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Summary. The theory of principal partitions of discrete systems such as graphs,
matrices, matroids, and submodular systems has been developed since 1968. In the
early stage of the developments during 1968–75 the principal partition was consid-
ered as a decomposition of a discrete system into its components together with a
partially ordered structure of the set of the components. It then turned out that such
a decomposition with a partial order on it arises from the submodularity structure
pertinent to the system and it has been realized that the principal partitions are
closely related to resource allocation problems with submodular structures, which
are kind of dual problems.

The aim of this paper is to give an overview of the developments in the theory of
principal partitions and some recent extensions with special emphasis on its relation
to associated resource allocation problems in order to make it better known to
researchers in combinatorial optimization.

1 Introduction

The concept of principal partition originated from Kishi and Kajitani’s pi-
oneering work [46] in 1968, which is concerned with the tri-partition of
a graph determined by a maximally distant pair of spanning trees of the
graph. Since then the theory of principal partitions has been extended from
graphs [71] to matrices [31, 32], matroids [5, 67, 80], and submodular systems
[18, 19, 33, 35, 65, 66, 81].

In the early stage of the developments around 1968–75 the principal par-
tition was considered as a decomposition of a discrete system into its compo-
nents together with a partially ordered structure of the set of the components.
It then turned out that such a decomposition and the associated partial order
(poset) come from the submodularity structure pertinent to the system and
that the principal partition is closely related to resource allocation problems
with submodular constraints.

The decomposition and its associated poset structure arise from minimiza-
tion of a submodular function underlying the discrete system under considera-



2 Satoru FUJISHIGE

tion. We have a min-max theorem that characterizes the submodular function
minimization, and we can relate optimal solutions of the dual maximization
problem to a resource allocation problem with submodular constraints.

It should be noted that research developments closely related to prin-
cipal partitions have been independently made for parametric optimization
problems with special emphasis put on monotonicity of optimal solutions, by
Topkis et al. (see, e.g., [4, 27, 52, 82, 83]).

The aim of this paper is to give an overview of the developments in the
theory of principal partitions and some recent extensions to make it better
known to and fully understood by researchers in combinatorial optimization.

The present paper is organized as follows. Section 2 gives basics of sub-
modular functions that lay the foundations of principal partitions. We make a
historical overview of principal partitions in Section 3 and some recent exten-
sions in Section 4. Section 5 describes some applications of principal partitions
and related topics.

2 Fundamentals of Submodular Functions and
Associated Polyhedra

In this section we describe basic properties and facts in the theory of submod-
ular functions, which will play a fundamental rôle in the developments of the
theory of principal partitions (also see [20]).

2.1 Posets, distributive lattices, and submodular functions

Let E be a finite nonempty set and D be a collection of subsets of E such that
for every X,Y ∈ D we have X ∪Y,X ∩Y ∈ D. Then D is a distributive lattice
(or a ring family) with set union and intersection as the lattice operations,
join and meet.

Let ¹ be a partial order on set E, i.e., ¹ is a binary relation on E such
that (i) (reflexive) e ¹ e for all e ∈ E, (ii) (antisymmetric) e ¹ e′ and e′ ¹ e
imply e = e′ for all e, e′ ∈ E, and (iii) (transitive) e ¹ e′ and e′ ¹ e′′ imply
e ¹ e′′ for all e, e′, e′′ ∈ E. The pair (E,¹) is called a partially ordered set
(or a poset for short). A subset I of E is called an order-ideal (or an ideal) of
poset (E,¹) if e ¹ e′ ∈ I implies e ∈ I for all e, e′ ∈ E.

Theorem 1 (Birkhoff). Let D be a set of subsets of a finite set E with
∅, E ∈ D. Then D is a distributive lattice with set union and intersection
as the lattice operations if and only if there exists a poset (Π(E),¹) on a
partition Π(E) of E such that D is expressed as follows:

For any X ∈ D there exists an ideal J of (Π(E),¹) such that X =
∪

F∈J

F .

ut
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We denote the poset (Π(E),¹) appearing in Theorem 1 by P(D). Con-
versely, for any poset P on a partition of E there uniquely exists a distributive
lattice D ⊆ 2E with set union and intersection as the lattice operations such
that ∅, E ∈ D, and P = P(D). We denote such a distributive lattice by D(P).

Remark 1. The original Birkhoff theorem [3] says that a finite lattice (not
necessarily given as a set lattice) is a distributive lattice if and only if it is
isomorphic to the set lattice of ideals of a finite poset. It is a crucial observation
in principal partitions that a finite distributive lattice given as a set lattice
induces a partition of the underlying set and a partial order on it, which
conversely gives the distributive lattice as a set of ideals of the poset. This
was explicitly mentioned by Iri in [33, 35]. ut

Let D ⊆ 2E be a finite distributive lattice with set union and intersection
as the lattice operations. Also suppose that f : D → R satisfies

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (X,Y ∈ D). (1)

Then, f is called a submodular function on D. When f is a submodular func-
tion, −f is called a supermodular function. A function that is simultaneously
submodular and supermodular is called a modular function.

Lemma 1. For any submodular function f : D → R define

Dmin(f) = {X ∈ D | f(X) = min{f(Z) | Z ∈ D}}. (2)

Then, the collection Dmin(f) of minimizers of f forms a distributive lattice
with set union and intersection as the lattice operations.
(Proof) For any X,Y ∈ Dmin(f) we have

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) ≥ f(X) + f(Y ) (3)

where note that f(X) = f(Y ) ≤ min{f(X ∪Y ), f(X ∩Y )}. Hence X ∪Y,X ∩
Y ∈ Dmin(f). ut

Combining Theorem 1 and Lemma 1, we observe that the collection of
minimizers of submodular function f gives a partition of the underlying set
E and a partial order on it. More precisely,

Theorem 2. Let Dmin(f) be the collection of minimizers of a submodular
function f as in Lemma 1. Let Emin be the minimum element of Dmin(f) and
Emax the maximum element of Dmin(f). Then, E is partitioned into

Emin, Fi (i ∈ I), E \ Emax (4)

in such a way that every X ∈ Dmin(f) is expressed as

X =
(∪

{Fi | i ∈ I, Fi ⊆ X}
)
∪ Emin. (5)

Here, {Fi | i ∈ I} is a partition of Emax \ Emin. ut
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Remark 2. Note that expressions (5) correspond to ideals of a poset. We have
a partial order on {Fi | i ∈ I} as in the Birkhoff theorem. Hence, adding to
it Emin and E \ Emax as the minimum element and the maximum element of
the poset, respectively, we get a partial order on the partition of the whole
set E. ut

Remark 3. There is a large class of combinatorial optimization problems that
have min-max relations expressed by submodular functions. For such prob-
lems we often encounter the problem of submodular function minimization
that characterizes the minimization side of the min-max relation. Then, this
naturally leads us to the decomposition of the discrete system under consid-
eration, due to Theorem 2, i.e., we obtain a partition and a partial order on
it derived from the submodular function minimization. This is the essence of
principal partitions in the early stage of its developments. Related arguments
for cut functions of networks were made in [73]. ut

We call D a simple distributive lattice if the length of a maximal chain
of D is equal to |E|, where note that all the maximal chains of D have the
same length. For a simple distributive lattice D and its corresponding poset
P(D) = (Π(E),¹) the partition Π(E) consists of singletons only. Hence we
regard poset P(D) as a poset P(D) = (E,¹) on E.

For a poset P = (E,¹) with m = |E| a sequence or ordering (e1, e2, · · · , em)
of elements of E is called a linear extension of P = (E,¹) if for all
i, j = 1, · · · ,m, ei ≺ ej implies i < j. Every linear extension (e1, e2, · · · , em)
of (E,¹) determines a maximal chain S0 = ∅ ⊂ S1 ⊂ · · · ⊂ Sm = E of D(P)
by defining Si as the set of the first i elements of the linear extension for each
i = 0, 1, · · · ,m. Conversely, every maximal chain S0 = ∅ ⊂ S1 ⊂ · · · ⊂ Sm =
E of simple D determines a linear extension (e1, e2, · · · , em) of P(D) = (E,¹)
by defining {ei} = Si \ Si−1 for each i = 1, · · · ,m.

2.2 Submodular functions and associated polyhedra

Let f : D → R be a submodular function on a distributive lattice D ⊆ 2E .
Assume that ∅, E ∈ D and f(∅) = 0. Then we call the pair (D, f) a submodular
system on E. If D is simple, we call (D, f) a simple submodular system.
Similarly we define a (simple) supermodular system.

We define two polyhedra associated with submodular system (D, f) as
follows.

P(f) = {x | x ∈ RE , ∀X ∈ D : x(X) ≤ f(X)}, (6)
B(f) = {x | x ∈ P(f), x(E) = f(E)}, (7)

where for any X ⊆ E and x ∈ RE we define x(X) =
∑

e∈X x(e). We call P(f)
and B(f), respectively, the submodular polyhedron and the base polyhedron as-
sociated with submodular system (D, f). Informally, submodular polyhedron
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P(f) is the set of vectors x ∈ RE ‘smaller’ than or equal to f . Base poly-
hedron B(f) is the face of P(f) determined by the hyperplane x(E) = f(E)
and is the set of all maximal vectors in submodular polyhedron P(f), which
is always nonempty. Define f#(E \X) = f(E)− f(X) for all X ∈ D. We call
f# the dual supermodular function of f , and (D, f#) the dual supermodular
system of (D, f), where D = {E \ X | X ∈ D}. Similarly, for any supermod-
ular system (D, g) on E we define the dual submodular function g# of g by
g#(E \ X) = g(E) − g(X) for all X ∈ D.

For a supermodular system (D, g) we define the supermodular polyhedron
P(g) and the base polyhedron B(g) by P(g) = {x | x ∈ RE , ∀X ∈ D : x(X) ≥
g(X)} and B(g) = {x | x ∈ P(g), x(E) = g(E)}, respectively. Note that
B(g) = B(g#).

An element of B(f) is called a base of submodular system (D, f). An
extreme point of B(f) is called an extreme base. An element of submodular
polyhedron P(f) is called a subbase of (D, f). The following theorem in the
case when D = 2E is due to Edmonds [11] and Shapley [78].

Theorem 3 (Edmonds, Shapley). For a simple submodular system (D, f)
let (e1, · · · , em) be a linear extension of poset P(D) = (E,¹), and let Si =
{e1, · · · , ei} for i = 1, · · · ,m and S0 = ∅. Define a vector x ∈ RE by

x(ei) = f(Si) − f(Si−1) (i = 1, · · · ,m). (8)

Then x is an extreme base of submodular system (D, f).
Conversely, every extreme base of submodular system (D, f) is generated

in this way. ut

We say that the base x defined by (8) is the extreme base corresponding to
the linear ordering (e1, · · · , em). Similarly, for a simple supermodular system
(D, g) on E the extreme base y corresponding to a linear ordering (e1, · · · , em)
(a linear extension of P(D)) is given by y(ei) = g(Si)−g(Si−1) (i = 1, · · · ,m),
where Si is the set of the first i elements of the linear ordering.

Remark 4. Note that Si = {e1, · · · , ei} for i = 0, 1, · · · ,m in Theorem 3 is a
maximal chain of D. Any (not necessarily maximal) chain

C : C0 = ∅ ⊂ C1 ⊂ · · · ⊂ Ck = E (9)

of D determines a face F(C) of B(f) by

F(C) = {x | x ∈ B(f), ∀i = 1, · · · , k : x(Ci) = f(Ci)}, (10)

which is nonempty. Every maximal chain containing C determines an extreme
point of the face F(C). It should also be noted that the face F(C) is again
a base polyhedron, which is a direct sum of bases of minors of submodular
system (D, f) defined in the sequel. ut
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Let G(P) = (E,A) be the graph with vertex set E and arc set A rep-
resenting the Hasse diagram of P = (E,¹), where (e, e′) ∈ A if and only if
e′ ≺ e and there exists no element e′′ such that e′ ≺ e′′ ≺ e in P. Any function
ϕ : A → R is a flow in G(P). The boundary ∂ϕ : E → R of flow ϕ is defined
by

∂ϕ(e) =
∑

(e,e′)∈A

ϕ(e, e′) −
∑

(e′′,e)∈A

ϕ(e′′, e) (e ∈ E). (11)

Theorem 4. The characteristic cone Cone(B(f)) of base polyhedron B(f) as-
sociated with a simple submodular system (D, f) on E is given by

Cone(B(f)) = {∂ϕ | ϕ : a nonnegative flow in G(P(D))}. (12)

ut

Consider a submodular system (D, f) on E. For any X ∈ D the reduction
or restriction of submodular system (D, f) by X is a submodular system
(DX , fX) on X defined by

DX = {Z | Z ∈ D, Z ⊆ X}, (13)
fX(Z) = f(Z) (Z ∈ DX). (14)

Also the contraction of (D, f) by X ∈ D is a submodular system (DX , fX) on
E \ X defined by

DX = {Z \ X | Z ∈ D, Z ⊇ X}, (15)
fX(Z) = f(Z ∪ X) − f(X) (Z ∈ DX). (16)

Note that D∅ = D and DE = D.
For any X,Y ∈ D such that X ⊂ Y define

DY
X = (DY )X , (17)

fY
X = (fY )X . (18)

Here note that (DY )X = (DX)Y \X and (fY )X = (fX)Y \X . We call the sub-
modular system (DY

X , fY
X ) on Y \ X a minor of (D, f).

Theorem 5. Let C be a chain of D given by (9) and F(C) be the face of the
base polyhedron B(f) determined by (10). Then, F(C) is expressed as

F(C) =
k⊕

i=1

B(fCi

Ci−1
), (19)

which is the direct sum of the base polyhedra associated with minors (DCi

Ci−1
,

fCi

Ci−1
) (i=1, · · · , k) of (D, f). ut
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We need some other definitions. Consider a submodular system (D, f) on
E. For any x ∈ P(f) we call X ∈ D a tight set for x if x(X) = f(X), and
let Df (x) denote the collection of all tight sets for x. Note that Df (x) =
Dmin(f − x), so that it is closed with respect to set union and intersection.

For any x ∈ P(f) define

sat(x) =
∪

{X | X ∈ Df (x)}, (20)

which is defined to be the empty set if Df (x) = ∅. When Df (x) is nonempty,
sat(x) is the unique maximal element of the distributive lattice Df (x) and
can be expressed as

sat(x) = {e ∈ E | ∀α > 0 : x + αχe /∈ P(f)}. (21)

Here χe is the unit vector in RE with χe(e′) = 1 if e′ = e and χe(e′) = 0
if e′ ∈ E \ {e}. We call sat : P(f) → 2E the saturation function. Note that
sat(x) is empty if and only if x lies in the interior of P(f).

Also define for any x ∈ P(f) and any element e ∈ sat(x)

dep(x, e) =
∩

{X | e ∈ X ∈ Df (x)}, (22)

which can be rewritten as

dep(x, e) = {e′ ∈ E | ∃α > 0 : x + α(χe − χe′) ∈ P(f)}, (23)

and we also define dep(x, e) = ∅ if e /∈ sat(x). We call dep : P(f) × E → 2E

the dependence function. Note that when e ∈ sat(x), dep(x, e) is the unique
minimal element of the distributive lattice {X | e ∈ X ∈ Df (x)}.

3 An Overview of Principal Partitions

We make an overview of the developments in the theory of principal partitions.

3.1 Kishi and Kajitani’s tri-partition for graphs

Suppose that we are given a connected graph G = (V,E) with a vertex set V
and an edge set E. We identify a spanning tree with its edge set. Let T ⊆ 2E

be the set of all the spanning trees of G. For any two spanning trees T1 and
T2 in T we denote by dist(T1, T2) the distance |T1 \T2| of T1 and T2. A pair of
spanning trees T1 and T2 is called a maximally distant pair of spanning trees
if it attains the maximum of the distance.

Kishi and Kajitani’s principal partition [46] of graph G = (V,E) is the
ordered tri-partition of the edge set into (E−, E0, E+) such that the following
three hold.
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(−) For any e ∈ E− there exists a maximally distant pair of spanning trees
T1 and T2 such that e /∈ T1 ∪ T2.

(0) For any maximally distant pair of spanning trees T1 and T2 we have a
bi-partition of E0 into E0 ∩ T1 and E0 ∩ T2, i.e., for any e ∈ E0 we have
either e ∈ T1 or e ∈ T2.

(+) For any e ∈ E+ there exists a maximally distant pair of spanning trees
T1 and T2 such that e ∈ T1 ∩ T2.

Graph G = (V,E) is decomposed into G · E−, G · (E0 ∪ E−)/E−, and
G/(E0 ∪ E−), where for any edge set F ⊆ E, G · F is the restriction of G on
F and G/F is the graph obtained by contraction of all the edges in F .

It can be shown that Kishi and Kajitani’s tri-partition is characterized by
the following theorem, which is a matroidal min-max theorem known earlier
in matroid theory [11, 12, 13].

Theorem 6. For a connected graph G = (V,E) with rank function rG : 2E →
Z+,

max{|T1∪T2| | T1, T2 : spanning trees of G} = min{2rG(X)+|E\X| | X ⊆ E}.
(24)

ut

Theorem 7. The set DG of all the minimizers of the submodular function
f(X) = 2rG(X) + |E \ X| in X ∈ 2E is closed with respect to set union and
intersection and forms a distributive lattice. The unique minimal element of
DG is given by E− and the unique maximal element of DG by E− ∪ E0(=
E \E+), where (E−, E0, E+) is the Kishi-Kajitani tri-partition of E for G =
(V,E). ut

Ozawa [71] generalized Kishi and Kajitani’s principal partition of a graph
to a pair of graphs, which is a special case of the principal partition of a pair
of (poly-)matroids to be discussed in Section 3.5.

Remark 5. For an electrical network the topological degrees of freedom is the
minimum number of current and voltage variables whose values uniquely de-
termine all current and voltage values of arcs through Kirchhoff’s current and
voltage laws. It was noticed that Kishi and Kajitani’s principal tri-partition
could be used to resolve the problem of determining the topological degrees
of freedom (see [31, 34, 46, 69] and also [68, Chapter 14]).

It should also be noted that Kishi and Kajitani’s principal tri-partition
gives a solution of Shannon’s switching game (see [5, 10]). ut

3.2 Iri’s maximum-rank minimum-term-rank theorem for pivotal
transforms of a matrix

Iri [31, 32] considered a generalization of Kishi and Kajitani’s framework for
graphs to that for matrices and related the matroidal min-max theorem to
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what is called the maximum-rank minimum-term-rank theorem for pivotal
transforms of a matrix. Moreover, he derived a finer poset structure on E0

part, based on the Dulmage-Mendelsohn decomposition of bipartite graphs.
Suppose that we are given an m× n real matrix M = [Im|A], where Im is

the identity matrix of order m and A an m×(n−m) matrix. Let E be the index
set of the columns of M . Then consider the matroid M on E represented by
the matrix M defined by the linear independence among the column vectors
of M .

For any base B of matroid M we can transform the original matrix
M = [Im|A] so that the submatrix corresponding to the columns B becomes
the identity matrix Im by fundamental row operations. After an appropriate
column permutation we obtain a new matrix M(B) = [Im|A(B)]. We call
A(B) a pivotal transform of A. Define

A(M) = {A(B) | B : a base of M}. (25)

For any matrix C ∈ A(M) consider the bipartite graph G(C) correspond-
ing to the nonzero elements of matrix C. The size of a maximum matching in
the bipartite graph G(C) is the term rank of C, which we denote by t-rank
C.

Now we have

Theorem 8 (Iri).

max{rank C | C ∈ A(M)} = min{t-rank C | C ∈ A(M)}, (26)

where the maximum and the minimum can be attained simultaneously by a
matrix C ∈ A(M). ut

This theorem can be considered as a matrix variant, in terms of term rank,
of the following matroidal min-max theorem about the union of matroids
[13, 75]. We denote by rM the rank function of matroid M.

Theorem 9. For any matroid M with rank function rM : 2E → Z+,

max{|B1 ∪ B2| | B1, B2 : bases of M} = min{2rM(X) + |E \ X| | X ⊆ E},
(27)

or equivalently,

max{|B1 \ B2| | B1, B2 : bases of M} = min{rM(X) + r∗M(E \ X) | X ⊆ E},
(28)

where r∗M is the corank function of matroid M. ut

The left-hand side of (28) is equal to that of (26) when matroid M is rep-
resented by matrix M , but it is nontrivial to directly show the equality of the
right-hand sides of (28) and (26). It is mentioned in [32] that D. R. Fulkerson
noticed the matroidal structure of the result of Iri, which can be derived from
[13].
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3.3 The principal partition of matroids by Bruno and Weinberg,
Tomizawa, and Narayanan

Bruno and Weinberg [5] also noticed the matroidal structure of the result
of Kishi and Kajitani. With any positive integer k ≥ 2 as a parameter they
considered the union of k copies of a given matroid. This leads us to the
following min-max relation with integer parameter k ≥ 2, known for unions
of matroids (see [13, 75]).

Theorem 10. For a matroid M on E with the base family B and the rank
function ρ,

max{
∣∣∣ k∪
i=1

Bi

∣∣∣ | Bi ∈ B} = min{kρ(X) + |E \ X| | X ⊆ E}. (29)

ut

For each positive integer k we have the distributive lattice Dk of the min-
imizers of a submodular function fk(X) = kρ(X) + |E \ X| appearing in the
right-hand side of (29). Denote by E−

k and E+
k the minimum and the max-

imum element of Dk, respectively. It follows from Theorem 2 that we have
a partition of the underlying set E as in (4) and a poset structure on the
partition of E+

k \ E−
k for each integer k ≥ 2. Suppose that the collection of

distinct Dk is given by Dki (i = 1, · · · , l) with k1 < · · · < kl.
Then we have the following theorem, which will be shown for more general

setting later.

Theorem 11.

E+
k1

⊇ E−
k1

⊇ E+
k2

⊇ E−
k2

⊇ · · · ⊇ E+
kl

⊇ E−
kl

. (30)

ut

Remark 6. For each i = 1, · · · , l we have a partition of the difference set
E+

ki
\ E−

ki
and a poset on it determined by the distributive lattice Dki . ut

Remark 7. If the difference set E+
ki

\ E−
ki

is nonempty, the minor of matroid

M on E+
ki

\ E−
ki

with rank function ρ
E+

ki

E−
ki

has disjoint ki bases that partition

E+
ki

\ E−
ki

. ut

Tomizawa [80] and Narayanan [67] independently generalized the decom-
position scheme of Bruno and Weinberg by considering rational numbers in-
stead of integers k. For a positive rational l

k for positive integers l and k they
find a minor that has k bases that uniformly cover each element of the un-
derlying set l times. The Bruno-Weinberg decomposition corresponds to the
case when l = 1.

The min-max theorem associated with the Tomizawa-Narayanan decom-
position is given parametrically as follows. This will also be proved in a more
general setting later.
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Theorem 12. For any positive integers k and l,

max{
k∑

i=1

|Ii| | Ii ∈ I (i = 1, · · · , k), ∀e ∈ E : |{i | i ∈ {1, · · · , k}, e ∈ Ii}| ≤ l}

= min{kρ(X) + l|E \ X| | X ⊆ E}, (31)

where I is the family of the independent sets of matroid M. ut

Note that when l = 1, Theorem 12 is reduced to Theorem 10.
For a nonnegative rational number λ = l

k let Dλ be the distributive lattice
formed by the minimizers of the submodular function fλ(X) = kρ(X) + l|E \
X|.

We call the value λ critical if Dλ contains more than one element. Because
of the finiteness character we have a finite set of critical vales, which are
supposed to be given by 0 ≤ λ1 < · · · < λp. For each i = 1, · · · , p let E−

λi
and

E+
λi

be the minimum and the maximum element of Dλi , respectively.

Theorem 13.

E−
λ1

⊂ E+
λ1

= E−
λ2

⊂ E+
λ2

= E−
λ3

⊂ · · · ⊂ E+
λl−1

= E−
λl

⊂ E+
λl

. (32)

ut

For each nonempty difference set E+
i \E−

i we have a partition of it with a
partial order associated with the distributive lattice Dλi . Also note that the
union of Dλi (i = 1, · · · , p) as a whole is again a distributive lattice, which
determines the decomposition of matroid M and a poset structure on it. Each

minor ME+
i

E−
i

of M on E+
i \ E−

i , the restriction of M to E+
i followed by the

contraction by E−
i , with critical value λ = l/k has k bases of the minor that

cover uniformly l times every element of E+
i \ E−

i . The decomposition given
above is the finest one that has such a property. This is the principal partition
of matroid M in the sense of Tomizawa and Narayanan.

3.4 A polymatroidal approach to the principal partition of
Tomizawa and Narayanan: a lexicographically optimal base

The author [18, 19] noticed that Tomizawa and Narayanan’s principal par-
tition was polymatroidal. Readers will see that a polymatroidal approach to
the principal partition is quite natural and easy to understand. Also this can
easily be extended to general submodular systems.

Let P = (E, ρ) be a polymatroid with a rank function ρ : 2E → R+ and
let w : E → R be a positive weight vector on E. Then we have the following
min-max relation for polymatroids [11].
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Theorem 14 (Edmonds). For any real parameter λ,

max{x(E) | x ∈ P(ρ), x ≤ λw} = min{ρ(X) + λw(E \ X) | X ⊆ E}, (33)

where P(ρ) is the submodular polyhedron associated with the rank function ρ.
ut

It should be noted that when λ ≥ 0, P(ρ) in (33) can be replaced by the
polymatroid polyhedron P(ρ)∩RE

+ and that when λ < 0, the right-hand side
of (33) has the unique minimizer X = ∅. Relation (33) in the form given above
can more naturally be extended to submodular systems.

Lemma 2. For any reals λ1 and λ2 with λ1 < λ2 there exist a maximizer
x=b1 of the left-hand side of (33) for λ=λ1 and a maximizer x=b2 for λ=λ2

such that b1 ≤ b2.
(Proof) Let b1 be any maximizer for λ = λ1. Since {x | x ∈ P(ρ), x ≤ λ2w}
is a submodular polyhedron (the vector reduction of P(ρ) by λ2w) and b1

belongs to it, there exists a base b2 of the reduction such that b1 ≤ b2. Here,
b2 is a maximizer of the left-hand side of (33) for λ = λ2. ut

Because of this fact the following was observed in [18].

Theorem 15. For any given positive weight vector w there uniquely exists a
base b∗ of polymatroid (E, ρ) such that b∗∧λw is a maximizer of the left-hand
side of (33) for each λ, where b∗ ∧ λw = (min{b∗(e), λw(e)} | e ∈ E). ut

The base b∗ appearing in Theorem 15 is called the universal base for poly-
matroid (E, ρ) with weight vector w.

Remark 8. The universal base b∗ can be defined geometrically as follows. We
start with b = λw for a sufficiently small λ such that b lies in the interior
of P(ρ) (we can take any negative λ in the present case of polymatroid rank
function ρ). Then increase λ until we reach the boundary of P(ρ). Let b1 = λ1w
be the boundary point of P(ρ). Put S1 as the maximum minimizer of the
submodular function ρ(X) − b1(X) (note that S1 = sat(b1)). Now fix the
components b(e) as b1(e) for e ∈ S1 and increase the other components b(e)
(e ∈ E \ S1) in proportion to w(e) until we cannot increase them without
leaving P(ρ). Let b2 be the new boundary point of P(ρ), find the maximum
minimizer S2(= sat(b2)) of the submodular function ρ(X)−b2(X), and fix the
components b(e) as b2(e) for e ∈ S2, where note that we have S1 ⊂ S2. Repeat
this process until all the components of b are fixed. The finally obtained base
b is the universal base b∗. ut

In the same way as in the principal partition of Tomizawa and Narayanan
we call the value λ critical if Dλ contains more than one element. We have a
finite set of critical values 0 ≤ λ1 < · · · < λp. For each i = 1, · · · , p let E−

i

and E+
i be the minimum and the maximum element of Dλi , respectively.



Theory of Principal Partitions Revisited 13

Theorem 16.

E−
λ1

⊂ E+
λ1

= E−
λ2

⊂ E+
λ2

= E−
λ3

⊂ · · · ⊂ E+
λp−1

= E−
λp

⊂ E+
λp

. (34)

(Proof) For the universal base b∗ let the distinct values of b∗(e)/w(e) (e ∈ E)
be given by β1 < · · · < βq and define

Si = {e | e ∈ E, b(e)/w(e) ≤ βi} (i = 1, · · · , q). (35)

Then we can show that q = p, Si = E+
λi

(i = 1, · · · , p), and Si = E−
λi+1

(i = 0, · · · , p − 1) where S0 = ∅. ut

For any base b ∈ B(ρ) let the distinct values of b(e)/w(e) (e ∈ E) be given
by

λ1 < · · · < λp, (36)

and define
Si = {e | e ∈ E, b(e)/w(e) ≤ λi} (37)

for each i = 1, · · · , p.
Then we have

Theorem 17. A base b ∈ B(ρ) is the universal base of (E, ρ) for weight vector
w if and only if the sets Si (i = 1, · · · , p) defined by (36) and (37) are tight
sets of b, i.e.,

ρ(Si) = b(Si) (i = 1, · · · , p). (38)

ut

Note that λiw(E+
i \ E−

i ) = ρ(E+
i ) − ρ(E−

i ) (i = 1, · · · , q). Hence the
critical values for the principal partition of Tomizawa and Narayanan are
rational, where w(X) = |X| (X ⊆ E) and ρ is a matroid rank function.

The universal base b∗ can be characterized as a lexicographically optimal
base of polymatroid (E, ρ) with weight vector w and as a base that minimizes
a separable convex function. Both were discussed in [18].

Given a positive weight vector w ∈ RE , for any vector x ∈ RE define a
sequence of ratios x(e)/w(e) (e ∈ E)

Tw(x) = (x(e1)/w(e1), · · · , x(em)/w(em)) (39)

such that
x(e1)/w(e1) ≤ · · · ≤ x(em)/w(em), (40)

where E = {e1, · · · , em}. A base b ∈ B(ρ) is called a lexicographically optimal
base with respect to the weight vector w if it lexicographically maximizes
Tw(x) among all the bases x ∈ B(ρ). We can easily see that a lexicographically
optimal base with respect to the weight vector w uniquely exists.
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Theorem 18. The lexicographically optimal base with respect to the weight
vector w coincides with the universal base b∗ for the same w.
(Proof) We can show that a base b̂ ∈ B(ρ) is the lexicographically optimal
base with respect to the weight vector w if and only if for all e, e′ ∈ E such
that b̂(e)/w(e) < b̂(e′)/w(e′) we have e′ /∈ dep(b̂, e). (Recall (22) and (23).)
The latter condition is equivalent to (36) and (37). ut

We also have

Theorem 19. Let x = b̂ be an optimal solution of the following problem.

Minimize
∑
e∈E

x2(e)
w(e)

subject to x ∈ B(ρ). (41)

Then b̂ is the universal base b∗ for w.
(Proof) We can also show that a base b̂ is an optimal solution of (41) if and only
if for all e, e′ ∈ E such that b̂(e)/w(e) < b̂(e′)/w(e′) we have e′ /∈ dep(b̂, e).
ut

Fujishige [18] gave an O(|E|SFM) algorithm for finding a lexicographically
optimal base with respect to weight w, where SFM denotes the complexity of
submodular function minimization (see [39, 49] for submodular function mini-
mization). When specialized to multi-terminal flows, this improved Megiddo’s
algorithms for lexicographically optimal multi-terminal flows [50, 51]. Also,
Gallo, Grigoriadis, and Tarjan [26] devised a faster algorithm for finding a lex-
icographically optimal multi-terminal flow with weights, which requires run-
ning time of a single max-flow computation. More general separable convex
function minimization problems over polymatroids and their incremental al-
gorithms were considered by Federgruen and Groenevelt [15, 28]. An O(SFM)
algorithm for finding a lexicographically optimal base with weights has been
obtained by Fleischer and Iwata [16] (also see related recent algorithms by
Nagano [63, 64]).

The results in this subsection do not depend on the monotonicity of the
rank function ρ, so that we can easily extend the results to those for general
submodular systems with positive weight vectors. (Just replace the polyma-
troid rank function ρ with the rank function f of any submodular system. For
details see [20].)

Getting rid of the monotonicity assumption on the rank function is very
important and extends the applicability of the theory of principal partitions.

Remark 9. The concept of a lexicographically optimal base of a polymatroid
was rediscovered in convex games by Dutta and Ray [8, 9] (also see [29, 30]),
where the lexicographically optimal base is called the egalitarian solution of
a convex game. Note that the core of a convex game is the same as the base
polyhedron of a polymatroid ([78]). ut
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Remark 10. Consider a submodular system (D, f) on E and a positive weight
vector w. If we are given the universal base b∗ (or the lexicographically optimal
base) with respect to weight w, b∗∧0 = (min{b∗(e), 0} | e ∈ E) is a maximizer
of

max{x(E) | x ∈ P(f), x ≤ 0} = min{f(X) | X ∈ D} (42)

due to a generalized version of Theorem 14. Moreover, A− = {e | e ∈
E, b∗(e) < 0} and A0 = {e | e ∈ E, b∗(e) ≤ 0} are, respectively, the unique
minimal minimizer and the unique maximal minimizer of f , which minimize
the right-hand side of (42). Hence we can minimize a given submodular func-
tion by solving the minimum-norm-point problem (41). Here we may choose
a uniform weight vector w with w(X) = |X| for all X ⊆ E to get the Eu-
clidean norm. Polynomial algorithms for submodular function minimization
have been developed so far [37, 38, 40, 70, 76] (also see [39, 49]), but it seems to
be worth investigating to apply the minimum-norm-point algorithm of Wolfe
[84] to submodular function minimization (see [21]). ut

3.5 The principal partition of a pair of polymatroids of Iri and
Nakamura

Let (E, ρi) (i = 1, 2) be two polymatroids. Then we have the following min-
max theorem parametrically.

Theorem 20 (Edmonds). For any λ ≥ 0 we have

max{x(E) | x ∈ P(ρ1)∩P(λρ2)} = min{ρ1(X)+λρ2(E \X) | X ⊆ E}. (43)

ut

For the sake of simplicity we suppose that ρ2 is strictly monotone increas-
ing, i.e., all the extreme bases of (E, ρ2) are positive vectors (or B(ρ2) is
included in the interior of the nonnegative orthant RE

+).
Iri and Nakamura [33, 35, 65, 66] developed the principal partition of a

pair of polymatroids, based on Theorem 20. Define D(ρ1, λρ2) as the collection
of minimizers of the submodular function ρ1(X) + λρ2(E \ X) in X. Let
E−

λ and E+
λ be, respectively, the minimum and the maximum element of

the distributive lattice D(ρ1, λρ2) for all λ ≥ 0. We call λ a critical value if
D(ρ1, λρ2) contains more than one element. It should be noted that when ρ2

is a modular function represented by a positive vector w ∈ RE , Theorem 20
reduces to Theorem 14.

Theorem 21 (Iri, Nakamura). For two critical values λ and λ′ with λ < λ′

we have
E−

λ ⊂ E+
λ ⊆ E−

λ′ ⊂ E+
λ′ . (44)

Moreover, for any X ∈ D(ρ1, λρ2) and X ′ ∈ D(ρ1, λ
′ρ2) we have

X ∩ X ′ ∈ D(ρ1, λρ2), X ∪ X ′ ∈ D(ρ1, λ
′ρ2). (45)
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(Proof) For any λ < λ′ (not necessarily critical values) and for any X ∈
D(ρ1, λρ2) and X ′ ∈ D(ρ1, λ

′ρ2) we have

ρ1(X ′) + λ′ρ2(E \ X ′) + ρ1(X) + λρ2(E \ X)
≥ ρ1(X ∪ X ′) + λ′ρ2(E \ (X ∪ X ′)) + ρ1(X ∩ X ′) + λρ2(E \ (X ∩ X ′))

+(λ′ − λ)(ρ2(E \ (X ∩ X ′)) − ρ2(E \ X))
≥ ρ1(X ∪ X ′) + λ′ρ2(E \ (X ∪ X ′)) + ρ1(X ∩ X ′) + λρ2(E \ (X ∩ X ′)). (46)

This implies (45) and hence

E−
λ ⊆ E−

λ′ , E+
λ ⊆ E+

λ′ . (47)

When λ is a critical value, for a sufficiently small ε > 0 D(ρ1, (λ + ε)ρ2)
contains only one element E+

λ since ρ2(X) < ρ2(Y ) for all X ⊂ Y ⊆ E by
the assumption that B(ρ2) lies in the interior of RE

+. This together with (47)
implies (44). ut

Note that (45) and (47) hold without the assumption that B(ρ2) lies in
the interior of the nonnegative orthant RE

+.
It follows from Theorem 21 that there exist a finite number of critical

values λ1 < · · · < λp and that

p∪
i=1

D(ρ1, λiρ2) (48)

forms a distributive lattice, which leads us to a decomposition of the pair of
polymatroids (ρ1, ρ2) as follows ([33, 35, 65, 66, 81]).

The whole distributive lattice (48) yields a chain

E−
λ1

⊂ E+
λ1

= E−
λ2

⊂ · · · ⊂ E+
λp−1

= E−
λp

⊂ E+
λp

. (49)

Then polymatroids Pi = (E, ρi) (i = 1, 2) are decomposed into

P1 · Eλ−
1
, P2/Eλ−

1
(50)

P1 · Eλ+
1
/Eλ−

1
, P2 · Eλ−

1
/Eλ+

1
(51)

...
P1 · Eλ+

p
/Eλ−

p
, P2 · Eλ−

p
/Eλ+

p
(52)

P1/Eλ+
p
, P2 · Eλ+

p
, (53)

where for any X ⊆ E we denote by X its complement E \ X, by Pi · X the
restriction of Pi to X, and by Pi/X the contraction of Pi by X. For any
λ > 0 we denote λPi = (E, λρi).

Theorem 22 (Iri, Nakamura). The minors of polymatroids Pi = (E, ρi)
(i = 1, 2) in (50)–(53) are uniquely determined, independently of the choice of
a maximal chain (49). Moreover,
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(a) The pair of P1 ·Eλ−
1

and λ1P2/Eλ−
1

has a maximum common subbase b(0)

that is a base of P1 · Eλ−
1
.

(b) For each i = 1, · · · , p the pair of P1 · Eλ+
i
/Eλ−

i
and λiP2 · Eλ−

i
/Eλ+

i
has

a common base b(i).
(c) The pair of P1/Eλ+

p
and λpP2 · Eλ+

p
has a maximum common subbase

b(p+1) that is a base of λpP2 · Eλ+
p
.

ut

Define b1 = b(0)⊕b(1)⊕· · ·⊕b(p)⊕b(p+1) and b2 = (1/λ1)b(0)⊕(1/λ1)b(1)⊕
· · · ⊕ (1/λp)bp ⊕ (1/λp)b(p+1). Choose any bases b̂i ∈ B(ρi) such that b̂i ≥ bi

(i = 1, 2), b̂
E−

λ1
1 is a base of P1 ·E−

λ1
, and b̂

E+
λp

2 is a base of P2 ·E+
λp

, where for any
vector x ∈ RE and any set A ⊆ E define a vector xA in RA as xA(e) = x(e)
(e ∈ A). Then for any λ ≥ 0 b̂1 ∧ λb̂2 is a maximum common base of P1

and λP2. (Note that b̂1(e) = b1(e) for (e ∈ E \ E−
λ1

) and b̂2(e) = b2(e) for
(e ∈ E+

λp
).) Hence,

Theorem 23 (Nakamura). There exist a base b1 of P1 and a base b2 of
P2 such that for any λ ≥ 0 b1 ∧λb2 is a maximum common base of P1 and
λP2. ut

This generalizes Theorem 15. The pair (b1, b2) is called a universal pair of
bases, where note that such a pair is not necessarily unique (also see [54]).

It is not difficult to generalize the principal partition of a pair of poly-
matroids to that of a submodular system and a polymatroid. The range of
parameter λ can also be extended to negative values by defining λρ for λ < 0
by

λρ(X) = λρ#(X) (X ⊆ E) (54)

(see [20, 81]).
We shall discuss a further generalization later in Section 4.

3.6 The principal structure of a submodular system

A related decomposition slightly different from principal partitions was con-
sidered in [19].

Let (D, f) be any submodular system on E. Then for any e ∈ E define

Df (e) = {X | e ∈ X ∈ D, f(X) = min{f(Y ) | e ∈ Y ∈ D}}. (55)

Note that Df (e) is a distributive lattice with set union and intersection as the
lattice operations. Denote by Df (e) the minimum element of Df (e).

Now we have the following.
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Theorem 24. For any e1, e2 ∈ E such that e2 ∈ Df (e1) we have

Df (e2) ⊆ Df (e1). (56)

(Proof) Putting Fi = Df (ei) for i = 1, 2, we have

f(F1) ≤ f(F1 ∪ F2), (57)

since e1 ∈ F1 ∪ F2. It follows from (57) and the submodularity of f that

f(F2) ≥ f(F1 ∩ F2) + f(F1 ∪ F2) − f(F1)
≥ f(F1 ∩ F2). (58)

This implies (56) since e2 ∈ F1 ∩ F2, and hence F2 ⊆ F1 ∩ F2. ut

Let F be the collection of Df (e) (e ∈ E). Then we see from this theorem
that for any F1, F2 ∈ F we have F1 ∩ F2 =

∪
e∈F1∩F2

Df (e).
We can define a transitive binary relation → on E by

e1 → e2 ⇐⇒ e2 ∈ Df (e1). (59)

The transitive binary relation → on E naturally defines a directed graph
Gf with a vertex set E whose strongly connected components are complete
directed graphs with selfloops at every vertex. Decomposing Gf into strongly
connected components, we obtain a decomposition with a poset structure on
it, which is called the principal structure of the submodular system (D, f).

Remark 11. For a submodular system S = (D, f) on E the principal structure
of submodular system S furnishes a further decomposition of E \Dmax

f , where
Dmax

f is the maximum element of the set of minimizers of f . ut

Remark 12. The concepts of principal structure and principal partition have
been effectively applied to systems analysis and examined in details in matric
and matroidal frameworks in [36, 41, 42, 53, 55, 61] (see Murota’s book [57]).
ut

4 Extensions

In the principal partitions viewed in Section 3 we have considered submodular
functions with a parameter that appears linearly as follows. Vector 1 denotes
the vector of all ones.

• ρ(X) + λw(E \ X) (X ⊆ E),
ρ = rG, w = 1, λ = 1

2 (Kishi and Kajitani)
ρ: a matroid rank function, w = 1, λ ≥ 0 (Tomizawa and Narayanan)
ρ: a polymatroid rank function, a positive weight w, λ ≥ 0 (Fujishige)
extension to submodular systems, a positive weight w, λ ∈ R (Fujishige)
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• ρ1(X) + λρ2(E \ X) (X ⊆ E),
ρ1, ρ2: polymatroid rank functions, λ ≥ 0 (Iri and Nakamura)
extension to submodular systems, λ ∈ R (Fujishige and Tomizawa)

We shall examine how the linear form in the parameter can be extended to
a nonlinear form in Section 4.1. We also examine possible extension of the
domain 2E or D to the integer lattice ZE in Section 4.2.

4.1 Parameters nonlinearly

The result of this section is based on joint work with Nagano [24] (also see
[64]).

In the principal partition with a parameter λ described in Section 3 a
kind of monotonicity of λw and λρ2 plays a crucial rôle. The essence of the
monotonicity is the strong map relation of submodular systems.

Consider two submodular systems Si = (Di, fi) (i = 1, 2) on E. The
ordered pair (S1,S2) is called a strong map if for all X ∈ D1 and Y ∈ D2 such
that X ⊆ Y we have

f1(Y ) − f1(X) ≥ f2(Y ) − f2(X), (60)

where if X /∈ D2 or Y /∈ D1, we understand that (60) holds. Following the
convention, we write f1 → f2 if (S1,S2) is a strong map. For two supermodular
functions g1 and g2 we write g1 → g2 if we have a strong map relation g#

2 →
g#
1 , where recall that g#

i is the dual submodular function of gi.
The strong map relation is the monotonicity that we need to extend the

principal partition having a parameter linearly.
Consider parameterized submodular systems (D, fλ) (λ ∈ R) and super-

modular systems (D, gλ) (λ ∈ R) such that for all λ and λ′ with λ < λ′

fλ → fλ′ , gλ → gλ′ . (61)

We assume that for each X ∈ D the values of fλ(X) and gλ(X) are continuous
in λ ∈ R.

Now we have the following min-max theorem due to Edmonds. For any
x ∈ RE define x− = (min{x(e), 0} | e ∈ E).

Theorem 25.

max{(x − y)−(E) | x ∈ B(fλ), y ∈ B(gλ)} = min{fλ(X) − gλ(X) | X ∈ D}.
(62)

ut

Define a parameterized submodular function hλ(X) in X ∈ D as

hλ(X) = fλ(X) − gλ(X) (X ∈ D). (63)
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It should be noted that for any λ and λ′ such that λ < λ′ we have a strong
map relation

hλ → hλ′ . (64)

For any λ let D(hλ) be the set of minimizers of hλ.

Theorem 26. For any λ and λ′ such that λ < λ′ and for any X ∈ D(hλ)
and Y ∈ D(hλ′) we have

X ∩ Y ∈ D(hλ), X ∪ Y ∈ D(hλ′). (65)

(Proof) Under the assumption of the present theorem,

hλ′(X) + hλ(Y ) = hλ′(X) + hλ′(Y ) − hλ′(Y ) + hλ(Y )
≥ hλ′(X ∪ Y ) + hλ′(X ∩ Y ) − hλ′(Y ) + hλ(Y )
= hλ′(X ∪ Y ) + hλ(X ∩ Y )

+hλ(Y ) − hλ(X ∩ Y ) − hλ′(Y ) + hλ′(X ∩ Y )
≥ hλ′(X ∪ Y ) + hλ(X ∩ Y ). (66)

Hence we have (65). ut

It follows that the union of distributive lattices D(hλ) (λ ∈ R) is again
a distributive lattice, denoted by D(h). For each λ ∈ R denote the maxi-
mum and the minimum element of D(hλ) by S+

λ and S−
λ , respectively. From

Theorem 26 we have

Theorem 27. For any λ and λ′ such that λ < λ′,

S−
λ ⊆ S−

λ′ , S+
λ ⊆ S+

λ′ . (67)

ut

Hence there exist finitely many distinct S+
λ (λ ∈ R), which are given by

S0 ⊂ S1 ⊂ · · · ⊂ Sp. (68)

Because of the finiteness character and the continuity of hλ(X) in λ, for
each λ we have D(hλ) ⊇ D(hλ+ε) for a sufficiently small ε > 0. Hence, from
Theorem 27, R is divided into the intervals

Λ0 = (−∞, λ1), Λ1 = [λ1, λ2), · · · , Λp = [λp, +∞) (69)

such that for any i = 0, 1, · · · , p and any λ ∈ Λi we have S+
λ = Si. We call λi

(i = 1, · · · , p) upper critical values.
For simplicity we assume that

S0 = ∅, Sp = E. (70)
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Lemma 3. For any i = 2, · · · , p we have S+
λi−1

∈ D(hλi) and ∅ ∈ D(hλ1).

(Proof) It follows from Theorems 26 and 27 that for any λ ∈ R we have

S−
λ−ε = S−

λ , S+
λ+ε = S+

λ (71)

for a sufficiently small ε > 0. That is to say, S−
λ is left-continuous in λ and

S+
λ is right-continuous in λ.

For any i = 2, · · · , p and a sufficiently small ε > 0 we have S−
λi

∈ D(hλi−ε)
and S+

λi−ε = S+
λi−1

. Hence,
S−

λi
⊆ S+

λi−1
. (72)

It follows from Theorem 26 and (72) that S+
λi−1

= S+
λi−1

∪ S−
λi

∈ D(hλi).
Similarly we can show (S0 =) ∅ ∈ D(hλ1). ut

For each λ let Sλ be the submodular system (D, hλ) on E and for each
i = 1, · · · , p consider minors Sλi · Si/Si−1. Note that for each i = 1, · · · , p

Sλi · Si/Si−1 = (DSi

Si−1
, hλi

Si

Si−1
) (73)

is a submodular system on Si \ Si−1 with rank function hλi

Si

Si−1
.

We use 0 to denote a zero vector of appropriate dimension. Its dimension
is determined by the context.

Lemma 4. For each i = 1, · · · , p we have 0 ∈ B(hλi

Si

Si−1
).

(Proof) We see from Lemma 3 that Si−1 ⊂ Si is a chain of D(hλi) for each
i = 1, · · · , p. Hence hλi

Si

Si−1
is nonnegative and hλi

Si

Si−1
(Si \ Si−1) = 0, which

shows the present lemma. ut

Now we assume that D is simple, i.e., D is the collection of (lower) order-
ideals of a poset P = (E,¹) on E. Let G(P) be the graph representing the
Hasse diagram of poset P. Recall that for any x ∈ RE and F ⊆ E we denote
xF = (x(e) | e ∈ F ).

Then,

Theorem 28. There exist at most |E| linear extensions of poset P identified
with linear orderings σi (i ∈ I) of E, a nonnegative flow ϕ in G(P), and
coefficients µi > 0 (i ∈ I) with

∑
i∈I µi = 1 such that for all λ ∈ R, defining

a base bλ of submodular system Sλ by

bλ =
∑
i∈I

µib
σi

λ + ∂ϕ, (74)

the base bλ satisfies
(bλi)

Si\Si−1 = 0 (i ∈ I), (75)

where for each i ∈ I bσi

λ appearing in (74) is the extreme base of B(hλ)
corresponding to the linear ordering σi and ∂ϕ is the boundary of flow ϕ in
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G(P).
(Proof) For each i = 1, · · · , p base bi ≡ 0 ∈ B(hλi

Si

Si−1
) is expressed by

a convex combination of at most |Si \ Si−1| extreme bases b
σij

λi
(j ∈ Ii) of

B(hλi

Si

Si−1
) and a nonnegative flow ϕi in G(P) · (Si \ Si−1) as follows.

bi =
∑
j∈Ii

µijb
σij

λi
+ ∂ϕi. (76)

Hence we can have an expression (74) satisfying (75), where we need at most
|E| extreme bases of B(hλ) since

|S1| + |S2 \ S1| + · · · + |Sp \ Sp−1| = |E|. (77)

For, the expression (74) can be constructed by the following procedure. Put
I = ∅.

1. For each i = 1, · · · , p choose an index ki ∈ Ii.
2. Find i∗ ∈ {1, · · · , p} such that µi∗ki∗ = min{µiki | i = 1, · · · , p}.
3. Put I ← I ∪ {i∗}.

Let σi∗ be the concatenation of σk1 , · · · , σkp and define µ̄i∗ = µi∗ki∗ .
4. For each i = 1, · · · , p

put µiki ← µiki − µ̄i∗ and
if µiki = 0, then Ii ← Ii \ {ki} and

if Ii 6= ∅, then choose an index ki ∈ Ii,
else go to Step 5.

Go to Step 2.
5. Return σi, µ̄i (i ∈ I), and I.

(Here we assume that Ii (i = 1, · · · , p) are disjoint.)
It should be noted that the linear ordering defined by the concatenation

of σk1 , · · · , σkp in Step 2 is a linear extension of P, so that it gives an extreme
base of B(hλ). We can see that |I| ≤ |E|, because of (77). Then we have

bλ =
∑
i∈I

µ̄ib
σi

λ + ∂ϕ, (78)

where ϕ = ⊕p
i=1ϕi. We can also show that bλ defined by (78) satisfies

(bλi)
Si\Si−1 = 0 (79)

for all i = 1, · · · , p. ut

Moreover, we have

Theorem 29. For any λ ∈ R the base bλ ∈ B(hλ) in Theorem 28 satisfies

b−λ (E)(=
∑

{bλ(e) | e ∈ E, bλ(e) < 0}) = max{x−(E) | x ∈ B(hλ)}. (80)
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(Proof) Consider any i ∈ {0, 1, · · · , p} and λ ∈ Λi. Then, since Si is a mini-
mizer of hλ, it suffices to show that

bλ(e) ≤ 0 (e ∈ Si), (81)
bλ(e) ≥ 0 (e ∈ E \ Si), (82)

and Si is a tight set for bλ in B(hλ).
Because of Theorem 28 and the strong map relation we have (81) and (82)

for λ ∈ Λi, where note that for any λ′ and λ′′ with λ′ < λ′′ we have bσi

λ′ ≥ bσi

λ′′ .
Moreover, by the definitions of σk (k ∈ I) and ϕ we have

bσk

λ (Si) = hλ(Si) (k ∈ I), (83)
∂ϕ(Si) = 0. (84)

It follows that Si is a tight set. ut

From Theorems 28 and 29 we have

Theorem 30. There exist at most |E| linear orderings σi (i ∈ I) of E, coef-
ficients µi (i ∈ I) of convex combination, and nonnegative flows ϕ̄ and ϕ in
G(P) such that for all λ ∈ R, defining

b̄λ =
∑
i∈I

µib̄
σi

λ + ∂ϕ̄, bλ =
∑
i∈I

µib
σi

λ − ∂ϕ (85)

by extreme bases b̄σi

λ of B(fλ) and bσi

λ of B(gλ) corresponding to linear order-
ings σi (i ∈ I), we have

(b̄λ − bλ)−(E) = max{(x − y)−(E) | x ∈ B(fλ), y ∈ B(gλ)} (86)

for all λ ∈ R.
Moreover, we have

(b̄λ)Si\Si−1 ∈ B(fλ
Si

Si−1
), (bλ)Si\Si−1 ∈ B(gλ

Si

Si−1
) (87)

for all λ ∈ R and i = 1, · · · , p, and

(b̄λi)
Si\Si−1 = (bλi

)Si\Si−1 (88)

for all i = 1, · · · , p. ut

It should be noted that Theorem 30 generalizes Theorems 22 and 23.

Remark 13. Besides upper critical values we can also define lower critical
values as follows. Recall that S−

λ is the minimum element of D(hλ). Since
we have D(hλ−ε) ⊆ D(hλ) for each λ and a sufficient small ε > 0, let
S′

1 ⊂ S′
2 ⊂ · · · ⊂ S′

q be the distinct elements of S−
λ (λ ∈ R). Then, R is

divided into the intervals
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Λ′
0 = (−∞, λ′

1], Λ′
1 = (λ′

1, λ
′
2], · · · , Λ′

q = (λ′
q,+∞) (89)

such that for any j = 0, 1, · · · , q and any λ ∈ Λ′
j we have S−

λ = S′
j . We call

each λ′
j a lower critical value. By means of lower critical values and the chain

S′
1 ⊂ · · · ⊂ S′

q we can develop the similar arguments as the above-mentioned
principal partitions. ut

For any λ, λ′ ∈ R with λ < λ′, if hλ and hλ′ satisfy

hλ(Y ) − hλ(X) > hλ′(Y ) − hλ′(X) (90)

for all X,Y ∈ D with X ⊂ Y , we call (hλ, hλ′) a strict strong map and write
hλ ³ hλ′ .

Theorem 31. If hλ ³ hλ′ for all λ and λ′ with λ < λ′, then the upper critical
values coincide with the lower critical values and we have

S+
i = S−

i+1 (i = 0, · · · , p − 1). (91)

(Proof) For any λ < λ′ and for any X ∈ D(hλ) and Y ∈ D(hλ′),

hλ(X) + hλ′(Y ) ≥ hλ(X ∪ Y ) + hλ(X ∩ Y ) − hλ(Y ) + hλ′(Y )
= hλ(X ∩ Y ) + hλ′(X ∪ Y )

+hλ(X ∪ Y ) − hλ(Y ) − hλ′(X ∪ Y ) + hλ′(Y )
≥ hλ(X ∩ Y ) + hλ′(X ∪ Y ). (92)

If Y ⊂ X ∪ Y , i.e., X \ Y 6= ∅, then the second inequality is strict since
hλ ³ hλ′ , which is a contradiction. Hence X \ Y = ∅, i.e., X ⊆ Y . The
present theorem follows from this fact. ut

For a related parametric submodular intersection problem see [43].

4.2 Extension to discrete convex functions

The result of this section is based on joint work with Hayashi and Nagano
[22].

Let f : ZE → R ∪ {+∞} be a function on the integer lattice ZE such
that its effective domain domf ≡ {x ∈ ZE | f(x) < +∞} is nonempty. We
suppose the following.

(S) f is submodular on domf , i.e.,

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (x, y ∈ domf), (93)

where (x ∨ y)(e) = max{x(e), y(e)} and (x ∧ y)(e) = min{x(e), y(e)} for
e ∈ E.
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Given a positive vector w : E → R, consider an optimization problem with a
parameter λ ∈ R as follows.

(Pλ) : Minimize f(x) − λ〈w, x〉, (94)

where 〈w, x〉 =
∑

e∈E w(e)x(e). It should be noted that Problem (Pλ) gener-
alizes the minimization problem appearing in Theorem 14. (For any z ∈ ZE

define Dz = {X | X ⊆ E, f(z + χX) < +∞}, where χX is the characteristic
vector of X, and if Dz 6= ∅, also define a set function fz(X) = f(z + χX)
(X ∈ Dz). Then fz is a submodular set function on the distributive lattice
Dz.)

Define Z(λ) to be the set of minimizers of f(x)−λ〈w, x〉 in x ∈ ZE . Then,

Theorem 32. For any λ, λ′ ∈ R such that λ ≤ λ′ and for any x ∈ Z(λ) and
x′ ∈ Z(λ′) we have

x ∨ x′ ∈ Z(λ′), x ∧ x′ ∈ Z(λ). (95)

Moreover, if λ < λ′, then x ≤ x′.
(Proof) Under the assumption of the present theorem we have

f(x) − λ〈w, x〉 + f(x′) − λ′〈w, x′〉
≥ f(x ∨ x′) − λ′〈w, x ∨ x′〉 + f(x ∧ x′) − λ〈w, x ∧ x′〉

+λ′〈w, x ∨ x′〉 + λ〈w, x ∧ x′〉 − λ′〈w, x′〉 − λ〈w, x〉
= f(x ∨ x′) − λ′〈w, x ∨ x′〉 + f(x ∧ x′) − λ〈w, x ∧ x′〉

+(λ′ − λ)〈w, x ∨ x′ − x′〉
≥ f(x ∨ x′) − λ′〈w, x ∨ x′〉 + f(x ∧ x′) − λ〈w, x ∧ x′〉. (96)

Hence (95) follows. Moreover, since the inequalities in (96) must be equalities,
if λ < λ′, the last inequality (now equality) implies x ∨ x′ = x′, i.e., x ≤ x′,
where note that w > 0. ut

Remark 14. Theorem 32 is subsumed by a result of Topkis [82, 83] (also see
[35]). Monotonicity of optimal solutions of parametric optimization problems
has been investigated in the literature such as [4, 52, 82]. The theory of prin-
cipal partitions has been developed independently of these results and deals
primarily with the critical values and the decomposition of systems, while
the monotonicity of primal and dual optimal solutions with respect to the
parameter plays a crucial rôle in the principal partitions. ut

Denote by z+
λ and z−λ , respectively, the maximum and the minimum ele-

ment of Z(λ). Define
Λ∗ = {λ ∈ R | z+

λ 6= z−λ }. (97)

Each λ ∈ Λ∗ is called a critical value.
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Theorem 33. Consider any critical values λ, λ′ ∈ Λ∗ with λ < λ′. Then we
have either Z(λ) ∩ Z(λ′) = ∅ or z+

λ = z−λ′ .
(Proof) If Z(λ) ∩ Z(λ′) contains two distinct elements x and x′, then this
contradicts the monotonicity in the last statement of Theorem 32. Hence we
have |Z(λ)∩Z(λ′)| = 0 or 1. If |Z(λ)∩Z(λ′)| = 1, the element of Z(λ)∩Z(λ′)
must be z+

λ that is equal to z−λ′ , due to Theorem 32. ut

For any two critical values λ, λ′ ∈ Λ∗ with λ < λ′ we say that λ′ covers λ
if there is no critical value λ′′ satisfying λ < λ′′ < λ′.

Theorem 34. For any critical values λ, λ′ ∈ Λ∗ such that λ′ covers λ we have

z+
λ = z−λ′ . (98)

Moreover,
z+
λ′′ = z−λ′′ = z+

λ (= z−λ′) (λ < λ′′ < λ′). (99)

(Proof) Because of the continuity in the parameter, for any λ′′ and sufficiently
small ε > 0 we have

Z(λ′′ ± ε) ⊆ Z(λ′′). (100)

It follows from (100), Theorem 33, and the definition of a critical value that
we have (98) and (99). ut

Remark 15. We can consider more general parametric submodular functions
corresponding to those treated in Section 4.1. For each λ ∈ R let hλ be a
submodular function on ZE that satisfies the following.

• For any λ and λ′ with λ < λ′ and for any x, y ∈ ZE with x ≤ y we have

hλ(y) − hλ(x) ≥ hλ′(y) − hλ′(x). (101)

Then we say that (hλ, hλ′) is a strong map and write hλ → hλ′ . The arguments
in Section 4.1 can be adapted to such parametric submodular functions on ZE

(cf. [82, 83]). If (101) holds with strict inequality for all x, y ∈ ZE with x ≤ y
and x 6= y, we say that (hλ, hλ′) is a strict strong map and write hλ ³ hλ′ .
Theorems 33 and 34 hold for parametric submodular functions satisfying the
strict strong map condition. ut

Remark 16. It should be noted that Theorems 32–34 hold for f satisfying the
submodularity condition (S). However, the submodularity on ZE alone is not
enough to treat the structure of Z(λ) (λ ∈ Λ∗) algorithmically. In order to
resolve this situation we consider discrete convex functions called L\-convex
functions by Murota [58]. ut

Denote by Conv the convex hull operator in RE . For any z ∈ ZE and any
linear ordering σ of E define a simplex

∆σ
z = Conv({z+χSi | i = 1, · · · ,m, Si is the set of the first i elements of σ}).

(102)
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The collection of all such simplices ∆σ
z for all points z ∈ ZE and linear order-

ings σ of E forms a simplicial division of RE , which is called the Freudentahl
simplicial division. We also call each ∆σ

z a Freudentahl cell.
In addition to the submodularity condition (S) suppose

(A1) Conv(domf) ∩ ZE = domf .

Informally, (A1) means that there is no hole in domf .
We further assume

(A2) The convex hull Conv(domf) of the effective domain of f is full-
dimensional and is the union of some Freudentahl cells.

The assumption of the full dimensionality is not essential but we assume
it here for simplicity. Under Assumptions (A1) and (A2) we can uniquely
construct a piecewise linear extension f̂ of f by means of the Freudentahl
simplicial division as follows. For any x ∈ ∆σ

z we have a unique expression of
x as a convex combination of extreme points of the cell ∆σ

z as

x =
m∑

i=1

αi(z + χSi), (103)

where Si is the set of the first i elements of σ. According to the expression
(103) we define

f̂(x) =
m∑

i=1

αif(z + χSi). (104)

For all x outside Conv(domf) we put f̂(x) = +∞. Note that f̂ is well defined.
It should also be noted that when domf = {χX | X ⊆ E}, f̂ is called the
Lovász extension ([20, 48]).

We add one more, crucial assumption as follows.

(A3) The piecewise linear extension f̂ : RE → R ∪ {+∞} of f by (104) is a
convex function on RE .

Remark 17. A function f : ZE → R∪{+∞} satisfying Conditions (A1), (A2),
and (A3) is exactly an L\-convex function on ZE (with full-dimensional domf)
of Murota [23, 56, 58, 60]. The original definition of an L\-convex function on
ZE is different, but see [20, Chapter VII] for the proof of their equivalence.
Note that Conditions (A1), (A2), and (A3) imply submodularity (S). It should
also be noted that a submodular function f : ZE → R ∪ {+∞} satisfying
Condition (A3) with its effective domain being a standard box [z1, z2] between
two integer vectors z1 and z2 was first considered by Favati and Tardella [14]
and was called a submodular integrally convex function. ut

Now, suppose that we are given a positive vector w : E → R, a real
constant β, and an L\-convex function f : ZE → R ∪ {+∞}. Let us consider
the following optimization problem with a linear inequality constraint.
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(P ◦) : Minimize f̂(x)
subject to 〈w, x〉 ≤ β, (105)

where f̂ is the piecewise linear extension of f defined by (104).
We can relate critical values for f to Problem (P ◦) as follows. Recall that

Z(λ) is the collection of minimizers of hλ(x) = f(x) − λ〈w, x〉.

Theorem 35. Suppose that for a parameter λ∗ < 0 there exist x, x′ ∈ Z(λ∗)
such that

〈w, x〉 ≤ β, 〈w, x′〉 ≥ β. (106)

Then a vector x∗ lying on the line segment between x and x′ and satisfying
〈w, x∗〉 = β is an optimal solution of Problem (P ◦).
(Proof) For any feasible solution y of Problem (P ◦),

f̂(y) ≥ f̂(y) + λ∗(β − 〈w, y〉)
≥ min{f(z) + λ∗(β − 〈w, z〉) | z ∈ domf}
= f̂(x∗) + λ∗(β − 〈w, x∗〉)
= f̂(x∗), (107)

where note that f(x) − λ∗〈w, x〉 = f(x′) − λ∗〈w, x′〉 = f̂(x∗) − λ∗〈w, x∗〉
because of (A1)–(A3). Hence x∗ is an optimal solution of (P ◦). ut

Remark 18. Since Problem (P ◦) is an ordinary convex program, if (P ◦) has
an optimal solution x∗, then either it is a global minimizer of f̂ or it is the one
that satisfies the condition of Theorem 35. In the latter case it suffices to find
a critical value λ∗ such that for some x∗ ∈ Conv(Z(λ∗)) we have 〈w, x∗〉 = β.
The last condition can be rephrased as 〈w, z+

λ∗〉 ≥ β and 〈w, z−λ∗〉 ≤ β. ut

When domf is bounded, we can apply Murota’s weakly polynomial al-
gorithm [59] for minimizing L\-convex functions to find a vector in Z(λ) for
each λ. We can perform a binary search to find an optimal critical value λ∗

by making use of algorithms for the minimum ratio problem described in Sec-
tion 5.1. This gives a weakly polynomial algorithm for Problem (P ◦) with
rational data (see [22]).

We can also consider multiple inequality constraints as follows.

(P ) : Minimize f̂(x)
subject to 〈wi, x〉 ≤ βi (i = 1, · · · , k), (108)

where wi (i = 1, · · · , k) are positive vectors and βi (i = 1, · · · , k) are real con-
stants. This leads us to the following multiple-parameter submodular function.

hλ(x) = f̂(x) −
k∑

i=1

λi〈wi, x〉, (109)

where λ = (λi | i = 1, · · · , k). The present problem can also be treated
similarly (cf. [20, Section 7] and [35]).
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Remark 19. We can consider a class F of discrete convex functions f : ZE →
R ∪ {+∞} as follows.

(i) f satisfies Conditions (A1), i.e., Conv(domf) ∩ ZE = domf .
(ii) For any x ∈ domf there exists a vector w : E → R such that x is a

minimizer of f(z) − 〈w, z〉 (z ∈ ZE).

Provided that we can perform the minimization of f(z) − 〈w, z〉 for z ∈ ZE ,
we can solve Problem (P ◦) in a similar way as described in this section. A
typical example of such a class of discrete convex functions other than L\-
convex functions is that of M\-convex functions on ZE of Murota and Shioura
[62]. ut

5 Applications and Related Topics

We often encounter problems described by submodular functions with param-
eters, for which the theory of principal partitions furnishes a powerful tool.

5.1 The minimum ratio problem

Suppose that we are given a submodular system (D, f) and a supermodular
system (D, g) on E, where f(X) ≥ 0 (X ∈ D), g(X) ≥ 0 (X ∈ D), and there
exists an X ∈ D such that g(X) > 0.

Consider the minimum ratio problem described as follows.

Minimize
f(X)
g(X)

subject to X ∈ D, g(X) > 0. (110)

Define a submodular function hλ on D with a real parameter λ by

hλ(X) = f(X) − λg(X) (X ∈ D). (111)

Then we have

Theorem 36. Let λ̂ be the minimum value of the objective function of Prob-
lem (110). Then,

min{hλ(X) | X ∈ D} = 0 (0 ≤ λ ≤ λ̂), (112)

min{hλ(X) | X ∈ D} < 0 (λ̂ < λ). (113)

Moreover, the converse also holds. ut

Remark 20. It should be noted that Theorem 36 does not depend on the sub-
modularity (supermodularity) of f (g) and holds for any set functions. How-
ever, if f (g) is submodular (supermodular), then Problem (110) has a close
relationship with the principal partition.
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Theorem 36 means that λ̂ is a critical value for hλ such that

D(hλ) = {∅} (0 ≤ λ < λ̂), D(hλ) 6= {∅} (λ̂ ≤ λ). (114)

Hence the minimum ratio problem for submodular and supermodular func-
tions f and g is reduced to finding such a critical value λ̂ and a set X ∈ D(hλ̂)
for hλ̂ = f − λ̂g. ut

The network attack problem of Cunningham
Cunningham [6] introduced a measure of network (anti-)vulnerability as
follows. For a connected graph G = (V,E) and a positive weight vector
w : E → R+ the strength of the weighted graph is defined by

σ(G, w) = min
{

w(X)
κ(X)

∣∣∣∣ X ⊆ E, κ(X) > 0
}

, (115)

where κ(X) denotes the number of the connected components of the subgraph
G · (E \X) minus one. We can easily see that κ : 2E → Z+ is a supermodular
function expressed in terms of the rank function rG of G as

κ(X) = rG(E) − rG(E \ X) (= r#
G(X)) (X ⊆ E). (116)

Hence the problem of computing the strength of G relative to weight w is a
special case of the minimum ratio problem described above. Letting λ̂ be the
largest critical value for rG − λw, we obtain

σ(G,w) = 1/λ̂. (117)

Also see [1, 2] for related topics on partition inequalities, which is also
closely related to the principal lattice of partitions of Narayanan [68] (also see
[7, 72] for their applications). Note that for a given submodular function f the
principal lattice of partitions for f is concerned with the Dilworth truncation
of the submodular function f − λ with a real parameter λ.

Maximum density subgraphs
For a graph G = (V,E) define the density of G by

d(G) =
|E|

|V | − 1
. (118)

A subgraph of G of maximum density is connected, so that the problem of
finding a maximum-density subgraph H = (W,F ) of G is reduced to the
following problem.

Maximize
|F |

rG(F )
subject to ∅ 6= F ⊆ E, (119)

which is equivalent to the minimum-ratio problem
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Minimize
rG(F )
|F |

subject to ∅ 6= F ⊆ E. (120)

Hence the problem is reduced to finding the minimum critical value λ1 for
rG(X) − λ|X|.

The concept of density of a graph is closely related to connectivity and
reliability of networks, to which the principal partitions can be applied effec-
tively.

5.2 Resource allocation problems

Since the canonical simplex

∆β = {x | x ∈ RE
+, x(E) = β} (121)

for β > 0 is a special case of a base polyhedron, base polyhedra naturally arise
in resource allocation problems. Also the core of a convex game [78] is a base
polyhedron, so that we often consider allocation problems over cores or base
polyhedra.

Given a positive weight vector w : E → R+, the weighted min-max re-
source allocation problem over the base polyhedron B(f) associated with a
submodular system (D, f) on E is described as

Minimize max{x(e)/w(e) | e ∈ E} subject to x ∈ B(f). (122)

Also, the weighted max-min resource allocation problem is described as

Maximize min{x(e)/w(e) | e ∈ E} subject to x ∈ B(f). (123)

Then we can show the following (also see [18] and [20, Chapter V] for more
general and detailed discussions).

Theorem 37. Let b∗ be the universal base (or the lexicographically optimal
base) for submodular system (D, f) with weight w. Then x = b∗ is an optimal
solution of both problems (122) and (123).

Moreover, the minimum (resp. maximum) critical value for f−λw is equal
to the optimal objective function value of the max-min (resp. min-max) re-
source allocation problem (123) (resp. (122)). ut

The following equitable resource allocation problem was considered by Jain
and Vazirani [44]. Let wλ : E → R be a vector with a parameter λ ∈ R. We
assume that for each e ∈ E the component wλ(e) of wλ is increasing in λ.
Then, for a submodular system (2E , f) we have dual problems characterized
by the following min-max relation for any λ.

max{x(E) | x ∈ P(f), x ≤ wλ} = min{f(X) + wλ(E \ X) | X ⊆ E}. (124)
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This can be seen as a special case of the min-max relation given in Theorem 25.
Hence Theorem 30 implies that there exist a (unique) base b∗ ∈ B(f) such
that for all λ

(b∗ − wλ)−(E) = min{f(X) − wλ(X) | X ⊆ E}. (125)

This is also equivalent to

(b∗ ∧ wλ)(E) = max{x(E) | x ∈ P(f), x ≤ wλ} (126)

for all λ. The universal base b∗ is the desired equitable allocation.
More general convex minimization problems over base polyhedra have re-

cently been examined by Nagano [63], which shows the equivalence between
the lexicographic optimal base problem and the submodular utility allocation
market problem [45]. Separable nonquadratic convex function minimization
over base polyhedra is also considered in [20, Chapter V].

6 Concluding Remarks

Combinatorial optimization problems characterized by submodular functions
arise in a lot of applications such as graph and network optimizations, schedul-
ing problems, queueing network problems, information-theoretic data analy-
sis and communication networks, games and economic equilibrium problems,
etc. (see, e.g., [17, 20, 25, 45, 47, 57, 68, 74, 77, 79, 83, 85]). Such combinato-
rial optimization problems often lead us to submodular function minimization,
where the theory of principal partitions can provide us with the powerful tool
for extracting useful structural information about the problems under consid-
eration.

The essence of the theory of principal partitions is given in the author’s
book [20] but it is rather scattered through the book (also see [81]). The author
hope that the present article will help readers fully appreciate the usefulness
of the theory of principal partitions.
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79. M. Studený: Probabilistic Conditional Independence Structures (Springer,
2005).

80. N. Tomizawa: Strongly irreducible matroids and principal partition of a matroid
into strongly irreducible minors (in Japanese). Transactions of the Institute of
Electronics and Communication Engineers of Japan 59A (1976) 83–91.

81. N. Tomizawa and S. Fujishige: Historical survey of extensions of the concept of
principal partition and their unifying generalization to hypermatroids. Systems
Science Research Report No. 5, Department of Systems Science, Tokyo Institute
of Technology, April 1982; also its abridgment appeared in Proceedings of the
1982 International Symposium on Circuits and Systems (Rome, May 10-12,
1982), pp. 142–145.

82. D. M. Topkis: Minimizing a submodular function on a lattice. Operations Re-
search 26 (1978) 305–321.

83. D. M. Topkis: Supermodularity and Complementarity (Princeton University
Press, Princeton, N.J., 1998).

84. P. Wolfe: Finding the nearest point in a polytope. Mathematical Programming
11 (1976) 128–149.

85. R. W. Yeung: A First Course in Information Theory (Springer, 2002).


