecture 2002, Cheng-Lam-W Theorem 2012
- (3) Beilinson-Lusztig-MacPherson 1990 (4) McGerty 2012

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	Canonical basis, II
Plan B			

- (1) iSchur duality with Hecke algebra of type B
- (2) iCanonical basis (iCB) of quantum coideal algebras
- (*) (Almost Skipped) iCB character formula (=Kazhdan-Lusztig theory) for category ① of (super) type B
- (3) Geometric realization via partial flag varieties of type B
- (4) Positivity of iCB and transfer maps

Plan A (what I will not talk much):

- (1) Jimbo (2) Lusztig-Kashiwara
- (*) Brundan Conjecture 2002, Cheng-Lam-W Theorem 2012 (3) Beilinson-Lusztig-MacPherson 1990 (4) McGerty 2012

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	Canonical basis, II
Plan B			

- (1) iSchur duality with Hecke algebra of type B
- (2) iCanonical basis (iCB) of quantum coideal algebras
- (*) (Almost Skipped) iCB character formula (=Kazhdan-Lusztig theory) for category ① of (super) type B
- (3) Geometric realization via partial flag varieties of type B
- (4) Positivity of iCB and transfer maps
- Plan A (what I will not talk much):
- (1) Jimbo (2) Lusztig-Kashiwara
- (*) Brundan Conjecture 2002, Cheng-Lam-W Theorem 2012 (3) Beilinson-Lusztig-MacPherson 1990 (4) McGerty 2012

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II
Plan B			

- (1) iSchur duality with Hecke algebra of type B
- (2) iCanonical basis (iCB) of quantum coideal algebras
- (*) (Almost Skipped) iCB character formula (=Kazhdan-Lusztig theory) for category ① of (super) type B
- (3) Geometric realization via partial flag varieties of type B
- (4) Positivity of iCB and transfer maps
- Plan A (what I will not talk much):
- (1) Jimbo (2) Lusztig-Kashiwara
- (*) Brundan Conjecture 2002, Cheng-Lam-W Theorem 2012
- (3) Beilinson-Lusztig-MacPherson 1990 (4) McGerty 2012

Schur duality

• Let $\mathbf{U} = \langle E_i, F_i, K_i^{\pm 1} \rangle$ be the quantum group of type \mathfrak{gl}_N .

• \exists a bar-involution on **U** such that $\overline{q} = q^{-1}$, $\overline{E}_i = E_i$, $\overline{F}_i = F_i$ and $\overline{K}_i = K_i^{-1}$.

• Let \mathbb{V} be the natural representation of **U**. Then $\mathbb{V}^{\otimes d}$ is a **U**-module, via the coproduct $\Delta : \mathbf{U} \to \mathbf{U} \otimes \mathbf{U}$.

• Let $H_{S_d} = \langle H_i, 1 \leq i \leq d-1 \rangle$ be Hecke algebra of type *A*. There is a bar-involution on H_{S_d} such that $\overline{H}_i = H_i^{-1}$.

Schur duality

- Let $\mathbf{U} = \langle E_i, F_i, K_i^{\pm 1} \rangle$ be the quantum group of type \mathfrak{gl}_N .
- \exists a bar-involution on **U** such that $\overline{q} = q^{-1}$, $\overline{E}_i = E_i$, $\overline{F}_i = F_i$ and $\overline{K}_i = K_i^{-1}$.

Let V be the natural representation of U.
 Then V^{⊗d} is a U-module, via the coproduct ∆ : U → U ⊗ U.

• Let $H_{S_d} = \langle H_i, 1 \leq i \leq d-1 \rangle$ be Hecke algebra of type *A*. There is a bar-involution on H_{S_d} such that $\overline{H}_i = H_i^{-1}$.

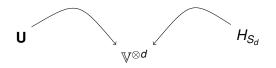
Schur duality

- Let $\mathbf{U} = \langle E_i, F_i, K_i^{\pm 1} \rangle$ be the quantum group of type \mathfrak{gl}_N .
- \exists a bar-involution on **U** such that $\overline{q} = q^{-1}$, $\overline{E}_i = E_i$, $\overline{F}_i = F_i$ and $\overline{K}_i = K_i^{-1}$.
- Let V be the natural representation of U.
 Then V^{⊗d} is a U-module, via the coproduct Δ : U → U ⊗ U.
- Let $H_{S_d} = \langle H_i, 1 \leq i \leq d-1 \rangle$ be Hecke algebra of type *A*. There is a bar-involution on H_{S_d} such that $\overline{H}_i = H_i^{-1}$.

Schur duality

- Let $\mathbf{U} = \langle E_i, F_i, K_i^{\pm 1} \rangle$ be the quantum group of type \mathfrak{gl}_N .
- \exists a bar-involution on **U** such that $\overline{q} = q^{-1}$, $\overline{E}_i = E_i$, $\overline{F}_i = F_i$ and $\overline{K}_i = K_i^{-1}$.
- Let V be the natural representation of U.
 Then V^{⊗d} is a U-module, via the coproduct Δ : U → U ⊗ U.
- Let $H_{S_d} = \langle H_i, 1 \leq i \leq d-1 \rangle$ be Hecke algebra of type *A*. There is a bar-involution on H_{S_d} such that $\overline{H}_i = H_i^{-1}$.

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	Canonical basis, II 00000000
Schur duality			



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• [Jimbo] Action of **U** via coproduct and action of H_{S_d} via *R*-matrix on $\mathbb{V}^{\otimes d}$ form double centralizers.

• Schur-Jimbo duality is a decaf of category O of $\mathfrak{gl}(d)$.

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II
Schur duality	,		

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• [Jimbo] Action of **U** via coproduct and action of H_{S_d} via *R*-matrix on $\mathbb{V}^{\otimes d}$ form double centralizers.

• Schur-Jimbo duality is a decaf of category \mathcal{O} of $\mathfrak{gl}(d)$.

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II
Schur duality	/		

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- [Jimbo] Action of **U** via coproduct and action of H_{S_d} via *R*-matrix on $\mathbb{V}^{\otimes d}$ form double centralizers.
- Schur-Jimbo duality is a decaf of category \mathcal{O} of $\mathfrak{gl}(d)$.

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II
iSchur duality			
Motivation			

Motivating problem: Develop a Kazhdan-Lusztig theory in Category \bigcirc of Lie superalgebras (\mathfrak{osp}), say of type B.

• The Hecke algebra of type B_d , $H_{B_d} = \langle, H_{S_d}, H_0 \rangle$, acts naturally on $\mathbb{V}^{\otimes d}$:

if we choose the standard basis $\{v_i\}$ of \mathbb{V} to run over indices of the form [-a, a], then H_0 acts on the first tensor factor by

$$H_0: v_i \mapsto \begin{cases} v_{-i}, & \text{if } i > 0, \\ v_{-i} + (q - q^{-1})v_i, & \text{if } i < 0. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Motivating problem: Develop a Kazhdan-Lusztig theory in Category \bigcirc of Lie superalgebras (\mathfrak{osp}), say of type B.

• The Hecke algebra of type B_d , $H_{B_d} = \langle, H_{S_d}, H_0 \rangle$, acts naturally on $\mathbb{V}^{\otimes d}$:

if we choose the standard basis $\{v_i\}$ of \mathbb{V} to run over indices of the form [-a, a], then H_0 acts on the first tensor factor by

$$H_0: v_i \mapsto \begin{cases} v_{-i}, & \text{if } i > 0, \\ v_{-i} + (q - q^{-1})v_i, & \text{if } i < 0. \end{cases}$$

(ロ) (同) (三) (三) (三) (○) (○)

Motivating problem: Develop a Kazhdan-Lusztig theory in Category \bigcirc of Lie superalgebras (\mathfrak{osp}), say of type B.

• The Hecke algebra of type B_d , $H_{B_d} = \langle, H_{S_d}, H_0 \rangle$, acts naturally on $\mathbb{V}^{\otimes d}$:

if we choose the standard basis $\{v_i\}$ of \mathbb{V} to run over indices of the form [-a, a], then H_0 acts on the first tensor factor by

$$H_0: v_i \mapsto \begin{cases} v_{-i}, & \text{if } i > 0, \\ v_{-i} + (q - q^{-1})v_i, & \text{if } i < 0. \end{cases}$$

(ロ) (同) (三) (三) (三) (○) (○)

ISCHUR DUALITY

CANONICAL BASIS

GEOMETRIC REALIZATION

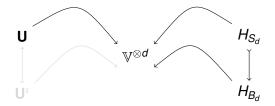
CANONICAL BASIS, II

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

iSchur duality

A double centralizer question

• Question: What quantum algebra centralizes H_{B_d} ?



• Idea behind: this $(\mathbf{U}^{\imath}, H_{B_d})$ -duality (with this very H_{B_d} -action) serves as a decaf of category \bigcirc of $\mathfrak{so}(2d + 1)$.

ISCHUR DUALITY

CANONICAL BASIS

GEOMETRIC REALIZATION

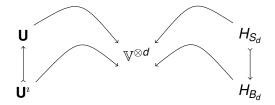
CANONICAL BASIS, II

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

iSchur duality

A double centralizer question

• Question: What quantum algebra centralizes H_{B_d} ?



• Idea behind: this (\mathbf{U}^{i} , $H_{B_{d}}$)-duality (with this very $H_{B_{d}}$ -action) serves as a decaf of category \bigcirc of $\mathfrak{so}(2d + 1)$.

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

iSchur duality

Quantum coideal subalgebras

• U^{*i*} comes in 2 forms, depending on the parity of *N* (ignore!)

• \exists a presentation $\mathbf{U}^i = \{e_i, f_i, ...\}_{i>0}$, but "bad" Serre relations; \exists an imbedding $i : \mathbf{U}^i \hookrightarrow \mathbf{U}$, e.g., $e_i \to E_i + K_i^{-1} F_{-i}$.

- Uⁱ is a coideal subalgebra of U, i.e., $\Delta : U^i \rightarrow U^i \otimes U$.
- The algebra **U**^{*i*} admits a bar-involution ψ_i , $\psi_i(e_i) = e_i$, ...

(This bar map was independently noted by Ehrig-Stroppel)

GEOMETRIC REALIZATION

CANONICAL BASIS, II

iSchur duality

Quantum coideal subalgebras

- U^{*i*} comes in 2 forms, depending on the parity of *N* (ignore!)
- \exists a presentation $\mathbf{U}^i = \{ e_i, f_i, ... \}_{i>0}$, but "bad" Serre relations;
- \exists an imbedding $\imath : \mathbf{U}^{\imath} \hookrightarrow \mathbf{U}$, e.g., $e_i \to E_i + K_i^{-1} F_{-i}$.
- \mathbf{U}^{\imath} is a coideal subalgebra of \mathbf{U} , i.e., $\Delta : \mathbf{U}^{\imath} \rightarrow \mathbf{U}^{\imath} \otimes \mathbf{U}$.
- The algebra **U**^{*i*} admits a bar-involution ψ_i , $\psi_i(e_i) = e_i$, ...

(This bar map was independently noted by Ehrig-Stroppel)

GEOMETRIC REALIZATION

CANONICAL BASIS, II

iSchur duality

Quantum coideal subalgebras

- U^{*i*} comes in 2 forms, depending on the parity of *N* (ignore!)
- \exists a presentation $\mathbf{U}^i = \{e_i, f_i, ...\}_{i>0}$, but "bad" Serre relations;
- \exists an imbedding $i: \mathbf{U}^i \hookrightarrow \mathbf{U}$, e.g., $e_i \to E_i + K_i^{-1} F_{-i}$.
- U^{\imath} is a coideal subalgebra of U, i.e., $\Delta : U^{\imath} \rightarrow U^{\imath} \otimes U$.
- The algebra **U**^{*i*} admits a bar-involution ψ_i , $\psi_i(e_i) = e_i$, ... (This bar map was **independently** noted by Ehrig-Stroppel

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

A D F A 同 F A E F A E F A Q A

iSchur duality

Quantum coideal subalgebras

- U¹ comes in 2 forms, depending on the parity of N (ignore!)
- \exists a presentation $\mathbf{U}^i = \{e_i, f_i, ...\}_{i>0}$, but "bad" Serre relations;
- \exists an imbedding $i: \mathbf{U}^i \hookrightarrow \mathbf{U}$, e.g., $e_i \to E_i + K_i^{-1} F_{-i}$.
- U^{\imath} is a coideal subalgebra of U, i.e., $\Delta : U^{\imath} \rightarrow U^{\imath} \otimes U$.
- The algebra \mathbf{U}^i admits a bar-involution ψ_i , $\psi_i(\mathbf{e}_i) = \mathbf{e}_i$,...

(This bar map was independently noted by Ehrig-Stroppel)

GEOMETRIC REALIZATION

CANONICAL BASIS, II

A D F A 同 F A E F A E F A Q A

iSchur duality

Quantum coideal subalgebras

- U^{*i*} comes in 2 forms, depending on the parity of *N* (ignore!)
- \exists a presentation $\mathbf{U}^i = \{ e_i, f_i, ... \}_{i>0}$, but "bad" Serre relations;
- \exists an imbedding $\imath : \mathbf{U}^{\imath} \hookrightarrow \mathbf{U}$, e.g., $e_i \to E_i + K_i^{-1} F_{-i}$.
- U^{\imath} is a coideal subalgebra of U, i.e., $\Delta : U^{\imath} \rightarrow U^{\imath} \otimes U$.
- The algebra \mathbf{U}^i admits a bar-involution ψ_i , $\psi_i(\mathbf{e}_i) = \mathbf{e}_i$, ...

(This bar map was independently noted by Ehrig-Stroppel)

GEOMETRIC REALIZATION

CANONICAL BASIS, II

iSchur duality

Quantum coideal subalgebras

- U^{*i*} comes in 2 forms, depending on the parity of *N* (ignore!)
- \exists a presentation $\mathbf{U}^i = \{e_i, f_i, ...\}_{i>0}$, but "bad" Serre relations;
- \exists an imbedding $i: \mathbf{U}^i \hookrightarrow \mathbf{U}$, e.g., $e_i \to E_i + K_i^{-1} F_{-i}$.
- U^{\imath} is a coideal subalgebra of U, i.e., $\Delta : U^{\imath} \rightarrow U^{\imath} \otimes U$.
- The algebra \mathbf{U}^i admits a bar-involution ψ_i , $\psi_i(\mathbf{e}_i) = \mathbf{e}_i$, ...

(This bar map was independently noted by Ehrig-Stroppel)

ISCHUR DUALITY 000●	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II
iSchur duality			
iSchur dualit	у		

Theorem 1 (Bao-W2012)

The actions of \mathbf{U}^{i} and $H_{B_{m}}$ on $\mathbb{V}^{\otimes m}$ form double centralizers.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

ISCHUR DUALITY	ICANONICAL BASIS ●0000000	GEOMETRIC REALIZATION	Canonical basis, II 00000000
Canonical basis			
Canonical	basis		

• Let $L(\lambda)$ be the simple **U**-module with h.wt. $\lambda \in X^+$.

• $L(\lambda)$ admits a bar-involution, which is compatible with the bar-involution on **U**.

• [Lusztig, Kashiwara] $L(\lambda)$ admit a *canonical/crystal basis* (CB).

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• Via $\imath : \mathbf{U}^{\imath} \to \mathbf{U}, L(\lambda)$ becomes a \mathbf{U}^{\imath} -module.

ISCHUR DUALITY	ICANONICAL BASIS ●0000000	GEOMETRIC REALIZATION	Canonical basis, II 00000000
Canonical basis			
Canonical	basis		

- Let $L(\lambda)$ be the simple **U**-module with h.wt. $\lambda \in X^+$.
- $L(\lambda)$ admits a bar-involution, which is compatible with the bar-involution on **U**.

• [Lusztig, Kashiwara] $L(\lambda)$ admit a *canonical/crystal basis* (CB).

(ロ) (同) (三) (三) (三) (○) (○)

• Via $\imath : \mathbf{U}^{\imath} \to \mathbf{U}, L(\lambda)$ becomes a \mathbf{U}^{\imath} -module.

Canonical basis Canonical basis	ISCHUR DUALITY	ICANONICAL BASIS ●0000000	GEOMETRIC REALIZATION	Canonical basis, II 00000000
Canonical basis	Canonical basis			
	Canonical	basis		

- Let $L(\lambda)$ be the simple **U**-module with h.wt. $\lambda \in X^+$.
- $L(\lambda)$ admits a bar-involution, which is compatible with the bar-involution on **U**.
- [Lusztig, Kashiwara] $L(\lambda)$ admit a *canonical/crystal basis* (CB).

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

```
• Via \imath : \mathbf{U}^{\imath} \to \mathbf{U}, L(\lambda) becomes a \mathbf{U}^{\imath}-module.
```

Canonical basis Canonical basis	ISCHUR DUALITY	ICANONICAL BASIS ●0000000	GEOMETRIC REALIZATION	Canonical basis, II 00000000
Canonical basis	Canonical basis			
	Canonical	basis		

- Let $L(\lambda)$ be the simple **U**-module with h.wt. $\lambda \in X^+$.
- $L(\lambda)$ admits a bar-involution, which is compatible with the bar-involution on **U**.
- [Lusztig, Kashiwara] $L(\lambda)$ admit a *canonical/crystal basis* (CB).

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• Via $\imath : \mathbf{U}^{\imath} \to \mathbf{U}, L(\lambda)$ becomes a \mathbf{U}^{\imath} -module.

ISCHUR DUALITY	ICANONICAL BASIS 0●000000	GEOMETRIC REALIZATION	Canonical basis, II 00000000
Canonical basis			
Quasi-R-m	natrix		

• Lusztig's quasi-R-matrix Θ is a variant of Drinfeld's R-matrix.

• The coproduct $\Delta : \mathbf{U} \to \mathbf{U} \otimes \mathbf{U}$ does not commute with the bar maps, i.e., $\Delta \neq \overline{\Delta}$.

• Θ intertwines the coproduct Δ and $\overline{\Delta}$, i.e., $\Theta \Delta = \overline{\Delta} \Theta$. ilt leads to a bar-involution and CBs in tensor product **U**-module $L(\lambda_1) \otimes \cdots \otimes L(\lambda_\ell)$ [Lusztig].

• The bar map on \mathbf{U}^i is not compatible with the bar map on \mathbf{U} , i.e., $i(\psi_i(u)) \neq \overline{i(u)}, \forall u$ (recall $e_i \rightarrow E_i + K_i^{-1}F_{-i}$).

 One key theorem of [Bao-W] is the existence of ↑ which intertwines the imbedding i : Uⁱ → U and its bar-conjugate i.

• This leads to a quasi-R-matrix Θ^i which intertwines $\Delta : \mathbf{U}^i \to \mathbf{U}^i \otimes \mathbf{U}$ and its bar-conjugate; $\Theta^i \neq \Theta|_{\mathbf{U}^i}$.

- Lusztig's quasi-R-matrix Θ is a variant of Drinfeld's R-matrix.
- The coproduct $\Delta: \bm{U} \to \bm{U} \otimes \bm{U}$ does not commute with the bar maps, i.e., $\Delta \neq \overline{\Delta}.$

• Θ intertwines the coproduct Δ and $\overline{\Delta}$, i.e., $\Theta \Delta = \overline{\Delta} \Theta$. ilt leads to a bar-involution and CBs in tensor product **U**-module $L(\lambda_1) \otimes \cdots \otimes L(\lambda_\ell)$ [Lusztig].

• The bar map on \mathbf{U}^i is not compatible with the bar map on \mathbf{U} , i.e., $i(\psi_i(u)) \neq \overline{i(u)}, \forall u$ (recall $e_i \rightarrow E_i + K_i^{-1}F_{-i}$).

 One key theorem of [Bao-W] is the existence of ↑ which intertwines the imbedding i : Uⁱ → U and its bar-conjugate i.

- Lusztig's quasi-R-matrix Θ is a variant of Drinfeld's R-matrix.
- The coproduct $\Delta : U \to U \otimes U$ does not commute with the bar maps, i.e., $\Delta \neq \overline{\Delta}$.
- Θ intertwines the coproduct Δ and $\overline{\Delta}$, i.e., $\Theta \Delta = \overline{\Delta} \Theta$. ilt leads to a bar-involution and CBs in tensor product **U**-module $L(\lambda_1) \otimes \cdots \otimes L(\lambda_\ell)$ [Lusztig].
- The bar map on \mathbf{U}^i is not compatible with the bar map on \mathbf{U} , i.e., $i(\psi_i(u)) \neq \overline{i(u)}, \forall u$ (recall $e_i \rightarrow E_i + K_i^{-1}F_{-i}$).

 One key theorem of [Bao-W] is the existence of ↑ which intertwines the imbedding *i* : Uⁱ → U and its bar-conjugate *ī*.

- Lusztig's quasi-R-matrix Θ is a variant of Drinfeld's R-matrix.
- The coproduct $\Delta : U \to U \otimes U$ does not commute with the bar maps, i.e., $\Delta \neq \overline{\Delta}$.
- Θ intertwines the coproduct Δ and $\overline{\Delta}$, i.e., $\Theta \Delta = \overline{\Delta} \Theta$. ilt leads to a bar-involution and CBs in tensor product **U**-module $L(\lambda_1) \otimes \cdots \otimes L(\lambda_\ell)$ [Lusztig].
- The bar map on \mathbf{U}^i is not compatible with the bar map on \mathbf{U} , i.e., $i(\psi_i(u)) \neq \overline{i(u)}, \forall u$ (recall $e_i \rightarrow E_i + K_i^{-1}F_{-i}$).

 One key theorem of [Bao-W] is the existence of ↑ which intertwines the imbedding i : Uⁱ → U and its bar-conjugate i.

- Lusztig's quasi-R-matrix Θ is a variant of Drinfeld's R-matrix.
- The coproduct $\Delta : U \to U \otimes U$ does not commute with the bar maps, i.e., $\Delta \neq \overline{\Delta}$.
- Θ intertwines the coproduct Δ and $\overline{\Delta}$, i.e., $\Theta \Delta = \overline{\Delta} \Theta$. ilt leads to a bar-involution and CBs in tensor product **U**-module $L(\lambda_1) \otimes \cdots \otimes L(\lambda_\ell)$ [Lusztig].
- The bar map on \mathbf{U}^i is not compatible with the bar map on \mathbf{U} , i.e., $i(\psi_i(u)) \neq \overline{i(u)}, \forall u$ (recall $e_i \rightarrow E_i + K_i^{-1}F_{-i}$).

• One key theorem of [Bao-W] is the existence of Υ which intertwines the imbedding $i : \mathbf{U}^i \to \mathbf{U}$ and its bar-conjugate \overline{i} .

- Lusztig's quasi-R-matrix Θ is a variant of Drinfeld's R-matrix.
- The coproduct $\Delta : U \to U \otimes U$ does not commute with the bar maps, i.e., $\Delta \neq \overline{\Delta}$.
- Θ intertwines the coproduct Δ and $\overline{\Delta}$, i.e., $\Theta \Delta = \overline{\Delta} \Theta$. ilt leads to a bar-involution and CBs in tensor product **U**-module $L(\lambda_1) \otimes \cdots \otimes L(\lambda_\ell)$ [Lusztig].
- The bar map on \mathbf{U}^i is not compatible with the bar map on \mathbf{U} , i.e., $i(\psi_i(u)) \neq \overline{i(u)}, \forall u$ (recall $e_i \rightarrow E_i + K_i^{-1}F_{-i}$).

• One key theorem of [Bao-W] is the existence of Υ which intertwines the imbedding $i : \mathbf{U}^i \to \mathbf{U}$ and its bar-conjugate \overline{i} .

- Lusztig's quasi-R-matrix Θ is a variant of Drinfeld's R-matrix.
- The coproduct $\Delta : U \to U \otimes U$ does not commute with the bar maps, i.e., $\Delta \neq \overline{\Delta}$.
- Θ intertwines the coproduct Δ and $\overline{\Delta}$, i.e., $\Theta \Delta = \overline{\Delta} \Theta$. ilt leads to a bar-involution and CBs in tensor product **U**-module $L(\lambda_1) \otimes \cdots \otimes L(\lambda_\ell)$ [Lusztig].
- The bar map on \mathbf{U}^i is not compatible with the bar map on \mathbf{U} , i.e., $i(\psi_i(u)) \neq \overline{i(u)}, \forall u$ (recall $e_i \rightarrow E_i + K_i^{-1}F_{-i}$).

• One key theorem of [Bao-W] is the existence of Υ which intertwines the imbedding $i : \mathbf{U}^i \to \mathbf{U}$ and its bar-conjugate \overline{i} .

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

Canonical basis

i-canonical bases in tensor products

Theorem 2 (Bao-W)

The Θⁱ induces a bar involution ψ_i on the tensor product
 Uⁱ-module L(λ₁) ⊗···⊗ L(λ_ℓ), and in particular on L(λ).

This tensor module admits an *ι*-canonical basis (iCB), which is ψ_{*ι*}-invariant and whose transition matrix to Lusztig's CB is uni-upper-triangular with coeff. in qZ[q]. In particular, L(λ) admits an iCB.

• The three bar-involutions $\mathbf{U}^{\iota} \circlearrowright \mathbb{V}^{\otimes d} \circlearrowright H_{B_d}$ are all compatible:

 $\psi_i(uMh) = \psi_i(u)\psi_i(M)\bar{h}, \text{ for } u \in \mathbf{U}^i, M \in \mathbb{V}^{\otimes d}, h \in H_{B_d}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

Canonical basis

i-canonical bases in tensor products

Theorem 2 (Bao-W)

The Θⁱ induces a bar involution ψ_i on the tensor product
 Uⁱ-module L(λ₁) ⊗···⊗ L(λ_ℓ), and in particular on L(λ).

This tensor module admits an *ι*-canonical basis (iCB), which is ψ_{*ι*}-invariant and whose transition matrix to Lusztig's CB is uni-upper-triangular with coeff. in qZ[q]. In particular, L(λ) admits an iCB.

• The three bar-involutions $\mathbf{U}^{\iota} \circlearrowright \mathbb{V}^{\otimes d} \circlearrowright H_{B_d}$ are all compatible:

 $\psi_i(uMh) = \psi_i(u)\psi_i(M)\bar{h}, \text{ for } u \in \mathbf{U}^i, M \in \mathbb{V}^{\otimes d}, h \in H_{B_d}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

Canonical basis

i-canonical bases in tensor products

Theorem 2 (Bao-W)

- The Θⁱ induces a bar involution ψ_i on the tensor product
 Uⁱ-module L(λ₁) ⊗···⊗ L(λ_ℓ), and in particular on L(λ).
- This tensor module admits an *i*-canonical basis (iCB), which is ψ_i-invariant and whose transition matrix to Lusztig's CB is uni-upper-triangular with coeff. in qZ[q]. In particular, L(λ) admits an iCB.

• The three bar-involutions $\mathbf{U}^{\iota} \circlearrowright \mathbb{V}^{\otimes d} \circlearrowright H_{B_d}$ are all compatible:

 $\psi_i(uMh) = \psi_i(u)\psi_i(M)\bar{h}, \text{ for } u \in \mathbf{U}^i, M \in \mathbb{V}^{\otimes d}, h \in H_{B_d}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

Canonical basis

i-canonical bases in tensor products

Theorem 2 (Bao-W)

- The Θⁱ induces a bar involution ψ_i on the tensor product
 Uⁱ-module L(λ₁) ⊗···⊗ L(λ_ℓ), and in particular on L(λ).
- This tensor module admits an *i*-canonical basis (iCB), which is ψ_i-invariant and whose transition matrix to Lusztig's CB is uni-upper-triangular with coeff. in qZ[q]. In particular, L(λ) admits an iCB.

• The three bar-involutions $\mathbf{U}^{\iota} \circlearrowright \mathbb{V}^{\otimes d} \circlearrowright H_{B_d}$ are all compatible:

 $\psi_i(uMh) = \psi_i(u)\psi_i(M)\bar{h}, \text{ for } u \in \mathbf{U}^i, M \in \mathbb{V}^{\otimes d}, h \in H_{B_d}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

Canonical basis

i-canonical bases in tensor products

Theorem 2 (Bao-W)

- The Θⁱ induces a bar involution ψ_i on the tensor product
 Uⁱ-module L(λ₁) ⊗···⊗ L(λ_ℓ), and in particular on L(λ).
- This tensor module admits an *i*-canonical basis (iCB), which is ψ_i-invariant and whose transition matrix to Lusztig's CB is uni-upper-triangular with coeff. in qZ[q]. In particular, L(λ) admits an iCB.
- The three bar-involutions $\mathbf{U}^{\iota} \circlearrowright \mathbb{V}^{\otimes d} \circlearrowright H_{B_d}$ are all compatible:

 $\psi_i(uMh) = \psi_i(u)\psi_i(M)\overline{h}, \quad \text{ for } u \in \mathbf{U}^i, M \in \mathbb{V}^{\otimes d}, h \in H_{B_d}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

0000	00000000	000000	OOOOOOOO
Canonical basis			
$iCB \neq CB$	examples		

- Recall \mathbb{V} has a standard basis $\{v_i\}_{i \in [-a,a]}$, same as CB.
- \bullet The iCB of $\mathbb {V}$ is given by

$$\begin{cases} v_i, & \text{if } i \ge 0, \\ v_i + q v_{-i}, & \text{if } i < 0. \end{cases}$$

 $(v_{3/2} \otimes v_{3/2}^* + qv_{1/2} \otimes v_{1/2}^*) + q(v_{1/2} \otimes v_{-1/2}^* + qv_{3/2} \otimes v_{-3/2}^*)$

• Recall \mathbb{V} has a standard basis $\{v_i\}_{i \in [-a,a]}$, same as CB.

The iCB of V is given by

$$\begin{cases} v_i, & \text{if } i \ge 0, \\ v_i + q v_{-i}, & \text{if } i < 0. \end{cases}$$

• Another example of iCB (blue parts are CB) in $\mathbb{V} \otimes \mathbb{V}^*$:

 $(v_{3/2} \otimes v_{3/2}^* + qv_{1/2} \otimes v_{1/2}^*) + q(v_{1/2} \otimes v_{-1/2}^* + qv_{3/2} \otimes v_{-3/2}^*)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall V has a standard basis {*v_i*}_{*i*∈[-*a*,*a*]}, same as CB.
The iCB of V is given by

$$\begin{cases} v_i, & \text{if } i \geq 0, \\ v_i + q v_{-i}, & \text{if } i < 0. \end{cases}$$

• Another example of iCB (blue parts are CB) in $\mathbb{V} \otimes \mathbb{V}^*$:

 $(v_{3/2} \otimes v_{3/2}^* + qv_{1/2} \otimes v_{1/2}^*) + q(v_{1/2} \otimes v_{-1/2}^* + qv_{3/2} \otimes v_{-3/2}^*)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Recall \mathbb{V} has a standard basis $\{v_i\}_{i \in [-a,a]}$, same as CB.
- The iCB of $\mathbb V$ is given by

$$\begin{cases} v_i, & \text{if } i \geq 0, \\ v_i + q v_{-i}, & \text{if } i < 0. \end{cases}$$

 $(v_{3/2} \otimes v_{3/2}^* + qv_{1/2} \otimes v_{1/2}^*) + q(v_{1/2} \otimes v_{-1/2}^* + qv_{3/2} \otimes v_{-3/2}^*)$

- Recall \mathbb{V} has a standard basis $\{v_i\}_{i \in [-a,a]}$, same as CB.
- The iCB of $\mathbb V$ is given by

$$\begin{cases} v_i, & \text{if } i \ge 0, \\ v_i + q v_{-i}, & \text{if } i < 0. \end{cases}$$

 $(v_{3/2} \otimes v_{3/2}^* + qv_{1/2} \otimes v_{1/2}^*) + q(v_{1/2} \otimes v_{-1/2}^* + qv_{3/2} \otimes v_{-3/2}^*)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Recall \mathbb{V} has a standard basis $\{v_i\}_{i \in [-a,a]}$, same as CB.
- The iCB of V is given by

$$\begin{cases} v_i, & \text{if } i \ge 0, \\ v_i + q v_{-i}, & \text{if } i < 0. \end{cases}$$

 $(v_{3/2} \otimes v_{3/2}^* + qv_{1/2} \otimes v_{1/2}^*) + q(v_{1/2} \otimes v_{-1/2}^* + qv_{3/2} \otimes v_{-3/2}^*)$

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II
Canonical basis			
$iCB \neq CB$,	again		

• The standard divided power is $e^{(n)} = \frac{e^n}{[n]!}$.

• Here are some new "divided powers" in a coideal algebra setting when *N* is even: for $a \ge 1$,

$$t^{\langle 2a \rangle} = \frac{t(t - [2 - 2a])(t - [4 - 2a]) \cdots (t - [2a - 4])(t - [2a - 2])}{[2a]!},$$
$$t^{\langle 2a+1 \rangle} = \frac{(t - [-2a])(t - [2 - 2a]) \cdots (t - [2a - 2])(t - [2a])}{[2a + 1]!}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• These formulas encode the KL polynomials of Hermitian symmetric pair (B_n, A_{n-1}) .

ISCHUR DUALITY	ICANONICAL BASIS 0000€000	GEOMETRIC REALIZATION	CANONICAL BASIS, II 00000000
Canonical basis			
iCB \neq CB,	again		

• The standard divided power is $e^{(n)} = \frac{e^n}{[n]!}$.

• Here are some new "divided powers" in a coideal algebra setting when *N* is even: for $a \ge 1$,

$$t^{\langle 2a \rangle} = \frac{t(t - [2 - 2a])(t - [4 - 2a]) \cdots (t - [2a - 4])(t - [2a - 2])}{[2a]!},$$
$$t^{\langle 2a+1 \rangle} = \frac{(t - [-2a])(t - [2 - 2a]) \cdots (t - [2a - 2])(t - [2a])}{[2a + 1]!}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• These formulas encode the KL polynomials of Hermitian symmetric pair (B_n, A_{n-1}) .

ISCHUR DUALITY	ICANONICAL BASIS 0000€000	GEOMETRIC REALIZATION	CANONICAL BASIS, II 00000000
Canonical basis			
iCB \neq CB,	again		

• The standard divided power is $e^{(n)} = \frac{e^n}{[n]!}$.

• Here are some new "divided powers" in a coideal algebra setting when *N* is even: for $a \ge 1$,

$$t^{\langle 2a \rangle} = \frac{t(t - [2 - 2a])(t - [4 - 2a]) \cdots (t - [2a - 4])(t - [2a - 2])}{[2a]!},$$

$$t^{\langle 2a+1 \rangle} = \frac{(t - [-2a])(t - [2 - 2a]) \cdots (t - [2a - 2])(t - [2a])}{[2a + 1]!}.$$

(日) (日) (日) (日) (日) (日) (日)

• These formulas encode the KL polynomials of Hermitian symmetric pair (B_n, A_{n-1}) .

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

Canonical basis

Application: Kazhdan-Lusztig theory of (super) type B

The iCB on $\mathbb{V}^{\otimes m} \otimes (\mathbb{V}^*)^{\otimes n}$ can be expanded with respect to the simple tensor basis, with coefficients $t^i_{\lambda\mu}(q) \in \mathbb{Z}[q]$.

Theorem 3

- (**Positivity**) $t^{i}_{\lambda\mu}(q) \in \mathbb{Z}_{\geq 0}[q];$
- The polynomials tⁱ_{λμ}(q) are KL polynomials for BGG category 0 of the ortho-symplectic Lie superalgebra osp(2m + 1|2n). (Take N = ∞.)

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Canonical basis

Application: Kazhdan-Lusztig theory of (super) type B

The iCB on $\mathbb{V}^{\otimes m} \otimes (\mathbb{V}^*)^{\otimes n}$ can be expanded with respect to the simple tensor basis, with coefficients $t^i_{\lambda\mu}(q) \in \mathbb{Z}[q]$.

Theorem 3

• (Positivity) $t^{\imath}_{\lambda\mu}(q) \in \mathbb{Z}_{\geq 0}[q];$

The polynomials tⁱ_{λμ}(q) are KL polynomials for BGG category 0 of the ortho-symplectic Lie superalgebra osp(2m + 1|2n). (Take N = ∞.)

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

Canonical basis

Application: Kazhdan-Lusztig theory of (super) type B

The iCB on $\mathbb{V}^{\otimes m} \otimes (\mathbb{V}^*)^{\otimes n}$ can be expanded with respect to the simple tensor basis, with coefficients $t^i_{\lambda\mu}(q) \in \mathbb{Z}[q]$.

Theorem 3

- (Positivity) $t^{i}_{\lambda\mu}(q) \in \mathbb{Z}_{\geq 0}[q];$
- 2 The polynomials $t^{i}_{\lambda\mu}(q)$ are KL polynomials for BGG category 0 of the ortho-symplectic Lie superalgebra $\mathfrak{osp}(2m+1|2n)$. (Take $N = \infty$.)

CANONICAL BASIS, II

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Canonical basis

Remarks on CB/KL character formula

Why CB (re)formulation for Kazhdan-Lusztig theories?

• Weyl group/Hecke algebra do not control linkage in super O

• Motivation from a formulation of CB character formula for $\mathfrak{gl}(m|n)$ (Brundan conjecture 2002, Cheng-Lam-W Theorem 2012) – no new CB is needed

• $\underline{n = 0}$. an iCB reformulation of KL conjecture for \mathfrak{so}_{2m+1} (Theorem of Beilinson-Bernstein, Brylinski-Kashiwara).

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

Canonical basis

Remarks on CB/KL character formula

Why CB (re)formulation for Kazhdan-Lusztig theories?

• Weyl group/Hecke algebra do not control linkage in super O

• Motivation from a formulation of CB character formula for $\mathfrak{gl}(m|n)$ (Brundan conjecture 2002, Cheng-Lam-W Theorem 2012) – no new CB is needed

• $\underline{n = 0}$. an iCB reformulation of KL conjecture for \mathfrak{so}_{2m+1} (Theorem of Beilinson-Bernstein, Brylinski-Kashiwara).

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

Canonical basis

Remarks on CB/KL character formula

Why CB (re)formulation for Kazhdan-Lusztig theories?

- Weyl group/Hecke algebra do not control linkage in super O
- Motivation from a formulation of CB character formula for $\mathfrak{gl}(m|n)$ (Brundan conjecture 2002, Cheng-Lam-W Theorem 2012) no new CB is needed

• $\underline{n} = 0$. an iCB reformulation of KL conjecture for \mathfrak{so}_{2m+1} (Theorem of Beilinson-Bernstein, Brylinski-Kashiwara).

CANONICAL BASIS, II

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Canonical basis

Remarks on CB/KL character formula

Why CB (re)formulation for Kazhdan-Lusztig theories?

- Weyl group/Hecke algebra do not control linkage in super O
- Motivation from a formulation of CB character formula for $\mathfrak{gl}(m|n)$ (Brundan conjecture 2002, Cheng-Lam-W Theorem 2012) no new CB is needed

• $\underline{n} = 0$. an iCB reformulation of KL conjecture for \mathfrak{so}_{2m+1} (Theorem of Beilinson-Bernstein, Brylinski-Kashiwara).

CANONICAL BASIS, II

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Canonical basis

Remarks on CB/KL character formula

Why CB (re)formulation for Kazhdan-Lusztig theories?

- Weyl group/Hecke algebra do not control linkage in super O
- Motivation from a formulation of CB character formula for $\mathfrak{gl}(m|n)$ (Brundan conjecture 2002, Cheng-Lam-W Theorem 2012) no new CB is needed
- $\underline{n = 0}$. an iCB reformulation of KL conjecture for \mathfrak{so}_{2m+1} (Theorem of Beilinson-Bernstein, Brylinski-Kashiwara).

CANONICAL BASIS, II

Canonical basis

Remarks on CB/KL character formula

Why CB (re)formulation for Kazhdan-Lusztig theories?

- Weyl group/Hecke algebra do not control linkage in super O
- Motivation from a formulation of CB character formula for $\mathfrak{gl}(m|n)$ (Brundan conjecture 2002, Cheng-Lam-W Theorem 2012) no new CB is needed
- $\underline{n = 0}$. an iCB reformulation of KL conjecture for \mathfrak{so}_{2m+1} (Theorem of Beilinson-Bernstein, Brylinski-Kashiwara).

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

Canonical basis

An intermediate summary

• \exists iSchur duality between **U**^{*i*} and Hecke algebra of type *B*.

∃ new Canonical bases (iCB) for (tensor) modules of Uⁱ
 (Uⁱ is not a Drinfeld-Jimbo quantum group).

• iCB allows to formulate a KL theory for the ortho-symplectic Lie superalgebras, an open problem since 1970's.

 Recall KL theory [of type B] has much to do flag varieties [of type B] ... ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

Canonical basis

An intermediate summary

- \exists iSchur duality between **U**^{*i*} and Hecke algebra of type *B*.
- \exists new Canonical bases (iCB) for (tensor) modules of \mathbf{U}^{i} (\mathbf{U}^{i} is not a Drinfeld-Jimbo quantum group).

• iCB allows to formulate a KL theory for the ortho-symplectic Lie superalgebras, an open problem since 1970's.

 Recall KL theory [of type B] has much to do flag varieties [of type B] ...

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

Canonical basis

An intermediate summary

- \exists iSchur duality between **U**^{*i*} and Hecke algebra of type *B*.
- \exists new Canonical bases (iCB) for (tensor) modules of \mathbf{U}^{i} (\mathbf{U}^{i} is not a Drinfeld-Jimbo quantum group).
- iCB allows to formulate a KL theory for the ortho-symplectic Lie superalgebras, an open problem since 1970's.
- Recall KL theory [of type B] has much to do flag varieties [of type B] ...

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

Canonical basis

An intermediate summary

- \exists iSchur duality between **U**^{*i*} and Hecke algebra of type *B*.
- \exists new Canonical bases (iCB) for (tensor) modules of \mathbf{U}^{i} (\mathbf{U}^{i} is not a Drinfeld-Jimbo quantum group).
- iCB allows to formulate a KL theory for the ortho-symplectic Lie superalgebras, an open problem since 1970's.
- Recall KL theory [of type B] has much to do flag varieties [of type B] ...

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

Canonical basis

An intermediate summary

- \exists iSchur duality between **U**^{*i*} and Hecke algebra of type *B*.
- \exists new Canonical bases (iCB) for (tensor) modules of \mathbf{U}^{i} (\mathbf{U}^{i} is not a Drinfeld-Jimbo quantum group).
- iCB allows to formulate a KL theory for the ortho-symplectic Lie superalgebras, an open problem since 1970's.
- Recall KL theory [of type B] has much to do flag varieties [of type B] ...

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION •00000	CANONICAL BASIS, II	
Geometric duality				
Geometric setting				

• There is a geometric construction of $\dot{\mathbf{U}}_q(\mathfrak{gl}_N)$ and CB on $\dot{\mathbf{U}}_q(\mathfrak{gl}_N)$ using partial flag varieties of type A. [Beilinson-Lusztig-McPherson 1990]

• There is a geometric realization of Schur-Jimbo duality between $\dot{\mathbf{U}}_{q}(\mathfrak{gl}_{N})$ and $H_{S_{d}}$ [Grojnowski-Lusztig1992]

• (Old) Question: What is the quantum algebras (and duality) behind partial flag varieties of classical type?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Answers (2014): [Bao-Kujawa-Yiqiang Li-W] type B and C. [Zhaobing Fan-Yiqiang Li] type D.

• There is a geometric construction of $\dot{\mathbf{U}}_q(\mathfrak{gl}_N)$ and CB on $\dot{\mathbf{U}}_q(\mathfrak{gl}_N)$ using partial flag varieties of type A. [Beilinson-Lusztig-McPherson 1990]

• There is a geometric realization of Schur-Jimbo duality between $\dot{\mathbf{U}}_q(\mathfrak{gl}_N)$ and H_{S_d} [Grojnowski-Lusztig1992]

• (Old) Question: What is the quantum algebras (and duality) behind partial flag varieties of classical type?

(日) (日) (日) (日) (日) (日) (日)

Answers (2014): [Bao-Kujawa-Yiqiang Li-W] type B and C. [Zhaobing Fan-Yiqiang Li] type D.

• There is a geometric construction of $\dot{\mathbf{U}}_q(\mathfrak{gl}_N)$ and CB on $\dot{\mathbf{U}}_q(\mathfrak{gl}_N)$ using partial flag varieties of type A. [Beilinson-Lusztig-McPherson 1990]

• There is a geometric realization of Schur-Jimbo duality between $\dot{\mathbf{U}}_q(\mathfrak{gl}_N)$ and H_{S_d} [Grojnowski-Lusztig1992]

• (Old) Question: What is the quantum algebras (and duality) behind partial flag varieties of classical type?

(日) (日) (日) (日) (日) (日) (日)

Answers (2014): [Bao-Kujawa-Yiqiang Li-W] type B and C. [Zhaobing Fan-Yiqiang Li] type D.

• There is a geometric construction of $\dot{\mathbf{U}}_q(\mathfrak{gl}_N)$ and CB on $\dot{\mathbf{U}}_q(\mathfrak{gl}_N)$ using partial flag varieties of type A. [Beilinson-Lusztig-McPherson 1990]

• There is a geometric realization of Schur-Jimbo duality between $\dot{\mathbf{U}}_q(\mathfrak{gl}_N)$ and H_{S_d} [Grojnowski-Lusztig1992]

• (Old) Question: What is the quantum algebras (and duality) behind partial flag varieties of classical type?

(日) (日) (日) (日) (日) (日) (日)

Answers (2014): [Bao-Kujawa-Yiqiang Li-W] type B and C. [Zhaobing Fan-Yiqiang Li] type D.

• There is a geometric construction of $\dot{\mathbf{U}}_q(\mathfrak{gl}_N)$ and CB on $\dot{\mathbf{U}}_q(\mathfrak{gl}_N)$ using partial flag varieties of type A. [Beilinson-Lusztig-McPherson 1990]

• There is a geometric realization of Schur-Jimbo duality between $\dot{\mathbf{U}}_q(\mathfrak{gl}_N)$ and H_{S_d} [Grojnowski-Lusztig1992]

• (Old) Question: What is the quantum algebras (and duality) behind partial flag varieties of classical type?

(日) (日) (日) (日) (日) (日) (日)

Answers (2014):

[Bao-Kujawa-Yiqiang Li-W] type B and C. [Zhaobing Fan-Yiqiang Li] type D.

ICANONICAL BASI: 00000000 GEOMETRIC REALIZATION

CANONICAL BASIS, II

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Geometric duality

¹Schur duality recalled

Recall iSchur duality

$$\mathbf{U}^i \twoheadrightarrow S^i_d \quad \circlearrowright \mathbb{V}^{\otimes d} \circlearrowright \quad H_{B_d}.$$

Here $S^i_d := \operatorname{End}_{H_{B_d}}(\mathbb{V}^{\otimes d})$ is a *q*-Schur-type algebra.

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

Geometric duality

Type B flag varieties

Set N = 2n + 1, D = 2d + 1. Let q be an odd prime power. • Fix a non-degenerate symmetric bilinear form Q on \mathbb{F}_q^D .

• *X*: the variety of *N*-step isotropic flags (i.e. $V_{-i} = V_i^{\perp}$): $V = (0 = V_{-n-1} \subseteq \cdots \subseteq V_{-1} \subseteq V_1 \subseteq \cdots \subseteq V_{n+1} = \mathbb{F}_q^D)$

• \mathcal{B} : the complete flag variety of type B_d .

• O(D)-orbits on $X \times X$, $X \times \mathcal{B}$ and $\mathcal{B} \times \mathcal{B}$ are parameterized by certain matrices (independent of $q = |\mathbb{F}_q|$).

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

Geometric duality

Type B flag varieties

Set N = 2n + 1, D = 2d + 1. Let q be an odd prime power.

- Fix a non-degenerate symmetric bilinear form Q on \mathbb{F}^D_q .
- *X*: the variety of *N*-step isotropic flags (i.e. $V_{-i} = V_i^{\perp}$): $V = (0 = V_{-n-1} \subseteq \cdots \subseteq V_{-1} \subseteq V_1 \subseteq \cdots \subseteq V_{n+1} = \mathbb{F}_q^D)$

• \mathcal{B} : the complete flag variety of type B_d .

• O(D)-orbits on $X \times X$, $X \times B$ and $B \times B$ are parameterized by certain matrices (independent of $q = |\mathbb{F}_q|$).

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

Geometric duality

Type B flag varieties

Set N = 2n + 1, D = 2d + 1. Let q be an odd prime power.

- Fix a non-degenerate symmetric bilinear form Q on \mathbb{F}^D_q .
- *X*: the variety of *N*-step isotropic flags (i.e. $V_{-i} = V_i^{\perp}$): $V = (0 = V_{-n-1} \subseteq \cdots \subseteq V_{-1} \subseteq V_1 \subseteq \cdots \subseteq V_{n+1} = \mathbb{F}_q^D)$
- \mathcal{B} : the complete flag variety of type B_d .

• O(D)-orbits on $X \times X$, $X \times B$ and $B \times B$ are parameterized by certain matrices (independent of $q = |\mathbb{F}_q|$).

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

A D F A 同 F A E F A E F A Q A

Geometric duality

Type B flag varieties

Set N = 2n + 1, D = 2d + 1. Let q be an odd prime power.

- Fix a non-degenerate symmetric bilinear form Q on \mathbb{F}_q^D .
- *X*: the variety of *N*-step isotropic flags (i.e. $V_{-i} = V_i^{\perp}$): $V = (0 = V_{-n-1} \subseteq \cdots \subseteq V_{-1} \subseteq V_1 \subseteq \cdots \subseteq V_{n+1} = \mathbb{F}_q^D)$
- \mathcal{B} : the complete flag variety of type B_d .
- O(D)-orbits on $X \times X$, $X \times \mathcal{B}$ and $\mathcal{B} \times \mathcal{B}$ are parameterized by certain matrices (independent of $q = |\mathbb{F}_q|$).

CANONICAL BASIS, II

A D F A 同 F A E F A E F A Q A

Geometric duality

Convolution algebras

• $\mathscr{A}_{O(D)}(X \times X)$: the space of O(D)-invariant \mathscr{A} -valued functions on $X \times X$. ($\mathscr{A} = \mathbb{Z}[q, q^{-1}]$)

• Similarly define $\mathscr{A}_{O(D)}(X \times \mathcal{B})$ and $\mathscr{A}_{O(D)}(\mathcal{B} \times \mathcal{B})$.

• $\mathscr{A}_{O(D)}(X \times X)$ and $\mathscr{A}_{O(D)}(\mathcal{B} \times \mathcal{B})$ are \mathscr{A} -algebras by convolution products.

• The convolution products also produce the following duality (i.e. double centralizing action):

 $\mathscr{A}_{\mathcal{O}(D)}(X \times X) \circlearrowleft \mathscr{A}_{\mathcal{O}(D)}(X \times \mathbb{B}) \circlearrowright \mathscr{A}_{\mathcal{O}(D)}(\mathbb{B} \times \mathbb{B})$

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II
Geometric duality			
Convolutio	n algebras		

- $\mathscr{A}_{O(D)}(X \times X)$: the space of O(D)-invariant \mathscr{A} -valued functions on $X \times X$. ($\mathscr{A} = \mathbb{Z}[q, q^{-1}]$)
- Similarly define $\mathscr{A}_{O(D)}(X \times \mathfrak{B})$ and $\mathscr{A}_{O(D)}(\mathfrak{B} \times \mathfrak{B})$.
- $\mathscr{A}_{O(D)}(X \times X)$ and $\mathscr{A}_{O(D)}(\mathcal{B} \times \mathcal{B})$ are \mathscr{A} -algebras by convolution products.

• The convolution products also produce the following duality (i.e. double centralizing action):

 $\mathscr{A}_{\mathcal{O}(D)}(X \times X) \circlearrowleft \mathscr{A}_{\mathcal{O}(D)}(X \times \mathbb{B}) \circlearrowright \mathscr{A}_{\mathcal{O}(D)}(\mathbb{B} \times \mathbb{B})$

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II 00000000
Geometric duality			
Convolutio	n algebras		

- $\mathscr{A}_{O(D)}(X \times X)$: the space of O(D)-invariant \mathscr{A} -valued functions on $X \times X$. ($\mathscr{A} = \mathbb{Z}[q, q^{-1}]$)
- Similarly define $\mathscr{A}_{O(D)}(X \times \mathfrak{B})$ and $\mathscr{A}_{O(D)}(\mathfrak{B} \times \mathfrak{B})$.
- $\mathscr{A}_{O(D)}(X \times X)$ and $\mathscr{A}_{O(D)}(\mathbb{B} \times \mathbb{B})$ are \mathscr{A} -algebras by convolution products.

• The convolution products also produce the following duality (i.e. double centralizing action):

 $\mathscr{A}_{O(D)}(X \times X) \circlearrowleft \mathscr{A}_{O(D)}(X \times \mathbb{B}) \circlearrowright \mathscr{A}_{O(D)}(\mathbb{B} \times \mathbb{B})$

(日) (日) (日) (日) (日) (日) (日)

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II 00000000
Geometric duality			
Convolutio	n algebras		

- $\mathscr{A}_{O(D)}(X \times X)$: the space of O(D)-invariant \mathscr{A} -valued functions on $X \times X$. ($\mathscr{A} = \mathbb{Z}[q, q^{-1}]$)
- Similarly define $\mathscr{A}_{\mathcal{O}(D)}(X \times \mathfrak{B})$ and $\mathscr{A}_{\mathcal{O}(D)}(\mathfrak{B} \times \mathfrak{B})$.
- $\mathscr{A}_{O(D)}(X \times X)$ and $\mathscr{A}_{O(D)}(\mathcal{B} \times \mathcal{B})$ are \mathscr{A} -algebras by convolution products.
- The convolution products also produce the following duality (i.e. double centralizing action):

$$\mathscr{A}_{O(D)}(X \times X) \circlearrowleft \mathscr{A}_{O(D)}(X \times \mathbb{B}) \circlearrowright \mathscr{A}_{O(D)}(\mathbb{B} \times \mathbb{B})$$

(日) (日) (日) (日) (日) (日) (日)

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II
Geometric duality			
The algebr	\mathbf{K}^{i}		

• Structure constants in $\mathscr{A}_{O(D)}(X \times X)$ stabilize as $D \to \infty$, which gives rise to a "limit" algebra \mathbf{K}^{i} .

• \exists a natural surjective algebra homomorphism ϕ_d :

$$\mathbf{K}^{\iota} \stackrel{\phi_d}{\twoheadrightarrow} \mathscr{A}_{O(D)}(X \times X) \qquad \circlearrowleft \mathscr{A}_{O(D)}(X \times \mathcal{B}).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	Canonical basis, II
Geometric duality			
The algeb	ra \mathbf{K}^i		

• Structure constants in $\mathscr{A}_{O(D)}(X \times X)$ stabilize as $D \to \infty$, which gives rise to a "limit" algebra \mathbf{K}^{ϵ} .

• \exists a natural surjective algebra homomorphism ϕ_d :

$$\mathbf{K}^{\iota} \stackrel{\phi_d}{\twoheadrightarrow} \mathscr{A}_{\mathcal{O}(D)}(X \times X) \qquad \circlearrowleft \mathscr{A}_{\mathcal{O}(D)}(X \times \mathcal{B}).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	Canonical basis, II 00000000
Geometric duality			
The algeb	ra \mathbf{K}^i		

• Structure constants in $\mathscr{A}_{O(D)}(X \times X)$ stabilize as $D \to \infty$, which gives rise to a "limit" algebra \mathbf{K}^{\imath} .

• \exists a natural surjective algebra homomorphism ϕ_d :

$$\mathbf{K}^{\iota} \stackrel{\varphi_d}{\twoheadrightarrow} \mathscr{A}_{\mathcal{O}(D)}(X \times X) \qquad \circlearrowleft \mathscr{A}_{\mathcal{O}(D)}(X \times \mathcal{B}).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II
Geometric duality			
The algebr	a K ¹		

- Structure constants in $\mathscr{A}_{O(D)}(X \times X)$ stabilize as $D \to \infty$, which gives rise to a "limit" algebra \mathbf{K}^{\imath} .
- \exists a natural surjective algebra homomorphism ϕ_d :

$$\mathbf{K}^{\imath} \stackrel{\phi_d}{\twoheadrightarrow} \mathscr{A}_{\mathcal{O}(D)}(X \times X) \qquad \circlearrowleft \mathscr{A}_{\mathcal{O}(D)}(X \times \mathcal{B}).$$

(日) (日) (日) (日) (日) (日) (日)

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II
Geometric duality			
The algebr	a K ¹		

- Structure constants in $\mathscr{A}_{O(D)}(X \times X)$ stabilize as $D \to \infty$, which gives rise to a "limit" algebra \mathbf{K}^{\imath} .
- \exists a natural surjective algebra homomorphism ϕ_d :

$$\mathbf{K}^{\imath} \stackrel{\phi_d}{\twoheadrightarrow} \mathscr{A}_{O(D)}(X \times X) \qquad \circlearrowleft \mathscr{A}_{O(D)}(X \times \mathcal{B}).$$

(日) (日) (日) (日) (日) (日) (日)

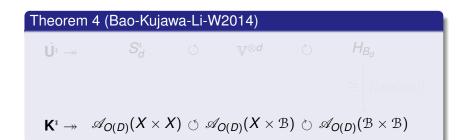
ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

Geometric duality

Geometric iSchur duality



Here U^{i} is the modified (or idempotented) version of the coideal subalgebra U^{i} . (Sloppy with notation on base change above.)

• Recall $i : \mathbf{U}^i \to \mathbf{U}, e_i \mapsto E_i + K_i^{-1}F_{-i}$. This embedding agrees with geometry (another example of positivity!)

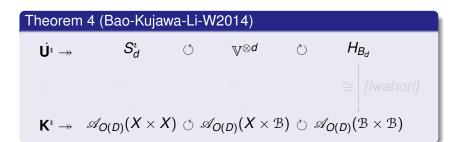
ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

Geometric duality

Geometric iSchur duality



Here \hat{U}^{i} is the modified (or idempotented) version of the coideal subalgebra U^{i} . (Sloppy with notation on base change above.)

• Recall $i : \mathbf{U}^i \to \mathbf{U}, e_i \mapsto E_i + K_i^{-1} F_{-i}$. This embedding agrees with geometry (another example of positivity!)

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Geometric duality

Geometric iSchur duality

Here \hat{U}^{i} is the modified (or idempotented) version of the coideal subalgebra U^{i} . (Sloppy with notation on base change above.)

• Recall $i : \mathbf{U}^i \to \mathbf{U}, e_i \mapsto E_i + K_i^{-1} F_{-i}$. This embedding agrees with geometry (another example of positivity!)

ICANONICAL BASIS

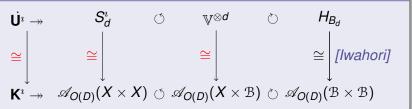
GEOMETRIC REALIZATION

CANONICAL BASIS, II

Geometric duality

Geometric iSchur duality

Theorem 4 (Bao-Kujawa-Li-W2014)



Here $\hat{\mathbf{U}}^{\imath}$ is the modified (or idempotented) version of the coideal subalgebra \mathbf{U}^{\imath} . (Sloppy with notation on base change above.)

• Recall $i: \mathbf{U}^i \to \mathbf{U}, e_i \mapsto E_i + K_i^{-1} F_{-i}$. This embedding agrees with geometry (another example of positivity!)

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

Geometric duality

Geometric iSchur duality

Here $\hat{\mathbf{U}}^{\imath}$ is the modified (or idempotented) version of the coideal subalgebra \mathbf{U}^{\imath} . (Sloppy with notation on base change above.)

• Recall $i: \mathbf{U}^i \to \mathbf{U}, e_i \mapsto E_i + K_i^{-1}F_{-i}$. This embedding agrees with geometry (another example of positivity!)

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

Geometric duality

Geometric iSchur duality

Here $\hat{\mathbf{U}}^{\imath}$ is the modified (or idempotented) version of the coideal subalgebra \mathbf{U}^{\imath} . (Sloppy with notation on base change above.)

• Recall $i: \mathbf{U}^i \to \mathbf{U}, e_i \mapsto E_i + K_i^{-1}F_{-i}$. This embedding agrees with geometry (another example of positivity!)

CANONICAL BASIS, II

iCanonical basis

iCanonical Basis of $\dot{\mathbf{U}}^{\imath}$

Facts:

• $\mathscr{A}_{O(D)}(X \times X)$ admits a [geometric] bar involution and a canonical basis with positivity $\{A\}_d$, where A runs over

 $\Xi_d := \{A \in \operatorname{Mat}_{N \times N}(\mathbb{Z}_{\geq 0}) \mid |A| = D = 2d + 1, A^i = A\}$

(Here *i* denotes the involution of rotation by 180 degree.)

• The bar involutions stabilize as $D \to \infty$, and lifts to the algebra \mathbf{K}^{i} .

Recall $\mathbb{Q}(q) \otimes \mathbf{K}^{\imath} \cong \dot{\mathbf{U}}^{\imath}$.

Theorem 5 (BKLW2014)

The algebra \mathbf{K}^i , and hence $\dot{\mathbf{U}}^i$, admits a stably CB {A}, where $A \in \widetilde{\Xi} := \{(a_{ij}) \in Mat_{N \times N}(Z) \mid a_{ij} \ge 0 \ (i \ne j), |A| \text{ is odd}\}.$

CANONICAL BASIS, II

iCanonical basis

iCanonical Basis of $\dot{\mathbf{U}}^{\imath}$

Facts:

• $\mathscr{A}_{O(D)}(X \times X)$ admits a [geometric] bar involution and a canonical basis with positivity $\{A\}_d$, where A runs over

 $\Xi_d := \{A \in \mathsf{Mat}_{N \times N}(\mathbb{Z}_{\geq 0}) \mid |A| = D = 2d + 1, A^i = A\}$

(Here *i* denotes the involution of rotation by 180 degree.)

• The bar involutions stabilize as $D \to \infty$, and lifts to the algebra \mathbf{K}^i .

Recall $\mathbb{Q}(q) \otimes \mathbf{K}^{i} \cong \dot{\mathbf{U}}^{i}$.

Theorem 5 (BKLW2014)

The algebra \mathbf{K}^i , and hence $\dot{\mathbf{U}}^i$, admits a stably CB {A}, where $A \in \widetilde{\Xi} := \{(a_{ij}) \in Mat_{N \times N}(Z) \mid a_{ij} \ge 0 \ (i \ne j), |A| \text{ is odd}\}.$

CANONICAL BASIS, II

iCanonical basis

iCanonical Basis of $\dot{\mathbf{U}}^{\imath}$

Facts:

• $\mathscr{A}_{O(D)}(X \times X)$ admits a [geometric] bar involution and a canonical basis with positivity $\{A\}_d$, where A runs over

 $\Xi_d := \{A \in \operatorname{Mat}_{N \times N}(\mathbb{Z}_{\geq 0}) \mid |A| = D = 2d + 1, A^i = A\}$

(Here *i* denotes the involution of rotation by 180 degree.)

• The bar involutions stabilize as $D \to \infty$, and lifts to the algebra \mathbf{K}^{\imath} .

Recall $\mathbb{Q}(q) \otimes \mathbf{K}^{i} \cong \dot{\mathbf{U}}^{i}$.

Theorem 5 (BKLW2014)

The algebra \mathbf{K}^i , and hence $\dot{\mathbf{U}}^i$, admits a stably CB {A}, where $A \in \widetilde{\Xi} := \{(a_{ij}) \in Mat_{N \times N}(Z) \mid a_{ij} \ge 0 \ (i \ne j), |A| \text{ is odd}\}.$

CANONICAL BASIS, II

iCanonical basis

iCanonical Basis of \dot{U}^i

Facts:

• $\mathscr{A}_{O(D)}(X \times X)$ admits a [geometric] bar involution and a canonical basis with positivity $\{A\}_d$, where A runs over

 $\Xi_d := \{A \in \operatorname{Mat}_{N \times N}(\mathbb{Z}_{\geq 0}) \mid |A| = D = 2d + 1, A^i = A\}$

(Here *i* denotes the involution of rotation by 180 degree.)

• The bar involutions stabilize as $D \to \infty$, and lifts to the algebra \mathbf{K}^{\imath} .

Recall $\mathbb{Q}(q) \otimes \mathbf{K}^{i} \cong \dot{\mathbf{U}}^{i}$.

Theorem 5 (BKLW2014)

The algebra \mathbf{K}^i , and hence $\dot{\mathbf{U}}^i$, admits a stably CB {A}, where $A \in \widetilde{\Xi} := \{(a_{ij}) \in Mat_{N \times N}(Z) \mid a_{ij} \ge 0 \ (i \neq j), |A| \text{ is odd}\}.$

GEOMETRIC REALIZATION

CANONICAL BASIS, II

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

iCanonical basis

Negativity of stably CB

• Recall for type A one has

$\dot{\mathbf{U}}(\mathfrak{sl}_N)$ vs $\dot{\mathbf{U}}(\mathfrak{gl}_N)$

• (Recall N = 2n + 1.) $\exists 2$ versions of modified coideal algebras:

 $\dot{\mathsf{U}}^{\imath}(\mathfrak{sl}_N)$ vs $\dot{\mathsf{U}}^{\imath}(\mathfrak{gl}_N) = \dot{\mathsf{U}}^{\imath}$

• [Li-W15] The stably canonical basis of $\dot{\mathbf{U}}(\mathfrak{gl}_N)$ does not have positive structure constants; Similar negativity for $\dot{\mathbf{U}}^{\iota}(\mathfrak{gl}_N)$.

ICANONICAL BASIS

GEOMETRIC REALIZATION

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

iCanonical basis

Negativity of stably CB

• Recall for type A one has

$$\dot{\mathsf{U}}(\mathfrak{sl}_N)$$
 vs $\dot{\mathsf{U}}(\mathfrak{gl}_N)$

• (Recall N = 2n + 1.) \exists 2 versions of modified coideal algebras:

 $\dot{\mathbf{U}}^{\imath}(\mathfrak{sl}_{N})$ vs $\dot{\mathbf{U}}^{\imath}(\mathfrak{gl}_{N})=\dot{\mathbf{U}}^{\imath}$

• [Li-W15] The stably canonical basis of $\dot{\mathbf{U}}(\mathfrak{gl}_N)$ does not have positive structure constants; Similar negativity for $\dot{\mathbf{U}}^{\iota}(\mathfrak{gl}_N)$.

GEOMETRIC REALIZATION

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

iCanonical basis

Negativity of stably CB

• Recall for type A one has

$$\dot{U}(\mathfrak{sl}_N)$$
 vs $\dot{U}(\mathfrak{gl}_N)$

• (Recall N = 2n + 1.) \exists 2 versions of modified coideal algebras:

 $\dot{\mathbf{U}}^{\imath}(\mathfrak{sl}_{N})$ vs $\dot{\mathbf{U}}^{\imath}(\mathfrak{gl}_{N})=\dot{\mathbf{U}}^{\imath}$

• [Li-W15] The stably canonical basis of $\dot{\mathbf{U}}(\mathfrak{gl}_N)$ does not have positive structure constants;

GEOMETRIC REALIZATION

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

iCanonical basis

Negativity of stably CB

• Recall for type A one has

$$\dot{\mathsf{U}}(\mathfrak{sl}_N)$$
 vs $\dot{\mathsf{U}}(\mathfrak{gl}_N)$

• (Recall N = 2n + 1.) \exists 2 versions of modified coideal algebras:

 $\dot{\mathbf{U}}^{\imath}(\mathfrak{sl}_{N})$ vs $\dot{\mathbf{U}}^{\imath}(\mathfrak{gl}_{N})=\dot{\mathbf{U}}^{\imath}$

• [Li-W15] The stably canonical basis of $\dot{U}(\mathfrak{gl}_N)$ does not have positive structure constants; Similar negativity for $\dot{U}^{\epsilon}(\mathfrak{gl}_N)$.

The transfer map $\phi^{\imath}_{d+N,d}: S^{\imath}_{d+N} \to S^{\imath}_{d}$ is the composition

$$S^{i}_{d+N} \xrightarrow{\cong} \operatorname{End}_{H_{\mathcal{B}_{d+N}}}(\mathbb{V}^{\otimes (d+N)}) \longrightarrow \operatorname{End}_{H_{\mathcal{B}_{d}} imes H_{\mathcal{S}_{N}}}(\mathbb{V}^{\otimes (d+N)})$$

 $\xrightarrow{1 \otimes \chi} \operatorname{End}_{H_{\mathcal{B}_{d}}}(\mathbb{V}^{\otimes d}) \xrightarrow{\cong} S^{i}_{d},$

where χ is a "sign" homomorphism.

The algebra \mathbf{U}^i can be thought as an inverse limit of the family $\{S_d^i\}_{d\geq 1}$, i.e., \exists homomorphism $\phi_d : \dot{\mathbf{U}}^i(\mathfrak{sl}_N) \to S_d^i$, compatible with the transfer map $\phi_{d+N,d}^i$.

The transfer map $\phi^{\imath}_{d+N,d}: S^{\imath}_{d+N} \to S^{\imath}_{d}$ is the composition

$$\begin{array}{ccc} S^{\imath}_{d+N} \stackrel{\cong}{\longrightarrow} \mathsf{End}_{H_{\mathcal{B}_{d+N}}}(\mathbb{V}^{\otimes (d+N)}) {\longrightarrow} \mathsf{End}_{H_{\mathcal{B}_{d}} \times H_{\mathcal{S}_{N}}}(\mathbb{V}^{\otimes (d+N)}) \\ & \stackrel{1 \otimes \chi}{\longrightarrow} \mathsf{End}_{H_{\mathcal{B}_{d}}}(\mathbb{V}^{\otimes d}) \stackrel{\cong}{\longrightarrow} \mathcal{S}^{\imath}_{d}, \end{array}$$

where χ is a "sign" homomorphism.

The algebra $\dot{\mathbf{U}}^i$ can be thought as an inverse limit of the family $\{S_d^i\}_{d\geq 1}$, i.e., \exists homomorphism $\phi_d : \dot{\mathbf{U}}^i(\mathfrak{sl}_N) \to S_d^i$, compatible with the transfer map $\phi_{d+N,d}^i$.

GEOMETRIC REALIZATION

CANONICAL BASIS, II

iCanonical basis

Positivity of iCB under a transfer map

Theorem 6 (Li-W15)

The transfer map sends each CB element to a sum of CB elements with coefficients in $\mathbb{Z}_{\geq 0}[q, q^{-1}]$.

The transfer map does preserve CB of *i*Schur algebras asymptotically; cf. [McGerty12] in type A.

For $A \in \Xi_{d_0}$ (recall |A| = 2d + 1), set $_{2p}A := A + 2pI \in \Xi_{d_0+pN}$.

Theorem 7 (Li-W15)

For each $A \in \Xi_{d_0}$, we have $\phi_{d,d-N}^i(\{2pA\}_d) = \{2p-2A\}_{d-N}$, for $p \gg 0$ (where $d = d_0 + pN$).

・ロト・日本・日本・日本・日本・日本

GEOMETRIC REALIZATION

CANONICAL BASIS, II

iCanonical basis

Positivity of iCB under a transfer map

Theorem 6 (Li-W15)

The transfer map sends each CB element to a sum of CB elements with coefficients in $\mathbb{Z}_{\geq 0}[q, q^{-1}]$.

The transfer map does preserve CB of *i*Schur algebras asymptotically; cf. [McGerty12] in type A.

For $A \in \Xi_{d_0}$ (recall |A| = 2d + 1), set $_{2p}A := A + 2pI \in \Xi_{d_0+pN}$.

Theorem 7 (Li-W15)

For each $A \in \Xi_{d_0}$, we have $\phi_{d,d-N}^i(\{2pA\}_d) = \{2p-2A\}_{d-N}$, for $p \gg 0$ (where $d = d_0 + pN$).

GEOMETRIC REALIZATION

CANONICAL BASIS, II

iCanonical basis

Positivity of iCB under a transfer map

Theorem 6 (Li-W15)

The transfer map sends each CB element to a sum of CB elements with coefficients in $\mathbb{Z}_{\geq 0}[q, q^{-1}]$.

The transfer map does preserve CB of *i*Schur algebras asymptotically; cf. [McGerty12] in type A.

For $A \in \Xi_{d_0}$ (recall |A| = 2d + 1), set $_{2p}A := A + 2pI \in \Xi_{d_0+pN}$.

Theorem 7 (Li-W15)

For each $A \in \Xi_{d_0}$, we have $\phi_{d,d-N}^i(\{_{2p}A\}_d) = \{_{2p-2}A\}_{d-N}$, for $p \gg 0$ (where $d = d_0 + pN$).

GEOMETRIC REALIZATION

CANONICAL BASIS, II

iCanonical basis

Positivity of iCB under a transfer map

Theorem 6 (Li-W15)

The transfer map sends each CB element to a sum of CB elements with coefficients in $\mathbb{Z}_{\geq 0}[q, q^{-1}]$.

The transfer map does preserve CB of *i*Schur algebras asymptotically; cf. [McGerty12] in type A.

For $A \in \Xi_{d_0}$ (recall |A| = 2d + 1), set $_{2p}A := A + 2pI \in \Xi_{d_0+pN}$.

Theorem 7 (Li-W15)

For each $A \in \Xi_{d_0}$, we have $\phi_{d,d-N}^i(\{_{2p}A\}_d) = \{_{2p-2}A\}_{d-N}$, for $p \gg 0$ (where $d = d_0 + pN$).

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	Canonical basis, II 0000€000
iCanonical basis			
Positivity a	again		

The asymptotic property of transfer maps allows us to define the canonical basis $\mathbf{B}^{i}(\mathfrak{sl}_{N})$ for $\dot{\mathbf{U}}^{i}(\mathfrak{sl}_{N})$, parametrized by $\overline{A} \in \widetilde{\Xi} / \sim$, where the relation \sim on $\widetilde{\Xi}$ is defined by $A \sim A + 2I$.

Theorem 8 (Li-W15)

The structure constants for the algebra $\mathbf{U}^{\iota}(\mathfrak{sl}_N)$ with respect to the iCB $\mathbf{B}^{\iota}(\mathfrak{sl}_N)$ are in $\mathbb{Z}_{\geq 0}[q, q^{-1}]$.

・ロト・日本・日本・日本・日本

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	Canonical basis, II
iCanonical basis			
Positivity a	again		

The asymptotic property of transfer maps allows us to define the canonical basis $\mathbf{B}^{i}(\mathfrak{sl}_{N})$ for $\dot{\mathbf{U}}^{i}(\mathfrak{sl}_{N})$, parametrized by $\overline{A} \in \widetilde{\Xi} / \sim$, where the relation \sim on $\widetilde{\Xi}$ is defined by $A \sim A + 2I$.

Theorem 8 (Li-W15)

The structure constants for the algebra $\dot{\mathbf{U}}^{\imath}(\mathfrak{sl}_N)$ with respect to the iCB $\mathbf{B}^{\imath}(\mathfrak{sl}_N)$ are in $\mathbb{Z}_{\geq 0}[q, q^{-1}]$.

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

GEOMETRIC REALIZATION

CANONICAL BASIS, II

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

iCanonical basis

Positiivity again, and again

- The iCB $\mathbf{B}^{\imath}(\mathfrak{sl}_N)$ satisfies (and in turn is characterized by) the almost orthonormality with respect to a geometric bilinear form.
- The geometric bilinear form is positive with respect to the iCB.
- Recall N = 2n + 1. We have $\dot{U}(\mathfrak{sl}_n) \subset \dot{U}^{\imath}(\mathfrak{sl}_N)$, and that $\mathbf{B}^{\imath}(\mathfrak{sl}_N) \cap \dot{U}(\mathfrak{sl}_n)$ is the CB of $\dot{U}(\mathfrak{sl}_n)$.
- The action of $\dot{\mathbf{U}}(\mathfrak{sl}_n)$ (resp., the action of S_d^i) on $\mathbb{V}^{\otimes d}$ with respect to the corresponding iCB is positive.

GEOMETRIC REALIZATION

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

iCanonical basis

Positiivity again, and again

- The iCB $\mathbf{B}^{i}(\mathfrak{sl}_{N})$ satisfies (and in turn is characterized by) the almost orthonormality with respect to a geometric bilinear form.
- The geometric bilinear form is positive with respect to the iCB.
- Recall N = 2n + 1. We have $\dot{U}(\mathfrak{sl}_n) \subset \dot{U}^{\imath}(\mathfrak{sl}_N)$, and that $\mathbf{B}^{\imath}(\mathfrak{sl}_N) \cap \dot{U}(\mathfrak{sl}_n)$ is the CB of $\dot{U}(\mathfrak{sl}_n)$.
- The action of $\dot{\mathbf{U}}(\mathfrak{sl}_n)$ (resp., the action of S_d^i) on $\mathbb{V}^{\otimes d}$ with respect to the corresponding iCB is positive.

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

iCanonical basis

Positiivity again, and again

- The iCB $\mathbf{B}^{i}(\mathfrak{sl}_{N})$ satisfies (and in turn is characterized by) the almost orthonormality with respect to a geometric bilinear form.
- The geometric bilinear form is positive with respect to the iCB.
- Recall N = 2n + 1. We have $\dot{U}(\mathfrak{sl}_n) \subset \dot{U}^{\imath}(\mathfrak{sl}_N)$, and that $B^{\imath}(\mathfrak{sl}_N) \cap \dot{U}(\mathfrak{sl}_n)$ is the CB of $\dot{U}(\mathfrak{sl}_n)$.

• The action of $\dot{\mathbf{U}}(\mathfrak{sl}_n)$ (resp., the action of S_d^i) on $\mathbb{V}^{\otimes d}$ with respect to the corresponding iCB is positive.

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

iCanonical basis

Positiivity again, and again

- The iCB $\mathbf{B}^{i}(\mathfrak{sl}_{N})$ satisfies (and in turn is characterized by) the almost orthonormality with respect to a geometric bilinear form.
- The geometric bilinear form is positive with respect to the iCB.
- Recall N = 2n + 1. We have $\dot{U}(\mathfrak{sl}_n) \subset \dot{U}^{\imath}(\mathfrak{sl}_N)$, and that $B^{\imath}(\mathfrak{sl}_N) \cap \dot{U}(\mathfrak{sl}_n)$ is the CB of $\dot{U}(\mathfrak{sl}_n)$.
- The action of $\dot{\mathbf{U}}(\mathfrak{sl}_n)$ (resp., the action of S_d^i) on $\mathbb{V}^{\otimes d}$ with respect to the corresponding iCB is positive.

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II 000000€0
iCanonical basis			
Summary			

• \exists new Canonical bases (iCB) for coideal algebra \dot{U}^{\imath} and its modules (U^{\imath} is not a Drinfeld-Jimbo quantum algebra.)

• Special cases of these iCB allow to formulate and solve KL conjecture for osp(2m + 1|2n), an open problem since 1970's.

• The $\dot{\mathbf{U}}^{i}$ and iCB admit geometric realization, generalizing the 1990 BLM construction for type *A*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

ISCHUR DUALITY	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II 000000€0
iCanonical basis			
Summary			

- \exists new Canonical bases (iCB) for coideal algebra \dot{U}^{i} and its modules (U^{i} is not a Drinfeld-Jimbo quantum algebra.)
- Special cases of these iCB allow to formulate and solve KL conjecture for osp(2m + 1|2n), an open problem since 1970's.
- The $\dot{\mathbf{U}}^{i}$ and iCB admit geometric realization, generalizing the 1990 BLM construction for type A.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

ISCHUR DUALITY 0000	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II 000000€0
iCanonical basis			
Summary			

- \exists new Canonical bases (iCB) for coideal algebra \dot{U}^{i} and its modules (U^{i} is not a Drinfeld-Jimbo quantum algebra.)
- Special cases of these iCB allow to formulate and solve KL conjecture for osp(2m + 1|2n), an open problem since 1970's.
- The $\dot{\mathbf{U}}^{i}$ and iCB admit geometric realization, generalizing the 1990 BLM construction for type *A*.

(日) (日) (日) (日) (日) (日) (日)

ISCHUR DUALITY 0000	ICANONICAL BASIS	GEOMETRIC REALIZATION	CANONICAL BASIS, II 000000€0
iCanonical basis			
Summary			

- \exists new Canonical bases (iCB) for coideal algebra \dot{U}^{i} and its modules (U^{i} is not a Drinfeld-Jimbo quantum algebra.)
- Special cases of these iCB allow to formulate and solve KL conjecture for osp(2m + 1|2n), an open problem since 1970's.
- The $\dot{\mathbf{U}}^{i}$ and iCB admit geometric realization, generalizing the 1990 BLM construction for type *A*.

CANONICAL BASIS, II

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

iCanonical basis

One more thing

What is next

• iCanonical Bases for [a class of] quantum symmetric pairs

• Affinization of q-coideal algebras, iSchur duality, and iCB (via classical type affine flag variety, Steinberg variety, ...)

iCategorification

 Enhance the "locally type A" philosophy of Nakajima and Khovanov-Lauda-Rouquier to "locally type A with involution" ?!

GEOMETRIC REALIZATION

CANONICAL BASIS, II

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

iCanonical basis

One more thing

What is next

• iCanonical Bases for [a class of] quantum symmetric pairs

• Affinization of q-coideal algebras, iSchur duality, and iCB (via classical type affine flag variety, Steinberg variety, ...)

iCategorification

 Enhance the "locally type A" philosophy of Nakajima and Khovanov-Lauda-Rouquier to "locally type A with involution" ?!

GEOMETRIC REALIZATION

CANONICAL BASIS, II

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

iCanonical basis

One more thing

What is next

- iCanonical Bases for [a class of] quantum symmetric pairs
- Affinization of q-coideal algebras, iSchur duality, and iCB (via classical type affine flag variety, Steinberg variety, ...)
- iCategorification
- Enhance the "locally type A" philosophy of Nakajima and Khovanov-Lauda-Rouquier to "locally type A with involution" ?!

CANONICAL BASIS, II

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

iCanonical basis

One more thing

What is next

- iCanonical Bases for [a class of] quantum symmetric pairs
- Affinization of q-coideal algebras, iSchur duality, and iCB (via classical type affine flag variety, Steinberg variety, ...)

iCategorification

 Enhance the "locally type A" philosophy of Nakajima and Khovanov-Lauda-Rouquier to "locally type A with involution" ?!

CANONICAL BASIS, II

(日) (日) (日) (日) (日) (日) (日)

iCanonical basis

One more thing

What is next

- iCanonical Bases for [a class of] quantum symmetric pairs
- Affinization of q-coideal algebras, iSchur duality, and iCB (via classical type affine flag variety, Steinberg variety, ...)

iCategorification

• Enhance the "locally type A" philosophy of Nakajima and Khovanov-Lauda-Rouquier to "locally type A with involution" ?!

CANONICAL BASIS, II

(ロ) (同) (三) (三) (三) (○) (○)

iCanonical basis

One more thing

What is next

- iCanonical Bases for [a class of] quantum symmetric pairs
- Affinization of q-coideal algebras, iSchur duality, and iCB (via classical type affine flag variety, Steinberg variety, ...)
- iCategorification
- Enhance the "locally type A" philosophy of Nakajima and Khovanov-Lauda-Rouquier to "locally type A with involution" ?!

CANONICAL BASIS, II

A D F A 同 F A E F A E F A Q A

iCanonical basis

One more thing

What is next

- iCanonical Bases for [a class of] quantum symmetric pairs
- Affinization of q-coideal algebras, iSchur duality, and iCB (via classical type affine flag variety, Steinberg variety, ...)
- iCategorification
- Enhance the "locally type A" philosophy of Nakajima and Khovanov-Lauda-Rouquier to "locally type A with involution" ?!