$$
\begin{aligned}
& H^{m i n}(X ; \mathbb{Z} / p)=H_{2 a r}^{m}(X, \mathbb{R} / p(n)) \\
& c h(k)=0 \quad \zeta_{p} \in k \quad x: \operatorname{sooth} \\
& H^{m \cdot n}(x ; \mathbb{Z} / p)=0 \text { if } \quad m \geqslant 2 n \\
& H H^{2 n \cdot n}(x, Z / p)=C H^{n}(x) / p \\
& \text { (Bloch-Kato) } \\
& H^{m, n}(X, \mathbb{Z} / p)=H_{\text {et }}^{m}(X, \mathbb{Z} / p) \\
& m<n
\end{aligned}
$$

$$
\alpha_{i}: H^{* \cdot x^{\prime}}(x ; \mathbb{Z} / p) \rightarrow H^{*+2 p^{i}-1, x^{\prime}+\left(p^{i}-1\right)}(x ; \mathbb{Z} / p)
$$

if $P \geqslant 3 \quad Q_{i}=\left[Q_{1-1} P^{P^{i-1}}\right]$

$$
p=2 \quad Q_{i}=" \quad \bmod \rho \rho^{\prime \prime}
$$

pi 化頁き $\frac{1}{2}\left(\mathrm{CH}^{*}(\mathrm{X}) / \mathrm{P}\right)$
Qi $\quad \frac{1}{2}$ 少し小

$$
\begin{gathered}
x \in H^{*, *}(X(0), \vec{l} / p) \\
\alpha_{i}(x)=0 \\
\Rightarrow x \& \subset l
\end{gathered}
$$

2. Cetordesm therry

Compley refaten
"Th $\operatorname{BU}(E U)$
M weak cumplex intd

$$
(U-n) d
$$

TMA E complex funde Tervinal

H

$$
M U^{*}(p t)=\mathbb{Z}\left[x_{1}, \cdots\right] \quad\left|x_{i}\right|-2 i
$$

(Milmor, Novikov)
bordism thery of singularity of type x_{i}

$$
\begin{aligned}
& M \cup\left(x_{i}\right)^{*}(X) \\
& \therefore \hat{M}=H \cup L \times \text { cone } x_{i} \\
& \\
& \quad \partial M \simeq L \times x_{i}
\end{aligned}
$$

$$
M
$$

$$
\begin{gathered}
M=M^{\prime} \times x_{2} \\
M \quad \vdots \\
M^{\prime} \times X_{i} \quad M^{\prime} \\
M^{\prime} \times x_{i}=0 \text { in } M U\left(x_{i}\right)^{*}(x)
\end{gathered}
$$

$$
\begin{aligned}
& {[M, f] \sim\left[M, f^{\prime}\right]} \\
& \Leftrightarrow \exists U-i f d \quad N \quad F: N \rightarrow X \\
& \partial N=M \cup\left(M^{\prime}\right) \\
& F I M=f \quad F / M^{\prime}=f^{\prime}
\end{aligned}
$$

Th Sullivan)

$$
\begin{gathered}
M U^{*}(x) \xrightarrow{x x_{i}} \rightarrow 1 U^{*}(x) \\
\quad / \mu \\
M U\left(x_{i}\right)^{*}(x)
\end{gathered}
$$

$\operatorname{MU}\left(x_{i_{1}}, x_{i_{2}},\right)^{*}(x) \quad b y, ~ y れ z$

$$
i \neq p^{i}-1 \quad M \cup\left(\left.x_{i}\right|_{i \neq p j-1}\right)^{*}(x)_{(p)}=M U^{*}(x) /\left(x_{i} \mid i \neq p-1\right)
$$

$$
\overline{=} \beta P^{*}(x) \quad \text { (Brown-Peteisor thenry) }
$$

$$
\left(p, x_{p-1}, x_{p-1}, \quad\left(V_{m}, l\right) \cdots m f d\right.
$$

$$
\begin{array}{ll}
v_{1} & v_{1} \\
v_{1} & v_{2}
\end{array}
$$

$$
B P^{*}(p t)=\mathbb{Z}_{(p)}\left[v_{1}, v_{2},\right]
$$

nown variety

$$
\begin{aligned}
& M U\left(p, x_{1}, x_{2},\right)^{*}(x)=B P\left(p, v_{1},\right)^{*}(x) \\
& \left.M U\left(p, x_{1}, x_{2}, \cdots\right)^{*}(p t)=M U * / p, x_{1}\right)=a / p
\end{aligned}
$$

Th (Sultrav:

$$
\begin{aligned}
& M \cup\left(p, x_{1},\right)^{*}(x)=H^{*}(X, Z / p) \\
& M U\left(x_{1}, x_{2}, \cdots\right)^{*}(x)=H^{*}(X, \mathbb{Z})
\end{aligned}
$$

Car (${ }^{(a y y}$)

$$
\begin{aligned}
& x \in H^{*}(X, Z / p)=B P\left(p, v_{1}, \cdot\right)^{*}(x) \\
& \widehat{M}=M_{U} \times \operatorname{Monl}(p) \cup M_{1} \times \operatorname{cone}\left(v_{1}\right) \cup \\
& \alpha_{v_{i}}(\hat{M})=\widehat{M}_{i} \Rightarrow \text { andetegy petann } Q_{v_{i}}=Q_{i}=
\end{aligned}
$$

Merava K-tneor

sirecta, Morova

$$
\begin{gathered}
k(n)^{*}(p t)=\mathbb{Z} / p\left[V_{n}\right] \\
k(n)^{*}(x)=k(n)^{*}(x)=K(n)^{*}(x) \\
\cdots \delta, k(n)^{*}(x) \\
\ddots_{n}, H^{*}(x ; \mathbb{Q} / p)
\end{gathered}
$$

C. $k(n)^{*}(x) U_{n}-t_{-2} \Rightarrow$

$$
\begin{array}{r}
H+\left(/: \mathbb{Z} / \uparrow \simeq \mathbb{Z} / p ;(Q ;) \otimes k(n)^{*}(x) / p\right. \\
\Rightarrow M H\left(H H^{*}\left(X ; \mathbb{Z} / p ; Q_{n}\right)=0\right.
\end{array}
$$

Kez Qar/Im(2n

$$
\begin{aligned}
M U^{*}(x) \quad M G L^{* *}(x) & =A M U^{* *}(x) \\
k(n)^{*}(x) & \Rightarrow A k(n)^{2 * *}(x)
\end{aligned}
$$

Thm (Vievodsky $), v_{n}$
$A k(n)^{*}\left(\widetilde{C}\left(V_{a}\right)\right)$ is $U_{j}-\infty 26 n$
$0 \neq a \in K_{n}^{M}(k) / 2 \quad V a \operatorname{norm}$ variety

$$
\begin{gathered}
C(x) \rightarrow C(x) \rightarrow S p e r(k) \\
C(x) \approx X \times C(x) \\
A b(n)^{2 *, *}(\tilde{C}(x)) \xrightarrow[p^{*}]{ } A k(n)^{2 * *}(\widetilde{C}(x) \times x) \rightarrow P_{*} A k(n)^{2 * *}(\tilde{C}(x)) \\
P_{*} P^{*}(x)=U_{n} \times x \\
=0
\end{gathered}
$$

