Joe | Rica

Operations on algebraic K-theory and regulators was the homospy theory of schemes

Ko 5GA 6

Lot X fe a scheme

Ret. Ko(x) is the abelian group

generators EMI II: isom class of vector fundles on X

relations EMI+EMI=M if 0-M'-M-M'-0 is exact

Gr : any coh group

 $K_o(X) \longrightarrow G$

maps ison, classon of of vector bundles/x 1 - G

which are additive on short exact reg

Ko(x) is a commutative rise

[M] [N] : [NON]

Det Mi vector bundle/x, leM = INT MITH

Ko(x)[t]

Lem If O-M'-, M-M"-00 is exact seg of burdles then $\lambda_t M = \lambda_t M' \cdot \lambda_t M''$

=) morphism Ko(X) It > 1+ Ko(X)[t]

Littera

on N*M where is a literation such that

Gr! N"M = NPM' & N^PM'

Ko(X) is a 2-ring

(pré-2-anneau)

Thm (SGA6) Ko(X) is a special λ -ring (λ -anneau) there are formular for $\lambda^n(t)$. $\lambda^n(uv)$, $\lambda^n(\lambda^m(u))$

-X: compact space ~ Kol(X) we top, complex v.h.

Grassman varieties

(d,r) 6 N2

Grd.r(C) = { V c Cd+r | V: sub C-vsp. of din of y

Mar - Grd.r + auto, vector fundle of rkd

Grdin (C) C Grdini (C) C C Grdia (C)

Grdin (C) C Grdini (C) C C

Gr(C)

 $M_{d,r} = [M_{d,r}] - d \in K_n^{top}(Gr_{d,r}(c))$ $(M_{d,r})_{(A,r)\in\mathbb{N}^2} \in \lim_{(d,r)} (Gr_{d,r}(c))$

Thin X compact sp. $[X, \mathbb{Z} \times Gr(C)] \simeq K_0^{top}(C)$

Date

 $K_n^{top}(x) = [S^n X_+, Z \times Gr(C)]$ $X^n \text{ space}$

I'm (Moral Voewodsky) Stregular scheme, X/Stamouth

Homaco (X, ZxGr) & Kr(X)

Homskis (Snix+, ZrGr) ~ Kn(x) (defined by Quillen)

were precisely, any pointed endomorphism of $\mathbb{Z} \times \mathbb{G}r$ in $\mathcal{F}(S)$ gives map $K_n(x) \to K_n(x)$ $\forall n$, $\forall x$ smooth

Thm Stregular scheme, Ko(-) (Sm/S) OPP -- (Solv)

Hom Jels) (ZxGr, ZxGr) a Hom (Sys) (Kol-), Kol-)

Y is [linko(Grdin)] [evaluate on]

(Ko(S) [c1, c2,-1]) [evaluate on]

proof 8 fyeotion Milmois exact seq. ~ Y: surj.

~ Kez Y = [R' Lin Ki (Grdr)] Z

olsol'

 $K_{I}(Grd(r') \longrightarrow K_{I}(Grd(r))$

K₁(S) & K₀(Grd(r)) K₀(S) K-theory of Grassmessian

(SGA6)

B. injecture $\tau, \tau' : K_0(-) \longrightarrow K_0(-)$ s.t. $\overline{\iota}(\mathcal{M}_{d,r} + n) = \overline{\iota}'(\mathcal{M}_{d,r} + n)$

XESIN/S XEKO(X)

- Xi affine and connected $\pi = EMJ - rkM + n n \in \mathbb{Z}$ Mi subtundle of Edt^r , r > 70 $M: subtundle of Edt^r$, r > 70 M: subtundl

& in H(S) Ko(X) = Ko(T)

Variant with several variables

maps $(\mathbb{Z} \times G)^n \longrightarrow \mathbb{Z} \times G$ in $\mathcal{H}(S)$ $\downarrow 1:1 \\
(K_o(-))^n \longrightarrow K_o(-1) \text{ in } (S_m/S)^{opp} \longrightarrow S_{ots}$

 $\lambda^{h} \cdot k_{o}(-) \longrightarrow k_{o}(-) \longrightarrow \lambda^{h} : \mathbb{Z} \times G_{r} \longrightarrow \mathbb{Z} \times G_{r}$ $\cdot : k_{c}(-) \times k_{o}(-) \longrightarrow k_{o}(-) \longrightarrow \lambda^{h} : \mathbb{Z} \times G_{r} \longrightarrow \mathbb{Z} \times G_{r}$ $\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$

Ki(X) × Kj(X) -> Kirj(X) (the same as those of Quillen, Loday

1/2

Ihm ZxGr is a special 2-Ring in H(S) Soulé defined operation for elements of RZGL End (TxGr)

Additive operations.

understand T: Ko(-) - Ko(-) that are additive

example Adam's operation it : Ko(-) -> Ko(-)

 $\frac{1}{\lambda_t(x)} \frac{d\lambda_t(x)}{dt} = \sum_{k=1}^{\infty} (-1)^{k-1} \gamma^k(x) t^{k-1}$ A x c K o (X)

L line brandle Yk([L]) = [L@h]

Thm Siregular noh.

Hom(5m/s) OPP, (A6) (Ko(-), Ko(-)) -> Hom(5m/s) OPP (Solo) (PK(-), Ko(-))

li Ko (Pr)

K.(S) [U] = & K.(S)[U]/(Up+1)

U = [O(1)] - 1

prol: injectivity. " splitting principle

M: v fundle m X

Flag (M) [f*M] = Z[line fundles]

Ko(X) -> Ko(Flag M)

surjecturity. $C^*(\psi^k) = (1+\upsilon)^k$ $\chi \in K_0(S)$ $\chi^{*}_{\psi^k} \cdot K_0(S) - K_0(S)$ $J \longmapsto \chi \cdot J^k(y)$ $J \mapsto \chi \cdot J^k(y)$

1/2

- Regulators

Prop: Hom H.(k) (Z×Gr, K(Z(n).2n))

~ Hom/s) of (Ko(-), CHh(-))

polynomials in Chern classes

Prop. Hom (Sm/s) of (Kd-), CH*(-)) ~ ZXn

Xn: Ko(-) - ... (H*(-)) additive

LL7

lne-bundle Loison D

Date

Teg -, #IA(8)[P]

A. D. Chern character $K_0(-) \rightarrow \oplus CH^*(-)_{\mathbb{Q}}$ BGL $\rightarrow \oplus H_0(p)[2p]$ higher Chern $K_i \rightarrow H_u^{2n+i}(X, \mathbb{Q}(n))$ character