Representation theory of W-algebras and Higgs branch conjecture

ICM 2018 Session "Lie Theory and Generalizations"

Tomoyuki Arakawa

August 2, 2018

RIMS, Kyoto University

What are W-algebras?

- W-algebras are certain generalizations of infinite-dimensional Lie algebras such as affine Kac-Moody algebras and the Virasoro algebra.
- W-algebras can be also considered as affinizations of finite W-algebras ([Premet '02]) which are quantizations of Slodowy slices ([De-Sole-Kac '06]).
- W-algebras appeared in '80s in physics in the study of the two-dimensional conformal field theories.
- W-algebras are closely connected with integrable systems, (quantum) geometric Langlands program (e.g. [T.A.-Frenkel '18]), four-dimensional gauge theory ([Alday-Gaiotto-Tachikawa '10]), etc.

The Zamolodchikov W_3 -algebra generators: L_n $(n \in \mathbb{Z})$, W_n $(n \in \mathbb{Z})$, **c**, relations: $[\mathbf{c}, W_3] = 0, [L_m, L_n] = (m - n)L_{m+n} + \frac{m^3 - m}{12}\delta_{m+n,0}\mathbf{c},$ $[L_m, W_n] = (2m - n)W_{m+n}$ $[W_m, W_n]$ $= (m-n) \left(\frac{1}{15} (m+n+3)(m+n+2) - \frac{1}{6} (m+2)(n+2) \right) L_{m+n}$ $+\frac{16}{22+5c}(m-n)\Lambda_{m+n}+\frac{1}{360}m(m^2-1)(m^2-4)\delta_{m+n,0}c$ where $\Lambda_n = \sum_{k=0}^{\infty} L_{n-k}L_k + \sum_{k=0}^{\infty} L_kL_{n-k} - \frac{3}{10}(n+2)(n+3)L_n$. 4/0 W-algebras are not Lie algebras in general but vertex algebras.

2

Representations of W_3 -algebra

A representation of W_3 on a (\mathbb{C} -)vector space M makes sense by imposing the conditions

$$L_n m = W_n m = 0 \ (n \gg 0, \ \forall m \in M).$$

A highest weight representation of W_3 is a representation M that is generated by a vector v satisfying

$$\begin{split} & L_n v = W_n v = 0 \ (n > 0), \\ & L_0 v = a_1 v, \ W_0 v = a_2 v, \ \mathbf{c} v = c v, \quad \exists (a_1, a_2, c) \in \mathbb{C}^3. \end{split}$$

For a highest weight representation M of W_3 the (normalized) character

$$\chi_M(q) = \operatorname{tr}_M(q^{L_0 - \frac{\mathbf{c}}{24}})$$

makes sense.

Quantized Drinfeld-Sokolov reduction

In general, a W-algebra is defined by means of the (quantized) Drinfeld-Sokolov reduction ([Feigin-Frenkel '90,..., Kac-Roan-Wakimoto '03]).

 \mathfrak{g} : a simple Lie algebra, $f \in \mathfrak{g}$: a nilpotent element,

 $\rightsquigarrow \mathcal{W}^k(\mathfrak{g}, f) = H^0_{DS, f}(V^k(\mathfrak{g}))$: the W-algebra associated with (\mathfrak{g}, f) at level $k \in \mathbb{C}$.

Here,

 $H^{\bullet}_{DS,f}(M)$: the BRST cohomology of the Drinfeld-Sokolov reduction associated with (\mathfrak{g}, f) with coefficient in M;

 $V^k(\mathfrak{g})$: the universal affine vertex algebra associated with \mathfrak{g} at level k (vertex algebra associated with the affine Kac-Moody algebra $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$).

Examples of $W^k(\mathfrak{g}, f)$

- 1). $W^k(\mathfrak{g}, \mathbf{0}) = V^k(\mathfrak{g}) = U(\widehat{\mathfrak{g}}) \otimes_{U(\mathfrak{g}[t] + \mathbb{C}K)} \mathbb{C}_k$ (a $V^k(\mathfrak{g})$ -module = a smooth $\widehat{\mathfrak{g}}$ -module of level k).
- 2). $\mathcal{W}^k(\mathfrak{sl}_2, f_{prin}) =$ the Virasoro vertex algebra of central charge $1 6(k+1)^2/(k+2)$ (if k is not critical, i.e., $k \neq -2$).
- 3). $W^k(\mathfrak{sl}_3, f_{prin}) = W_3$ with $\mathbf{c} = 2 24(k+2)^2/(k+3)$ (for a non-critical k).
- 4). $W^k(\mathfrak{sl}_n, f_{prin})$ is the Fateev-Lukyanov W_n -algebra.
- 5). Almost all superconformal algebras are realized as the W-algebra W^k(g, f_{min}) associated with some Lie superalgebra g and a minimal nilpotent element f_{min} ([Kac-Roan-Wakimoto '03]).

Presentation of $\mathcal{W}^k(\mathfrak{g}, f)$ by generators and relations are **not** known in general.

The definition of $W^k(g, f)$ by the quantized Drinfeld-Sokolov reduction gives rise to a functor

$$V^k(\mathfrak{g})\operatorname{-Mod} o \mathcal{W}^k(\mathfrak{g}, f)\operatorname{-Mod},$$

 $M\mapsto H^0_{DS,f}(M).$

 \mathcal{O}_k : the category \mathcal{O} of $\hat{\mathfrak{g}}$ at level k.

 $L(\lambda) \in \mathcal{O}_k$: the irreducible highest weight representation of $\hat{\mathfrak{g}}$ with highest weight λ of level k.

Representation theory of minimal W-algebras

Theorem (T.A. '05, $f = f_{min} = minimal nilpotent element)$

1).
$$H_{DS,f_{min}}^{i \neq 0}(M) = 0$$
 for any $M \in \mathcal{O}_k$. Therefore, the functor $\mathcal{O}_k \to \mathcal{W}^k(\mathfrak{g}, f_{min})$ -Mod, $M \mapsto H_{DS,f_{min}}^0(M)$, is exact.

2). $H^0_{DS,f_{min}}(L(\lambda))$ is zero or simple. Moreover, any irreducible highest weight representation of $W^k(\mathfrak{g}, f_{min})$ arises in this way.

By the Euler-Poincaré principle, the character ch $H^0_{DS, f_{min}}(L(\lambda))$ is expressed in terms of the character of $L(\lambda) \Rightarrow$ get the character of irreducible highest weight representations of $\mathcal{W}^k(\mathfrak{g}, f_{min})$.

Remark

The above theorem holds for Lie superalgebras as well. This in particular proves the Kac-Roan-Wakimoto conjecture '03.

One can extend the previous results for more general nilpotent elements by modifying the DS functor following Frenkel-Kac-Wakimoto '92.

As a result, we obtain

- characters of all irreducible highest weight representations of principal W-algebras W^k(g, f_{prin}) ([T.A. '07]), which in particular proves the conjecture of Frenkel-Kac-Wakimoto '92 on the existence and construction of modular invariant representations of principal W-algebras;
- characters of all (ordinary) representations of W-algebras
 W^k(sl_n, f) of type A ([T.A.'12]), which in particular proves the similar conjecture of Kac-Wakimoto '08.

Theorem (Zhu '96)

Let V be a "nice" vertex (operator) algebra. Then the character $\chi_M(e^{2\pi i\tau})$ converges to a holomorphic function on the upper half plane for any $M \in \text{Irrep}(V)$. Moreover, the space spanned by the characters $\chi_M(e^{2\pi i\tau})$, $M \in \text{Irrep}(V)$, is invariant under the natural action of $SL_2(\mathbb{Z})$.

Here a vertex operator algebra V is calle "nice" if

- V is lisse (or C_2 -cofinite), that is, Specm(gr V) = $\{0\}$.
- V is rational, that is, any positively graded V-modules are completely reducible.

Example of a "nice" vertex algebra

The universal affine vertex algebra $V^k(\mathfrak{g})$ is not lisse.

Indeed, $V^k(\mathfrak{g}) \cong U(t^{-1}\mathfrak{g}[t^{-1}])$, and we have

$$\operatorname{gr} V_k(\mathfrak{g}) = S(t^{-1}\mathfrak{g}[t^{-1}]) = \mathbb{C}[J_\infty \mathfrak{g}^*].$$

Here $J_{\infty}X$ is the arc space of X: Hom(Spec $R, J_{\infty}X$) = Hom(Spec R[[t]], X), $R : \mathbb{C}$ -algebra.

Let $L_k(\mathfrak{g})$ be the simple (graded) quotient $L(k\Lambda_0)$ of $V^k(\mathfrak{g})$ (simple affine vertex algebra).

Fact (Frenkel-Zhu '92, Zhu '96, Dong-Mason '06)

 $L_k(\mathfrak{g})$ is lisse $\iff L_k(\mathfrak{g})$ is integrable ($\iff k \in \mathbb{Z}_{\geq 0}$).

If this is the case,

 $L_k(\mathfrak{g})$ -Mod = {integrable $\hat{\mathfrak{g}}$ -modules of level k}. Thus, $L_k(\mathfrak{g})$ is rational as well.

V: vertex algebra

 $\rightsquigarrow R_V = V/C_2(V)$: Zhu's C₂-algebra (a Poisson algebra)

 $\rightsquigarrow X_V := \operatorname{Specm}(R_V)$: the associated variety of V ([T.A. '12])

Lemma (T.A. '12) *V* is lisse iff $X_V = \{0\}$.

Examples

- 1). $X_{V^k(\mathfrak{g})} = \mathfrak{g}^*$, and so $X_{L_k(\mathfrak{g})} \subset \mathfrak{g}^*$, *G*-invariant and conic.
- 2). $X_{W^k(\mathfrak{g},f)} \cong S_f := f + \mathfrak{g}^e \subset \mathfrak{g} = \mathfrak{g}^*$, the Slodowy slice at f ([De-Sole-Kac '06]), where $\{e, f, h\}$ is an \mathfrak{sl}_2 -triple.

Associated varieties of W-algebras

Let $\mathcal{W}_{\mathbf{k}}(\mathfrak{g}, f)$ be the simple quotient of $\mathcal{W}^{\mathbf{k}}(\mathfrak{g}, f)$.

 $\rightsquigarrow X_{\mathcal{W}_k(\mathfrak{g},f)} \subset X_{\mathcal{W}^k(\mathfrak{g},f)} = S_f$, invariant under the natural \mathbb{C}^* -action which contracts to f. So $\mathcal{W}^k(\mathfrak{g},f)$ is lisse iff $X_{\mathcal{W}_k(\mathfrak{g},f)} = \{f\}$.

One can show that $\mathcal{W}_k(\mathfrak{g}, f)$ is a quotient of the vertex algebra $H^0_{DS,f}(L_k(\mathfrak{g}))$, provided that it is nonzero ([T.A. '16]).

Theorem (T.A. '16)

We have

$$X_{H^0_{DS,f}(L_k(\mathfrak{g}))} = X_{L_k(\mathfrak{g})} \cap \mathcal{S}_f$$

(holds as schemes). Hence,

(i). H⁰_{DS,f}(L_k(g)) ≠ 0 iff X_{L_k(g)} ⊃ G.f;
(ii). If X_{L_k(g)} = G.f, X_{H⁰_{DS,f}(L_k(g))} = {f}. Hence H⁰_{DS,f}(L_k(g)) is lisse, and so is its quotient W_k(g, f).

Admissible representations of affine Kac-Moody algebras

Note that $H^0_{DS,f}(L_k(\mathfrak{g})) = 0$ if $L_k(\mathfrak{g})$ is integrable. Therefore we need to study more general representations of $\widehat{\mathfrak{g}}$ to obtain lisse W-algebras using the previous result.

There is a nice class of representations of $\hat{\mathfrak{g}}$ which are called admissible representations (Kac-Wakimoto '88):

{integrable rep.} \subseteq {admissible rep.} \subseteq {highest weight rep.}

The simple affine vertex algebra $L_k(\mathfrak{g})$ is admissible as a $\hat{\mathfrak{g}}$ -module iff

$$k+h^ee=rac{p}{q}, \quad p,q\in\mathbb{N}, \; (p,q)=1, \; p\geq egin{cases} h^ee & ext{if } (q,r^ee)=1, \ h & ext{if } (q,r^ee)=r^ee. \end{cases}$$

Here *h* is the Coxeter number of \mathfrak{g} and r^{\vee} is the lacity of \mathfrak{g} .

Feigin-Frenkel conjecture

Theorem (T.A. '16)

Let $L_k(\mathfrak{g})$ be an admissible affine vertex algebra.

- (Feigin-Frenkel conjecture) X_{Lk(g)} ⊂ N, the nilpotent cone of g.
- 2). $X_{L_k(\mathfrak{g})}$ is irreducible, that is, \exists a nilpotent orbit \mathbb{O}_k of \mathfrak{g} such that $X_{L_k(\mathfrak{g})} = \overline{\mathbb{O}_k}$.

By previous theorems we immediately obtain the following assertion, which was (essentially) conjectured by Kac-Wakimoto '08.

Theorem (T.A. '16)

Let $L_k(\mathfrak{g})$ be an admissible affine vertex algebra, and let $f \in \mathbb{O}_k$. Then the simple affine W-algebra $W_k(\mathfrak{g}, f)$ is lisse. An admissible affine vertex algebra $L_k(\mathfrak{g})$ is called *non-degenerate* if

$$X_{L_k(\mathfrak{g})} = \mathcal{N} = \overline{G.f_{prin}}.$$

If this is the case k is called a *non-degenerate admissible number* for $\hat{\mathfrak{g}}$. For a non-degenerate admissible number k, the simple principal W-algebra $\mathcal{W}_k(\mathfrak{g}, f_{prin})$ is lisse by the previous theorem.

Theorem (T.A. '15, Frenkel-Kac-Wakimoto conjecture '92) Let k be a non-degenerate admissible number. Then the simple principal W-algebra $W_k(g, f_{prin})$ is rational.

For $\mathfrak{g} = \mathfrak{sl}_2$, the corresponding rational *W*-algebras are exactly the minimal series of the Virasoro (vertex) algebra.

The proof of the previous theorem is based on the following assertion on admissible affine vertex algebras.

Theorem (T.A. '16, Adamović-Milas conjecture '95)

Let $L_k(\mathfrak{g})$ be an admissible affine vertex algebra. Then $L_k(\mathfrak{g})$ is rational in the category \mathcal{O} , that is, any $L_k(\mathfrak{g})$ -module that belongs to \mathcal{O} is completely reducible.

Recently, Beem, Lemos, Liendo, Peelaers, Rastelli, and van Rees '15 have constructed a remarkable map

$$\Phi: \{ 4d \ N = 2 \ SCFTs \} \rightarrow \{ vertex \ algebras \}$$

such that, among other things, the character of the vertex algebra $\Phi(\mathcal{T})$ coincides with the Schur index of the corresponding 4d N = 2 SCFT \mathcal{T} , which is an important invariant of the theory \mathcal{T} .

How do vertex algebras coming from 4d N = 2 SCFTs look like? We have

$$c_{2d} = -12c_{4d}.$$

So the vertex algebras obtained by Φ are never unitary. In particular integrable affine vertex algebras never appear by this correspondence.

The main examples of vertex algebras considered by Rastelli *et al.* '15. are the simple affine vertex algebras $L_k(\mathfrak{g})$ of types D_4 , E_6 , E_7 , E_8 at level $k = -h^{\vee}/6 - 1$, which are non-rational, non-admissible affine vertex algebras at negative integer levels. There is another important invariant of a 4d N = 2 SCFT \mathcal{T} , called the Higgs branch. The Higgs branch $Higgs_{\mathcal{T}}$ is an affine algebraic variety that has a hyperKähler structure in its smooth part. In particular, $Higgs_{\mathcal{T}}$ is a (possibly singular) symplectic variety.

Let \mathcal{T} be one of the 4d N = 2 SCFTs such that $\Phi(\mathcal{T}) = L_k(\mathfrak{g})$ with $k = h^{\vee}/6 - 1$ for types D_4 , E_6 , E_7 , E_8 appeared previously. It is known that $Higgs_{\mathcal{T}} = \overline{\mathbb{O}_{min}}$, and it turned out that this equals to the associated variety $X_{\Phi(\mathcal{T})}$ ([T.A.-Moreau '18]).

Conjecture (Beem and Rastelli '17)

For any 4d N = 2 SCFT \mathcal{T} , we have

$$Higgs_{\mathcal{T}} = X_{\Phi(\mathcal{T})}.$$

So we are expected to recover the Higgs branch of a 4d N = 2 SCFT from the corresponding vertex algebra, which is purely an algebraic object!

Remark

- Higgs branch conjecture is a physical conjecture since the Higgs branch is not mathematically defined in general. The Schur index is not a mathematically defined object in general, either.
- There is a close relationship between the Higgs branches of 4d N = 2 SCFTs and the Coulomb branches of three-dimensional N = 4 gauge theories whose mathematical definition has been given by Braverman-Finkelberg-Nakajima '16 (4d-3d duality).

Note that the associated variety X_V of a vertex algebra V is only a Poisson variety in general.

```
Definition (T.A.-Kawasetsu '16)
A vertex algebra V is called quasi-lisse if X_V has only finitely many symplectic leaves.
```

- Lisse vertex algebras are quasi-lisse.
- The simple affine vertex algebra L_k(g) is quasi-lisse if and only if X_{L_k(g)} ⊂ N. In particular, admissible affine vertex algebras are quasi-lisse.
- Physical intuition expects that vertex algebras that come from 4d N = 2 SCFTs via the map Φ are quasi-lisse.

Modulaity of Schur indices

Theorem (T.A.-Kawasetsu'16)

Let V be a quasi-lisse vertex (operator) algebra (of CFT type). Then there are only finitely many simple ordinary V-modules. Moreover, for a finitely generated ordinary V-module M, the character $\chi_M(q)$ satisfies a modular linear differential equation (MLDE).

Since the space of solutions of a MLDE is invariant under the action of $SL_2(\mathbb{Z})$, the above theorem implies that a quasi-lisse vertex algebra possesses a certain modular invariance property, although we do not claim that the normalized characters of ordinary *V*-modules span the space of the solutions. In particular, this implies that the Schur indices of 4d N = 2 SCFTs have some modular invariance property. This is something that has been conjectured by physicists ([Beem-Rastelli '17]).

There is a distinct class of 4d N = 2 SCFTs called the theory of class S [Gaiotto '12], where S stands for 6. The vertex algebras obtained from the theory of class S are called the chiral algebras of class S [Rastelli *et al.* '15].

The Moore-Tachikawa conjecture '12, which was recently proved by Braverman-Finkelberg-Nakajima '17, describes the Higgs branches of the theory of class S in terms of 2d TQFT mathematically.

Rastelli *et al.* '15 conjectured that chiral algebras of class S can be also described in terms of 2d TQFT (see [Tachikawa] for a mathematical exposition of their conjecture and the background).

2d TQFT description of chiral algebras of class ${\cal S}$

Let \mathbb{V} be the following category (the category of vertex algebras) Objects: complex semisimple groups;

Morphisms:

Hom (G_1, G_2) = {VOAs V with a VA hom. $V^{-h_1^{\vee}}(\mathfrak{g}_1) \otimes V^{-h_2^{\vee}}(\mathfrak{g}_2) \rightarrow V$ }/ ~. For $V_1 \in \text{Hom}(G_1, G_2)$, $V_2 \in \text{Hom}(G_2, G_3)$, $V_1 \circ V_2 = H^{\frac{\infty}{2} + \bullet}(\widehat{\mathfrak{g}}_2, \mathfrak{g}_2, V_1 \otimes V_2)$.

From a result of Arkhipov-Gaitsgory one finds that the identity morphism id_G is the algebra \mathcal{D}_G^{ch} of *chiral differential operators* on G at the critical level, whose associated variety is canonically isomorphic to T^*G .

Higgs branch conjecture for class S theory

Theorem (T.A., to appear, conjectured by Rastelli et al.)

Let \mathbb{B}_2 be the category of 2-bordisms. For each semisimple group *G*, there exists a unique monoidal functor

$$\eta_{G}: \mathbb{B}_{2} \to \mathbb{V}$$

which sends (1) the object S^1 to G, (2) the cylinder, which is the identity morphism id_{S^1} , to the identity morphism $id_G = \mathcal{D}_G^{ch}$, and (3) the cap to $H^0_{DS,f_{prin}}(\mathcal{D}_G^{ch})$. Moreover, we have

$$X_{\eta_G(B)} \cong \eta_G^{BFN}(B)$$

for any 2-bordism B, where η_G^{BFN} is the functor form \mathbb{B}_2 to the category of symplectic varieties constructed by Braverman-Finkelberg-Nakajima '17.

Thank you!