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What are W-algebras?

• W-algebras are certain generalizations of infinite-dimensional

Lie algebras such as affine Kac-Moody algebras and the

Virasoro algebra.

• W-algebras can be also considered as affinizations of finite

W-algebras ([Premet ’02]) which are quantizations of Slodowy

slices ([De-Sole-Kac ’06]).

• W-algebras appeared in ’80s in physics in the study of

the two-dimensional conformal field theories.

• W-algebras are closely connected with integrable systems,

(quantum) geometric Langlands program

(e.g. [T.A.-Frenkel ’18]), four-dimensional gauge theory

([Alday-Gaiotto-Tachikawa ’10]), etc.
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An example

The Zamolodchikov W3-algebra

generators: Ln (n ∈ Z), Wn (n ∈ Z), c,

relations: [c,W3] = 0, [Lm, Ln] = (m − n)Lm+n +
m3−m
12 δm+n,0c,

[Lm,Wn] = (2m − n)Wm+n,

[Wm,Wn]

= (m − n)
(

1
15(m + n + 3)(m + n + 2)− 1

6(m + 2)(n + 2)
)
Lm+n

+ 16
22+5c(m − n)Λm+n +

1
360m(m2 − 1)(m2 − 4)δm+n,0c,

where Λn =
∑
k≥0

Ln−kLk +
∑
k<0

LkLn−k − 3
10(n + 2)(n + 3)Ln.

W-algebras are not Lie algebras in general but vertex algebras.
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Representations of W3-algebra

A representation of W3 on a (C-)vector space M makes sense by

imposing the conditions

Lnm = Wnm = 0 (n ≫ 0, ∀m ∈ M).

A highest weight representation of W3 is a representation M that

is generated by a vector v satisfying

Lnv = Wnv = 0 (n > 0),

L0v = a1v , W0v = a2v , cv = cv , ∃(a1, a2, c) ∈ C3.

For a highest weight representation M of W3 the (normalized)

character

χM(q) = trM(qL0−
c
24 )

makes sense.
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Quantized Drinfeld-Sokolov reduction

In general, a W-algebra is defined by means of the (quantized)

Drinfeld-Sokolov reduction ([Feigin-Frenkel ’90,. . . ,

Kac-Roan-Wakimoto ’03]).

g: a simple Lie algebra, f ∈ g: a nilpotent element,

⇝ Wk(g, f ) = H0
DS ,f (V

k(g)): the W-algebra associated with (g, f )

at level k ∈ C.

Here,

H•
DS,f (M): the BRST cohomology of the Drinfeld-Sokolov

reduction associated with (g, f ) with coefficient in M;

V k(g): the universal affine vertex algebra associated with g at

level k (vertex algebra associated with the affine Kac-Moody

algebra ĝ = g[t, t−1]⊕ CK ).
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Examples of Wk(g, f )

1). Wk(g, 0) = V k(g) = U(ĝ)⊗U(g[t]+CK) Ck

(a V k(g)-module = a smooth ĝ-module of level k).

2). Wk(sl2, fprin) = the Virasoro vertex algebra of central charge

1− 6(k + 1)2/(k + 2) (if k is not critical, i.e., k ̸= −2).

3). Wk(sl3, fprin) = W3 with c = 2− 24(k + 2)2/(k + 3) (for a

non-critical k).

4). Wk(sln, fprin) is the Fateev-Lukyanov Wn-algebra.

5). Almost all superconformal algebras are realized as the

W-algebra Wk(g, fmin) associated with some Lie superalgebra

g and a minimal nilpotent element fmin

([Kac-Roan-Wakimoto ’03]).

Presentation of Wk(g, f ) by generators and relations are not

known in general.
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Drinfeld-Sokolov reduction functor

The definition of Wk(g, f ) by the quantized Drinfeld-Sokolov

reduction gives rise to a functor

V k(g) -Mod → Wk(g, f ) -Mod,

M 7→ H0
DS,f (M).

Ok : the category O of ĝ at level k .

L(λ) ∈ Ok : the irreducible highest weight representation of ĝ with

highest weight λ of level k .
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Representation theory of minimal W-algebras

Theorem (T.A. ’05, f = fmin = minimal nilpotent element)

1). H i ̸=0
DS ,fmin

(M) = 0 for any M ∈ Ok . Therefore, the functor

Ok → Wk(g, fmin) -Mod, M 7→ H0
DS ,fmin

(M), is exact.

2). H0
DS ,fmin

(L(λ)) is zero or simple. Moreover, any irreducible

highest weight representation of Wk(g, fmin) arises in this way.

By the Euler-Poincaré principle, the character chH0
DS ,fmin

(L(λ)) is

expressed in terms of the character of L(λ) ⇒ get the character of

irreducible highest weight representations of Wk(g, fmin).

Remark

The above theorem holds for Lie superalgebras as well. This in

particular proves the Kac-Roan-Wakimoto conjecture ’03.
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Principal W -algebras and W -algebras of type A

One can extend the previous results for more general nilpotent

elements by modifying the DS functor following

Frenkel-Kac-Wakimoto ’92.

As a result, we obtain

• characters of all irreducible highest weight representations of

principal W-algebras Wk(g, fprin) ([T.A. ’07]), which in

particular proves the conjecture of Frenkel-Kac-Wakimoto ’92

on the existence and construction of modular invariant

representations of principal W-algebras;

• characters of all (ordinary) representations of W-algebras

Wk(sln, f ) of type A ([T.A.’12]), which in particular proves

the similar conjecture of Kac-Wakimoto ’08.
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Rationality and the lisse condition

Theorem (Zhu ’96)

Let V be a “nice” vertex (operator) algebra. Then the character

χM(e2πiτ ) converges to a holomorphic function on the upper half

plane for any M ∈ Irrep(V ). Moreover, the space spanned by the

characters χM(e2πiτ ), M ∈ Irrep(V ), is invariant under the

natural action of SL2(Z).

Here a vertex operator algebra V is calle “nice” if

• V is lisse (or C2-cofinite), that is, Specm(grV ) = {0}.
• V is rational, that is, any positively graded V -modules are

completely reducible.
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Example of a “nice” vertex algebra

The universal affine vertex algebra V k(g) is not lisse.

Indeed, V k(g) ∼= U(t−1g[t−1]), and we have

grVk(g) = S(t−1g[t−1]) = C[J∞g∗].

Here J∞X is the arc space of X :

Hom(SpecR, J∞X ) = Hom(SpecR[[t]],X ), R : C−algebra.

Let Lk(g) be the simple (graded) quotient L(kΛ0) of V
k(g)

(simple affine vertex algebra).

Fact (Frenkel-Zhu ’92, Zhu ’96, Dong-Mason ’06)

Lk(g) is lisse ⇐⇒ Lk(g) is integrable ( ⇐⇒ k ∈ Z≥0).

If this is the case,

Lk(g) -Mod = {integrable ĝ-modules of level k}. Thus, Lk(g) is
rational as well.
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Lisse condition and associated varieties

V : vertex algebra

⇝ RV = V /C2(V ): Zhu’s C2-algebra (a Poisson algebra)

⇝ XV := Specm(RV ): the associated variety of V ([T.A. ’12])

Lemma (T.A. ’12)

V is lisse iff XV = {0}.

Examples

1). XV k (g) = g∗, and so XLk (g) ⊂ g∗, G -invariant and conic.

2). XWk (g,f )
∼= Sf := f + ge ⊂ g = g∗, the Slodowy slice at f

([De-Sole-Kac ’06]), where {e, f , h} is an sl2-triple.
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Associated varieties of W-algebras

Let Wk(g, f ) be the simple quotient of Wk(g, f ).

⇝ XWk (g,f ) ⊂ XWk (g,f ) = Sf , invariant under the natural C∗-action

which contracts to f . So Wk(g, f ) is lisse iff XWk (g,f ) = {f }.

One can show that Wk(g, f ) is a quotient of the vertex algebra

H0
DS,f (Lk(g)), provided that it is nonzero ([T.A. ’16]).

Theorem (T.A. ’16)

We have

XH0
DS,f (Lk (g))

= XLk (g) ∩ Sf

(holds as schemes). Hence,

(i). H0
DS ,f (Lk(g)) ̸= 0 iff XLk (g) ⊃ G .f ;

(ii). If XLk (g) = G .f , XH0
DS,f (Lk (g))

= {f }. Hence H0
DS ,f (Lk(g)) is

lisse, and so is its quotient Wk(g, f ).
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Admissible representations of affine Kac-Moody algebras

Note that H0
DS ,f (Lk(g)) = 0 if Lk(g) is integrable. Therefore we

need to study more general representations of ĝ to obtain lisse

W -algebras using the previous result.

There is a nice class of representations of ĝ which are called

admissible representations (Kac-Wakimoto ’88):

{integrable rep.} ⫋ {admissible rep.} ⫋ {highest weight rep.}

The simple affine vertex algebra Lk(g) is admissible as a ĝ-module

iff

k + h∨ =
p

q
, p, q ∈ N, (p, q) = 1, p ≥

h∨ if (q, r∨) = 1,

h if (q, r∨) = r∨.

Here h is the Coxeter number of g and r∨ is the lacity of g.
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Feigin-Frenkel conjecture

Theorem (T.A. ’16)

Let Lk(g) be an admissible affine vertex algebra.

1). (Feigin-Frenkel conjecture) XLk (g) ⊂ N , the nilpotent cone

of g.

2). XLk (g) is irreducible, that is, ∃ a nilpotent orbit Ok of g such

that XLk (g) = Ok .

By previous theorems we immediately obtain the following

assertion, which was (essentially) conjectured by

Kac-Wakimoto ’08.

Theorem (T.A. ’16)

Let Lk(g) be an admissible affine vertex algebra, and let f ∈ Ok .

Then the simple affine W -algebra Wk(g, f ) is lisse.
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Frenkel-Kac-Wakimoto conjecture

An admissible affine vertex algebra Lk(g) is called non-degenerate if

XLk (g) = N = G .fprin.

If this is the case k is called a non-degenerate admissible number

for ĝ. For a non-degenerate admissible number k , the simple

principal W -algebra Wk(g, fprin) is lisse by the previous theorem.

Theorem (T.A. ’15, Frenkel-Kac-Wakimoto conjecture ’92)

Let k be a non-degenerate admissible number. Then the simple

principal W -algebra Wk(g, fprin) is rational.

For g = sl2, the corresponding rational W -algebras are exactly the

minimal series of the Virasoro (vertex) algebra.
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Adamović-Milas conjecture

The proof of the previous theorem is based on the following

assertion on admissible affine vertex algebras.

Theorem (T.A. ’16, Adamović-Milas conjecture ’95 )

Let Lk(g) be an admissible affine vertex algebra. Then Lk(g) is

rational in the category O, that is, any Lk(g)-module that

belongs to O is completely reducible.
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4d-2d duality

Recently, Beem, Lemos, Liendo, Peelaers, Rastelli, and van

Rees ’15 have constructed a remarkable map

Φ : {4d N = 2 SCFTs} → {vertex algebras}

such that, among other things, the character of the vertex algebra

Φ(T ) coincides with the Schur index of the corresponding 4d

N = 2 SCFT T , which is an important invariant of the theory T .
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VOAs coming from 4d theory

How do vertex algebras coming from 4d N = 2 SCFTs look like?

We have

c2d = −12c4d .

So the vertex algebras obtained by Φ are never unitary. In

particular integrable affine vertex algebras never appear by this

correspondence.

The main examples of vertex algebras considered by

Rastelli et al. ’15. are the simple affine vertex algebras Lk(g) of

types D4, E6, E7, E8 at level k = −h∨/6− 1, which are

non-rational, non-admissible affine vertex algebras at negative

integer levels.
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Higgs branch conjecture

There is another important invariant of a 4d N = 2 SCFT T , called

the Higgs branch. The Higgs branch HiggsT is an affine algebraic

variety that has a hyperKähler structure in its smooth part. In

particular, HiggsT is a (possibly singular) symplectic variety.

Let T be one of the 4d N = 2 SCFTs such that Φ(T ) = Lk(g)

with k = h∨/6− 1 for types D4, E6, E7, E8 appeared previously. It

is known that HiggsT = Omin, and it turned out that this equals to

the associated variety XΦ(T ) ([T.A.-Moreau ’18]).

Conjecture (Beem and Rastelli ’17)

For any 4d N = 2 SCFT T , we have

HiggsT = XΦ(T ).
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Higgs branch conjecture

So we are expected to recover the Higgs branch of a 4d N = 2

SCFT from the corresponding vertex algebra, which is purely an

algebraic object!

Remark

1. Higgs branch conjecture is a physical conjecture since the

Higgs branch is not mathematically defined in general. The

Schur index is not a mathematically defined object in general,

either.

2. There is a close relationship between the Higgs branches of 4d

N = 2 SCFTs and the Coulomb branches of three-dimensional

N = 4 gauge theories whose mathematical definition has been

given by Braverman-Finkelberg-Nakajima ’16 (4d-3d duality).
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Quasi-lisse vertex algebras

Note that the associated variety XV of a vertex algebra V is only a

Poisson variety in general.

Definition (T.A.-Kawasetsu ’16)

A vertex algebra V is called quasi-lisse if XV has only finitely

many symplectic leaves.

• Lisse vertex algebras are quasi-lisse.

• The simple affine vertex algebra Lk(g) is quasi-lisse if and only

if XLk (g) ⊂ N . In particular, admissible affine vertex algebras

are quasi-lisse.

• Physical intuition expects that vertex algebras that come from

4d N = 2 SCFTs via the map Φ are quasi-lisse.
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Modulaity of Schur indices

Theorem (T.A.-Kawasetsu’16)

Let V be a quasi-lisse vertex (operator) algebra (of CFT type).

Then there are only finitely many simple ordinary V -modules.

Moreover, for a finitely generated ordinary V -module M, the

character χM(q) satisfies a modular linear differential equation

(MLDE).

Since the space of solutions of a MLDE is invariant under the

action of SL2(Z), the above theorem implies that a quasi-lisse

vertex algebra possesses a certain modular invariance property,

although we do not claim that the normalized characters of

ordinary V -modules span the space of the solutions. In particular,

this implies that the Schur indices of 4d N = 2 SCFTs have some

modular invariance property. This is something that has been

conjectured by physicists ([Beem-Rastelli ’17]). 22



The theory of class S

There is a distinct class of 4d N = 2 SCFTs called the theory of

class S [Gaiotto ’12], where S stands for 6. The vertex algebras

obtained from the theory of class S are called the chiral algebras of

class S [Rastelli et al. ’15].

The Moore-Tachikawa conjecture ’12, which was recently proved by

Braverman-Finkelberg-Nakajima ’17, describes the Higgs branches

of the theory of class S in terms of 2d TQFT mathematically.

Rastelli et al. ’15 conjectured that chiral algebras of class S can be

also described in terms of 2d TQFT (see [Tachikawa] for a

mathematical exposition of their conjecture and the background).
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2d TQFT description of chiral algebras of class S

Let V be the following category (the category of vertex algebras)

Objects: complex semisimple groups;

Morphisms:

Hom(G1,G2)

= {VOAs V with a VA hom. V−h∨1 (g1)⊗ V−h∨2 (g2) → V }/ ∼.

For V1 ∈ Hom(G1,G2), V2 ∈ Hom(G2,G3),

V1 ◦ V2 = H
∞
2
+•(ĝ2, g2,V1 ⊗ V2).

From a result of Arkhipov-Gaitsgory one finds that the identity

morphism idG is the algebra Dch
G of chiral differential operators on

G at the critical level, whose associated variety is canonically

isomorphic to T ∗G .
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Higgs branch conjecture for class S theory

Theorem (T.A., to appear, conjectured by Rastelli et al.)

Let B2 be the category of 2-bordisms. For each semisimple group

G, there exists a unique monoidal functor

ηG : B2 → V

which sends (1) the object S1 to G, (2) the cylinder, which is the

identity morphism idS1 , to the identity morphism idG = Dch
G , and

(3) the cap to H0
DS,fprin

(Dch
G ). Moreover, we have

XηG (B)
∼= ηBFNG (B)

for any 2-bordism B, where ηBFNG is the functor form B2 to the

category of symplectic varieties constructed by

Braverman-Finkelberg-Nakajima ’17.
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Thank you!
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