
p-ADIC ÉTALE COHOMOLOGY AND CRYSTALLINE
COHOMOLOGY FOR OPEN VARIETIES

東京大学大学院数理科学研究科　山下　剛 (Go YAMASHITA)

Graduate School of Mathematical Sciences,

University of Tokyo

This text is a report of a talk “p-adic étale cohomology and crystalline cohomology

for open varieties” in the symposium “Algebraic Number Theory and Related Topics”

(2-6/Dec/2002 at RIMS).

The aim of the talk was, roughly speaking, “to extend the main theorems of p-

adic Hodge theory for open or non-smooth varieties” by the method of Fontaine-

Messing-Kato-Tsuji, which do not use Faltings’ almost étale theory. (see [FM],[Ka2],

and [Tsu1]). Here, the main theorems of p-adic Hodge theory are: the Hodge-Tate

conjecture (CHT for short), the de Rham conjecture (CdR), the crystalline conjecture

(Ccrys), the semi-stabele conjecture (Cst), and the potentially semi-stable conjecture

(Cpst). The theorems CdR, Ccrys, and Cst are called the “comparison theorems”.

In the section 1, we review the main theorems of the p-adic Hodge theory. In the

section 2, we state the main results. In the section 3. we see the idea of the proof

The auther thanks to Takeshi Saito, Takeshi Tsuji, Seidai Yasuda for helpful discus-

sions. Finally, he also thanks to the organizers of the symposium Masato Kurihara,

Yuichiro Taguchi for giving me an occasion of the talk.

Notations

Let K be a complete discrete valuation field of characteristic 0, k the residue field of

K, perfect, characteristic p > 0, and OK the valuation ring of K. Denote K be the

algebraic closure of K, k the algebraic closure of k, GK the absolute Galois group of

K, and Cp the p-adic completion of K. (Note that it is an abuse of the notation. If

[K : Qp] < ∞, it coincide the usual notations.) Let W be the ring of Witt vectors

with coefficient in k, and K0 the fractional field of W . It is the maximum absolutely

unramified (i.e., p is a uniformizer in K0) subfield of K. The word “log-structure”

means Fontaine-Illusie-Kato’s log-structure (see. [Ka1]). We do not review the notion

of log-structure in this report.

Date: March/2003.
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1. The main theorems of p-adic Hodge theory

The p-adic Hodge theory compares cohomology theories with additional structures,

that is, Galois actions, Hodge filtrations, Frobenius endmorphisms, Monodoromy op-

erators:

(1) étale cohomology Hm
ét (XK ,Qp) —topological:

Qp-vector space +Galois action

(2) (algebraic) de Rham cohomology Hm
dR(XK/K) —analytic:

K-vector space +Hodge filtration

(3) (log-)crystalline cohomology K0 ⊗W Hm
crys(Y/W ) —analytic:

K0-vector space +Frobenius endmorphism (+ Monodromy operator).

In the p-adic Hodge theory, we use Fontaine’s p-adic period rings BdR, Bcrys, and

Bst. We do not review the definitions and fundamental properties of these rings. (see.

[Fo])

In the proof of the comparison theorems, we use the “syntomic cohomology”. This

is a vector space endowed with the Galois action. However, being different from the

étale cohomology it is an analytic cohomology defined by differential forms. It is the

theoritical heart of the p-adic Hodge theory by the method of Fontaine-Messing-Kato-

Tsuji that the syntomic cohomology is isomorphic to the étale cohomology compatible

with Galois action.

In this section, we state the main theorems of p-adic Hodge theory: CHT, CdR, Ccrys,

Cst, and Cpst. Roughly spealing, we can state the main theorems as the following way:

• the Hodge-Tate conjecture (CHT):

There exists a Hodge-Tate decomposition on the p-adic étale cohomology.

• the de Rham conjecture (CdR):

There exists a comparison isomorphism between the p-adic étale cohomology

and the de Rham cohomology.

• the crystalline conjecture (Ccrys):

In the good reduction case, we have stronger result than CdR, that is, there

exists a comparison isomorphism between the p-adic étale cohomology and the

crystalline cohomology.

• the semi-stable conjecture (Cst):

In the semi-stable reduction case, we have stronger result than CdR, that is,

there exists a comparison isomorphism between the p-adic étale cohomology

and the log-crystalline cohomology.

• the potentially semi-stable conjecture (Cpst):

The p-adic étale cohomology has “only a finite monodromy”.

The following theorems were formulated by Tate, Fontaine, Jannsen, proved by

Tate, Faltings, Fontaine-Messing, Kato under various assumptions, and proved by
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Tsuji under no assumptions (1999 [Tsu1]). Later, Faltings and Niziol got alternative

proofs (see. [Fa],[Ni]).

Theorem 1.1 (the Hodge-Tate conjecture (CHT)). Let XK be a proper smooth variety

over K. Then, there exists the following canonical isomorphism, which is compatible

with the Galois action.

Cp ⊗Qp Hm
ét (XK ,Qp) ∼=

⊕
0≤i≤m

Cp(−i)⊗K Hm−i(XK , Ωi
XK/K).

Here, GK acts by g ⊗ g on LHS, by g ⊗ 1 on RHS.

remark . This is an analogue of the Hodge decomopositon. In this isomorphism, the

following fact is remarkable: In general, it seems very difficult to know the action of

Galois group on the étale cohomology. However, afer tensoring Cp, the Galois action

is very easy: ⊕
0≤i≤m

Cp(−i)⊕hi,m−i

(hi,m−i := dimK Hm−i(X, Ωi
X/K).)

Theorem 1.2 (the de Rham conjecture (CdR)). Let XK be a proper smooth variety

over K. Then, there exists the following canonical isomorphism, which is compatible

with the Galois action and filtrations.

BdR ⊗Qp Hm
ét (XK ,Qp) ∼= BdR ⊗K Hm

dR(XK/K).

Here, GK acts by g ⊗ g on LHS, by g ⊗ 1 on RHS. We endow filtrations by Fili ⊗Hm
ét

on LHS, by Fili = Σi=j+kFilj ⊗ Filk on RHS.

remark . By takin graded quotient, we get CdR⇒CHT.

Theorem 1.3 (the crystalline conjecture (Ccrys)). Let XK be a proper smooth variety

over K, X be a proper smooth model of XK over OK. Y be the special fiber of X.

Then, there exists the following canonical isomorphism, which is compatible with the

Galois action, and Frobenius endmorphism.

Bcrys ⊗Qp Hm
ét (XK ,Qp) ∼= Bcrys ⊗W Hm

crys(Y/W )

Moreover, after tensoring BdR over Bcrys, and using the Berthelo-Ogus isomorphism

(see. [Be]):

K ⊗W Hm
crys(Y/W ) ∼= Hm

dR(XK/K),

we get an isomorphism:

BdR ⊗Qp Hm
ét (XK ,Qp) ∼= BdR ⊗K Hm

dR(XK/K),

which is compatible with filtrations. Here, GK acts by g⊗ g on LHS, by g⊗ 1 on RHS,

Frobenius endmorphism acts by ϕ⊗ϕ on LHS, by ϕ⊗1 on RHS. We endow filtrations

by Fili ⊗Hm
ét on LHS, by Fili = Σi=j+kFilj ⊗ Filk on RHS.

3



remark . By taking the Galois invariant part of the comparison isomorphism:

Bcrys ⊗Qp Hm
ét (XK ,Qp) ∼= Bcrys ⊗W Hm

crys(Y/W ),

we get:

(Bcrys ⊗Qp Hm
ét (XK ,Qp))

GK ∼= K0 ⊗W Hm
crys(Y/W ).

By taking Fil0(BdR ⊗Bcrys •) ∩ (•)ϕ=1 of the comparison isomorphism, we get:

Hm
ét (XK ,Qp) ∼= Fil0(BdR ⊗K Hm

dR(XK/K)) ∩ (Bcrys ⊗W Hm
crys(Y/W ))ϕ=1.

We can, that is, recover the crystalline cohomology & de Rham cohomology from

the étale cohomology and vice versa with all additional strucuture. (Grothendieck’s

mysterious functor.)

Theorem 1.4 (the semi-stable conjecture (Cst)). Let XK be a proper smooth variety

over K, X be a proper semi-stable model of XK over OK. (i.e., X is regular and proper

flat over OK, its general fiber is XK and its special fiber is normal crossing divisor.)

Let Y be the special fiber of X, and MY be a natural log-structure on Y .

Then, there exists the following canonical isomorphism, which is compatible with the

Galois action, and Frobenius endmorphism, monodromy operator.

Bst ⊗Qp Hm
ét (XK ,Qp) ∼= Bst ⊗W Hm

log-crys((Y, MY )/(W,O×))

Moreover, after tensoring BdR over Bst, and using the Hyodo-Kato isomorphism (see.

[HKa]) (it depens on the choice of the uniformizer pi of K):

K ⊗W Hm
log-crys((Y, MY )/(W,O×)) ∼= Hm

dR(XK/K)

we get an isomorphism:

BdR ⊗Qp Hm
ét (XK ,Qp) ∼= BdR ⊗K Hm

dR(XK/K)

which is compatible with filtrations. Here, GK acts by g⊗ g on LHS, by g⊗ 1 on RHS,

Frobenius endmorphism acts by ϕ⊗ϕ on LHS, by ϕ⊗1 on RHS, monodromy operator

acts by N ⊗ 1 on LHS, by N ⊗ 1 + 1⊗N on RHS. We endow filtrations by Fili ⊗Hm
ét

on LHS, by Fili = Σi=j+kFilj ⊗ Filk on RHS.

remark . By taking the Galois invariant part of the comparison isomorphism:

Bst ⊗Qp Hm
ét (XK ,Qp) ∼= Bst ⊗W Hm

log-crys((Y,MY )/(W,O×))

we get:

(Bst ⊗Qp Hm
ét (XK ,Qp))

GK ∼= K0 ⊗W Hm
log-crys((Y,MY )/(W,O×))

By taking Fil0(BdR ⊗Bst •) ∩ (•)ϕ=1,N=0 of the comparison isomorphism, we get:

Hm
ét (XK ,Qp) ∼= Fil0(BdR⊗KHm

dR(XK/K))∩(Bst⊗W Hm
log-crys((Y,MY )/(W,O×)))ϕ=1,N=0
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We can, that is, recover the log-crystalline cohomology & de Rham cohomology from

the étale cohomology and vice versa with all additional strucuture. (Grothendieck’s

mysterious functor.)

remark . From BN=0
st = Bcrys, we get Cst⇒Ccrys.

remark . By using de Jong’s alteration(see. [dJ]), we get Cst⇒CdR. We need a slight

argument to showing that it is compatible not only with the action of Gal(K/L) for a

suitable finite extention L of K, but also with the aciton of GK . (see. [Tsu4])

In the following theorem, we do not review the definition of the potentially semi-

stable representation.

Theorem 1.5 (the potentially semi-stable conjecture (Cpst)). Let XK be a proper

variety over K. Then, the p-adic étale cohomology Hm
ét (XK ,Qp) is a potentially semi-

stable representation of GK.

remark . By using de Jong’s alteration（see. [dJ]）and truncated simplicial schemes,

we get Cst⇒Cpst. (see. [Tsu3])

The logical dependence is the following:

Cpst ⇐ Cst ⇒ Ccrys, Cst ⇒ CdR ⇒ CHT.

Cst ⇒ Ccrys and CdR ⇒ CHT are trivial. For Cst ⇒ CdR, we use de Jong’s alteration.

For Cst ⇒ Cpst, we use de Jong’s alteration and truncated simplicial scheme. i.e., Cst

is the deepest theorem.

2. The main results

In this section, we state the main results without proof (see. [Y]). In this report,

we do not mention weight filtrations.

We call CHT(resp. CdR, Ccrys, Cst, Cpst) in the previous section proper smooth

CHT(resp. proper smooth CdR, proper Ccrys, proper Cst, proper Cpst). Roughly speak-

ing, we remove conditions of the main theorems in the following way.

former results

CHT proper smooth separated finite type

CdR proper smooth separated finite type

Ccrys proper good reduction model “open” good reduction model

Cst proper semi-stable reduction model “open” semi-stable reduction model

Cpst proper separated finite type

In the above, the word “open” means “proper minus normal crossing divisor”. In

CdR case, we use Hartshorne’s algebraic de Rham cohomology for open non-smooth
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varieties. In CHT case, the Hodge-Tate decomposition of the open non-smooth CHT is

a formal decomposition, and it relates cohomologies of the sheaf of differential forms

only in the “open” smooth case.

We consider cohomologies with proper support Hm
c and cohomologies without proper

support Hm. Moreover, we can consider “partially proper support cohomologies” in

“open” smooth cases: If we decompose the normal crossing divisor D into D = D1∪D2,

“partially proper support cohomologies” are cohomologies with support only on D1,

that is,

Hm
ét (XK , D1

K
, D2

K
) := Hm

ét (XK , Rj2∗j1!Qp),

Hm
dR(XK , D1

K , D2
K) := Hm(XK , I(D1)ΩXK/K(logDK)),

Hm
log-crys(Y, C1, C2) := K0 ⊗W Hm

log-crys((Y,MY )/(W,O×), K(C1)O(Y,MY )/(W,O×)),

Here, j1 : (X \ D)K ↪→ (X \ D2)K , j2 : (X \ D2)K ↪→ XK , Y (resp. C, Ci) are the

special fiber of X(resp. D, Di), and I(D1)(resp. K(D1)) are the ideal sheaf ofOX(resp.

O(Y,MY )/(W,O×)) defined by D1(resp. C1) (see. [Tsu2]). They are called the “minus

log”. Naturally, we have Hm(X, ∅, D) = Hm(X \D) and Hm(X, D, ∅) = Hm
c (X \D)

for étale, de Rham, and log-crystalline cohomologies.

For example, the diagonal class [∆] of a open variety belongs to a cohomology with

partially proper support on D×X(⊂ (D×X)∪ (X×D)), that is, in H2d(X×X,D×
X,X × D). When we consider algebraic correspondences on open varieties, we need

to consider partially proper support cohomologies. Thus, in a sense, when we consider

not only a comparison between varieties but also a comparison of Hom, we have to

consider partially proper support cohomologies. In this way, it is important to show

comparison isomorphisms for partially proper support cohomologies.

First, we prove a extended version of Hyodo-Kato isomorphism:

Proposition 2.1. Let X be a proper semi-stable model over OK, D be a horizontal

normal crossing divisor of X, which is also normal crossing to the special fiber. We

decompose D into D = D1∪D2. Put Y (resp. C) to be the special fiber of X(resp. D).

Fix a uniformizer pi of K. Then, we have the following isomorphism:

K ⊗K0 Hm
log-crys(Y,C1, C2) ∼= Hm

dR(XK , D1
K , D2

K).

Thus, the pair

(Hm
log-crys(Y,C1, C2), Hm

dR(XK , D1
K , D2

K))

has a filtered (ϕ,N)-module structure.

The main result is the following:

Theorem 2.2 (“open” Cst). Let X be a proper semi-stable model over OK, D be a

horizontal normal crossing divisor of X, which is also normal crossing to the special
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fiber. We decompose D into D = D1 ∪D2. Put Y (resp. C) to be the special fiber of

X(resp. D). Then, we have the following canonical Bst-linear isomorphism:

Bst ⊗Qp Hm
ét (XK , D1

K
, D2

K
) ∼= Bst ⊗K0 Hm

log-crys(Y, C1, C2)

Here, that is compatible the additional structures equipped by the following table:

Bst ⊗QpH
m
ét (XK , D1

K
, D2

K
) ∼= Bst ⊗K0H

m
log-crys(Y,C1, C2)

Gal g ⊗g g ⊗1

Frob ϕ ⊗1 ϕ ⊗ϕ

Monodromy N ⊗1 N ⊗ 1 +1⊗N

Fili after

BdR⊗Bst

} Fili ⊗Hm
ét

∑

i=j+k

Filj ⊗Filk

Moreover, this is compatible with product structures.

In particular, if D1 = φ, then we get

Bst ⊗Qp Hm
ét ((X \D)K ,Qp) ∼= Bst ⊗K0 Hm

log-crys(Y \ C),

Bst ⊗Qp Hm
ét,c((X \D)K ,Qp) ∼= Bst ⊗K0 Hm

log-crys,c(Y \ C).

remark . A proof for cohomologies with proper support (Hc) in the case of D2 = ∅
and D is simple normal crossing was given by T. Tsuji in [Tsu8]. That proof asserts

there exist a comparison isomorphism of Hc’s. Taking dual, we get the comparison

isomorphism of H’s, but we can not verify that the isomorphism is the one which has

constructed in [Tsu2], because the proof neglects product structures. Later, he also

gave an alternative proof for cohomologies without support (H) in the case of D2 = ∅
and D is simple normal crossing, by removing smooth divisors one by one (see. [Tsu5]).

That proof asserts there exist a comparison isomorphism of H’s. Taking dual, we get

the comparison isomorphism of Hc’s, but we can not verify that the isomorphism is

the one which has constructed in the above personal conversations, because the proof

neglects product structures. In that method, we cannot treat normal crossing divisors,

and partially proper support cohomologies.

Anyway, we want to construct comparison maps of H and Hc (more generally, H1

and H2), which is compatible with product structures, and to show the comparison

maps are isomorphism.

From this “open”Cst, by the similar argument of

Cpst ⇐ Cst ⇒ Ccrys, Cst ⇒ CdR ⇒ CHT

in the previous section, we can extend CHT, CdR, Ccrys, and Cpst.

The “open”Ccrys is immediately deduced from the “open”Cst.

Theorem 2.3 (“open”Ccrys). Let X be a proper smooth model over OK, D be a hori-

zontal normal crossing divisor of X, which is also normal crossing to the special fiber.
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We decompose D into D = D1 ∪D2. Put Y (resp. C) to be the special fiber of X(resp.

D). Then, we have the following canonical Bst-linear isomorphism, which is compati-

ble with the Galois actions, the Frobenius endmorphisms, the filtrations after tensoring

BdR over Bcrys:

Bst ⊗Qp Hm
ét (XK , D1

K
, D2

K
) ∼= Bst ⊗K0 Hm

log-crys(Y, C1, C2)

By de Jong’s alteration and truncated simplicial scheme argument (see. [Tsu3]),

we can deduce the open non-smooth CdRfrom the “open”Cst. Here, in the case of

open non-smooth, we use the de Rham cohomology of (Deligne-)Hartshorne. (see.

[Ha1][Ha2])

Theorem 2.4 (open non-smooth CdR). Let UK be a separated variety of finite type

over K. Then, we have the following canonical isomorphism, which is compatible with

the Galois actions and filtrations:

BdR ⊗Qp Hm
ét (UK ,Qp) ∼= BdR ⊗K Hm

dR(UK/K)

BdR ⊗Qp Hm
ét,c(UK ,Qp) ∼= BdR ⊗K Hm

dR,c(UK/K).

In the case of “open” smooth, we can consider partially proper support cohomologies

by de Jong’s alteration and diagonal class argument (see. [Tsu4]).

Theorem 2.5 (“open” CdR). Let XK be a proper smooth variety over K, and DK be

a normal crossing divisor of XK. We decompose D into DK = D1
K ∪D2

K. Then, we

have the following canonical isomorphism, which is compatible with the Galois actions

and filtrations:

BdR ⊗Qp Hm
ét (XK , D1

K
, D2

K
) ∼= BdR ⊗K Hm

dR,i(XK , D1
K , D2

K)

By taking graded quotient, we can deduce the open non-smooth CHT from the open

non-smooth CdR. However, the Hodge-Tate decomposition of the open non-smooth

CHT is a formal decomposition, and it relates cohomologies of the sheaf of differential

forms only in the “open” smooth case.

Theorem 2.6 (open non-smooth CHT). Let UK be a separated variety of finite type

over K. Then, we have the following canonical isomorphism, which is compatible with

the Galois actions:

Cp ⊗Qp Hm
ét (UK ,Qp) ∼=

⊕
−∞¿i¿∞

Cp(−i)⊗K griHm
dR(UK/K)

Cp ⊗Qp Hm
ét,c(UK ,Qp) ∼=

⊕
−∞¿i¿∞

Cp(−i)⊗K griHm
dR,c(UK/K).
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Theorem 2.7 (“open” CHT). Let XK be a proper smooth variety over K. and DK be

a normal crossing divisor of XK. We decompose D into DK = D1
K ∪D2

K. Then, we

have the following canonical isomorphism, which is compatible with the Galois actions:

Cp ⊗Qp Hm
ét (XK , D1

K
, D2

K
) ∼=

⊕
0≤j≤m

Cp(−j)⊗K Hm−j(XK , I(D1)Ωj
XK/K(logDK)).

By de Jong’s alteration and truncated simplicial scheme argument (see. [Tsu3]), we

can deduce the open non-smooth Cpst from the “open”Cst:

Theorem 2.8 (open non-smooth Cpst). Let UK be a separated variety of finite type

over K. Then, the p-adic étale cohomologies Hm
ét (UK ,Qp), Hm

ét,c(UK ,Qp) are potentially

semi-stable representations.

3. The idea of the proof

In this section, we see how difficulties arise, and the idea of the proof of the main

result (“open” Cst). We use the idea of “hollow-log” schemes in the proof, however,

we do not deeply see them in this report. In the proof, we do not use Faltings’ almost

étale theory. In the method of Fontaine-Messing-Kato-Tsuji, we use the intermediate

cohomology “syntomic cohomology” (see. [FM][Ka2][Tsu1]):

Hm
syn(X, D1, D2) := Qp ⊗Zp lim←−

n

Hm
syn((X, M), S̃n(r)(−logD1)).

Here, S̃n(r)(−logD1) is the minus-log syntomic complex, which is defined by differential

forms.

Roughly speaking, we construct tha maps

Hm
ét ←− Hm

syn −→ Bst ⊗K0 Hm
log-crys,

and show the left homomorphism is an ismorphism. Then, we get the map

Bst ⊗Qp Hm
ét −→ Bst ⊗K0 Hm

log-crys.

By using product structures, we show that the comparison map is an isomorphism. In

the method of Fontaine-Messing-Kato-Tsuji, it is the technical heart to show the map

Hm
syn → Hm

ét is an isomorphism. In the proper case, by calculating the structure of the

syntomic complex S ′n(r) and the p-adic vanishing cycle i∗Rj∗Z/pnZ(r) using symbol

maps, we got the theorem, which says the map

i∗S ′n(r) −→ i∗i∗Rj∗Z/pnZ(r)′

is an isomorphism up to bounded torsion for n. Here, j : XK ↪→ XOK
, i : Yk ↪→ XOK

.

By showing the Bloch-Kato conjecture about Milnor K-groups and Galois cohomolo-

gies for henselian discrete valuation field, Bloch-Kato calculated the p-adic vanishing

cycle i∗Rj∗Z/pnZ(r) in the good reduction case (see. [BK]). By extending the method,
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Hyodo calculated the p-adic vanishing cycle i∗Rj∗Z/pnZ(r) in the semi-stable reduc-

tion case (see. [H]). The Bloch-Kato conjecture arises from Kato’s higher dimensional

class field theory by Milnor K-groups.

On the other hand, the cohomology of syntomic complex S ′n(r) can be consid-

ered to be the p-adic Hodge cohomology,(see. [Ba]) that is, it calculates the Exti

in the category of “family of filtered ϕ-modules”. (In the comparison theorem, we

change the base field. Thus, the Galois group acts on the syntomic cohomology in

the use of the comparison.) The structure of syntomic complexes was calculated

and applied to the comparison theorem by Kurihara, Kato, Messing, Tsuji. (see.

[Ka2][Ka3][KM][Ku][Tsu1][Tsu6][Tsu7]) It is highly non-trivial that the map

i∗S ′n(r) −→ i∗i∗Rj∗Z/pnZ(r)′

is an isomorphism up to bounded torsion for n.

In the open case, we do not touch the calculations of the structures. We have

difficulties in other places.

First, we find difficulties in the method of reducing to proper case by “weight”

spectral sequences. Thus we do not use the method of “weight” spectral sequences.

More precisely, it seems difficult to show that the map in the case D1 = ∅
i∗S ′n(r) −→ i∗i∗Rj∗Rj◦∗Z/pnZ(r)′

sends the µ-th filtration on i∗S ′n(r), which is defined by the number of log-poles,

to the µ-th filtration i∗i∗Rj∗τ≤µRj◦∗Z/pnZ(r)′ on i∗i∗Rj∗Rj◦∗Z/pnZ(r)′. Here, j◦ :

(X \D)K ↪→ XK . It seems that it will need a more ring theory for

Acrys(Ah, Z, FZ).

Especially, a behavior of the functor Acrys(−) under a closed immersion:

(1) a regularness of the sequence {T1, . . . , Ta} in Acrys(Ah, Z, FZ),

(2) a definition of Filrp on Acrys(Ah, Z, FZ)/(T1, . . . , Tk),

(3) a fundamental exact sequence for Acrys(Ah, Z, FZ)/(T1, . . . , Tk).

Here, Ah and Z is as usual, FZ = {FZn}n is a compatible sequence of a lift of Frobe-

nius on Zn, {dlog T1, . . . , dlog Ta} is a basis of ω1
Zn/Wn

, and Acrys(Ah, Z, FZ) is the

ring defined by Ah,Z,and FZ , which is larger than Acrys(Ah). (In [Tsu1], he denote

Spec Acrys(Ah, Z, FZ)/pn to be En.) It seems difficult to show the regularness of the

sequence {T1, . . . , Ta} in Acrys(Ah, Z, FZ) without the almost étale theory. It is not

ever proved that

i∗S ′n(r) −→ i∗i∗Rj∗Rj◦∗Z/pnZ(r)′

is compatible with the filtrations,

Even if we could show the above map is compatible with the filtrations, it seems

difficult to show that its graded quotients are also comparison maps constructed in the
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proper case: In the straight thinking, we have to look how differential forms arise in

Galois cohomologies –that needs the almost étale theory. However, we can show that

its graded quotients are also comparison maps constructed in the proper case by using

the method of “hollow-log” schemes. In that method, we can avoid the calculation of

H∗(Gal(Ah/Ah),Acrys(Ah, Z, FZ)).

This fact is not used for the proof of the main theorem, since we do not use the method

of “weight” spectral sequences.

Second, when we do not use the method of “weight” spectral sequences, we need

product structures, because we use product structures to show the map

γm : Bst ⊗Qp Hm
ét

∼=←− Bst ⊗Qp Hm
syn −→ Bst ⊗K0 Hm

log-crys

is an isomorphism. We find difficulties in making product structures. To make product

structures, we consider “hollow-log” schemes. For the simplicity, we assume that the

divisor is simple normal crossing and D1 = ∅. For D = ∪1≤i≤sDi (Di is irreducible)

and n ≥ 0, put

D(n) :=
∐

I⊂{1,...,s}

⋂
j∈I

Dj.

Let MD(n) be the pull back of the log structure M on X. Then, (D(n), MD(n)) are

“hollow-log” schemes. It can be considered a kind of “tube” around D(n).

However, log-crystalline cohomologies for these “hollow-log” schemes are in general

infinite dimensional. Thus, we overcome difficulties by finding a modified crystalline

sheaf, whose log-crystalline cohomology is finite dimensional. By using these ingredi-

ents, we finish the proof.
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