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Abstract. We develop some basic properties such as p-centers of affine vertex
algebras and free field vertex algebras in prime characteristic. We show that the
Wakimoto-Feigin-Frenkel homomorphism preserves the p-centers by providing
explicit formulas. This allows us to formulate the notion of baby Wakimoto
modules, which in particular provides an interpretation in the context of modular
vertex algebras for Mathieu’s irreducible character formula of modular affine Lie
algebras at the critical level.

1. Introduction

Let K be an algebraically closed field of prime characteristic p. Denote by
U = K⊗ZUZ, where UZ is the Kostant-Garland Z-form (including divided powers)
of the universal enveloping algebra of g. Mathieu [Ma] established a character
formula for the irreducible highest weight U -module L(−ρ) at the critical level
(see (5.3)), which can be rephrased as that the Wakimoto module of highest weight
−ρ over the complex field C remains irreducible over U after reduction modulo p.
Mathieu also gave a character formula for l(−ρ) (and also for L((p − 1)ρ)); see
(5.1)-(5.2). Here l(−ρ) denotes the irreducible quotient g-module of the Verma
g-module of high weight −ρ, which can be regarded as an irreducible module over
the restricted enveloping algebra u0(g) (and u0(g) ⊂ U). These two irreducible
character formulas are equivalent by the Steinberg tensor product theorem and
noting that (p− 1)ρ is a restricted weight.

Modular vertex algebras (i.e., vertex algebras in prime characteristic) were first
considered in [BR] by Borcherds and Ryba in their study of modular moonshine.
This paper is motivated by putting Mathieu’s result in a proper context of modular
Lie algebras and modular vertex algebras (where the algebra U plays no role). We
formulate the notion of p-centers for vertex algebras associated to Heisenberg alge-
bras, affine algebras, and some other free fields, and this gives rise to correspond-
ing p-restricted vertex algebras. We show that the p-centers and the state-field
correspondence for these vertex algebras are compatible in a simple manner; cf.
Proposition 2.6.

Wakimoto modules (over C) were introduced by Wakimoto [Wak] for sl2 and
then by Feigin and E. Frenkel for general semisimple Lie algebras [FF]. Wakimoto
modules have played a fundamental role in the affine vertex algebra setting and ap-
plications to the geometric Langlands program, cf. [Fr1, Fr2]. The construction of
Wakimoto modules relies on the Wakimoto-Feigin-Frenkel homomorphism w from
an affine vertex algebra to a bosonic free field vertex algebra. As a main result of
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this note we show that w (over the field K) preserves the p-centers, and indeed we
provide explicit formulas for the restriction of w on the p-center. This allows us
to formulate a notion of baby Wakimoto modules, which is analogous to the more
familiar notion of baby Verma modules for modular Lie algebras. Now Mathieu’s
result can be restated that the baby Wakimoto module of highest weight −ρ is
irreducible as module over g or over u0(g) (that is, it coincides with l(−ρ) in the
above notation).

This paper is organized as follows. In Section 2, we prove some basic properties of
the modular affine vertex algebras including the p-centers. In Section 3, we describe
the p-centers of the Heisenberg vertex algebra and of a symplectic bosonic vertex
algebra. We formulate the main construction of the baby Wakimoto modules. In
Section 4, we establish the formulas for the WFF homomorphism on the p-center of
the affine vertex algebra. In Section 5, we give a reformulation of Mathieu’s main
result in terms of the irreducibility of the baby Wakimoto module of highest weight
−ρ. We end with some conjectures and open problems on further development of
modular representation theory of affine Lie algebras.

Acknowledgments. We have been working on this project on and off since
2007. The results were presented in the Taitung Workshop on “Group theory,
VOA and algebraic combinatorics”, Taiwan, in March 2013, organized by C.-H.
Lam. There is some overlap of our work with a recent paper by Li and Mu
[LM], where one can find more references on modular vertex algebras in recent
years. The first author is partially supported by JSPS KAKENHI Grant Numbers
25287004, 26610006. The second author is partially supported by an NSF grant
DMS-1405131.

2. Modular affine algebras and modular vertex algebras

2.1. Affine Lie algebra in prime characteristic. Let ḡ be a finite-dimensional
semisimple Lie algebra, which is a Lie algebra of a simply connected algebraic
group Ḡ over an algebraically closed field K of characteristic p > 0. Then ḡ is a
restricted Lie algebra (also called a p-Lie algebra) with p-power map denoted by
−[p]; cf. [Jan] for a review of modular Lie algebras. Moreover, ḡ affords a non-
degenerate bilinear form 〈·, ·〉, which induces a linear isomorphism ḡ→ ḡ∗. We fix
a Chevalley basis hi(1 ≤ i ≤ `), eα, fα(α ∈ ∆̄+) of ḡ, where ∆̄+ is a set of positive
roots for ḡ corresponding to a set of simple roots Π̄ = {α1, . . . , α`}. We further
write ei = eαi , fi = fαi . We denote by B̄ (respectively, B̄−) the Borel subgroup
of Ḡ whose Lie algebra b̄ (respectively, b̄−) is spanned by root vectors from ∆̄+

(respectively, ∆̄− = −∆̄+).
We consider the affine Lie algebra

g ∼= Lḡ⊕Kc

where Lḡ ∼= K[t, t−1] ⊗ ḡ. We shall write xn = tn ⊗ x for x ∈ ḡ and n ∈ Z. Then
ḡ is naturally a Lie subalgebra of g by the identification 1⊗ ḡ ∼= ḡ. We denote by
h∨ the dual Coxeter number for the affine Lie algebra g.
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A Cartan subalgebra h of the affine Lie algebra g is

h = h̄ + Kc
and a Borel subalgebra of g is b = Kc+tK[t]⊗ḡ+b̄ with nilradical n = tK[t]⊗ḡ+n̄,
so that g = n− ⊕ h ⊕ n. Denote by ∆+ the set of positive roots associated to n,
and by ∆re

+ the subset of real roots in ∆+. Let g∗ denote the restricted dual of g
associated to the root space decomposition of g.

Denote by T̄ ⊂ Ḡ the maximal torus with Lie algebra h̄. Let K∗ = K− {0} be
the torus corresponding to the derivation d on g, where [d, c] = 0 and [d, tn ⊗ x] =
−ntn ⊗ x for x ∈ ḡ and n ∈ Z. Set T = T̄ ×K∗.

Lemma 2.1 (cf. [Ma], (1.4)). There is a restricted Lie algebra structure on the
affine Lie algebra g as an extension of the one on ḡ, whose p-power map is given
by

c[p] = c, (tn ⊗ x)[p] = tnp ⊗ x[p], for n ∈ Z, x ∈ ḡ.

Then as usual one has the p-center Z0(g) in the enveloping algebra U(g) which is
generated by xp−x[p] for all x ∈ g. The subalgebra of Z0(g) generated by xp−x[p]

for all x ∈ Lḡ will be denoted by Z ′0(g) and referred to as the proper p-center.
Each χ ∈ (Lḡ)∗ defines a p-character and gives rise to the reduced enveloping

algebra by
uχ(g) = U(g)/Iχ

where Iχ is the ideal generated by ap − a[p] − χ(a)p for all a ∈ Lḡ. In particular,
u0(g) is called the restricted enveloping algebra of g. Note that according to our
definition cp − c is not in the ideal I0.

A distinguished restricted Lie subalgebra of g is the Heisenberg algebra

hs = Lh̄⊕Kc = hs−⊕ h⊕ hs+,

where hs± = ⊕n∈±Ntn ⊗ h̄. The Lie algebra hs has a large center spanned by
c, tpn ⊗ h̄ for n ∈ Z.

The p-center Z0(hs) of U(hs) is generated by xp − x[p] for all x ∈ hs and the
proper p-center Z ′0(hs) of U(hs) is by definition the subalgebra generated by xp−x[p]

for all x ∈ Lh̄. The whole center of U(hs) is generated by Z0(hs) and c, tpn⊗ h̄ for
n ∈ Z, though this fact will not be needed below.

2.2. Vertex algebras in prime characteristic. The usual notion of vertex al-
gebras can be readily made sense over the field K of characteristic p > 0 (cf.
Borcherds-Ryba [BR]). All one needs is to use the divided power of the translation
operator T (i) = T i/i!, i ≥ 1 and noting that

Y (T (i)a, z) = ∂(i)Y (a, z),

where ∂(i) denotes the ith divided power of the derivative with respect to z.
Denote L+ḡ =

∑
n∈Z+

tn⊗ ḡ. It is well known that the vacuum g-module of level
κ ∈ K

V κ(g) = U(g)
⊗

U(L+ḡ+Kc)

Kκ
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carries a canonical structure of a vertex algebra (cf. e.g. [Fr2]), where Lḡ+ acts on
Kκ = K trivially and c as scalar κ. Denote by |0〉 = 1 ⊗ 1 the vacuum vector in
V κ(g).

2.3. The p-centers of modular vertex algebras. Let

x(z) =
∑
n∈Z

xnz
−n−1, x ∈ ḡ.

The next lemma on vertex operators is standard (cf. [Fr2]), except the divided
power notation.

Lemma 2.2. The following formulas hold in the vertex algebra V κ(g):

Y (x−r|0〉, z) = ∂(r−1)x(z) =
∑
n∈Z

(
−n− 1

r − 1

)
xnz

−n−r, (2.1)

Y (x−r1y−r2 · · · |0〉, z) = :∂(r1−1)x(z) ∂(r2−1)y(z) · · · :

for x, y, . . . ∈ ḡ, and r, r1, r2, . . . ∈ N.

We shall need some more formulas for vertex operators in characteristic p.

Lemma 2.3. The following identities hold for the vertex algebra V κ(g): for x ∈ ḡ
and r ≥ 1, we have

Y (x−rp|0〉, z) = ∂(rp−1)x(z) =
∑
n∈Z

(
−n− 1

r − 1

)
xnp z

−np−rp, (2.2)

Y (xp−r|0〉, z) = :(∂(r−1)x(z))p: =
∑
n∈Z

(
−n− 1

r − 1

)
xpn z

−np−rp. (2.3)

The special case of Lemma 2.3 for r = 1 reads:

Y (x−p|0〉, z) = ∂(p−1)x(z) =
∑
n∈Z

xnp z
−np−p, (2.4)

Y (xp−1|0〉, z) = :x(z)p: =
∑
n∈Z

xpn z
−np−p. (2.5)

To prove Lemma 2.3, we shall need the following classical formula.

Lemma 2.4. For a = a0 + pa′ ∈ Z≥0, b = b0 + pb′ with 0 ≤ a0, b0 ≤ p − 1 and
a′ ≥ 0, we have (

b

a

)
≡
(
b′

a′

)(
b0

a0

)
mod p.

(All the a’s and b’s involved are integers.)

Proof of Lemma 2.3. By Lemma 2.4, we obtain that
(−m−1
rp−1

)
≡ 0 mod p if p - m,

and
(−np−1
rp−1

)
≡
(−n−1
r−1

)
mod p for n ∈ Z. Now (2.2) follows from (2.1).
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We write A(z) ≡ ∂(r−1)x(z) =
∑

n∈Z
(−n−1
r−1

)
xnz

−n−r = A+(z) + A−(z), where

A±(z) =
∑

nQ−r
(−n−1
r−1

)
xnz

−n−r. By the definition of normal ordered product and

induction on m ≥ 1, we have

:A(z)m: = A+(z):A(z)m−1: + :A(z)m−1:A−(z)

=
m∑
i=0

(
m

i

)
A+(z)iA−(z)m−i.

Note that A+(z)p =
∑

n≤−r
(−n−1
r−1

)
xpnz

−np−p since xn with n < 0 commute and

bp = b for b ∈ Fp. Similarly, A−(z)p =
∑

n≥0

(−n−1
r−1

)
xpnz

−np−p. Hence, :A(z)p: =
A+(z)p + A−(z)p, whence (2.3). �

Remark 2.5. Lemmas 2.2 and 2.3 are applicable to other modular vertex algebras,
e.g. F .

Denote

ι(xn) = xpn − x[p]
np, x ∈ ḡ.

We also denote ι(z) = zp (the Frobenius morphism). In the next proposition,
which follows directly from Lemmas 2.2 and 2.3, we formulate a basic property of
modular affine vertex algebras.

Proposition 2.6 (Commutativity of ι and Y ). For x ∈ ḡ and r ≥ 1, we have

Y (ι(x−r)|0〉, z) = Y
(
(xp−r − (x[p])−rp)|0〉, z

)
=

(
∂(r−1)x(z)

)p − ∂(rp−1)x[p](z) = ι
(
∂(r−1)x(z)

)
. (2.6)

When r = 1, we have

Y (ι(x−1)|0〉, z) = ιY (x−1|0〉, z) =
∑
n∈Z

(xpn − (x[p])np) z
−np−p.

By definition, the center of a vertex algebra V consists of all vectors v ∈ V
such that Y (a, z)v ∈ V [[z]] for all a ∈ V . The center of a vertex algebra is a
commutative vertex algebra (cf. [Fr2]).

Definition 2.7. The p-center (or the Frobenius center) z0(V κ(g)) of the vertex
algebra V κ(g) is defined to be the subspace Z ′0(g)|0〉 ⊂ V κ(g).

Clearly these p-centers (and other p-centers below) are vertex subalgebras of the
centers of the corresponding vertex algebras.

Proposition 2.8. (1) The p-center z0(V κ(g)) is a commutative vertex subal-
gebra of V κ(g).

(2) U(g) · z0(V κ(g)) is an ideal of the vertex algebra V κ(g), and so the quotient

V κ
0 (g)

def
= V κ(g)/(U(g) · z0(V κ(g)))

carries an induced vertex algebra structure.
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Proof. Part (2) follows from (1) easily, and we shall prove (1).
Observe that the Fourier components of (2.6) are of the form xpn− (x[p])np (up to

a scalar multiple), and hence belong to the p-center z0(V κ(g)). By definition, the
p-center z0(V κ(g)) is spanned by elements of the form x = ι(a−r1b−r2 · · · |0〉) with
a, b . . . ∈ ḡ and r1, r2, . . . > 0. By Proposition 2.6, the vertex operator

Y (x, z) = :Y (ι(a−r1)|0〉, z)Y (ι(b−r2)|0〉, z) · · · :
is a linear combination of operators composed from those of the form xpn− (x[p])np,
and hence clearly preserves z0(V κ(g)). �

Following the standard terminology in the theory of modular Lie algebras, we
shall refer to the vertex algebras V κ

0 (g) as the restricted (or more precisely p-
restricted) vertex algebras associated to g.

Remark 2.9. Since cp−c 6∈ Z ′0(g) by definition, the central charges for the restricted
vertex algebras V κ

0 (g) can be any scalar in K.

A baby Verma g-module (associated to a weight λ on h of level κ) is a g-module
of the form

V (λ) ≡ V κ(λ) = u0(g)
⊗

u0(n+h)

Kλ

where n acts trivially on the one-dimensional space Kλ
∼= K and h acts by the

weight λ ∈ h∗. These baby Verma modules are modules of the restricted vertex
algebra V κ

0 (g).

3. The baby Wakimoto modules

3.1. A vertex algebra M . Let Ag be the Weyl algebra over K with generators
aα,n, a

∗
α,n with α ∈ ∆+, n ∈ Z, and relations

[aα,n, a
∗
β,m] = δα,βδn,−m, [aα,n, aβ,m] = [a∗α,n, a

∗
β,m] = 0.

A restricted Lie algebra structure on Ag is given as follows:

a[p]
α,n = (a∗α,n)[p] = 0, n ∈ Z.

Introduce the fields

aα(z) =
∑
n∈Z

aα,nz
−n−1, a∗α(z) =

∑
n∈Z

a∗α,nz
−n, α ∈ ∆+.

Let M be the Fock representation of Ag generated by |0〉 such that

aα,n|0〉 = 0, n ≥ 0; a∗α,n|0〉 = 0, n > 0.

As a vector space, M ∼= K[aα,n−1, a
∗
α,n]α∈∆̄+,n≤0. It is well known that M carries a

vertex algebra structure with state-field correspondence

Y (aα1,−r1 · · · aαk,−rka∗β1,−s1 · · · a
∗
βm,−sm|0〉)

= :∂(r1−1)aα1(z) · · · ∂(rk−1)aαk(z)∂(s1)a∗β1
(z) · · · ∂(sm)a∗βm(z):

and with the translation operator T such that

T |0〉 = 0, [T, aα,n] = −naα,n−1, [T, a∗α,n] = −(n− 1)a∗α,n−1.
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Proposition 3.1. (1) The p-center Z0(Ag) is equal to K[apα,n, (a
∗
α,n)p]α∈∆̄+,n∈Z;

and moreover, z0(M) ∼= K[apα,n−1, (a
∗
α,n)p]α∈∆̄+,n≤0.

(2) The space U(Ag) · z0(M) is an ideal of the vertex algebra M , so the quotient

M0 := M/(U(Ag) · z0(M))

carries an induced vertex algebra structure.

3.2. Realization of the contragredient Verma modules. We first recall (cf.
e.g. [Fr2, pp.135]) that the contragredient Verma module of ḡ can be realized
via its identification with the space of regular functions ON̄+

on the unipotent

subgroup N̄+ of the algebraic group Ḡ; equivalently, this is described as follows:
let Ū = N̄+B̄−/B̄− be the open cell of the flag variety B̄ := Ḡ/B̄−. Let

φ : U(ḡ) −→ DB̄(Ū) (3.1)

denote the composition of the restriction to the open cell Γ(B̄,DB̄) → DB̄(Ū)
with an algebra homomorphism U(ḡ) → Γ(B̄,DB̄) where DB̄ denotes the sheaf of
crystalline differential operators on the flag variety B̄ (i.e. no divided powers of
differential operators, cf. e.g., [BMR]). Then the contragredient Verma module
of ḡ is the pullback of the DB̄(Ū)-module OŪ via the algebra homomorphism φ.
The restriction φ|ḡ : ḡ → VectŪ is a Lie algebra homomorphism, where VectŪ the
vector fields over Ū .

Let us fix some coordinates yγ (and ∂γ := ∂
∂yγ

) for the open cell Ū . The following

lemma is standard.

Lemma 3.2. We have Z0(DB̄(U)) = K[ypγ, ∂
p
γ ]γ∈∆̄+

.

The following is known (cf., e.g., [BMR, §1.3]).

Lemma 3.3. The restriction φ : ḡ −→ VectŪ is a homomorphism of restricted Lie
algebras, and the homomorphism φ : U(ḡ) −→ DB̄(Ū) maps the p-center of U(ḡ)
to the p-center of DB̄(Ū).

In some cases, we can make this fairly explicit as follows. For x ∈ n̄⊕ h̄, one can
write

φ(x) =
∑
β∈∆̄+

cβmβ(yγ)∂β (3.2)

where cβ ∈ K and mβ(yγ) denotes some monomials in the variables yγ, for γ ∈ ∆̄+.

Lemma 3.4. Let x ∈ n̄⊕ h̄ and retain the above notation (3.2). Then we have

φ(ι(x)) =
∑
β∈∆̄+

cpβmβ(ypγ)∂
p
β.

Proof. We know that

φ(ι(x)) = φ(x)p − φ(x[p]) =
(∑

cβmβ(yγ)∂β
)p − φ(x[p])

lies in the p-center Z0(DB̄(U)) and φ(x[p]) is a sum of differential operators of
order one (plus some possible constants). We expand this pth power and move the
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differential operator ∂β to the right by using commutators. Lemma 3.2 ensures all
the commutators will cancel out with each other as they would produce differential
operators of order between 1 and p− 1. �

Remark 3.5. Let µ : T ∗B̄ → N̄ be the Springer resolution, µ(1) : T ∗B̄(1) → N̄ (1)

be the induced map between the corresponding Frobenius twists. Then the same
argument as in proof of Lemma 3.4 shows that φ(ι(x)) = (µ(1))∗(x̄)|U ([BMR,
1.3.3]), where x̄ is the image of x ∈ ḡ by the projection K[ḡ∗]→ K[N̄ ].

3.3. Heisenberg vertex algebra πκ. Let Bh
κ be a copy of Heisenberg algebra

(of the affine Lie algebra g), with generators 1 and bi,n (i = 1, . . . , `, n ∈ Z) and
subject to the relations

[bi,n, bj,m] = nκ〈hi, hj〉δn,−m1.

Denote by πκ the vertex algebra K[bi,n]1≤i≤`;n<0 (where 1 acts as the identity
map), with

Y (bi,−1, z) ≡ bi(z) =
∑
n<0

bi,nz
−n−1,

and the translation T given by

T · bi1,n1 · · · bim,nm = −
m∑
j=1

njbi1,n1 · · · bij ,nj−1 · · · bim,nm .

A restricted Lie algebra structure on Bh
κ is given by

b
[p]
i,n = bi,np, 1[p] = 1, 1 ≤ i ≤ `, n ∈ Z.

The proper p-center of the vertex algebra πκ (which excludes 1p− 1) is then equal
to

z′0(πκ) = K[bpi,n − bi,np]1≤i≤`;n<0.

Denote by πκ0 the quotient vertex algebra of πκ by the ideal (in the sense of vertex
algebras) generated by z′0(πκ).

For κ = 0, π0 is naturally a commutative vertex algebra.

3.4. The Wakimoto-Feigin-Frenkel (WFF) homomorphism. Let κc denote
the critical level for g. There exists a homomorphism of vertex algebras

w = wκ : V κ(g)→M ⊗ πκ−κc ,

which is roughly speaking an affinization of φ defined in (3.1); see [Fr2, Theo-
rem 6.1.6]. We shall call w the WFF homomorphism, since this was introduced by
Wakimoto [Wak] in the sl2 case and by Feigin-Frenkel [FF] for general semisimple
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Lie algebras ḡ. On generating fields, the formulas for w read as follows:

ei(z) 7→aαi(z) +
∑

αi 6=β∈∆̄+

:P i
β

(
a∗α(z)

)
aβ(z):, (3.3)

hi(z) 7→
∑
β∈∆̄+

β(hi):a
∗
β(z)aβ(z): + bi(z), (3.4)

fi(z) 7→
∑
β∈∆̄+

:Qi
β

(
a∗α(z)

)
aβ(z): +

(
ci + (κ− κc)〈ei, fi〉

)
∂za

∗
αi

(z) + a∗αi(z)bi(z).

(3.5)

We shall take for granted that ci are integers. The polynomial Qi
β

(
a∗α(z)

)
for β = αi

can be determined explicitly as follows; cf. [Fr2].

Lemma 3.6. We have Qi
αi

(
a∗α(z)

)
= −:a∗αi(z)2:.

Example 3.7. For ḡ = sl2, the formulas for w are greatly simplified (where we
drop the indices of the Chevalley generators and of the free fields) as follows:

e(z) 7→a(z), h(z) 7→ −2:a∗(z)a(z): + b(z),

f(z) 7→ − :a∗(z)2a(z): + κ∂za
∗(z) + a∗(z)b(z).

(3.6)

The following is a main result of this paper, which will be proved in Section 4.

Theorem 3.8. The homomorphism w : V κ(g) → M ⊗ πκ−κc sends the p-center
z0(V κ(g)) to the p-center z0(M)⊗ z0(πκ−κc).

We have the following immediate consequence.

Corollary 3.9. The homomorphism w induces naturally a homomorphism of vertex
algebras w0 : V κ

0 (g)→M0 ⊗ πκ−κc0 .

3.5. The baby Wakimoto modules. We define baby Wakimoto modules (asso-
ciated to p-characters) at the critical level κc as follows.

Let ξ be a p-character on the Lie algebra Ag such that

ξ((a∗α,n)p) = 0 = ξ(apα,n−1), for n > 0, α ∈ ∆̄+. (3.7)

Let ξπ be a p-character on the Lie algebra Bh. Take a weight λ(t) =
∑

n∈Z λnt
−n−1 ∈

h̄∗((t)) which is compatible with the p-character ξπ in the sense that

λpi,n − λi,np = ξπ(bi,n)p, for all 1 ≤ i ≤ `, n ∈ Z,

where λi,n = λn(hi). Such a weight gives rise to the one-dimensional π0–module
Kλ(t) on which bi,n acts by multiplication by λi,n. This defines a g-module at
the critical level on M (which is identified with M ⊗ Kλ(t)). Identifying M as
the polynomial algebra K[aα,n−1, a

∗
α,n]α∈∆̄+,n≤0, we let Iξ be the subalgebra of M

spanned by (a∗α,n)p− ξ((a∗α,n)p), apα,n−1− ξ(a
p
α,n−1), where n ≤ 0 and α ∈ ∆̄+. Since

all the generators of Iξ are central in U(g), Iξ is clearly a g-submodule of M , and
this gives rise to a quotient g-module

wξ(λ) := M/Iξ.
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We refer to the g-module wξ(λ) as the baby Wakimoto module of high weight λ
(and p-character ξ).

Now assume κ 6= κc. Given λ ∈ h∗, let πκ−κc0 (λ) be the Fock representation of
Ag generated by a vector |λ〉 such that

bi,n|λ〉 = 0 (n > 0), bi,0|λ〉 = λ(hi)|λ〉, 1|λ〉 = |λ〉.

Any module over the vertex algebra M ⊗ πκ−κc becomes a module over V κ(g) via
the pullback of homomorphism w : V κ(g)→M ⊗ πκ−κc . In particular,

W (λ) := M ⊗ πκ−κc(λ)

becomes a module over g of level κ. This is the Wakimoto module of high weight
λ and level κ defined in [FF].

Let ξ be a p-character on the Lie algebra Ag satisfying (3.7). Let ξπ be a p-
character on the Lie algebra Bh such that

ξπ(bpi,n − bi,np) = 0, for n ≥ 0.

Assume that λ ∈ h∗ is compatible with the p-character ξπ in the sense that

λ(hi)
p − λ(hi) = ξπ(hi)

p, for all 1 ≤ i ≤ `.

Identifying πκ−κc(λ) as the polynomial algebra K[bi,n]n<0,1≤i≤`, we let Iξπ be the
subalgebra of πκ−κc(λ) spanned by bpi,n−bi,np−ξπ(bi,n)p, where n < 0 and 1 ≤ i ≤ `.
Since all the generators of Iξπ are central in U(g), Iξπ is clearly a g-submodule of
πκ−κc(λ), and this gives rise to a quotient g-module

wκ
ξ,ξπ(λ) := (M ⊗ πκ−κc(λ))/(Iξ ⊗ Iξπ) ∼= (M/Iξ)⊗ (πκ−κc(λ)/Iξπ).

We refer to the g-module wκ
ξ,ξπ(λ) as the baby Wakimoto module of high weight λ

(and p-character (ξ, ξπ)).
Assume for now that πκ−κc(λ)/Iξπ is a module over the restricted vertex algebra

πκ−κc0 . Since ι(bi,−1)|0〉 = 0 ∈ πκ−κc0 , we have

0 = Y (ι(bi,−1)|0〉, z) =
∑
n∈Z

(bpi,n − bi,np)z−np−p

when acting on πκ−κc(λ)/Iξπ . Hence ξπ = 0, and λ(hi) ∈ Fp for 1 ≤ i ≤ `. The
converse is also true: if ξπ = 0 and λ(hi) ∈ Fp for 1 ≤ i ≤ `, then πκ−κc(λ)/Iξπ
is a module over the restricted vertex algebra πκ−κc0 . Similarly, M/Iξ is a module
over the restricted vertex algebra M0 if and only if ξ = 0. Summarizing, we have
proved the following.

Proposition 3.10. Let κ 6= κc. If λ ∈ h∗ satisfies λ(hi) ∈ Fp for each 1 ≤ i ≤ `
and λ(c) = κ, then wκ

0,0(λ) is a module over the vertex algebra M0 ⊗ πκ−κc0 , and
hence a module over the vertex algebra V κ(g).
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4. Proof of Theorem 3.8

4.1. Restriction of w to the p-center. Theorem 3.8 follows readily from the
explicit description of the restriction map of w to z0(V κ(g)) given in the following
theorem. Recall that

ι(ei(z)) = ei(z)p, ι(hi(z)) = hi(z)p − hi(z), ι(fi(z)) = fi(z)p. (4.1)

Theorem 4.1. The restriction of w to z0(V κ(g)) is given in terms of fields as
follows:

ι(ei(z))w =aαi(z)p +
∑

αi 6=β∈∆̄+

P i
β

(
a∗α(z)

)p
aβ(z)p, (4.2)

ι(hi(z))w =−
∑
β∈∆̄+

β(hi)a
∗
β(z)paβ(z)p + bi(z)p − ∂(p−1)bi(z), (4.3)

ι(fi(z))w =
∑
β∈∆̄+

Qi
β

(
a∗α(z)

)p
aβ(z)p + (κp − κ)〈ei, fi〉

(
∂za

∗
αi

(z)
)p

+ a∗αi(z)p
(
bi(z)p − ∂(p−1)bi(z)

)
. (4.4)

Actually P i
β

(
a∗α(z)

)p
and Qi

β

(
a∗α(z)

)p
are simply polynomials in the commuting

vertex operators a∗α(z)p, for α ∈ ∆̄+. Note that the normal orderings are no longer
needed in the above formulas.

Example 4.2. The formulas above read in the case of ŝl2 as follows:

ι(e(z))w = a(z)p,

ι(h(z))w = −2a∗(z)pa(z)p + b(z)p − ∂(p−1)b(z),

ι(f(z))w = −a∗(z)2pa(z)p + (κp − κ)∂za
∗(z) + a∗(z)p

(
b(z)p − ∂(p−1)b(z)

)
.

The remainder of this section is devoted to the proof of Theorem 4.1.

4.2. Proof of Theorem 4.1. Let

A = K[a∗α,0]α∈∆̄+
,

which can be identified with K[N̄+] = K[Ū ]. The space V :=
∑

α∈∆̄+
Aaα,−1 is

identified with TB̄(Ū), where TB̄ is the tangent sheaf of the flag variety B̄. Set
Ω := TA, where T is the translation operator in the vertex algebra M . Note that
(M0)0 = A and (M0)1 = V ⊕Ω. An element D ∈ V acts on A as a derivation by
the correspondence D 7→ D(0), where we denote a(n) = Y (a, z)(n) = Reszz

nY (a, z).
One has

[D(m), f(n)] = (Df)(m+n) for D ∈ V and f ∈ A. (4.5)

Recall φ : U(ḡ) → DB̄(Ū), x 7→ Dx. The algebra DB̄(Ū) can be identified with
the A-algebra generated by V such that D · f = f ·D + D(0)f , and thus we have
Dx ∈ V for each x ∈ ḡ. It follows by (3.3)-(3.5) that the image of x−1|0〉 under
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the vertex algebra homomorphism w : V κ(g) → M ⊗ πκ−κc , denoted by xw−1|0〉, is
of the form

xw−1|0〉 = Dx
(−1) + fx(−2) + bx(−1) (4.6)

for x ∈ ḡ, some fx ∈ A and some conformal weight one vector bx ∈ πκ−κc depending
on x.

Lemma 4.3. Let x ∈ ḡ and m ∈ Z. Then
(
ι(x−1)w|0〉

)
(m)

commutes with a∗α,n for

all α ∈ ∆̄+ and n ∈ Z.

Proof. Since the algebra homomorphism φ : U(ḡ)→ DB̄(U) is compatible with the
restricted Lie algebra structures (see Lemma 3.3), we have, for f ∈ A, that

[Dx, Dy]f = D[x,y]f, (Dx)pf = Dx[p]

f. (4.7)

Recall from Proposition 2.6 that

Y (ι(x−1)w|0〉, z) =
∑
m∈Z

(
(xwm)p − (x[p])wmp

)
z−mp−p.

By (4.5), (4.6) and (4.7), one has, for f ∈ A,

[(xwm)p, f(n)] = (ad xwm)p(f(n)) = (adDx
(m))

p(f(n))

= ((Dx)pf)(n+mp) = (Dx[p]

f)(n+mp)

= [Dx[p]

(mp), f(n)] = [(x[p])wmp, f(n)].

Now the lemma follows by taking f = a∗α,0. �

Lemma 4.4. Let x ∈ ḡ and m ∈ Z. Then (ι(x−1)w|0〉)(m) commutes with aα,n for
all α ∈ ∆̄+ and n ∈ Z.

Proof. Recall from [Fr1] that, for α ∈ ∆̄+, ewα,−1 is of the form

ewα,−1 = aα,−1 +
∑
β∈∆̄+
β>α

Pα
β aβ,−1, (4.8)

where Pα
β is a polynomial in A = K[a∗α,0]α∈∆̄+

of weight α−β. Indeed, the weight of
the right-hand-side of (4.8) equals α (see for example the first line of [Fr1, §1.3]),
and hence the coefficient Pα

β ∈ A must be zero unless β > α in the standard
dominance order of the root lattice of ḡ. It follows that each aα,−1 can be written
as

aα,−1 = ewα,−1 +
∑
β∈∆̄+
β>α

Qα
βe

w
β,−1 (4.9)

for some polynomials Qα
β ∈ A.

Since (ι(x−1)|0〉)(m) = xpm−(x[p])mp is central in U(g) and w is a g-homomorphism,
(ι(x−1)w|0〉)(m) commutes with ewγ,n for any n and any γ ∈ ∆̄+ (in particular for
γ ≥ α). By Lemma 4.3, (ι(x−1)w|0〉)(m) also commutes with (Qα

β)(n) for any n. Now
by applying Y (−, z)(n) to (4.9), (ι(x−1)w|0〉)(m) commutes with aα,n. �
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Remark 4.5. It is elementary to show by induction on k that for any k, n,m, i, β
one has

[(hwi,n)k, aβ,m] =
k∑
d=1

(
k

d

)
β(hi) · aβ,nd+m(hwi,n)k−d.

It follows that [(hwi,n)p − hwi,np, aβ,m] = 0. Similarly, [(hwi,n)p − hwi,np, a∗β,m] = 0.

Proposition 4.6. Formulas (4.2)-(4.3) hold.

Proof. Let us fix i. The strategy is similar to the proof of Lemma 3.4. We extend
the notation to write P i

αi

(
a∗α(z)

)
= aαi(z). Then by (4.1) and (3.3), we can write

(ei(z)p)w =
∑
β∈∆̄+

P i
β

(
a∗α(z)

)p
aβ(z)p +

p−1∑
t=1

:Yt(a
∗
α(z))aβ(z)t:, (4.10)

for some differential polynomials Yt, where the last summand arises from contrac-
tions in Wick’s formula. Lemma 4.3 can be rephrased by saying that (ei(z)p)w

commutes with a∗β(z). The first summand on the right-hand side of (4.10) com-
mute with a∗β(z), but aβ(z)t, for 1 ≤ t ≤ p− 1, do not commute with a∗β(z). Hence
we must have Yt = 0 for all t by a downward induction on t. This proves (4.2).

Similarly, noting β(hi) is integral and using (4.1) and (3.4), we have

(hi(z)p−hi(z))w = −
∑
β∈∆̄+

β(hi)
[
(:a∗β(z)aβ(z):)p−:a∗β(z)aβ(z):

]
+bi(z)p−∂(p−1)bi(z).

(4.11)
Now write (:a∗β(z)aβ(z):)p − :a∗β(z)aβ(z): = a∗β(z)paβ(z)p +

∑p−1
t=1 :Xt(a

∗
β(z))aβ(z)t:,

for some differential polynomials Xt (Here β is fixed). But by considering the
commutation of (4.11) with a∗β(z) and applying Lemma 4.3, we conclude that
Xt = 0 for each t. This proves (4.3). �

To complete the proof of Theorem 4.1 it remains to prove (4.4). Denote by
ḡZ the Z-lattice generated by the Chevalley generators eα, fα and hi, for α ∈ ∆̄+

and i = 1, . . . , `. Denote by VZ the Z-lattice of V κ(g) spanned by all possible
a−i1b−i2c−i3 . . . |0〉, where a, b, c . . . ∈ ḡZ and i1, i2, i3, . . . ≥ 1. Writing a general
vertex operator Y (a, z) =

∑
n∈Z a(n)z

−n−1, we recall a general formula from the
theory of vertex algebras (cf. [Fr2]):

[x(m), y(n)] =
∑
i≥0

(
m

i

)(
x(i)y

)
(m+n−i), i ≥ 0. (4.12)

From a similar consideration as in the proof of Proposition 4.6 above, we conclude
that ι(fi(z))w is of the form

ι(fi(z))w =
∑
β∈∆̄+

Qi
β

(
a∗α(z)

)p
aβ(z)p + η

(
∂za

∗
αi

(z)
)p

+ a∗αi(z)pR(bi(z)), (4.13)

where η ∈ K and

R(bi(z)) = Y (ri, z) = bi(z)p + . . . (4.14)
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is a (normal ordered) polynomial in bi(z) and its derivatives and ri ∈ πκ−κc . For-
mula (4.4) now follows from the proposition below.

Proposition 4.7. We have

(1) R(bi(z)) = bi(z)p − ∂(p−1)bi(z);
(2) η = (κp − κ)〈ei, fi〉.

Sketch of a proof. It is possible to realize Wakimoto modules over Z as limits of
twisting Verma modules, denoted by WZ(λ), on which ei,n, hi,n, fi,n act. Then
the formulas (3.3)-(3.5) are understood as a congruence equation modulo pWZ(λ)
when acting on any v ∈ WZ(λ); moreover (ep−1|0〉)w(n)v ∈ pWZ(λ), (fp−1|0〉)w(n)v ∈
pWZ(λ), thanks to Lemmas 4.3 and 4.4. From weight consideration, we have
(ep−1|0〉)(p−1)f

p
−1|0〉 ≡ −p(h

p
−1 − h−p) mod p2VZ.

On the other hand, for n ≥ 0 and v ∈ WZ(λ), we have(
(ep−1|0〉)(p−1)f

p
−1|0〉

)w
(n)
v =

p−1∑
i=0

(−1)i
(
p− 1

i

)(
(ep−1|0〉)w(p−1−i)(f

p
−1|0〉)w(n+i)v

− (−1)p−1(fp−1|0〉)w(n+p−1−i)(e
p
−1|0〉)w(i)v

)
. (4.15)

But if we compute (4.15) by applying (3.3)–(3.5), the only term involving bi,n is
given by −riv, which by (4.14) must be equal to −(bpi,−1− bi,−p)v modulo pWZ(λ).
Part (1) now follows from this together with (4.14).

Part (2) reduces to the sl2 case by Lemma 3.6. �

5. Irreducible baby Wakimoto modules w(−ρ)

5.1. Mathieu’s character formula reformulated. For an integral weight λ ∈
h∗, denote by l(λ) the irreducible quotient g-module of the Verma g-module of high
weight λ. Recall the torus T from $2.1. Then l(λ) is naturally an g-T -module in
the sense of Jantzen [Jan], and this allows one to makes sense its (formal) character
ch l(λ) in the usual sense.

Mathieu [Ma] proved the following character formula

ch l(−ρ) = e−ρ
∏
α∈∆re

+

(1− e−pα)

(1− e−α)
. (5.1)

Note that −ρ is a weight at the critical level κc. We have the following reformu-
lation of a main result of Mathieu, which has the advantage that the irreducible
g-module l(−ρ) is realized explicitly as the baby Wakimoto module w(−ρ) in terms
of (restricted) free fields.

Theorem 5.1. The baby Wakimoto module w(−ρ) is the irreducible high weight
g-module of high weight −ρ.

Proof. By construction of the baby Wakimoto module, we have the following char-
acter formula:

ch w(−ρ) = e−ρ
∏
α∈∆re

+

(1− e−pα)

(1− e−α)
.
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The (obvious) surjective homomorphism w(−ρ)→ l(−ρ) must be an isomorphism
by a character comparison. �

As modules over g, we have l(−ρ) = l((p − 1)ρ). (More general l(λ) = l(µ)
if λ − µ is a p-multiple of an integral weight of g.) Denote by U = K ⊗Z UZ,
where UZ is the Kostant-Garland Z-form of the universal enveloping algebra of g.
Denote by L(λ) (the notation l(λ) was used in [Ma]) the irreducible highest weight
U -module of highest weight λ (which is assumed to be integral). Note that the
restricted enveloping algebra is a subalgebra of U , i.e., u0(g) ⊆ U . Since (p−1)ρ is
a restricted weight, it follows by Mathieu [Ma, Lemma 1.7] that L((p− 1)ρ) when
restricted to u0(g) remains to be irreducible, and hence L((p − 1)ρ) ∼= l((p − 1)ρ)
as g-modules. Therefore Theorem 5.1 and (5.1) have the following implication.

Corollary 5.2 ([Ma]). We have the following character formulas:

ch l((p− 1)ρ) = e(p−1)ρ
∏
α∈∆re

+

(1− e−pα)

(1− e−α)
, (5.2)

ch l(−ρ) = e−ρ
∏
α∈∆re

+

1

1− e−α
. (5.3)

The above two formulas are equivalent by Steinberg tensor product theorem.

5.2. Conjectures and further problems. Recall the vertex algebra V κ(gC) over
C has trivial center at a non-critical level κ; at the critical level, V κc(gC) has a
large center, which is explicitly described in [Fr1, Fr2]. This center continues to
make sense for V κc(g) over K in characteristic p; we shall refer to this as the
Harish-Chandra center of V κc(g) and denote it by zHC(V κc(g)).

Conjecture 5.3. (1) For κ 6= κc, the center of the vertex algebra V κ(g) coin-
cides with the p-center z0(V κ(g)).

(2) The center of the vertex algebra V κc(g) is generated by the Harish-Chandra
center zHC(V κc(g)) and the p-center z0(V κc(g)).

A p-character ξM of Ag is called graded if ξM(aα,n) = 0 = ξM(a∗α,n) for all n 6= 0.

A p-character ξπ of Bh
κ is graded if ξπ(bi,n) = 0 for all n 6= 0 and 1 ≤ i ≤ `.

Similarly, a graded p-character for g can be defined.
The modular representation theory of (finite-dimensional) Lie algebras has been

well developed; cf. the review of Jantzen [Jan]. It will be of great interest to develop
modular representation theory for an affine Lie algebra g, say when the p-character
is (graded) semisimple or nilpotent. In particular, one may ask if the baby Waki-
moto modules are irreducible for generic (graded) semisimple p-characters. The
modular representation theory of the algebra U (or the corresponding algebraic
group of g) has been very challenging; we refer to [Lai] and the references therein
for results in this direction. The modular representation theory of g should be some-
what more accessible and flexible by imposing various conditions on p-characters.
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