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Conjecture
Coe(X) = Symm®(X) := X*¢/3,
Cn—1,(P") = P(degree e part of k[zo, ..., zy])

For most other cases, structure of C,.(X) is very complicated.
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For a smooth T', we have

An
idiosyncratic
view of the
higher Chow
groups

Hom(T',C,( ={effective cycles v = anW onT x X :

each W, — T is eqU|—d|men5|onaI

Definition of
Lawson . . .
homelogy, and of relative dimension r}
its basic
properties

Hom(T,C,(X)) is monoid under addition of cycles, and

Suslin's
Conjecture

Hom(T,C, (X)) := group completion of Hom(T,C(X))
= free abelian group on integral W C T' x X
such that W — T is equi-dimensional

of relative dimension r
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Chow varieties lead to rational equivalence

C,(X)(k)" = Hom(Speck,C. (X)) = {r-cycles on X}

An
idiosyncratic
view of the

higher Chow

groups Hom(A!,C.(X))" is the free abelian group on:
Definition of

Lawson F C A 1 % X

homology, and

its basic
properties
Suslin's rel. dim. r

Conjecture Al

Let ip : Speck ~— Al be inclusion at a point P € Al(k). Then

it : Hom(A',C. (X))t — C.(X)*T
Y =N ({P}x X)
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An
idiosyncratic
view of the

higher Chow
groups We get a presentation of the classical Chow group:

Definition of
Lawson

e Hom (AL, C,(X))* L5 . (X)t — CH,(X) —=0

properties

Suslin's

Conjecture Or, in other words, CH,.(X) is "ngg" of C,(X)™T.
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Definition of higher Chow groups via Chow varieties

Define the “algebraic n-simplex”

An
idiosyncratic
view of the
higher Chow
groups

A™ = Spec k[zg, ..., Ty Z%—l

Definition of . . . .
Lawson Then [n] — Hom(A",C.(X))" is a simplicial abelian group.
homology, and
its basic
properties

Definition

pucings The higher Chow groups of a projective variety X are

Conjecture
CH,(X,n) :=m, (Hom(A",C,(X))")
= “m9(C, (X))

Note that CH,(X,0) = CH,(X).
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Some properties of the higher Chow groups

@ Localization sequence: For Y C X closed and U := X \ Y

-— CH,(Y,1) -CH,(X,1) - CH,(U,1) - CH,(Y,0)
— CH,(X,0) — CH,(U,0) — 0.

@ Homotopy invariance:
CH,(X,n) 2 CHpim(X x A™ n)
@ There is a generalized cycle class map
CH,(X,n) — HEM, (X(C)).

Here, HBM = Borel-Moore homology. HBM = Hsi"e for
compact spaces.
This is a map of “Borel-Moore homology” theories.
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Let us re-index to get the cycle map to look nicer:

motivic homology = HM(X,Z(r)) :== CH,(X,n — 2r)

An
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Definition of CHT (X) — HQ/\;I (X) Z(T))

Lawson
homology, and
its basic

properties and the generalized cycle map looks like

With this notation, thus classical Chow groups are

Suslin's

Conjecture H/l\/t (X, Z(T)) N HEM (X((C))
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Motivic homology notation

Let us re-index to get the cycle map to look nicer:
motivic homology = H (X, Z(r)) := CH.(X,n — 2r)
With this notation, thus classical Chow groups are
CH,(X) = H{ (X, Z(r))
and the generalized cycle map looks like
H'(X, Z(r)) — HZM(X(C)).

In fact, this notation is even more pleasing if we take into
account mixed Hodge structures. We get a map of MHS:

H'(X, Z(r)) — Hg" (X (C), Z(r)),

where Z(r) on the right refers to shifting the MHS.
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| won't define it carefully here, but motivic cohomology is

An
idiosyncratic
view of the
higher Chow
groups

HG (X, Z(1)) = Hy o, (X, Zp(1))-

Definition of

Lawson The pa | r
e basre” HM(X,Z(x)) and Hi, (X, Z(x))
properties

Suslin's form a “Bloch-Ogus” duality theory. In particular, Poincaré
Conjecture duality holds:

HJ (X, Z(t)) = Hydl (X, Z(d 1)),

for X smooth.
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From now on, all varieties are assumed to be quasi-projective
varieties over C.
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Two r-cycles 1,72 on X are algebraically equivalent if they
An are members of a family of cycles parametrized by some

idiosyncratic
view of the smooth curve C.
higher Chow
groups

In detail, 1 ~qig 72 if there is a cycle

Definition of
Lawson
homology, and

its basic F (% C X X

properties i
Suslin's .
Conjecture rel. dim. r

C

and points ¢y, co € C such that the fiber of I over ¢; is ~;:

DO ({e} x X) =, i=1,2.
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The Chow group modulo algebraic equivalence

Define
CH,(X)a1g~0 C CHp(X)

to be the subgroup generated by 1 — 72 for 41 ~aig. equiv. 72-

Let

CH,(X)/(alg. equiv.) := CH.(X)/CH.(X)aig.~0
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The Chow group modulo algebraic equivalence

Define
CHT(X)alg.NO Cc CH,(X)

to be the subgroup generated by 1 — 72 for 41 ~aig. equiv. 72-
Let

CH,(X)/(alg. equiv.) := CH.(X)/CH.(X)aig.~0

For codimension one cycles on a smooth, projective X:
CH gim(x)—1(X)atg.~no = Pic’(X) = abelian variety.

The group C'Hgim(x)—1(X)/(alg. equiv.) = NS(X).

For zero cycles on a connected X:

CHy(X)/(alg. equiv.) = Z via degree map.
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Inspiration of Lawson homology

Build a theory like higher Chow groups (motivic homology),
but start with CH,.(—)/(alg. equiv.) in place of CH,.(—).

Two points in C,¢(X) lie in the same connected component iff
they are joined by a chain of “paths” of the form C' — C, .(X)
with C' a smooth curve. Each path C' — C, .(X) gives a family
of cycles indexed by C'. We get:

Proposition

For a complex, projective variety X

70Cr(X)(C)" = CH,.(X)/(alg. equiv.).

This suggests replacing “799 \with actual homotopy groups...
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Definition of Lawson homology

For X projective, let C(X)(C) be complex points of the Chow
variety, equipped with the analytic topology. Define

Z,(X) =C(X)(C)F

to be the “naive” topological group completion of C,(X)(C):
Z,(X) = C(X)(C) x C(X)(C)/{(a, B) ~ (a+7, 8+ 7)}

Definition

The Lawson homology groups of a complex projective variety
X are

LeHp(X) = Tm—or (Z0(X)) .

For example, by the proposition above,

L,Ho(X) :=mp 2, (X) = CH,(X)/(alg. equiv.).
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Lincoln

o HAM(X,Z(r)) = LeHon(X)
idiosyncratic

vi.ew of the . “ . alg "

higher Chow given by “applying 7Y — 7, to Z,.(X)".

groups

Definition of For m = 2r, this is the evident map:
Lawson
homology, and
s basc HM(X, Z(r)) = CH,(X) - CH,(X)/(alg. equiv.) = L, Hy(X).
properties

Suslin's

Conjecture

The map HM(X,Z(r)) — L,H,,(X) is certainly not onto in
general. In fact, for m > 2r and X smooth, projective, it's
reasonable to conjecture the map is torsion.
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An element of L, H,,(X) is a “families of cycles

parametrized by a topological sphere”

An element of L, H,,(X) is given by a continuous map
Sm—Zr N ZT(X)

which can be visualized as:

FC_> Smf2r % X

Sm72r



aree AAn element of L, H,, (X) is a “families of cycles
Bl parametrized by a topological sphere”

An element of L, H,,(X) is given by a continuous map

Sm—2r N ZT(X)

An
idiosyncratic
view of the
higher Chow
groups

which can be visualized as:

Definition of :FCH Sm72r X X

Lawson

homology, and

its basic rel. dim. r
properties

Sm72r

Suslin's
Conjecture

Similarly, an element in H(X,Z(r)) may be visualized as a
family of r-cycles parametrized by the “algebraic sphere”

Sglzg—Zr = aAm72r+1'

The map HM(X,Z(r)) — L,.H,,(X) is pull-back along

Sm—2r N S:lrng—%“ (C)
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Visualizing elements of m Z,.(X)

An element of L, Hs,11(X) is a family parametrized by S*.

In fact, we may think of classes in L, Ha,4+1(X) as giving “two

proofs that a pair of cycles 71,2 are algebraically equivalent”:
Suppose

rcCxXand I'c(C'xX
and we have points ¢, ¢ € C and ¢}, ¢, € C’ such that
Y1 = Fc1 = Fc/l and Y2 = FC2 = FC/2.
Pick paths I — C,I — C’ joining ¢; to ¢z and ¢} to ¢}. Let Y
be the singular curve obtained by gluing these smooth curves

together:

Y=CUC' =CUC"/(c; ~},ca ~ )
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Visualizing elements of 7 Z,(X), cont.

This data determines a loop
St—y=cuc
and a family of r-cycles on X

I—Y x X

St YInz(x),
where I'y : y — I'y € Z,(X), and hence an element of

~

This gives a map

ler(X) = LT»H27-+1(X).

Every element of L, Ho,11(X) is constructed in this manner.
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Lawson homology for quasi-projective varieties

For U quasi-projective, U C X open with X projective, and
An Y = X \ U

idiosyncratic
vi.ew of the ZT(U) = ZT(X)/ZT(Y)
higher Chow
groups

We define the Lawson homology groups of U as

Definition of
Lawson

homology, and
its basic
properties

L, Hy,(U) := 2,2, (U).

Suslin's

Conjecture Z,(Y)— Z.(X) - Z,.(U) is a fibration sequence. We get a
localization long exact sequence:
s LTH2T+1(Y) - LTH2T+1 (X) - LTH2T‘+1(U)
— L H9(Y) — L Hoy(X) — L,Ho.(U) — 0.
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Other Basic properties of Lawson homology

“Base” group is what we wanted:

L,.Hy.(U)=CH,(U)/(alg. equiv.).

o there is a natural map HM(U,Z(r)) — L,H,(U).

@ Homotopy invariance:
L, H,(U) = LyymHpiom(U x A™).

@ There is a companion cohomology theory, morphic
cohomology, written L'H"(—). The pair L. H,, L*H*
form a Bloch-Ogus duality theory.

@ In particular, Poincaré duality holds:

L'H™(U) = Ly_tHsq_+(U) for U smooth of dim. d.



WCEvet=l 7610 cycles: Computing LoH,,

Recall Co(X)(C) = [[.5¢ Symm®(X(C)) for X projective.

A The Dold-Thom Theorem states that for a compact CW
idiosyncratic com pIeX T,

view of the
higher Chow
griups + .
g H Symm®(T) = H"(T,Z)
e

Definition of
Lawson

homology, and
its basic
properties

Proposition

Suslin's
Conjecture

For X projective,
TnZ0(X) =: LoH,(X) = HS"(X(C)).
More generally for U quasi-projective,

LoH,(U) = HM(U(C)).
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The s-map on cycle spaces

Define
PY(C) x Z,(X) — Z,.(P* x X)
by (P,7) = {P} x 7.
Compose with
Z,(P' x X) > Z,(A' x X) = Z,(P' x X)/Z.({x} x X)
to get
PL(C) A Z.(X) — Z.(A! x X).

By choosing an inverse of the homotopy equivalence
Z. (X)) Z. (A x X), we get:

S2AZ.(X) =P C)A Z.(X) — Z,_1(X).
The adjoint of this is the s-map on cycle spaces:

5: Z.(X) — Q*Z,_1(X).
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The s-map in Lawson homology

Taking homotopy groups of
5: Z.(X) — Q*Z,_1(X).
gives the s-map on Lawson homology:

s: LyHp(X) — Ly_1Hy(X).
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Lincoln

Taking homotopy groups of
5:Z.(X) — Q*Z,_1(X).

An
idiosyncratic

view of the gives the s-map on Lawson homology:
higher Chow
groups .

st Ly Hy(X) — Ly_1 Hy(X).
Definition of
Lawson
homology, and
its basic
properties

: The s-map can also be defined as multiplication by the
giﬂjgém s-element in morphic cohomology:

s € L'H°(SpecC) = Z.

This is the integral analogue of multiplication by the “Bott
element” in motivic cohomology:

B € Hiy(Speck, Z/n(1)) = (k).
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We get a sequence of maps
An

i o e LyHp(X) = -+ == LoHn(X) = Hy"8(X(C)).
higher Chow

groups

whose composition is the generalized cycle map from Lawson
homology to singular homology, for X projective:

Definition of
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homology, and
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properties

o Ly Hy(X) — Hy"8(X(C))
Conjecture

This generalizes to quasi-projective varieties U:
Ly Hy(U)=5 - —SLoH,(U) = HM(U(C))

L.H,(U) — H3M(U(C))
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The topological filtration

FlPHE8(X) i= im (L, Hp,(X) — Ho'8(X(C),Z))
FI°PH(X) C Y2 HE(X) C - C Ry P Hiy'8(X) = Hiye(X(C))

Conjecture (Friedlander-Mazur)

The topological filtration coincides (rationally) with the .
filtration by dimension of support (“niveau” filtration) of H:":

FlPHEME(X)g = N, HS"(X (C), Q).

In particular, this conjecture predicts that
Ly Hy(X) — H8(X(C))

is onto for m > dim(X) + 7. This is also known as the “Weak
Suslin Conjecture”.
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Natural maps between theories

An The map from motivic homology to singular homology factors
oSy pCatic through Lawson homology. For X projective:

view of the
higher Chow
groups

o HM(X,Z(r) — Ly Hin(X) — HIPS(X(C). 2(r))
IlqzxsoOIEgy, and
its basic
properties

(These maps are maps of mixed Hodge structures.)

Suslin's

Conjecture When m = 2r, the above sequence is

CH,(X) — CH,(X)/(alg. equiv.) — HS"8(X (C), Z(2r)).

(Recall HM (X, Z(r)) — L,H,,(X) is usually not onto.)
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Natural maps for quasi-projective varieties

This factorization extends to quasi-projective varieties U, and
has the form

Hy (U, Z(r)) — LiHpn(U) — Hp"(U(C), Z(r)).

(Recall HBM denotes Borel-Moore singular homology and
HBM — [sing for compact spaces.)

There are also maps on the corresponding cohomology theories:

Hj(U, Z(t)) — L'H"(U) — Hog(U(C), Z(t))

sing

and, together with the maps above, they give maps of
Bloch-Ogus duality theories.
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Known calculations: Codimension one cycles

fibration sequence

B®(C) — Z4-1(X) — Pic(X)(C).

For X connected, smooth, projective of dimension d we have a
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Known calculations: Codimension one cycles

For X connected, smooth, projective of dimension d we have a
fibration sequence

P*(C) — Z4-1(X) — Pic(X)(C).
Moreover,
Pic(X)(C) = NS(X) x Pic’(X)(C)

and Pic?(X)(C) (a torus) is the classifying space of the free
abelian group H. (X (C),Z). Also, P>*(C) = K(Z,?2).

sing

7'&'12(1_1(X) = EO(X)((C)
= Hsli_ng(X((C))
~ H3% (X(C)).
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Known calculations: Codimension one cycles

P=(C) — Z4-1(X) — Pic(X)(C)

An

idi ti H Hp.
O IR also implies:
higher Chow
groups o 2 ~ sing

Ry m0Zq-1(X) = NS(X) C Hgng(X(C)) = HzyZ,(X(C)).
Lawson
homology, and

its basic and i
properties WQZd—l(X) =7 = H;:;g(X((C))

Suslin's
Conjecture

For all smooth, quasi-projective varieties U':

H'8(U(C), Z) m>2d—1
Ly1Hn(U)=< NS(U) c HEBM(U(C),Z) n=2d—2
0 n<2d-—2
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" There is a class S of especially “simple” varieties for which

idiosyncratic
heher Cron Ly H(X)—W_o, HV'(X) € HEM(X).

groups

Definition of
Lawson
homology, and

homolc W, refers to the (integrally defined) weight filtration on
ropertes (Borel-Moore) homology. The class S includes:

Suslin's

Conjecture @ curves

@ toric varieties

@ cellular varieties

@ smooth, projective surfaces S s.t. CHy(S) — H"&(S)
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Finite coefficients

There are variants of motivic homology ( = higher Chow
groups) and Lawson homology with coefficients in any abelian
group A:

HM(X, A(r)) and L.H,,(X,A).

To define them, take homotopy groups with coefficients in A.

Theorem (Suslin-Voevodsky)

For any quasi-projective variety U,
H} (U, Z/n(r))—=Lr H(U, Z/n)

for all n > 0.

“motivic homology and Lawson homology with finite
coefficients coincide”
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lllustration of Suslin-Voevodsky theorem for

For example,
HQA;[(Xv Z/?’L(T)) = CH?"(X;Z/TL) = CHT(X) ® Z/TL

and

L,Hy (X,Z/n) = (CH,(X)/(alg. equiv.)) ® Z/n

are isomorphic.

This holds because the kernel CH, (X )q1g.~0 of
HN (X, Z(r)) — L.Ha.(X) is divisible.

For example, for codim. one cycles on a smooth, projective X:

C H gim(x)—1(X)atg.~0 = Pic’(X)(C), a torus.



Bloch-Kato Theorem in terms of Lawson homology

Lincoln

Theorem (Voevodsky)

For X smooth and n > 0, the map

An
idiosyncratic

bigher Chow LyHp(X,Z/n)=5HBM(X (C), Z/n)

groups

Definition of
Lawson

homology, and
its basic
properties

is an isomorphism provided m > d + r.
Ifm=d-+r—1, this map is injective.

Suslin's

Conjecture In terms of morphic cohomology:

L'HP(X,Z/n) = H?

sing

(X(C),Z/n) ifp<t.

Stronger form: Define a : (Var/C)anaiytic = (Var/C)za,.
Then N
L'HP(X,Z/n)—H, (X, tr~'Ra.Z/n)
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Suslin’s Conjecture for Lawson/morphic
(co)homology

Conjecture (Suslin’s Conjecture — Lawson form)

For a smooth, quasi-projective variety X, the map
L Hy(X) — Hy8(X(C))

is an isomorphism for m > d + r and a monomorphism for
m=d+r—1.

The cohomological version of Suslin's Conjecture is:

?
L'H™M(X) = H%, (X, tr<'Rm,Z),
where 7 : (Var/(c)analytic - (Var/(C)Zar- Thus,

“Suslin’s Conjecture = Bloch-Kato with Z-coefficients (over C)".
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