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where F̂ is defined by (3.213). Therefore, we can replace f and F in (3.219)
and (3.221) by f̂ and F̂ , respectively.

For Y ⊂ E, if {E−Xi | i ∈ I} is a partition of E−Y , we call {Xi | i ∈ I}
a copartition of E − Y augmented by Y .

Theorem 3.55: For each nonempty Y ⊂ E,

f̂2(Y ) = min
{∑

i∈I
f̂(Xi)− (|I|− 1)f̂(E)



{E −Xi | i ∈ I}: a partition of E − Y,

∀i ∈ I: Xi ∈ F̂
}
. (3.226)

(Proof) If f and F in (3.219) and (3.221) are replaced by f̂ and F̂ , we
can restrict admissible families G in (3.220)∼(3.224) to those which sat-
isfy (3.220)∼ (3.224) (with F replaced by F̂ in (3.221)) and the following
(i)∼(iv):

(i) G is a cross-free family, (3.227)

(ii) for any Xi, Xj ∈ G we have Xi ∩Xj ̸= ∅, (3.228)

(iii) G does not contain a subfamily which forms a copartition of E, (3.229)

(iv) E /∈ G. (3.230)

(Here, (i)∼(iii) follow from Theorems 3.51, 3.53 and 3.54. (iv) follows
from the form of (3.219).) From (i), the family G = (Xi | i ∈ I) can be
represented by a pair of a tree T = (V,A) and a family

P = (Pv | v ∈ V ), (3.231)

where A = {ai | i ∈ I} and nonempty Pv’s form a partition of E as in
Lemma 3.49. From (ii), T is a directed tree. (For, if there were distinct
arcs ai and aj in T such that ∂−ai = ∂−aj , we would have Xi ∩Xj = ∅.)

Let v0 be the root of T . If Pv0 = ∅, then G contains a subfamily which
form a copartition of E. Therefore, Pv0 ̸= ∅ due to (iii). Since for each
e ∈ E the number of i’s for which e ∈ Xi should be taken from the fixed
set of two distinct values of (3.222) and (3.223), for any leaf u of T every
vertex w /∈ {u, v0} lying on the unique path Q(v0, u) connecting v0 with u
in T gives

Pw = ∅, (3.232)
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104 II. SUBMODULAR SYSTEMS AND BASE POLYHEDRA

with E′ = E − {e}, where

D1 = {X | e /∈ X ∈ D}, (3.253)

D2 = {E −X | e ∈ X ∈ D}, (3.254)

f ′ is the restriction of f to D1, and g′ is the restriction of f# to D2.
Conversely, every generalized polymatroid in RE′

is obtained in this
way. For each generalized polymatroid P(f ′, g′) with Di ⊆ 2E

′
(i = 1, 2)

such a base polyhedron B(f) in RE with E = E′ ∪ {e} is unique up to
translation along the new axis e, and the two polyhedra P(f ′, g′) and B(f)
are isomorphic with each other under the projection of the hyperplane
x(E) = f(E) onto the hyperplane x(e) = 0 along the axis e.

(Proof) The base polyhedron B(f) is the solution set of

x(X) ≤ f(X) (X ∈ D), (3.255)

x(E) = f(E). (3.256)

Choose an element e ∈ E. From (3.256) we have

x(e) = f(E)− x(E − {e}). (3.257)

Substituting (3.257) into (3.255), we have

∀X ∈ D with e /∈ X: x(X) ≤ f(X), (3.258)

∀X ∈ D with e ∈ X: x(E −X) ≥ f(E)− f(X). (3.259)

(3.258) and (3.259) are rewritten as

∀X ∈ D1: x(X) ≤ f ′(X), (3.260)

∀Y ∈ D2: x(Y ) ≥ g′(Y ), (3.261)

where D1 and D2 are, respectively, defined by (3.253) and (3.254), f ′ is
the restriction of f to D1 and g′ is the restriction of f# to D2. It follows
from (3.260) and (3.261) that the projection of B(f) along the axis e on the
hyperplane x(e) = 0 is the generalized polymatroid P(f ′, g′) in RE′

with
E′ = E − {e}. Note that (3.251) follows from the submodularity of f .

Now, we show the converse. For an arbitrary generalized polymatroid
P(f ′, g′) in RE′

with a submodular system (D1, f
′) and a supermodular

system (D2, g
′) on E′ let e be a new element not in E′ and define

E = E′ ∪ {e}, (3.262)
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3.5. Related Polyhedra 107

Define a polyhedron

P∗(f) = {x | x ∈ RE , ∀(X,Y ) ∈ 3E : x(X)− x(Y ) ≤ f(X,Y )}. (3.276)

The polyhedron P∗(f) is called a polypseudomatroid ([Chandrasekaran+
Kabadi88], [Kabadi + Chandrasekaran90]) and f its rank function (see
Fig. 3.8). Polyhedral studies are also made in [Nakamura88b] and [Qi88,89].
A pseudomatroid is a set-theoretical version of a polypseudomatroid. [Since
f(X,Y ) is submodular both in X with any fixed Y and in Y with any
fixed X, f is called a bisubmodular function (like ‘bilinear’ in a bilin-
ear form) and a polypseudomatroid a bisubmodular polyhedron later in
[Bouchet+Cunningham95], [Ando+Fuji96], [Fuji+Patkar95], etc. (Note
that f(X,Y ) is not submodular in (X,Y ) in general as a bilinear form is not
linear.) Also see [Borovik+Gelfand+White03] for related topics in Coxeter
matroids. Bisubmodular polyhedra first appeared in [Dunstan+Welsh73].]

Figure 3.8: A polypseudomatroid.

We call a pair (S, T ) ∈ 3E such that S ∪ T = E an orthant of RE . For
each orthant (S, T ) denote by 2(S,T ) the set of all the pairs (X,Y ) such that
X ⊆ S and Y ⊆ T .
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It should be noted that we have (4.19)∼(4.21) if (4.16) and (4.17) hold
for an appropriate numbering of ui’s and vi’s.

Lemma 4.5 will play a very fundamental rôle in developing algorithms
for solving the intersection problem and other related problems.

(b) An algorithm and the intersection theorem

We now consider Problem P1
′ described by (4.2). Given a feasible flow φ

in network N = (G = (E,E′;A), c,S1,S2), define the auxiliary network
Nφ = (Gφ = (V,Aφ), cφ) associated with φ as follows. Gφ = (V,Aφ) is a
directed graph, called the auxiliary graph associated with φ, with vertex
set V and arc set Aφ given by

V = E ∪ E′ ∪ {s+, s−}, (4.22)

Aφ = S+
φ ∪A+

φ ∪A∗ ∪B∗ ∪A−
φ ∪ S−

φ , (4.23)

where

S+
φ = {(s+, v) | v ∈ E − sat+(∂+φ)}, (4.24)

A+
φ = {(u, v) | v ∈ sat+(∂+φ), u ∈ dep+(∂+φ, v)− {v}}, (4.25)

A∗ = A, (4.26)

B∗ = {(e′, e) | e ∈ E}, (4.27)

A−
φ = {(u, v) | u ∈ sat−(∂−φ), v ∈ dep−(∂−φ, u)− {u}}, (4.28)

S−
φ = {(v, s−) | v ∈ E′ − sat−(∂−φ)}. (4.29)

Here, ∂+φ = (∂φ)E , ∂−φ = −(∂φ)E
′
, and sat+ and dep+ (sat− and dep−)

are, respectively, the saturation function and the dependence function de-
fined with respect to submodular system (D1, f1) on E ((D2, f2) on E′).
Note that B∗ is the set of the reorientations of arcs of A. We also define
the capacity function cφ: Aφ → R ∪ {+∞} by

cφ(a) =





ĉ+(∂+φ, v) (a = (s+, v) ∈ S+
φ ),

c̃+(∂+φ, v, u) (a = (u, v) ∈ A+
φ ),

+∞ (a ∈ A∗ ∪B∗),
c̃−(∂−φ, u, v) (a = (u, v) ∈ A−

φ ),

ĉ−(∂−φ, v) (a = (v, s−) ∈ S−
φ ),

(4.30)
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5.1. Neoflows 145

From (4.77) (and Theorem 4.9) we see that there exists no common base
in B(f1) and B(f2).

When f1 and f2 are integer-valued and initial bases b1 and b2 are inte-
gral, bases b1 and b2 obtained during the execution of the above algorithm
are integral and hence the algorithm terminates after repeating (a)∼(c) of
Step 1 at most b1(T

+
β )− b2(T

+
β ) times.

For general rank functions f1 and f2 we adopt the lexicographic order-
ing technique described in Section 4.1.c ([Schönsleben80], [Lawler + Mar-
tel82a]). When finding a shortest path from T+

β to T−
β by the breadth-first

search, for each u ∈ V search arc (u, v) in A1
β (or A2

β) earlier than arc (u, v′)
in A1

β (or A2
β) if π(v) < π(v′), for a fixed numbering π: V → {1, 2, · · · , |V |}

of V . By this modification the algorithm terminates after repeating Cycle
(a)∼(c) of Step 1 O(|E|3) times.

5. Neoflows

In this section we consider the submodular flow problem, the independent
flow problem and the polymatroidal flow problem, which we call neoflow
problems. We discuss the equivalence among these neoflow problems and
give algorithms for solving them.

5.1. Neoflows

We first give the definitions of the submodular flow problem, the indepen-
dent flow problem and the polymatroidal flow problem.

(a) Submodular flows

Let G = (V,A) be a graph with a vertex set V and an arc set A. Also let
c: A → R ∪ {+∞} be an upper capacity function and c: A → R ∪ {−∞}
be a lower capacity function. A function γ: A → R is a cost function. Let
F ⊆ 2V be a crossing family with ∅, V ∈ F and f : F → R be a crossing-
submodular function on the crossing family F with f(∅) = f(V ) = 0. (See
Section 2.3 for the definition of crossing-submodular function on a crossing
family.) Denote this network by NS = (G = (V,A), c, c, γ, (F , f)).
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154 III. NEOFLOWS

From Theorem 4.13 we have

Theorem 5.1 [Frank84]: There exists a feasible flow for the submodular
flow problem PS satisfying (5.1b) and (5.1c) if and only if

∀X ∈ D: (κc,c)
#(X) ≤ f(X) (5.34)

or
∀X ∈ D: c(∆−X)− c(∆+X) + f(X) ≥ 0, (5.35)

where for each X ⊆ V ∆+X = {a | a ∈ A, ∂+a ∈ X, ∂−a ∈ V −X} and
∆−X = {a | a ∈ A, ∂−a ∈ X, ∂+a ∈ V −X}.

Moreover, if c, c and f are integer-valued and PS is feasible, there exists
an integral feasible flow.

(Proof) Immediate from Theorem 4.13. Q.E.D.

A feasible flow for the submodular flow problem can be obtained by the
use of the algorithm shown in Section 4.3.

Frank [Frank84] showed feasibility theorems for the cases where f is
an intersecting-submodular function and where f is a crossing-submodular
function. We can give Frank’s result by combining Theorems 5.1 and 2.6.
That is,

Corollary 5.2 [Frank84]:

(i) When f is an intersecting-submodular function on an intersecting
family F such that ∅, V ∈ F and f(∅) = f(V ) = 0, the submodular
flow problem PS described by (5.1) has a feasible flow if and only if
we have

(κc,c)
#(X) ≤

∑

i∈I
f(Xi) (5.36)

for each X ⊆ V and disjoint Xi ∈ F (i ∈ I) such that X =
∪

i∈I Xi.

(ii) When f is a crossing-submodular function on a crossing family F such
that ∅, V ∈ F and f(∅) = f(V ) = 0, the submodular flow problem
PS has a feasible flow if and only if we have

(κc,c)
#(X) ≤

∑

i∈I

∑

j∈Ji
f(Xij) (5.37)

for each X ⊆ V , codisjoint Xi ⊆ V (i ∈ I) and disjoint Xij ∈ F
(j ∈ Ji) (for each i ∈ I) such that X =

∩
i∈I Xi and Xi =

∪
j∈Ji Xij

(i ∈ I).
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5.4. Optimality for Submodular Flows 161

ξ(a) = 0 (a ∈ A, c(a) = +∞), (5.66d)

ξ, ξ, η ≥ 0, (5.66e)

where ξ, ξ: A → R, η: D → R and we should regard (5.66a) as the ob-

jective function with the terms ξ(a)c(a) (a ∈ A, c(a) = −∞) and ξ(a)c(a)
(a ∈ A, c(a) = +∞) being suppressed.

Because of (5.62) there is a maximal chain

C: ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = V (5.67)

of D such that p is constant on each quotient Sk − Sk−1 (k = 1, 2, · · · , n).
Using this chain C and the potential p, define

η(Sk) = pk − pk+1 (k = 1, 2, · · · , n− 1), (5.68)

where pk is the value of p taken in Sk−Sk−1 and note that η(Sk) > 0. Also
define η(X) = 0 for other X ∈ D. Moreover, define

ξ(a) = γ(a) + p(∂+a)− p(∂−a) (a ∈ A, c(a) = +∞), (5.69)

ξ(a) = −γ(a)− p(∂+a) + p(∂−a) (a ∈ A, c(a) = −∞), (5.70)

and for each arc a ∈ A with c(a) < +∞ and c(a) > −∞ define ξ(a) and

ξ(a) such that ξ(a), ξ(a) ≥ 0 and (5.66b) holds. We can easily see that

thus defined ξ, ξ, η satisfy (5.66b)∼(5.66e), where note that for each arc
a ∈ A with c(a) = +∞ and c(a) = −∞ we have γ(a)+p(∂+a)−p(∂−a) = 0
due to (5.60) and (5.61).

Since the dual of Problem PS has a feasible solution and the feasibility
of the primal problem PS is assumed, there exists an optimal solution of
Problem PS .

The “only if” part : Suppose that there is a negative cycle in N̂ relative
to the length function γ̂, and let Q be such a negative cycle in N̂ . Then
for any positive α, if we define φ′: A → R by (5.50), φ′ is feasible for
Problem PS because of the definition of N̂ and we have (5.51). Since α
(> 0) is arbitrary and γφ(Q) < 0, Problem PS does not have a finite optimal
solution. Q.E.D.

We also have

Theorem 5.6 [Edm+Giles77]: The system of linear inequalities

c(a) ≤ φ(a) ≤ c(a) (a ∈ A), (5.71)
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Now, consider a supermodular system (D+, g+) on S+ instead of sub-
modular system (D+, f+) and also consider the following system of inequal-
ities.

c(a) ≤ φ(a) ≤ c(a) (a ∈ A), (5.121)

∂φ(v) = 0 (v ∈ V − (S+ ∪ S−)), (5.122)

(∂φ)S
+ ∈ P(g+), (5.123)

−(∂φ)S
− ∈ P(f−), (5.124)

where P(g+) is the supermodular polyhedron associated with (D+, g+).
Then we have the following theorem.

Theorem 5.10: There exists a feasible flow φ satisfying (5.121)−(5.124) if
and only if we have for each U ⊆ V such that S+∩U ∈ D+ and S−∩U ∈ D−

g+(S+ ∩ U)− f−(S− ∩ U) ≤ c(∆+U)− c(∆−U) (5.125)

and for each U ⊆ V such that S+ ∪ S− ⊆ U

0 ≤ c(∆+U)− c(∆−U). (5.126)

Moreover, if there exists a feasible flow and c, c, g+ and f− are integer-
valued, then there exists an integral feasible flow.

(Proof) Define D ⊆ 2V and g: D → R by

D = {U | U ⊆ V, S+ ∩ U ∈ D+, S− ∩ U ∈ D−}, (5.127)

g(U) =

{
g+(S+ ∩ U)− f−(S− ∩ U) (U ∈ D, (S+ ∪ S−)− U ̸= ∅)
0 (U ∈ D, S+ ∪ S− ⊆ U).

(5.128)
If there is a feasible flow, we must have

g+(S+)− f−(S−) ≤ 0. (5.129)

Also, (5.125) with U = V implies (5.129). Therefore, we assume (5.129).
Due to (5.129), the function g: D → R defined by (5.128) is a supermodular
function on the distributive lattice D with ∅, V ∈ D and g(∅) = g(V ) = 0.
We have x ∈ B(g) if and only if

xS
+ ∈ P(g+), −xS

− ∈ P(f−), xV−(S+∪S−) = 0, (5.130)
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182 III. NEOFLOWS

Putting p′ ← p and γ′ ← γ̂ and repeating the above argument for other
vertices, we see that the total change of any potential difference is bounded
by α|V |. Q.E.D.

From this lemma we have

Theorem 5.13: Let γ′ be an α-approximation of γ and p′ be an opti-
mal potential in N ′ = (G = (V,A), c, c, γ′, (D, f)). Then for any optimal
submodular flow φ in N = (G = (V,A), c, c, γ, (D, f)),

(1) ∀a ∈ A: γp′(a) > α|V | =⇒ φ(a) = c(a),

(2) ∀a ∈ A: γp′(a) < −α|V | =⇒ φ(a) = c(a),

(3) ∀u, v ∈ V : p′(u)− p′(v) > α|V | =⇒ v /∈ dep(∂φ, u).

(Proof) The present theorem follows from Lemma 5.12 and Theorem 5.3.
Q.E.D.

Theorem 5.13 gives a basis for a strongly polynomial algorithm for sub-
modular flows.

We show a strongly polynomial algorithm which consists of the repeated
applications of a procedure called Fundamental Cycle.

Fundamental Cycle

Input: Lower and upper capacity functions c and c; a partition W =
{W i | i ∈ I} of V ; a representation of S = ⊕i∈ISi as a direct sum of
submodular systems Si = (Di, f i) on W i (i ∈ I); a graph H = (V,D) with
connected components H i = (W i, Ei) (i ∈ I) which are strongly connected;
and a set A0 = {a | a ∈ A, c(a) = c(a)} of all tight arcs. (Comment : At
the initial application of this procedure we put I = {1}, W 1 = V and
H = (V,D) with D = {(u, v) | u, v ∈ V, u ̸= v}.)
Output: A nonnegative real M , and if M ̸= 0, modified c, c, W, S, H
and A0. (Comment : When M = 0, the set of all the submodular flows
in the current network N = (G = (V,A), c, c, γ,S) is exactly the set of
all the optimal submodular flows in the original network. When M ̸= 0,
c, c, W, H and A0 have been modified in such a way that all the input
characteristics are maintained and that at least one of the following two
properties holds:
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(ii) if (γsp)p′(a) >
1
2 |V |, then put c(a) ← c(a) and A0 ← A0 ∪ {a},

where (γsp)p′(a) = γsp(a) + p′(∂+a)− p′(∂−a).

(4-2) For each arc (u, v) ∈ D of the graph H, if p′(v)− p′(u) > 1
2 |V |, then

delete (u, v) from D and from Ei to which (u, v) belongs.

(4-3) For each i ∈ I do the following (4-3-1)∼(4-3-3):

(4-3-1) Find a maximal chain ∅ = U i
0 ⊂ U i

1 ⊂ · · · ⊂ U i
ki

= W i of upper

ideals of H i. (Comment : An upper ideal of a graph is a vertex
set which no arcs enter.)

(4-3-2) Define

Sis(= (Dis , f is)) = (Di, f i) · U i
s/U

i
s−1 (s = 1, 2, · · · , ki),

W is = U i
s − U i

s−1 (s = 1, 2, · · · , ki).
(Comment : W is (s = 1, 2, · · · , ki) are the vertex sets of the
strongly connected components of H i.)

(4-3-3) Delete from the graph H all the arcs connecting distinct subsets
W is (s = 1, 2, · · · , ki).

(4-4) Put

I ← {is | s = 1, 2, · · · , ki, i ∈ I},
S ← ⊕i∈ISi,

W ← {W i | i ∈ I}.

(End)

To find an optimal submodular flow in the original network we repeat-
edly apply the procedure, Fundamental Cycle. We show the validity and
the strong polynomiality of this algorithm.

At any stage of the algorithm the input to Fundamental Cycle is referred
to as the current network with the current capacity functions, the current
submodular systems, etc.

Theorem 5.14: At any stage of the algorithm the following statements
are valid.
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6.3. The Lovász Extensions of Submodular Functions 211

Since no vector in ER(X) can be expressed as a nonnegative linear combi-
nation of the other vectors in ER(X), it suffices to prove that every vector
in Cf (X) can be expressed as a nonnegative linear combination of vectors
in ER(X).

Let v be an arbitrary vector in Cf (X). From (6.53),

v(X − Y ) ≥ 0 (X ⊇ Y ∈ D), (6.59)

v(Y −X) ≤ 0 (X ⊆ Y ∈ D). (6.60)

Suppose that each arc of B∗(P) −∆−(X) has the infinite upper capacity
and the zero lower capacity and that each arc of ∆−(X) has the zero upper
and lower capacities. Then it easily follows from (6.59), (6.60) and the
feasibility theorem for network flows (Theorem 1.3) [Hoffman60] ([Ford +
Fulkerson62]) that there exist a nonnegative flow φ:B∗(P) → R+ in G(P)
with φ(a) = 0 (a ∈ ∆−(X)), a nonpositive vector x ∈ RE

− with x(e) = 0
(e /∈ E+−X) and a nonnegative vector y ∈ RE

+ with y(e) = 0 (e /∈ E−∩X)
such that

v = ∂φ+ x+ y, (6.61)

where ∂φ is the boundary of φ in G(P). (6.61) gives an expression of v as
a nonnegative linear combination of vectors in ER(X). Q.E.D.

We see from Lemmas 6.5 and 6.7 that Cf (X) is the direct product of
the characteristic cones of the supermodular polyhedron ∂fX(X) and the
submodular polyhedron ∂fX(∅), when f(∅) = 0. Hence, Theorem 6.12 may
also follow from Theorem 3.26.

It should be noted that if v in Cf (X) satisfies v(X) = 0, then y = 0 in
(6.61) and that if v satisfies v(E −X) = 0, then x = 0 in (6.61). Theorem
3.26 (the extreme ray theorem for base polyhedra) also follows from this
theorem.

6.3. The Lovász Extensions of Submodular Functions

Consider a submodular function f :D → R on a simple distributive lattice
D = 2P with P = (E,⪯). We assume f(∅) = 0.

Define the convex function f̂ :RE → R ∪ {+∞} by

f̂(c) = max{(c, x) | x ∈ P(f)} (6.62)
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(Proof) If f is a submodular function, then its extension f̂ is given by (6.62)
and hence is a convex function. Conversely, suppose that the extension f̂
of f is a convex function. By definition, for any X, Y ∈ D

f̂(χX + χY ) = f̂(χX∪Y + χX∩Y )

= f(X ∪ Y ) + f(X ∩ Y ). (6.68)

Since f̂ is a positively homogeneous convex function, we also have

f̂(χX + χY ) ≤ f̂(χX) + f̂(χY ) = f(X) + f(Y ). (6.69)

From (6.68) and (6.69) f is a submodular function on D. Q.E.D.

Theorem 6.13 shows the close relationship between the submodularity
and the convexity. The results in Sections 6.1 and 6.2 can be viewed from
the theory of convex functions through this theorem. However, the inte-
grality result in Theorem 6.3 does not follow directly from the ordinary
convex analysis; it is truly a combinatorial deep result.

Define

P(D) = the convex hull of vectors χA (A ∈ D). (6.70)

Lemma 6.14 [Lovász83]: For a submodular function f :D → R we have

min{f(X) | X ∈ D} = min{f̂(c) | c ∈ P(D)}. (6.71)

(Proof) Immediate from Theorem 6.13 and (6.66), the positive homogeneity
of f̂ . Q.E.D.

Lemma 6.15: For any c ∈ P(D) there uniquely exists a nonempty chain

B1 ⊂ B2 ⊂ · · · ⊂ Bp (6.72)

of D such that c is expressed as a convex combination

c =
p∑

i=1

µiχBi (6.73)

with µi > 0 (i = 1, 2, · · · , p) and ∑p
i=1 µi = 1.
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where the last equality follows from Lemma 6.14 with f replaced by f − x.
(6.79) is equivalent to x ∈ ∂f(A). Q.E.D.

Theorem 6.17: Let c be an arbitrary vector in P(D) and suppose that c
is expressed as (6.73) with (6.72). Then, we have

∂f̃(c) =
∩

{∂f(Bi) | i = 1, 2, · · · , p}. (6.80)

(Proof) We have x ∈ ∂f̃(c) if and only if

∀ b ∈ P(D): (b− c, x) ≤ f̂(b)− f̂(c). (6.81)

From (6.72) and (6.73), (6.81) is rewritten as

p∑

i=1

µi(f(Bi)− x(Bi)) ≤ min{f̂(b)− (b, x) | b ∈ P(D)}

= min{f(X)− x(X) | X ∈ D} (6.82)

due to Lemma 6.14. Furthermore, since
∑p

i=1 µi = 1 and µi > 0 (i =
1, 2, · · · , p), (6.82) is equivalent to

f(Bi)− x(Bi) = min{f(X)− x(X) | X ∈ D}
(i = 1, 2, · · · , p) (6.83)

or
x ∈

∩
{∂f(Bi) | i = 1, 2, · · · , p}. (6.84)

Q.E.D.

For any maximal chain C: ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = E of D, denote by
P(C) the n-simplex with vertices χSi (i = 0, 1, · · · , n).

Lemma 6.18: The collection of P(C)’s for all the maximal chains C of D
forms a simplicial subdivision of P(D). Moreover, for two maximal chains
Ci: ∅ = Si

0 ⊂ Si
1 ⊂ · · · ⊂ Si

n = E (i = 1, 2) the n-simplices P(Ci) (i = 1, 2)
have a common facet if and only if for some k with 1 ≤ k ≤ n− 1 we have

S1
j = S2

j (0 ≤ j ≤ n, j ̸= k). (6.85)

(Proof) The first half of this lemma follows from the uniqueness property
of Lemma 6.15. Moreover, any facet of the n-simplex P(Ci) corresponds to
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where λ0 ≡ −∞, λp+1 ≡ +∞, L(λ)’s are the same in each interval (λi,λi+1)
(i = 0, 1, · · · , p), |L(λi)| ≥ 2 (i = 1, 2, · · · , p) and |L(λ)| = 1 (λ ∈ (λi,λi+1),
i = 0, 1, · · · , p). Moreover, for each i = 1, 2, · · · , p, because of the finiteness
character there exists a (sufficiently small) positive number ϵ such that

L(λi − ϵ) ⊆ L(λi), (7.112)

L(λi + ϵ) ⊆ L(λi). (7.113)

Since f1 is monotone decreasing, we have from (7.112) and (7.113)

S−(λi) ∈ L(λi − ϵ), (7.114)

S+(λi) ∈ L(λi + ϵ). (7.115)

From (7.114) and (7.115) we have (7.103)∼(7.106). Also, since the set of the
quotients S+(λi)−S+(λi−1) (i = 1, 2, · · · , p) with S+(λ0) ≡ ∅ is a partition
of E into nonempty subsets of E due to Theorem 7.14 and (7.103)∼(7.106),
we have p ≤ |E|. Q.E.D.

The λi (i = 1, 2, · · · , p) in (7.101) are called critical values for the pair
of submodular systems (D0, f0) and (D1, f1). Denote S0 = (D0, f0) and
S1 = (D1, f1). Submodular systems Si (i = 0, 1) are decomposed according
to the distributive lattice L∗ =

∪
λ∈R L(λ) as follows. Choose any maximal

chain
C: ∅ = A0 ⊂ A1 ⊂ · · · ⊂ Ak = E (7.116)

of L∗ and then decompose Si (i = 0, 1) into their minors

Si ·Aj/Aj−1 (j = 1, 2, · · · , k), (7.117)

where Si ·Aj/Aj−1 is the set minor of Si obtained by restricting Si to Aj and
contracting Aj−1. Such a set of decompositions of Si (i = 0, 1) is called the
principal partition of the pair of Si (i = 0, 1). By the poset on the partition
{Aj −Aj−1 | j = 1, 2, · · · , k} of E which is uniquely determined by L∗ (see
Section 3.2.a), the corresponding poset structure is defined on the set of
minors (7.117) for each i = 0, 1. We can show that the decompositions
(7.117) do not depend on the choice of a maximal chain in L∗ ([Nakamura
+ Iri81], [Tomi + Fuji82]), due to Theorem 7.17 shown below.

Lemma 7.16: Let µ: D0 → R be a modular function on a distributive
lattice D0 ⊆ 2E with ∅, E ∈ D0. We have µ(X) = 0 for all X ∈ D0
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16.3. Domain-integral L- and L♮-convex Functions 327

Remark: An integral vector z ∈ ZV and a maximal chain C : S0(= ∅) ⊂
S1 ⊂ · · · ⊂ Sn(= V ) of the Boolean lattice 2V define an n-dimensional
simplex given by the convex hull of z+χSi (i = 0, 1, · · · , n). The collection
of such simplices for all integral vectors z and for all maximal chains C
forms a simplicial division of RV due to Freudenthal (Fig. 16.3) (see, e.g.,
[Todd76] and [Yang99]). We call any face of such a simplex in Freudenthal’s
simplicial division Freudenthal’s simplex cell.

O x

x(2)

(1)

Figure 16.3: Freudenthal’s simplicial division of R{1,2}.

Note that the truncated Lovász extensions of submodular (set) func-
tions defined by (6.76) are exactly L♮-convex functions with their effective
domains being contained in the unit hypercube [0, 1]V . Hence, we have

Lemma 16.10: A function f : RV → R ∪ {+∞} is a domain-integral
L♮-convex function if and only if

(a) f is a locally polyhedral convex function and

(b) for each integral vector z ∈ ZV and each set W ⊆ V such that
z, z + χW ∈ domf , the restriction of f(x)− f(z) in x on the interval
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328 VII. DISCRETE CONVEX ANALYSIS

[z, z+χW ] is the truncated Lovász extension (onRW ) of a submodular
(set) function whose domain is imbedded in RV and translated by z.

For a function h : ZV → R∪ {+∞} with domh ̸= ∅, if a locally polyhe-
dral (not necessarily convex) function ĥ : RV → R ∪ {+∞} is obtained by
(L♮2′) with f being replaced by h, then we call ĥ the Lovász-Freudenthal
extension of h. From (L♮1′) and (L♮2′) we have

Theorem 16.11: A function f : ZV → R∪{+∞} is an L♮-convex function
on ZV if and only if the Lovász-Freudenthal extension of f is a convex
function.

The concept of a domain-integral L♮-convex function with its domain be-
ing a box was considered by P. Favati and F. Tardella [Favati+Tardella90],
who called it a submodular integrally convex function. It should be noted
that L♮- and L-convex functions of [Favati+Tardella90] and [Murota98b]
are originally defined on integral lattice points in ZV , while we are here
considering locally polyhedral convex functions defined on RV of real (or
rational) vectors that are uniquely determined from the values on ZV by
the scheme of (L♮2′) given above (also see [Murota03a, Sections 6.11 and
7.8]).

The origin of the following characterization is found in [Favati+Tardella
90] (also see [Fuji+Murota00]).

Theorem 16.12: A function f : ZV → R ∪ {+∞} with domf ̸= ∅ is an
L♮-convex function on ZV if and only if for each p, q ∈ ZV

f(p) + f(q) ≥ f(⌈(p+ q)/2⌉) + f(⌊(p+ q)/2⌋). (16.23)

(Proof) (The if part): We assume without loss of generality that domf
is full-dimensional. Suppose that (16.23) holds for each p, q ∈ ZV . It
suffices to prove the convexity of the Lovász-Freudenthal extension f̂ of f
on the union of two adjacent full-dimensional Freudenthal’s simplex cells.
We have adjacent simplex cells of the following two types. For an integral
vector z in domf and a linear ordering (v1, v2, · · · , vn), defining

Si = {v1, v2, · · · , vi} (i = 1, 2, · · · , n) (16.24)

and S0 = ∅, consider
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16.3. Domain-integral L- and L♮-convex Functions 329

(I) two simplices formed by

z + χSi (i = 0, 1, · · · , n) (16.25)

and by
z − χvn , z + χSi (i = 0, 1, · · · , n− 1), (16.26)

where the common face of the two simplices is formed by the n points
z + χSi (i = 0, 1, · · · , n − 1), and p = z + 1 and q = z − χvn are the
points of the two simplices outside the common face, and

(II) two simplices formed by

z + χSi (i = 0, 1, · · · , n) (16.27)

and by

z + χSi (i = 0, 1, · · · , k, k + 2, · · · , n), z + χSk∪{vk+2} (16.28)

for some k with 0 ≤ k ≤ n − 2, where the common face of the two
simplices is formed by the n points z+χSi (i = 0, 1, · · · , k, k+2, · · · , n),
and p = z + χSk+1

and q = z + χSk∪{vk+2} are the points of the two
simplices outside the common face.

Since we have
p+ q = ⌈(p+ q)/2⌉+ ⌊(p+ q)/2⌋, (16.29)

it follows from (16.23) and the definition of the Lovász-Freudenthal exten-
sion f̂ that

1

2
{f̂(p) + f̂(q)} =

1

2
{f(p) + f(q)}

≥ 1

2
{f(⌈(p+ q)/2⌉) + f(⌊(p+ q)/2⌋)}

= f̂((p+ q)/2). (16.30)

Here note that for (I) we have ⌈(p+ q)/2⌉ = z+χSn−1 and ⌊(p+ q)/2⌋ = z
and for (II) ⌈(p+ q)/2⌉ = z+χSk+2

and ⌊(p+ q)/2⌋ = z+χSk
. Since these

two points ⌈(p + q)/2⌉ and ⌊(p + q)/2⌋ are vertices of the common face,
(p+ q)/2 belongs to the common face. Hence, it follows from (16.30) that
the Lovász-Freudenthal extension f̂ of f restricted to the union of the two
adjacent simplex cells is convex.
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(The only-if part): Suppose that f is an L♮-convex function on ZV . Con-
sider the Lovász-Freudenthal extension f̂ of f . Then, because of the con-
vexity of f̂ and the definition of the Lovász-Freudenthal extension, we have
for each p, q ∈ ZV

f̂(p) + f̂(q) ≥ 2f̂((p+ q)/2)

= 2f̂((⌈(p+ q)/2⌉+ ⌊(p+ q)/2⌋)/2)
= f̂(⌈(p+ q)/2⌉) + f̂(⌊(p+ q)/2⌋). (16.31)

Q.E.D.

We give characterizations of integral L♮-convex sets as follows. (Recall
that by a polyhedron we mean a convex polyhedron.)

Theorem 16.13: For a polyhedron P in RV the following four statements
are equivalent:

(1) P is an integral L♮-convex set.

(2) P is a polyhedron formed by the union of Freudenthal’s simplex cells.

(3) P is an integral polyhedron and for any integral points p, q ∈ P we
have ⌊(p+ q)/2⌋, ⌈(p+ q)/2⌉ ∈ P .

(4) P is an integral polyhedron and for each integral point p ∈ P ,

D+
p ≡ {X | X ⊆ V, p+ χX ∈ P}, D−

p ≡ {X | X ⊆ V, p− χX ∈ P}
(16.32)

are distributive lattices with join ∪ and meet ∩, and P ∩ [p, p + 1]
and P ∩ [p − 1, p] are, respectively, equal to the convex hull of χX

(X ∈ D+
p ) and that of χX (X ∈ D−

p ).

(Proof) By (L♮2′) in the characterization of domain-integral L♮-convex func-
tions and Theorem 16.12 we see that (1), (2) and (3) are equivalent. So, we
show the equivalence between (4) and {(1), (2), (3)}. Suppose (3). Then
for each integral point p ∈ P and X,Y ⊆ V such that p+ χX , p+ χY ∈ P ,
we have ⌊(p+ χX + p+ χY )/2⌋ = p+ χX∩Y and ⌈(p+ χX + p+ χY )/2⌉ =
p+ χX∪Y . Similarly, for X,Y ⊆ V such that p− χX , p− χY ∈ P we have
⌊(p−χX + p−χY )/2⌋ = p−χX∪Y and ⌈(p−χX + p−χY )/2⌉ = p−χX∩Y .
Hence (4) holds. Conversely, suppose (4). Then it follows that for each
integral point p ∈ P sets P ∩ [p, p+ 1] and P ∩ [p− 1, p] are the unions of
Freudenthal’s simplex cells. Hence (2) holds. Q.E.D.
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Minimizers of a domain-integral L♮-convex function are characterized
by the following.

Theorem 20.1: For a domain-integral L♮-convex function f : RV → R ∪
{+∞}, a vector x ∈ ZV is a minimizer of f if and only if x is a minimizer
of the restriction of f to [x− 1, x] ∪ [x, x+ 1].

(Proof) Let n = |V |. Any n-dimensional Freudenthal’s simplex cell that
includes x ∈ ZV is given by n+1 integral points x−χW , x−χW +χ{v1,···,vk}
(k = 1, 2, · · · , n) for some linear ordering (v1, v2, · · · , vn) of V with W =
{v1, v2, · · · , vl} for some l (0 ≤ l ≤ n). We can easily see that these points
belong to [x− 1, x] ∪ [x, x+ 1]. Hence the present theorem holds. Q.E.D.

The following property for L-/L♮-convex functions is fundamental and
useful for introducing scaling techniques. For any positive integer k we say
that f is an L♮-convex function on (kZ)V if fk : ZV → R ∪ {+∞} defined
by fk(z) = f(kz) for all z ∈ ZV is an L♮-convex function on ZV .

Theorem 20.2: An L-convex (L♮-convex) function f on ZV is also an L-
convex (L♮-convex) function on (kZ)V for any positive integer k.

(Proof) Because of Lemma 16.6 it suffices to prove the present theorem
for any L-convex function f on ZV . Since f is a submodular function on
(kZ)V and satisfies f(x+ αk1) = f(x) + αkr (x ∈ (kZ)V ), it follows from
Theorem 16.9 that f is an L-convex function on (kZ)V . Q.E.D.

Iwata [Iwata99] pointed out that a polynomial algorithm for minimizing
L-convex functions could be obtained by combining Theorem 20.2 and the
proximity theorem shown in [Iwata+Shigeno02] (see Theorem 20.9 given
below) by the use of any polynomial algorithm for submodular (set) func-
tion minimization. See [Murota03b] for a faster algorithm for L-convex
function minimization.

20.2. M- and M♮-convex Functions

As a generalization of Theorem 3.16 we have the following characteri-
zation of minimizers of M- and M♮-convex functions.

Theorem 20.3: For an M-convex function f : RV → R ∪ {+∞} a vector
x ∈ domf is a minimizer of f if and only if for each u, v ∈ V and each
α > 0 we have

f(x+ α(χu − χv)) ≥ f(x). (20.1)
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problem 273
family of independent sets 22
Farkas lemma 20
feasibility for submodular

flows 153
feasible allocation 358
feasible circulation 14
feasible flow 14, 30, 42, 128
feasible salary vector 358
Fenchel-Legendre transformation 19
Fenchel-type min-max theorem 201
field 8
free matroid 25
Freudenthal’s simplex cell 327
full-dimensional 16
fundamental circuit 23

generalized polymatroid 102, 103
generate 16
g-polymatroid 103
graph 9
graphic matroid 24
greedy algorithm 55, 62, 64, 110
Grishuhin’s model 122
gross substitutes condition 350
group 7

halfline 16
halfspace 17
Hasse diagram 13
head 9
homomorphic image 76
hybrid independence

polyhedron 122
hypergraph 13
hyperplane 17

ideal 6, 56
IFF algorithm 299
incentive constraints 358
incidence matrix 10
incident to 10
independence polyhedron 26

independent assignment
problem 194

independent flow 147
independent flow problem 146
independent matching 188
independent set 22
independent vector 26
induced by 10
infimal convolution 318
infimum 6
initial end-vertex 9
initial vertex 11
in kilter 177, 282
integral polyhedral M♮-convex

function 334
intersecting family 38
intersecting-submodular 38, 101
intersection problem 127
intersection theorem 135
inverse element 8
irreducible 194

join 6

kernel system 122
kilter number 282

Lagrangian function 230
laminar 43
laminar convex 334
lattice 6
lattice polyhedron 122
L-convex function 323
L-convex set 319
L♮-concave function 322
L♮-convex function 322, 344
L♮-convex set 319
leaf 12
left vertex set 12
Legendre transformation 19
length of a chain 55
lexicographically greater 262
lexicographically optimal
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base 262, 264
lexicographically shortest

path 137
lexicographically smaller 137
line 16
linear extension 62
linearity domain 317
linear matroid 24
linear order 5
linear polymatroid 30
linear programming problem 19
linear variety 16
linear weight function 264
linked vector 108
linking system 108
locally polyhedral convex function 315
locally polyhedral convex set 315
Lovász extension 212
Lovász-Freudenthal extension 328
lower bound 6
lower consecutive t’s property 118
lower ideal 6, 56

majorizaton 44
majorized by 44
MA-ordering 288
matchable 25
matching 12, 13
matching matroid 25
matric matroid 24
matroid 22
matroidal (polymatroid) 26
matroid intersection problem 189
matroid intersection theorem 190
matroid optimization 188
matroid partitioning problem 193
matroid union 191
maximal chain 55
maximum-adjacency ordering 288
maximum element 6
maximum flow 14
maximum independent flow

problem 167

maximum independent matching
problem 188

maximum submodular flow
problem 172

maximum-weight base 58
max-min problem 270, 272
M-convex function 333
M-convex set 333
M-convex submodular flow

problem 356
M♮-concave function 333
M♮-convex function 333
M♮-convex set 333
meet 6
metroid 106
min-cut 287
minimum-cost submodular flow 175
minimum cut 14
minimum element 6
minimum-ratio problem 248
minimum s-t cut 288
minimum submodular flow

problem 175
minimum-weight base 58
min-max problem 271, 272
minor 45, 51
modular function 36
molecule 194
Monge matrix 44
monotone nondecreasing 62
multiple exchange 303

negative cycle 157
negatively oriented 11
neoflow problem 127, 145
nested 43
network flow 13
neutral element 8
nonlinear weight function 262
nonsaturating push 296, 306
normal to 229
nullity 11
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